JP5126153B2 - Membrane separation activated sludge treatment equipment - Google Patents

Membrane separation activated sludge treatment equipment Download PDF

Info

Publication number
JP5126153B2
JP5126153B2 JP2009104463A JP2009104463A JP5126153B2 JP 5126153 B2 JP5126153 B2 JP 5126153B2 JP 2009104463 A JP2009104463 A JP 2009104463A JP 2009104463 A JP2009104463 A JP 2009104463A JP 5126153 B2 JP5126153 B2 JP 5126153B2
Authority
JP
Japan
Prior art keywords
separation membrane
membrane
separation
activated sludge
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009104463A
Other languages
Japanese (ja)
Other versions
JP2010253354A (en
Inventor
敬一朗 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009104463A priority Critical patent/JP5126153B2/en
Publication of JP2010253354A publication Critical patent/JP2010253354A/en
Application granted granted Critical
Publication of JP5126153B2 publication Critical patent/JP5126153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、膜分離活性汚泥処理装置に関し、生活排水や工業排水等の下水処理を行うものである。   The present invention relates to a membrane separation activated sludge treatment apparatus, and performs sewage treatment such as domestic wastewater and industrial wastewater.

従来、膜分離活性汚泥法により下水処理を行う水処理装置が提供されている。
膜分離活性汚泥法による水処理では、1つの曝気槽内に生物膜と分離膜とを配置する槽内設置型と、別の槽に配置して配管を介して接続する槽外設置型とがある。
前記槽内設置型は水処理装置を簡単にできるが、分離膜が生物膜槽内に配置されるため、分離膜面に懸濁成分が付着し易く目詰まりが発生し易い問題がある。一方、槽外設置型は分離膜面を定期的に薬液洗浄と逆洗浄ができるため、目詰まりによる透過流速の低下を抑制できる。しかしながら、逆洗浄により分離膜面から剥離した懸濁成分を生物膜槽に還流すると、元の微粒子になり、かつ、付着した微生物が生物膜槽で余剰になる問題がある。また、生物膜槽から分離膜槽への配管に詰まりやすいと共に2個の槽が必要となり水処理装置が大型化する問題もある。
このように、槽内設置型と槽外設置型のいずれも長所と短所を備えている。
Conventionally, a water treatment apparatus that performs sewage treatment by a membrane separation activated sludge method has been provided.
In the water treatment by the membrane separation activated sludge method, there are an in-tank installation type in which a biofilm and a separation membrane are arranged in one aeration tank, and an out-of-tank installation type that is arranged in another tank and connected via a pipe. is there.
The in-tank installation type can simplify the water treatment apparatus, but since the separation membrane is arranged in the biofilm tank, there is a problem that the suspended components are likely to adhere to the separation membrane surface and clogging is likely to occur. On the other hand, since the separation type surface can be periodically cleaned with a chemical solution and reversely cleaned, the outside-tank installation type can suppress a decrease in permeation flow rate due to clogging. However, when the suspended components separated from the separation membrane surface by backwashing are refluxed to the biofilm tank, there are problems that the original microparticles are formed and the attached microorganisms are excessive in the biofilm tank. In addition, the piping from the biofilm tank to the separation membrane tank is likely to be clogged, and two tanks are required, resulting in an increase in the size of the water treatment apparatus.
Thus, both the in-tank installation type and the out-of-tank installation type have advantages and disadvantages.

前記槽外設置型において、特開2008−86863号公報(特許文献1)では、分離膜槽内の分離膜を逆洗することにより生じた膜面閉塞物質を含む逆洗排水をオゾン槽に通してオゾン処理して、逆洗排水に膜面閉塞物質を分解して微小化し、生物膜槽で活性汚泥処理した後に分離膜槽で濾過し、該濾過時に分離膜面を閉塞しないようにしている。
また、前記槽内設置型において、特開2001−62483号公報(特許文献2)では、曝気槽に配管する散気管から散気する空気に所定量のオゾン化空気を混入して曝気槽内に供給して、曝気空気量を増加させることなく必要量の酸素を活性汚泥に供給している。
In the outside installation type, Japanese Patent Application Laid-Open No. 2008-86863 (Patent Document 1) passes backwash wastewater containing a membrane surface blocking substance generated by backwashing a separation membrane in a separation membrane tank through an ozone tank. The membrane is clogged with ozone by decomposing it into backwash wastewater and then micronized, treated with activated sludge in a biofilm tank, filtered through a separation membrane tank, and the separation membrane surface is not blocked during the filtration. .
Moreover, in the said installation type in a tank, Unexamined-Japanese-Patent No. 2001-62483 (patent document 2) WHEREIN: A predetermined amount of ozonized air is mixed in the air diffused from the diffuser pipe piping to an aeration tank, and it is in an aeration tank. The required amount of oxygen is supplied to the activated sludge without increasing the amount of aerated air.

特許文献1の槽外設置型では逆洗浄水をオゾン槽に通した後に生物膜槽に還流しており、生物膜槽へ還流される逆洗浄水中の有機物の微小化を図ることはできるが、分離膜自体の目詰まりの問題は解消されておらず、かつ、槽内設置型とした場合には前記のように分離膜に目詰まりが発生しやすくなる。
特に、膜分離活性汚泥法のような高汚濁性水処理において槽内設置型とすると、処理液の粘度が高いうえ、生物処理特有の粘着性のある堆積物により分離膜の表面にも膜の汚れ(バイオファウリング)が発生する。よって、一般の排水系の濾過に比べて、分離膜に懸濁成分が堆積しやすく、堆積物の付着や目詰まりによる透過流量の低下が顕著である。
そのため、膜モジュールを用いた濾過装置は、通常、運転時には散気管から加圧空気を送り、エアバブリング等で排水の流れを作り、これによる堆積物の剥離や濾過膜の揺動による機械的負荷による堆積物を取り除く清浄操作(散気処理)が行われる。
よって、分離膜は高い濾過性能を有することに加えて、長期間運転時の機械的負荷に耐えうる強度が要求される。
また、特に活性汚泥が分離膜表面に付着する分離膜は、薬液を用いて殺菌洗浄する必要があるため、酸・アルカリに対して優れた耐薬品性を兼ね備えていることが要望されている。
In the outside installation type of Patent Document 1, the backwash water is returned to the biofilm tank after passing through the ozone tank, and organic substances in the backwash water returned to the biofilm tank can be miniaturized. The problem of clogging of the separation membrane itself has not been solved, and the clogging of the separation membrane is likely to occur as described above when it is set in the tank.
In particular, in the case of a highly polluted water treatment such as the membrane separation activated sludge method, the viscosity of the treatment liquid is high, and the deposit on the surface of the separation membrane is deposited on the surface of the separation membrane due to sticky deposits peculiar to biological treatment. Dirt (bio-fouling) occurs. Therefore, compared with the filtration of a general drainage system, suspended components are likely to be deposited on the separation membrane, and the permeate flow rate is significantly reduced due to the adhesion and clogging of deposits.
Therefore, filtration devices using membrane modules usually send pressurized air from the diffuser pipe during operation and create a flow of drainage by air bubbling, etc., which causes mechanical loads due to the separation of deposits and the oscillation of the filtration membrane. A cleaning operation (aeration process) is performed to remove deposits caused by the above.
Therefore, in addition to having high filtration performance, the separation membrane is required to have a strength capable of withstanding a mechanical load during long-term operation.
In particular, a separation membrane in which activated sludge adheres to the surface of the separation membrane needs to be sterilized and washed using a chemical solution, and therefore it is desired to have excellent chemical resistance against acids and alkalis.

しかしながら、前記した従来用いられている分離膜は、塩素化ポリエチレン等のポリオレフィン系樹脂からなる多孔質膜を用いたものや、ポリフッ化ビニリデン(PVDF)系樹脂からなる多孔質膜を用いられている場合が多い。
このように、従来汎用されている分離膜はポリオレフィン系樹脂が多く、そのほか、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアクリロニトリル、酢酸セルロース、ポリスルホン等から形成されている。
これらの従来分離膜として用いられている樹脂は、高濃度の酸やアルカリからなる洗浄液に対する耐薬品性は十分でない。
However, the conventional separation membrane described above uses a porous membrane made of a polyolefin resin such as chlorinated polyethylene or a porous membrane made of a polyvinylidene fluoride (PVDF) resin. There are many cases.
As described above, the separation membranes that have been widely used in the past are mostly polyolefin-based resins, and are made of polypropylene, polyethylene, polystyrene, polyacrylonitrile, cellulose acetate, polysulfone, or the like.
These resins used as conventional separation membranes are not sufficiently resistant to chemicals with respect to cleaning liquids composed of highly concentrated acids and alkalis.

また、特許文献2の槽内設置型として、オゾンを含む空気を散気管から散気すると、溶存酸素量は多くなるが、分離膜は目詰まりを低減するため常時散気する必要があり、散気中にオゾンを含めておくと、溶存酸素量が多くなり過ぎ、微生物が過剰になる問題がある。   In addition, as an in-tank installation type of Patent Document 2, when air containing ozone is diffused from a diffuser tube, the amount of dissolved oxygen increases, but the separation membrane needs to be constantly diffused to reduce clogging. If ozone is included in the air, there is a problem that the amount of dissolved oxygen becomes excessive and microorganisms become excessive.

特開2008−86863号公報JP 2008-86863 A 特開2001−62483号公報JP 2001-62483 A

本発明は前記問題に鑑みてなされたもので、槽内設置型の膜分離活性汚泥処理装置として、簡単な構成とし、かつ、槽内に浸漬する分離膜に目詰まりの発生を低減して透過流速を保持しながら、微生物を過剰に増殖させないことを課題としている。   The present invention has been made in view of the above problems, and as a membrane-separated activated sludge treatment apparatus installed in a tank, it has a simple configuration and reduces the occurrence of clogging in the separation membrane immersed in the tank. The problem is to prevent the microorganisms from growing excessively while maintaining the flow rate.

前記課題を解決するため、本発明は、
曝気槽内に生物処理部と分離膜処理部とを下部の流通路を介して連通した状態で仕切壁で仕切り、
前記生物処理部に四弗化エチレン樹脂からなる多孔質体を担体に微生物を付着した生物膜を配置し、
前記分離膜処理部内には、四弗化エチレン樹脂製の分離膜からなる分離膜モジュールを吊設して浸漬し、該分離膜モジュールは吸引濾過式で前記生物処理部から被処理水を分離膜に吸引するものとし、かつ、該分離膜処理部では分離膜モジュールの下方にオゾン発生器を配置し、かつ、
前記分離膜モジュールに自動洗浄装置を付設し、薬液と逆洗水で分離膜を洗浄することを特徴とする膜分離活性汚泥処理装置を提供している。
In order to solve the above problems, the present invention provides:
In the state where the biological treatment unit and the separation membrane treatment unit are communicated with each other through the lower flow path in the aeration tank,
A biological film in which a microorganism is attached to a porous body made of a tetrafluoroethylene resin is disposed in the biological treatment section,
A separation membrane module made of a tetrafluoroethylene resin separation membrane is suspended and immersed in the separation membrane treatment section, and the separation membrane module is a suction filtration type and separates water to be treated from the biological treatment section. And an ozone generator is disposed below the separation membrane module in the separation membrane treatment section, and
An automatic cleaning device is attached to the separation membrane module, and a membrane separation activated sludge treatment device is provided in which the separation membrane is washed with a chemical solution and backwash water.

前記のように、本発明では、槽内設置型の分離膜活性汚泥処理方法を用いているが、曝気槽内は下部流通路を介して連通した状態で仕切壁で生物処理部と分離膜処理部とを仕切り、生物処理部で発生する活性汚泥の一部を生物処理部内で沈殿させ、下部流通路を通して分離膜処理部へ流入している。そのため、分離膜処理部へ流入する活性汚泥量を減少でき、分離膜の目詰まり発生を低減できる。かつ、槽外設置型の用いる配管を用いずに生物処理部と分離膜処理部とを下部流通路で連通することで、配管内のフロックによる閉塞を防止し且つ装置を簡単としている。
特に、曝気槽内で生物処理部と仕切り、下部流通路を通して分離膜処理部に流入して分離膜の表面に付着する活性汚泥(凝集したフロック)にオゾンを供給することで、有機物を分解してフロックを微小化しているため、分離膜の表面および膜内での目詰まりの発生を低減することができる。さらに、分離膜表面で殺菌処理することができるため、分離膜の透過液を殺菌する殺菌処理槽を省略することも可能である。
また、仕切壁で仕切った分離膜処理部にオゾン発生器を設置し、生物処理部にはオゾン発生器を設置していないため、生物処理部内での溶存酸素量が過剰となって微生物が適正数より過剰となることを防止できる。
As described above, in the present invention, the separation membrane activated sludge treatment method installed in the tank is used, but the biological treatment section and the separation membrane treatment are performed by the partition wall in a state where the inside of the aeration tank is communicated via the lower flow path. A part of the activated sludge generated in the biological treatment part is precipitated in the biological treatment part and flows into the separation membrane treatment part through the lower flow passage. Therefore, the amount of activated sludge flowing into the separation membrane treatment unit can be reduced, and the occurrence of clogging of the separation membrane can be reduced. In addition, the biological treatment unit and the separation membrane treatment unit are communicated with each other through the lower flow path without using the piping used outside the tank, so that blockage due to flocs in the piping is prevented and the apparatus is simplified.
In particular, organic substances are decomposed by supplying ozone to the activated sludge (aggregated floc) that separates from the biological treatment section in the aeration tank and flows into the separation membrane treatment section through the lower flow passage and adheres to the surface of the separation membrane. Therefore, the occurrence of clogging on the surface of the separation membrane and in the membrane can be reduced. Furthermore, since the sterilization treatment can be performed on the surface of the separation membrane, a sterilization treatment tank for sterilizing the permeated liquid of the separation membrane can be omitted.
In addition, an ozone generator is installed in the separation membrane treatment section partitioned by the partition wall, and no ozone generator is installed in the biological treatment section, so the amount of dissolved oxygen in the biological treatment section becomes excessive and microorganisms are appropriate. It is possible to prevent the number from becoming excessive.

前記分離膜処理部内で液中に設置する前記オゾン発生器は上下開口の遮蔽枠で囲み、オゾン発生器から発生させるオゾンを分離膜モジュールの分離膜に対して供給して分離膜に直接に供給されるようにしている。
これにより、分離膜モジュールの分離膜の表面にオゾンを効率良く供給でき、分離膜の表面に付着するフロックの有機物を酸化処理して微細化でき、分離膜表面および膜間に目詰まりを低減できる。かつ、一方、生物処理部には直接的にオゾンを供給していないため、微生物が過剰に増殖するのを抑制できる。
The ozone generator installed in the liquid in the separation membrane processing unit is surrounded by a shielding frame with upper and lower openings, and the ozone generated from the ozone generator is supplied to the separation membrane of the separation membrane module and directly supplied to the separation membrane. To be.
As a result, ozone can be efficiently supplied to the surface of the separation membrane of the separation membrane module, the floc organic matter adhering to the surface of the separation membrane can be refined by oxidation, and clogging between the separation membrane surface and between the membranes can be reduced. . On the other hand, since ozone is not directly supplied to the biological treatment unit, it is possible to suppress excessive growth of microorganisms.

また、本発明では分離膜を四弗化エチレン樹脂(ポリテトラフルオロエチレン、以下、PTFEと称す)で形成していることを特徴とする。PTFEは耐薬品性、化学安定性、高強度、滑り易く懸濁成分が付着しにくい非粘着性、低摩擦係数、不燃性、耐候性に優れた特性を備え、特に、高濃度のアルカリ液や酸性液を洗浄液として用いることができる。該PTFE製の分離膜として、住友電工ファインポリマー(株)製「ポアフロン(登録商標)メンブレン」シリーズを好適に用いることができる。
このように、膜分離活性汚泥処理装置の曝気槽内に配置し、フロックが付着する分離膜をPTFE製の分離膜からなる分離膜モジュールとすることにより、分離膜の表面にフロックや難溶解性成分が蓄積しても高濃度のアルカリ液や酸性液を洗浄液として用いることで目詰まりを低減でき、長期間安定して高い透過流速を維持して水処理することができる。
Further, the present invention is characterized in that the separation membrane is formed of tetrafluoroethylene resin (polytetrafluoroethylene, hereinafter referred to as PTFE). PTFE has chemical resistance, chemical stability, high strength, non-adhesiveness that is easy to slip and does not adhere to suspended components, low friction coefficient, non-flammability, and excellent weather resistance. An acidic liquid can be used as a cleaning liquid. As the PTFE separation membrane, the “Poreflon (registered trademark) membrane” series manufactured by Sumitomo Electric Fine Polymer Co., Ltd. can be suitably used.
As described above, the separation membrane module made of PTFE separation membrane is arranged in the aeration tank of the membrane separation activated sludge treatment apparatus, and the floc adheres to the separation membrane module made of PTFE separation membrane. Even if components accumulate, clogging can be reduced by using a high-concentration alkaline liquid or acidic liquid as a cleaning liquid, and water treatment can be performed while maintaining a high permeation flow rate stably over a long period of time.

前記PTFE製の分離膜は単層または複層の中空糸とし、前記分離膜モジュールは中空糸膜モジュールとしている。
あるいはPTFE製の分離膜は単層または複層の平膜とし、前記分離膜モジュールは平膜モジュールとしている。
The separation membrane made of PTFE is a single layer or a multilayer hollow fiber, and the separation membrane module is a hollow fiber membrane module.
Alternatively, the PTFE separation membrane is a single-layer or multi-layer flat membrane, and the separation membrane module is a flat membrane module.

具体的には、例えば、PTFE製の複層の中空糸とする場合には、特許第385186号に記載した多孔質複層中空糸等が好適に用いられ、また、中空糸を集束した分離膜モジュールとしては、特許第3077260号公報および前記特許第385186号に記載した中空糸膜モジュールが好適に用いられる。   Specifically, for example, when a multi-layer hollow fiber made of PTFE is used, the porous multi-layer hollow fiber described in Japanese Patent No. 385186 is preferably used, and a separation membrane in which the hollow fibers are concentrated is used. As the module, the hollow fiber membrane module described in Japanese Patent No. 3077260 and the above Patent No. 385186 is preferably used.

前記のように分離膜を延伸PTFE多孔質膜で構成すると、強度、耐久性、耐食性に優れ、高濁度排水処理において極めて有用性を発揮することができる。さらに、延伸PTFE多孔質膜は押出および延伸工程を経て製造されるため、高度な分子配向により微細孔を高気孔率にすることができる。よって、透過水量が多い高性能の濾過膜としながら、散気処理で揺れを発生させても、分離膜に亀裂ができたり、破断したりせず、優れた耐久性を有する。   When the separation membrane is composed of a stretched PTFE porous membrane as described above, it is excellent in strength, durability, and corrosion resistance, and can exhibit extremely usefulness in high turbidity wastewater treatment. Furthermore, since the expanded PTFE porous membrane is manufactured through extrusion and stretching processes, the fine pores can be made to have a high porosity by a high molecular orientation. Therefore, even if a high-performance filter membrane with a large amount of permeated water is used, even if shaking is generated by aeration treatment, the separation membrane does not crack or break, and has excellent durability.

特に、前記のように、延伸PTFE多孔質膜は殆どの薬品に犯されない化学的安定性を有し、耐食性に優れている。一般的に、比表面積の大きい多孔質膜は、バルク体に比べて薬品に浸食されやすく強度も小さいが、延伸PTFE多孔質膜は有機・無機の酸、アルカリ、酸化剤、還元剤及び有機溶剤等のほとんど全ての有機・無機薬品に対して不活性であり、耐薬品性に極めて優れる。そのため、従来のポリオレフィンやポリエチレン等からなる分離膜のように洗浄薬剤が制約されず、堆積物の種類に応じて種々の化学薬品を選択して、必要時には高濃度の洗浄液で濾過膜を長期間洗浄することができる。例えば、バイオファウリングを完全に溶解除去・殺菌するために、過酸化水素水や塩酸などの強酸化剤の高濃度溶液を使用でき、排水中の油分等を除去するために、次亜塩素酸ナトリウム水溶液や水酸化ナトリウム水溶液等の強アルカリ水溶液を使用することができる。   In particular, as described above, the expanded porous PTFE membrane has chemical stability that is not violated by most chemicals and is excellent in corrosion resistance. In general, a porous film having a large specific surface area is more easily eroded by chemicals than a bulk body and has a low strength. However, an expanded PTFE porous film is an organic / inorganic acid, alkali, oxidizing agent, reducing agent, and organic solvent. It is inert to almost all organic and inorganic chemicals such as, and has excellent chemical resistance. Therefore, cleaning chemicals are not restricted like conventional separation membranes made of polyolefin, polyethylene, etc., and various chemicals are selected according to the type of deposit, and when necessary, the filtration membrane can be used for a long time with a high concentration cleaning liquid. Can be washed. For example, a high-concentration solution of a strong oxidizer such as hydrogen peroxide or hydrochloric acid can be used to completely dissolve and sterilize biofouling, and hypochlorous acid can be used to remove oil in wastewater. A strong alkaline aqueous solution such as a sodium aqueous solution or a sodium hydroxide aqueous solution can be used.

前記延伸PTFE製の分離膜は、例えば、濾過面の平均孔径が0.01μm以上、平均膜厚が0.1〜10mm、気孔率が40〜90%、JIS K 7113に規定の引張強度が10N/mm以上としていることが好ましい。
前記平均孔径は0.01μm以上、上限は10μm以下、さらに、5.0μm以下であることが好ましい。該平均孔径はPMI社製パームポロメーター(型番 CFP-1200A)により測定している。
該延伸PTFE製の分離膜は、活性汚泥を含む排水や微小な粒子を含む排水を原水とする場合では、粒子径0.5μmである粒子の粒子捕捉率が90%以上としていることが好ましい。
前記平均膜厚はダイアルゲージにより測定している。前記気孔率はASTM D792に記載の方法で測定している。
さらに、pH10以上の強アルカリ洗浄液およびpH3以下の強酸性洗浄液に対する耐性を有するものとしていることが好ましい。
The expanded PTFE separation membrane has, for example, an average pore diameter of 0.01 μm or more on the filtration surface, an average film thickness of 0.1 to 10 mm, a porosity of 40 to 90%, and a tensile strength specified in JIS K 7113 of 10 N. / Mm 2 or more is preferable.
The average pore diameter is preferably 0.01 μm or more, the upper limit is 10 μm or less, and more preferably 5.0 μm or less. The average pore diameter is measured by a palm porometer (model number CFP-1200A) manufactured by PMI.
The expanded PTFE separation membrane preferably has a particle trapping rate of 90% or more for particles having a particle diameter of 0.5 μm when the wastewater containing activated sludge or wastewater containing fine particles is used as raw water.
The average film thickness is measured with a dial gauge. The porosity is measured by the method described in ASTM D792.
Furthermore, it is preferable to have resistance to a strong alkaline cleaning solution having a pH of 10 or higher and a strong acidic cleaning solution having a pH of 3 or lower.

濾過膜として用いる延伸多孔質PTFEとは、PTFEが重量比80%以上のことを指し、更に好ましくは90%以上である。
併用する熱可塑性のフッ素樹脂はPFA、FEP、ETFE、PCTFE、PVDF、PVF等が挙げられ、その中でもPTFEの融点ピーク以上(327℃以上)でも比較的分解速度が低いFEPが好ましく、更にはPFAがより好ましい。
The expanded porous PTFE used as a filtration membrane means that PTFE is 80% or more by weight, and more preferably 90% or more.
Examples of the thermoplastic fluororesin used in combination include PFA, FEP, ETFE, PCTFE, PVDF, PVF, etc. Among them, FEP having a relatively low decomposition rate even at a melting point peak of PTFE (327 ° C. or higher) is preferable. Is more preferable.

前記のように、生物処理部は、四弗化エチレン樹脂製の多孔質体を担体とし、これら担体に微生物を付着させ、これら担体の表面や担体の隙間に微生物を付着した固定床式の生物膜としている。
なお、分離膜処理部と下部流通路を介して接続するため、流動式とすると、被処理水中に浮遊した担体が分離膜処理部へ流入する恐れがあるため、前記固定床式の生物膜が好適に用いられる。かつ、固定床式の生物膜とすると、その下方に配管する散気管より生物膜に対して的確に酸素を供給することができる。該生物処理部には、凝集剤を添加してもよい。
As described above, the biological treatment unit, a tetrafluoride ethylene resin porous body as a support, these carrier to adhere the microorganisms fixed bed organisms adhering microorganisms to the gap of the surface and the support of the carrier It is a film.
Incidentally, the partial separation membrane unit and for connecting via a lower flow passage, when the fluidized, since there is a risk that the carrier was suspended in the water to be treated flows into the separation membrane treatment unit, the fixed bed biofilm Are preferably used. And if it is set as a fixed-bed type biofilm, oxygen can be accurately supplied with respect to a biofilm from the diffuser pipe piping under it. A flocculant may be added to the biological treatment unit.

また、前記のように、分離膜モジュールに自動洗浄装置を付設し、薬液と逆洗水で分離膜を洗浄する構成としている。
前記薬液として次亜塩素酸ナトリウム水溶液、水酸化ナトリウム水溶液、これらの混合液を用いることが好ましい。
特に、自動洗浄装置から、逆洗水と、クロスフローで前記洗浄用薬液とを、交互に前記分離膜に供給して洗浄することが好ましい。
前記のように、PTFEは耐薬品性がポリオレフィンやポリエチレン等より優れているため、高濃度の次亜塩素酸ナトリウム水溶液、水酸化ナトリウム水溶液、これらの混合液からなる洗浄用薬液を用いて洗浄することができる。よって、分離膜の表面に付着、蓄積する難溶解性成分を溶解できる。さらに、PTFE製の分離膜は表面平滑性が良く滑りやすいため、洗浄液により分離膜表面に付着する浮遊した懸濁成分(MLSS)を除去しやすい利点もある。
Further, as described above, an automatic cleaning device is attached to the separation membrane module, and the separation membrane is cleaned with a chemical solution and backwash water.
It is preferable to use a sodium hypochlorite aqueous solution, a sodium hydroxide aqueous solution, or a mixture thereof as the chemical solution.
In particular, it is preferable to wash by supplying backwash water and the cleaning chemical solution alternately to the separation membrane from an automatic cleaning device.
As described above, PTFE has better chemical resistance than polyolefin, polyethylene, and the like, and therefore, it is cleaned using a cleaning chemical solution composed of a high concentration sodium hypochlorite aqueous solution, sodium hydroxide aqueous solution, or a mixture thereof. be able to. Therefore, it is possible to dissolve the hardly soluble component that adheres and accumulates on the surface of the separation membrane. Furthermore, since the PTFE separation membrane has good surface smoothness and is easy to slide, there is also an advantage that the suspended component (MLSS) adhering to the separation membrane surface can be easily removed by the cleaning liquid.

また、本発明では、生物処理部と分離膜処理部とは下部流通路を介して連通しているだけで、仕切壁で仕切っているため、薬液の影響を直接的に生物膜に与えない利点があり、かつ、中性の水を逆洗水として供給することにより、生物処理部の微生物に適した中性とすることができる。   Further, in the present invention, the biological treatment unit and the separation membrane treatment unit are merely communicated via the lower flow path, and are partitioned by the partition wall, so that the influence of the chemical solution is not directly given to the biological membrane. In addition, by supplying neutral water as backwash water, neutrality suitable for microorganisms in the biological treatment section can be obtained.

本発明の曝気槽では、生物処理部と分離膜処理部とにはそれぞれ独立した散気管を配管し、これら散気管からの散気を個別制御している。
このように、生物処理部の散気管と分離膜処理部の散気管とを分離することで、これら散気管から噴射する噴射時間、エア量およびエア噴射圧を、生物膜と分離膜とにそれぞれ適したものに制御することができる。よって、生物処理部の散気管では、例えば、生物膜の微生物の活性状態をモニタ手段でモニタリングしながら、酸素の供給が必要な時に散気を行う一方、分離膜用の散気管では、分離膜の表面の目詰まりを防止するために常時散気を行うことができる。
In the aeration tank of the present invention, independent aeration pipes are provided for the biological treatment unit and the separation membrane treatment unit, and the aeration from these aeration tubes is individually controlled.
In this way, by separating the diffuser tube of the biological treatment unit and the diffuser tube of the separation membrane treatment unit, the injection time, the amount of air and the air injection pressure injected from these diffuser tubes are respectively applied to the biological membrane and the separation membrane. It can be controlled to a suitable one. Therefore, in the diffuser tube of the biological treatment unit, for example, while monitoring the activity state of microorganisms in the biofilm with the monitoring means, the diffuser diffuses when oxygen supply is necessary, whereas in the diffuser tube for the separation membrane, the separation membrane In order to prevent clogging of the surface, it is possible to perform aeration at all times.

上述したように、本発明の膜分離活性汚泥処理装置では、曝気槽内に生物処理部と分離膜処理部とを下部流通路を介して連通した状態で仕切壁で仕切り、分離膜濾過分離部では分離膜モジュールの下方にオゾン発生器を設置して、生物処理部から流入して分離膜の表面に付着するフロックの微生物を殺菌し有機物を分解するため、フロックの付着による分離膜の目詰まりを更に低減できる。かつ、分離膜の透過液を殺菌液とすることもできる。
また、分離膜として、耐薬品性を有すると共に強度が大きいPTFE製の分離膜を用いることにより、懸濁成分が付着して目詰まりが発生しやすい分離膜の効果的な洗浄を行え、長期間安定して稼働することができる。
さらに、前記特許文献1ではオゾン処理槽を膜分離処理槽とは別に設けて配管を介して接続しているが、本発明では分離膜処理部にオゾン発生器を配置しているため、水処理装置の構成が簡単となる。
As described above, in the membrane separation activated sludge treatment apparatus of the present invention, the biological treatment unit and the separation membrane treatment unit are separated by the partition wall in a state where the biological treatment unit and the separation membrane treatment unit are communicated with each other via the lower flow path, and the separation membrane filtration separation unit Then, an ozone generator is installed below the separation membrane module to sterilize floc microorganisms that flow from the biological treatment section and adhere to the surface of the separation membrane to decompose organic matter. Can be further reduced. In addition, the permeated liquid of the separation membrane can be used as a sterilizing liquid.
In addition, by using a PTFE separation membrane that has chemical resistance and high strength as the separation membrane, it is possible to effectively wash the separation membrane that is susceptible to clogging due to suspended components. It can operate stably.
Further, in Patent Document 1, an ozone treatment tank is provided separately from a membrane separation treatment tank and connected via a pipe. However, in the present invention, an ozone generator is disposed in the separation membrane treatment section, so that water treatment is performed. The configuration of the device is simplified.

本発明の第一実施形態の膜分離活性汚泥処理装置の全体図である。1 is an overall view of a membrane separation activated sludge treatment apparatus according to a first embodiment of the present invention. 中空糸の分離膜モジュールを示し、(A)は斜視図、(B)は一部拡大断面図である。The hollow fiber separation membrane module is shown, (A) is a perspective view, (B) is a partially enlarged sectional view. 第二実施形態の平膜の分離膜モジュールを示し、(A)は斜視図、(B)は断面図である。The flat membrane separation membrane module of 2nd embodiment is shown, (A) is a perspective view, (B) is sectional drawing.

以下、本発明の実施形態を図面を参照して説明する。
図1及び図2に第一実施形態の膜分離活性汚泥処理装置を示す。該処理装置は下水や工場排水等の高濁度の懸濁成分を含む原水を浄化処理するものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a membrane separation activated sludge treatment apparatus according to the first embodiment. The treatment apparatus purifies raw water containing highly turbid suspended components such as sewage and factory effluent.

曝気槽1内に、内部を2分する仕切壁2を曝気槽1の底壁1aとの間に下部流通路3をあけて仕切り、一方側を生物処理部4、他方側を分離膜処理部5としている。
生物処理部4には固定床式の生物膜6を配置し、分離膜処理部5には延伸PTFE多孔質体からなる中空糸7を集束した中空糸分離膜モジュール8を配置している。
In the aeration tank 1, the partition wall 2 that divides the interior into two parts is partitioned by opening a lower flow passage 3 between the bottom wall 1 a of the aeration tank 1, the biological treatment unit 4 on one side, and the separation membrane treatment unit on the other side Five.
The biological treatment unit 4 is provided with a fixed bed type biological membrane 6, and the separation membrane treatment unit 5 is provided with a hollow fiber separation membrane module 8 in which hollow fibers 7 made of expanded PTFE porous material are converged.

前記分離膜処理部5では中空糸分離膜モジュール8の下方に、複数個のオゾン発生器10を並設している。並設したオゾン発生器10を上下開口の保持枠11で囲み、これらの複数個のオゾン発生器10から中空糸分離膜モジュール8の全中空糸7に向けて直接的にオゾンを供給している。   In the separation membrane treatment unit 5, a plurality of ozone generators 10 are arranged in parallel below the hollow fiber separation membrane module 8. The ozone generators 10 arranged side by side are surrounded by a holding frame 11 having upper and lower openings, and ozone is directly supplied from the plurality of ozone generators 10 toward all the hollow fibers 7 of the hollow fiber separation membrane module 8. .

前記オゾン発生器10の下部に散気管12を配管し、該散気管12に接続した空気供給管をポンプP1を介してブロア13と接続している。この散気管12により下方から噴射される散気により、オゾン発生器10から発生するオゾンを中空糸7の隙間に確実に流入させることができる。オゾン発生器10から供給するオゾン量は、微生物を殺菌すると共にフロックの有機物を酸化分解できる量としている。   A diffuser pipe 12 is connected to the lower part of the ozone generator 10, and an air supply pipe connected to the diffuser pipe 12 is connected to the blower 13 via a pump P1. Ozone generated from the ozone generator 10 can surely flow into the gap between the hollow fibers 7 by the aeration sprayed from below by the aeration tube 12. The amount of ozone supplied from the ozone generator 10 is an amount that can sterilize microorganisms and oxidatively decompose floc organic matter.

前記生物処理部4には固定床式の生物膜6を配置している。生物膜6は、PTFE製の多孔質体を担体とし、その表面および空孔に好気性の微生物を付着させている。該PTFE多孔質体からなる担体は強度を有するため、散気時および洗浄時に破損せず、かつ、付着させる微生物の量に応じて空孔を容易に設けることができる
前記生物膜6の下方には、生物膜6に向けて散気する生物膜用の散気管14を配管し、該散気管14をポンプP2を介してブロア13と接続している。
該生物膜用の散気管14のポンプP2と前記分離膜用の散気管12のポンプP1とは独立制御し、分離膜用の散気管12からは洗浄時を除いて常時散気して中空糸7を揺動させる一方、生物膜用の散気管14からは酸素の補給が必要な時に散気している。
また、生物処理部4の底壁には沈降する活性汚泥をポンプP6で吸引排出する排出管19を接続している。
A fixed-bed biofilm 6 is disposed in the biological treatment unit 4. The biofilm 6 uses a porous body made of PTFE as a carrier, and aerobic microorganisms are attached to the surface and pores thereof. Since the carrier made of the PTFE porous material has strength, it is not damaged at the time of aeration and washing, and pores can be easily provided according to the amount of microorganisms to be adhered .
Below the biofilm 6, a biofilm diffuser pipe 14 is diffused toward the biofilm 6, and the diffuser pipe 14 is connected to the blower 13 via a pump P2.
The pump P2 of the diffuser tube 14 for the biofilm and the pump P1 of the diffuser tube 12 for the separation membrane are independently controlled, and the hollow fiber is constantly diffused from the diffuser tube 12 for the separation membrane except during cleaning. 7 is oscillated, while the biofilm diffuser 14 diffuses air when it is necessary to supply oxygen.
A discharge pipe 19 is connected to the bottom wall of the biological treatment section 4 for sucking and discharging the activated sludge that sinks with a pump P6.

前記中空糸分離膜モジュール8は、濾過液の集水管16で吊り下げて分離膜処理部5内に配置している。
中空糸分離膜モジュール8は、図2に示すように、多数本の延伸PTFE製の中空糸7をそれぞれU形状に2つ折りして隙間をあけて並設し、これら中空糸7の上端を封止固定材24で連結固定している。該封止固定材24には、各中空糸7の中空部と連通する集水部24aを設け、該集水部24aに集水ヘッダー25を外嵌固定し、該集水ヘッダー25を前記集水管16と接続して分離膜処理部5内に吊り下げている。一方、各中空糸7の下端の湾曲部には支持棒26を通してU形状を保持している。支持棒26は保持枠27で保持している。
このように、中空糸分離膜モジュール8では、間隔をあけて中空糸7の下端を封止固定材に固定していないことより、下方に配管するオゾン発生器10から供給されるオゾンを中空糸7の隙間に通し易くしている。
The hollow fiber separation membrane module 8 is suspended in the filtrate collecting pipe 16 and disposed in the separation membrane treatment section 5.
As shown in FIG. 2, the hollow fiber separation membrane module 8 folds a large number of expanded PTFE hollow fibers 7 into two U-shapes and arranges them in parallel with a gap therebetween, and seals the upper ends of these hollow fibers 7. It is connected and fixed by a fixing material 24. The sealing and fixing member 24 is provided with a water collecting portion 24a communicating with the hollow portion of each hollow fiber 7, and a water collecting header 25 is fitted and fixed to the water collecting portion 24a. It is connected to the water pipe 16 and suspended in the separation membrane treatment unit 5. On the other hand, the U-shape is held through the support rod 26 at the curved portion at the lower end of each hollow fiber 7. The support rod 26 is held by a holding frame 27.
Thus, in the hollow fiber separation membrane module 8, the lower end of the hollow fiber 7 is not fixed to the sealing fixing material with an interval, so that ozone supplied from the ozone generator 10 piped downward is hollow fiber. 7 is easy to pass through.

前記集水管16は吸引ポンプP4と接続し、中空糸7の中空部へ透過した濾過液を吸引しており、本実施形態の分離膜は吸引濾過式としている。   The water collecting pipe 16 is connected to the suction pump P4 and sucks the filtrate that has permeated into the hollow portion of the hollow fiber 7, and the separation membrane of this embodiment is a suction filtration type.

前記中空糸7は、本実施形態では多孔質複層中空糸を用いている。該複層の中空糸は支持層となる多孔質延伸PTFEチューブの外周面に濾過層となる多孔質延伸PTFEシートを密着させて巻き付けて複層とし、強度を高めている。
前記濾過膜を形成する延伸PTFE多孔質シートは、1軸延伸、2軸延伸で得られたものでもよいが、PTFE未焼結粉末と液状潤滑剤のペースト押出によって得られる成形体を2軸延伸して得られた多孔質シートを焼結して得られたものであることが好ましい。2軸延伸することで、空孔を囲む繊維状骨格の強度を高めることができる。
また、濾過膜と支持膜とは未焼結状態のPTFE多孔質膜を焼結一体化することにより、容易に積層体を形成することができる。
In the present embodiment, the hollow fiber 7 is a porous multilayer hollow fiber. The multilayer hollow fiber has a porous stretched PTFE sheet as a support layer, and a porous stretched PTFE sheet as a filtration layer is tightly wound around the outer peripheral surface of the porous stretched PTFE tube to increase the strength.
The expanded PTFE porous sheet forming the filtration membrane may be obtained by uniaxial stretching or biaxial stretching, but a molded body obtained by extrusion extrusion of PTFE unsintered powder and liquid lubricant is biaxially stretched. It is preferable that the porous sheet obtained by sintering is obtained by sintering. By biaxially stretching, the strength of the fibrous skeleton surrounding the pores can be increased.
Moreover, a laminated body can be easily formed by sintering and integrating a non-sintered PTFE porous membrane with the filtration membrane and the support membrane.

なお、中空糸7は前記複層中空糸に限定されず、単層でもよい。
中空糸7は濾過面の平均孔径が0.01μm以上10μm以下、平均膜厚(複層では濾過層と支持層を加えた厚さ)が0.1〜10mm、気孔率が40〜90%、内径が0.3〜10mm、IPAバブルポイントを10〜200kPaの範囲としている。
さらに、中空糸7はJIS K 7113に規定の引張強度が10N/mm以上としている。
さらに、PTFE製の中空糸7はpH10以上の強アルカリ洗浄液およびpH3以下の強酸性洗浄液に対する耐性を有する。
The hollow fiber 7 is not limited to the multilayer hollow fiber but may be a single layer.
The hollow fiber 7 has an average pore diameter of 0.01 μm or more and 10 μm or less on the filtration surface, an average film thickness (a thickness obtained by adding a filtration layer and a support layer in a multilayer) of 0.1 to 10 mm, a porosity of 40 to 90%, The inner diameter is 0.3 to 10 mm, and the IPA bubble point is in the range of 10 to 200 kPa.
Further, the hollow fiber 7 has a tensile strength specified in JIS K 7113 of 10 N / mm 2 or more.
Further, the hollow fiber 7 made of PTFE has resistance to a strong alkaline cleaning solution having a pH of 10 or higher and a strong acidic cleaning solution having a pH of 3 or lower.

前記中空糸膜モジュール8の洗浄用として自動洗浄装置30を付設している。
該自動洗浄装置30は高圧の水と空気とを中空糸7の内部に供給する逆洗水の供給部31と、薬液をクロスフローで中空糸7の表面に供給する薬液供給部32とを備えている。薬液は次亜塩素酸ナトリウム水溶液と水酸化ナトリウム水溶液の混合液を用いている。
前記自動洗浄装置30は、中空糸7の内外差圧を検出する測定器(図示せず)と接続して制御部33を備え、該制御部33を測定器からの検出信号に応じて、内外差圧が閾値以上に達すると洗浄を開始している。
An automatic cleaning device 30 is attached for cleaning the hollow fiber membrane module 8.
The automatic cleaning device 30 includes a backwash water supply unit 31 that supplies high-pressure water and air to the inside of the hollow fiber 7, and a chemical solution supply unit 32 that supplies a chemical solution to the surface of the hollow fiber 7 by crossflow. ing. As the chemical solution, a mixed solution of a sodium hypochlorite aqueous solution and a sodium hydroxide aqueous solution is used.
The automatic cleaning device 30 includes a control unit 33 connected to a measuring device (not shown) for detecting the internal / external differential pressure of the hollow fiber 7, and the control unit 33 is controlled according to a detection signal from the measuring device. When the differential pressure reaches the threshold value or more, cleaning is started.

前記構成からなる水処理装置では、曝気槽1内に投入される下水あるいは工場排水からなる被処理水は、固定床式の生物膜6の微生物と付着して活性汚泥となる。該生物膜6から剥離して原水中に浮遊して凝集する活性汚泥(フロック)からなる懸濁成分は、分離膜処理部5は吸引濾過式としているため下部流通路3へと下方へ吸引され、生物処理部4内で一部は沈殿すると共に、生物処理部4から下部流通路3を通して分離膜処理部5に流入する。   In the water treatment apparatus having the above-described configuration, the water to be treated comprising sewage or factory wastewater introduced into the aeration tank 1 adheres to microorganisms of the fixed bed type biofilm 6 and becomes activated sludge. Suspended components made of activated sludge (floc) that peels off from the biofilm 6 and floats and aggregates in the raw water are sucked down into the lower flow passage 3 because the separation membrane treatment section 5 is a suction filtration type. Part of the biological treatment unit 4 precipitates and flows into the separation membrane treatment unit 5 from the biological treatment unit 4 through the lower flow passage 3.

分離膜処理部5に流入したフロックや無機スケールを含む被処理水は、中空糸7の表面に付着する。
該中空糸7にはオゾン発生器10からオゾンが供給されているため、中空糸7の表面に付着するフロックはオゾンにより有機物が酸化分解して微細化し、中空糸7の表面および膜間の目詰まりを低減できる。かつ、オゾンにより微生物殺菌される。かつ、中空糸7に付着した活性汚泥が微細化されると共に微細物が殺菌されるため、該活性汚泥を含む被処理水を循環管(図示せず)で生物処理部4へ還流する場合、特許文献1のようにオゾン処理槽を通す必要がない。
かつ、中空糸膜モジュール8には、分離膜用の散気管12から常時散気を行っているため、中空糸7の表面が懸濁成分で目詰まりが発生するのを低減できる。
The water to be treated including floc and inorganic scale that has flowed into the separation membrane treatment unit 5 adheres to the surface of the hollow fiber 7.
Since ozone is supplied to the hollow fiber 7 from the ozone generator 10, flocs adhering to the surface of the hollow fiber 7 are refined by oxidative decomposition of organic matter by ozone, and the surface of the hollow fiber 7 and the distance between the membranes are reduced. Clogging can be reduced. And it is sterilized by ozone with ozone. And since the activated sludge adhering to the hollow fiber 7 is refined and the fines are sterilized, when the treated water containing the activated sludge is returned to the biological treatment unit 4 with a circulation pipe (not shown), It is not necessary to pass an ozone treatment tank like patent document 1.
In addition, since the hollow fiber membrane module 8 is constantly aerated through the separation membrane aeration tube 12, the surface of the hollow fiber 7 can be reduced from being clogged with suspended components.

中空糸分離膜モジュール8は、前記のように、内外差圧が閾値に達すると自動洗浄装置30から洗浄液を供給して洗浄している。
その際、本発明では中空糸7をPTFEで形成しているため、高濃度の薬液からなる洗浄液で洗浄でき、中空糸7の表面に付着した難溶性の懸濁成分を除去できると共に、平滑性が良いため、洗浄液でスムーズに懸濁成分を除去できる。かつ、薬液を中空糸7に供給する際、分離膜処理部5は仕切壁2で生物処理部4と仕切っているため、生物膜6に薬液の影響を直接的にあたえない。かつ、中性の水を逆洗水として供給しているため、生物処理部4内の原水を微生物に適した中性近傍(pH5−8)に保持することができる。
さらに、洗浄液を高圧で中空糸7に噴射しても、PTFEは高強度があるため、中空糸7の損傷や折れを発生させない利点がある。
As described above, the hollow fiber separation membrane module 8 is cleaned by supplying the cleaning liquid from the automatic cleaning device 30 when the internal / external differential pressure reaches the threshold value.
At that time, since the hollow fiber 7 is formed of PTFE in the present invention, the hollow fiber 7 can be washed with a washing liquid composed of a high concentration chemical solution, and the hardly soluble suspended component adhering to the surface of the hollow fiber 7 can be removed and smoothness can be removed. Therefore, suspended components can be removed smoothly with a cleaning solution. And when supplying a chemical | medical solution to the hollow fiber 7, since the separation membrane process part 5 is partitioned off with the biological treatment part 4 by the partition wall 2, the influence of a chemical | medical solution is not directly given to the biological film 6. FIG. And since neutral water is supplied as backwash water, the raw | natural water in the biological treatment part 4 can be hold | maintained in the neutral vicinity (pH 5-8) suitable for microorganisms.
Furthermore, even if the cleaning liquid is sprayed onto the hollow fiber 7 at a high pressure, PTFE has a high strength, so that there is an advantage that the hollow fiber 7 is not damaged or broken.

図3に第二実施形態を示す。
第一実施形態はPTFE製の中空糸を用いて、中空糸膜分離モジュールとしているが、第二実施形態ではPTFE製の平膜を用いた平膜エレメント61を集束した平膜式分離膜モジュール60としている点を相違させている。他の構成は第一実施形態と同一であるため説明を省略する。
FIG. 3 shows a second embodiment.
The first embodiment uses a hollow fiber made of PTFE as a hollow fiber membrane separation module. In the second embodiment, a flat membrane type separation membrane module 60 in which flat membrane elements 61 using a flat membrane made of PTFE are converged. The point which is said is different. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

平膜エレメント61は、下端を折り曲げてU形状に配置する多孔質延伸PTFE製シートからなる濾過膜62と、該濾過膜62の対向濾過部の間にポリエチレン樹脂製のネットからなる支持体63を介設し、処理液流路用の空間を確保している。
前記濾過膜62はU形状に折り曲げた状態で、対向する対向濾過部の外周縁を、上端の処理液取出口を空けて、熱融着してシールして外周封止部64を形成している。
前記処理液取出口には、集水管との接続する集水ヘッダー65を外周封止部64と固着して設けている。
The flat membrane element 61 includes a filtration membrane 62 made of a porous stretched PTFE sheet having a lower end bent and arranged in a U shape, and a support 63 made of a polyethylene resin net between the opposing filtration portions of the filtration membrane 62. A space for the processing liquid flow path is secured.
The filtration membrane 62 is bent in a U shape, and the outer peripheral edge of the opposed counter filtration part is sealed by heat-sealing with a treatment liquid outlet at the upper end to form an outer peripheral sealing part 64. Yes.
A water collecting header 65 connected to the water collecting pipe is fixed to the outer peripheral sealing portion 64 at the treatment liquid outlet.

濾過膜62とする延伸PTFE多孔質膜は、単層でも良いし複層でもよい。
0.01〜20μmの空孔を備え、粒子径0.45μmの粒子捕捉率が90%以上のものを用いている。平均膜厚が5〜200μm、空孔を囲む繊維状骨格の平均最大長さを5μm以下としている。また、該濾過膜62は引張強度が10N/mm以上の強度を有している。かつ、3質量%の硫酸、4質量%の水酸化ナトリウム水溶液、有効塩素濃度10%の次亜塩素酸ナトリウム水溶液の各々に温度50℃で10日間浸漬しても透過水量が低下せず、損傷されない優れた耐薬品性を備えたものとしている。
The expanded PTFE porous membrane used as the filtration membrane 62 may be a single layer or multiple layers.
A hole having a diameter of 0.01 to 20 μm and a particle capturing rate of 90% or more with a particle diameter of 0.45 μm is used. The average film thickness is 5 to 200 μm, and the average maximum length of the fibrous skeleton surrounding the pores is 5 μm or less. The filtration membrane 62 has a tensile strength of 10 N / mm 2 or more. And even if it is immersed in each of 3 mass% sulfuric acid, 4 mass% sodium hydroxide aqueous solution, and 10% effective chlorine concentration sodium hypochlorite aqueous solution at a temperature of 50 ° C for 10 days, the amount of permeated water does not decrease and is damaged. It has excellent chemical resistance that is not possible.

このように、平膜エレメント61の構成材は、多孔質延伸PTFEからなる濾過膜62、ネットからなる支持材63としているため、平膜エレメント61自体を容易に撓むフレキシブルなものとすることができる。かつ、濾過膜62を強度があり、平面保持力を有するPTFE製としているため、フレキシブルでありながら保形性を有する。かつ、平膜エレメント61は全体肉厚を2mmと非常に薄としている。
このように、平膜エレメント61を薄く且つ撓みやすいものとしているため、下方に配置する分離膜用の散気管からエアを噴出し気泡が発生すると、濾過膜62は気泡との接触で揺れが生じ、懸濁成分による目詰まりの発生を抑制することができる。
Thus, since the constituent material of the flat membrane element 61 is the filtration membrane 62 made of porous expanded PTFE and the support material 63 made of a net, the flat membrane element 61 itself may be flexible so that it can be easily bent. it can. In addition, since the filtration membrane 62 is made of PTFE having strength and plane holding force, it has shape retention while being flexible. The flat membrane element 61 has a very thin overall thickness of 2 mm.
As described above, since the flat membrane element 61 is thin and easily bent, when air is blown out from the diffusion tube for the separation membrane disposed below and bubbles are generated, the filtration membrane 62 is shaken by contact with the bubbles. The occurrence of clogging due to suspended components can be suppressed.

前記のように分離膜を平膜とした場合にも、第一実施形態と同様に、オゾン発生器から平膜にオゾンを供給しているため、平膜表面に付着するフロックの微生物を殺菌できると共に有機物を分解でき、目詰まりの発生を低減でき、長期間安定して原水の消化処理を行うことができる。   Even when the separation membrane is a flat membrane as described above, ozone is supplied from the ozone generator to the flat membrane as in the first embodiment, so that floc microorganisms adhering to the flat membrane surface can be sterilized. At the same time, organic substances can be decomposed, clogging can be reduced, and the raw water can be digested stably for a long period of time.

なお、本発明の膜分離活性汚泥処理装置は前記実施形態に限定されず、分離膜モジュールの構成は第一、第二実施形態に限定されない。   The membrane separation activated sludge treatment apparatus of the present invention is not limited to the above embodiment, and the configuration of the separation membrane module is not limited to the first and second embodiments.

1 曝気槽
2 仕切壁
3 流通路
4 生物処理部
5 分離膜処理部
6 生物膜
7 中空糸
8 中空糸膜分離モジュール
10 オゾン発生器
12、14 散気管
30 自動洗浄装置
DESCRIPTION OF SYMBOLS 1 Aeration tank 2 Partition wall 3 Flow path 4 Biological treatment part 5 Separation membrane treatment part 6 Biological membrane 7 Hollow fiber 8 Hollow fiber membrane separation module 10 Ozone generator 12, 14 Aeration pipe 30 Automatic washing apparatus

Claims (5)

曝気槽内に生物処理部と分離膜処理部とを下部の流通路を介して連通した状態で仕切壁で仕切り、
前記生物処理部に四弗化エチレン樹脂からなる多孔質体を担体に微生物を付着した生物膜を配置し、
前記分離膜処理部内には、四弗化エチレン樹脂製の分離膜からなる分離膜モジュールを吊設して浸漬し、該分離膜モジュールは吸引濾過式で前記生物処理部から被処理水を分離膜に吸引するものとし、かつ、該分離膜処理部では分離膜モジュールの下方にオゾン発生器を配置し、かつ、
前記分離膜モジュールに自動洗浄装置を付設し、薬液と逆洗水で分離膜を洗浄することを特徴とする膜分離活性汚泥処理装置。
In the state where the biological treatment unit and the separation membrane treatment unit are communicated with each other through the lower flow path in the aeration tank,
A biological film in which a microorganism is attached to a porous body made of a tetrafluoroethylene resin is disposed in the biological treatment section,
A separation membrane module made of a tetrafluoroethylene resin separation membrane is suspended and immersed in the separation membrane treatment section, and the separation membrane module is a suction filtration type and separates water to be treated from the biological treatment section. And an ozone generator is disposed below the separation membrane module in the separation membrane treatment section, and
A membrane separation activated sludge treatment apparatus, wherein an automatic washing device is attached to the separation membrane module, and the separation membrane is washed with a chemical solution and backwash water.
前記四弗化エチレン樹脂製の分離膜は単層または複層の中空糸とし、前記分離膜モジュールは中空糸膜モジュールとし、
または、前記四弗化エチレン樹脂製の分離膜は単層または複層の平膜とし、前記分離膜モジュールは平膜モジュールとしている請求項1に記載の膜分離活性汚泥処理装置。
The separation membrane made of ethylene tetrafluoride resin is a single layer or a multilayer hollow fiber, the separation membrane module is a hollow fiber membrane module,
The membrane separation activated sludge treatment apparatus according to claim 1, wherein the separation membrane made of ethylene tetrafluoride resin is a single-layer or multiple-layer flat membrane, and the separation membrane module is a flat membrane module.
前記分離膜は、平均孔径が0.01μm以上、平均膜厚が10μm以上、JIS K 7113に規定の引張強度が10N/mm以上、pH10以上の強アルカリ洗浄液およびpH3以下の強酸性洗浄液に対する耐性を有する延伸PTFE多孔質体からなる請求項2に記載の膜分離活性汚泥処理装置。 The separation membrane has an average pore diameter of 0.01 μm or more, an average film thickness of 10 μm or more, a tensile strength as defined in JIS K 7113 of 10 N / mm 2 or more, a resistance to strong alkaline cleaning solutions having a pH of 10 or more and strongly acidic cleaning solutions having a pH of 3 or less. The membrane-separated activated sludge treatment apparatus according to claim 2, which comprises an expanded PTFE porous material having slag. 前記自動洗浄装置から洗浄時に、次亜塩素酸ナトリウム水溶液、水酸化ナトリウム水溶液、これらの混合液からなる薬液を洗浄液として用い、逆洗水と、クロスフローで前記薬液とを、交互に前記分離膜に供給している請求項1乃至請求項3のいずれか1項に記載の膜分離活性汚泥処理装置。 At the time of washing from the automatic washing apparatus, a chemical solution comprising a sodium hypochlorite aqueous solution, a sodium hydroxide aqueous solution, or a mixture thereof is used as a washing solution, and the separation membrane is alternately used with backwash water and the chemical solution by crossflow. The membrane-separated activated sludge treatment apparatus according to any one of claims 1 to 3, wherein the apparatus is supplied to the apparatus. 前記生物処理部と分離膜処理部とにはそれぞれ独立した散気管を配管し、これら散気管からの散気を個別制御している請求項1乃至請求項のいずれか1項に記載の膜分離活性汚泥処理装置。 The membrane according to any one of claims 1 to 3 , wherein the biological treatment unit and the separation membrane treatment unit are provided with independent aeration tubes, and the aeration from the aeration tubes is individually controlled. Separation activated sludge treatment equipment.
JP2009104463A 2009-04-22 2009-04-22 Membrane separation activated sludge treatment equipment Active JP5126153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104463A JP5126153B2 (en) 2009-04-22 2009-04-22 Membrane separation activated sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104463A JP5126153B2 (en) 2009-04-22 2009-04-22 Membrane separation activated sludge treatment equipment

Publications (2)

Publication Number Publication Date
JP2010253354A JP2010253354A (en) 2010-11-11
JP5126153B2 true JP5126153B2 (en) 2013-01-23

Family

ID=43314924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104463A Active JP5126153B2 (en) 2009-04-22 2009-04-22 Membrane separation activated sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP5126153B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061716A (en) * 2012-05-16 2015-04-02 前澤工業株式会社 Water treatment apparatus and method
CN109689579A (en) * 2016-09-15 2019-04-26 住友电气工业株式会社 Film separated activated sludge processing system
CN108002660B (en) * 2017-12-29 2024-03-19 清华大学 Advanced wastewater treatment system and wastewater treatment method
WO2021191997A1 (en) * 2020-03-24 2021-09-30 三菱電機株式会社 Membrane cleaning device, membrane bioreactor system, and membrane cleaning method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722749B2 (en) * 1989-03-10 1995-03-15 株式会社クボタ Sewage treatment equipment
JPH1177044A (en) * 1997-09-09 1999-03-23 Mitsubishi Rayon Co Ltd Wastewater treatment apparatus
JP2004337787A (en) * 2003-05-19 2004-12-02 Kubota Corp Membrane separation activated sludge treatment tank
JP5217159B2 (en) * 2006-12-21 2013-06-19 株式会社日立製作所 Sewage treatment apparatus and method
SG182176A1 (en) * 2007-07-03 2012-07-30 Sumitomo Elec Fine Polymer Inc Flat sheet membrane element for filtration and flat sheet membrane filtration module

Also Published As

Publication number Publication date
JP2010253354A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP2010253355A (en) Membrane separation type activated sludge treatment apparatus
JP4445862B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof
JP5821838B2 (en) Hollow fiber membrane filtration device and method for cleaning hollow fiber membrane module
JP5933854B1 (en) Method and apparatus for cleaning filtration membrane of water to be treated, and water treatment system
WO2012002427A1 (en) Immersion type membrane module unit and membrane bioreactor device
KR20120057579A (en) Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
JP2006116495A (en) Filter device
CN106103349A (en) Method for treating water
JP2010253397A (en) Membrane separation type activated sludge treatment apparatus
JP5581578B2 (en) Membrane cleaning device, membrane separation device, and wastewater treatment device
JP5795459B2 (en) Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using the same, immersion filtration device, and immersion filtration method
JP5126153B2 (en) Membrane separation activated sludge treatment equipment
JP2016068046A (en) Vertically-arranged external pressure type hollow fiber membrane module and method of operating the same
JP2010253358A (en) Membrane separation type activated sludge treatment apparatus
WO2016178366A1 (en) Membrane separation active sludge treatment method and membrane separation active sludge treatment system
JP4270644B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
JPWO2013058063A1 (en) Fresh water system
WO2012133068A1 (en) Hollow fiber membrane module
KR20160146725A (en) Method for operating clarifying-film module
WO2021192002A1 (en) Water treatment system
US20230271140A1 (en) Method for washing hollow fiber membrane module
JP7284545B1 (en) MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME
JP2010119948A (en) Membrane separator, and filtration treatment operation method
JP2014195775A (en) Hollow fiber membrane module
JP2005161112A (en) Membrane filtration apparatus and its maintaining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Ref document number: 5126153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250