WO2012133068A1 - Hollow fiber membrane module - Google Patents

Hollow fiber membrane module Download PDF

Info

Publication number
WO2012133068A1
WO2012133068A1 PCT/JP2012/057240 JP2012057240W WO2012133068A1 WO 2012133068 A1 WO2012133068 A1 WO 2012133068A1 JP 2012057240 W JP2012057240 W JP 2012057240W WO 2012133068 A1 WO2012133068 A1 WO 2012133068A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
membrane module
small bundle
cylindrical container
Prior art date
Application number
PCT/JP2012/057240
Other languages
French (fr)
Japanese (ja)
Inventor
道隆 ▲樋▼垣
大昌 金井
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012543385A priority Critical patent/JPWO2012133068A1/en
Publication of WO2012133068A1 publication Critical patent/WO2012133068A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/201Closed housing, vessels or containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration

Definitions

  • the present invention relates to a hollow fiber membrane module used for membrane separation. More specifically, for example, the present invention relates to a hollow fiber membrane module used for water purification treatment such as river water, lake water, ground water, seawater, etc., or membrane separation treatment such as sewage and industrial wastewater.
  • water purification treatment such as river water, lake water, ground water, seawater, etc.
  • membrane separation treatment such as sewage and industrial wastewater.
  • Membrane separation technology using hollow fiber membranes includes drinking water production in waterworks, industrial water, industrial ultrapure water, industrial water production such as food and medicine, sewage treatment such as municipal sewage purification and industrial wastewater treatment, etc. It is used in a wide range of fields.
  • This hollow fiber membrane module is classified into a pressure type and an immersion type, and the pressure type hollow fiber membrane module is roughly classified into an internal pressure type and an external pressure type.
  • the external pressure hollow fiber membrane module and the submerged hollow fiber membrane module arrange raw water, which is the water to be treated, on the outside of the membrane, and obtain filtered water from the raw water by pressurization, suction pressure, or water head pressure .
  • the external pressure type hollow fiber membrane module stores a hollow fiber membrane bundle in which hundreds to tens of thousands of hollow fiber membranes are bundled in a cylindrical container, and both ends of the hollow fiber membrane bundle are made of resin. It is bonded to the inner wall of the cylindrical container by potting.
  • one potting end opens the hollow fiber membrane end, and the other potting end seals the hollow fiber membrane end.
  • a plurality of hollow fiber membranes are permeated by pressurizing and supplying raw water to a region sandwiched between the end portions, and the filtered water is taken out of the potting end portion where the hollow fiber membrane ends are opened.
  • the resin part on the side where the hollow fiber membrane end is sealed is provided with a plurality of aeration holes for introducing a compressible gas.
  • the immersion type hollow fiber membrane module is often not covered with the above-described cylindrical container, and is covered with a cylindrical container provided with a plurality of holes through which raw water can flow even when covered with the container.
  • Patent Document 1 When the hollow fiber membrane module having the structure shown in Patent Document 1, Patent Document 2, or Non-Patent Document 1 is used, suspended substances in the vicinity of the potting resin on the sealing side can be efficiently dropped during physical cleaning. Since the sealing portion for each small bundle disposed on the lower side during use is not fixed to the cylindrical container, suspended substances remaining on the potting resin are also reduced.
  • the hollow fiber membrane near the potting resin sealed for each small bundle may not be sufficiently washed and suspended material may accumulate on each small bundle of potting resin. Since the accumulated suspended solids cannot be removed even by physical washing, not only the effective area of the membrane required for filtration is reduced, but also some suspended solids are pushed back into the filtration zone, resulting in hollow fiber membranes. There is a possibility of reducing the filtration performance by adhering to the surface of the bundle. Such inconvenience is a concern especially when the raw water has high turbidity or when the small bundle cross-sectional area is increased in order to increase the area of the hollow fiber filled membrane.
  • the present invention aims to solve such problems.
  • the present invention is characterized by the following (1) to (3).
  • a hollow fiber membrane module in which a plurality of hollow fiber membranes are housed in a cylindrical container, One end of each of the plurality of hollow fiber membranes is bonded and fixed to the cylindrical container together with an end face opened, and the other end of each of the plurality of hollow fiber membranes is It is divided into a plurality of small bundles, and is a small bundle fixing portion bonded to each small bundle in a state where the end face is sealed,
  • the hollow fiber membrane module in which the small bundle fixing part has at least one air diffusion hole penetrating in the longitudinal direction of the hollow fiber membrane.
  • a hollow fiber membrane module comprising a gas reservoir part communicating with the air diffuser at a lower part of the small bundle fixing part.
  • the air diffused gas passes through the air diffuser holes during the physical cleaning of the hollow fiber membrane module.
  • the accumulation of suspended substances on the small bundle fixing part is greatly increased. Can be reduced. For this reason, it is possible to suppress a decrease in the effective area of the membrane over time, and to drastically reduce the amount of the suspended suspended matter that reattaches to the surface of the hollow fiber membrane bundle. Therefore, it is possible to provide a hollow fiber membrane module having excellent filtration performance and excellent durability.
  • the total amount of gas per unit time introduced into the small bundle at the time of physical cleaning is provided by providing the gas reservoir portion communicating with the air diffuser at the lower portion of the small bundle fixing portion. Therefore, a more excellent effect can be obtained at the time of physical cleaning of the hollow fiber membrane module. Therefore, it is possible to provide a hollow fiber membrane module having excellent filtration performance and excellent durability.
  • the hollow fiber membrane module of the present invention it is possible to improve the turbidity elimination by physical cleaning such as air scrubbing, back pressure cleaning, and flushing, and it is possible to reduce physical cleaning frequency or physical cleaning time. And a membrane filtration method that can contribute to energy saving can be provided.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a hollow fiber membrane module according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the small bundle fixing portion in FIG.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a hollow fiber membrane module according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a gas reservoir according to still another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing another example of the gas reservoir in FIG.
  • FIG. 1 is a schematic sectional view showing an example of an external pressure type hollow fiber membrane module according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the small bundle fixing portion 10 in FIG.
  • This hollow fiber membrane module 1 is configured by storing hundreds to tens of thousands of hollow fiber membranes 2 in a cylindrical container 3.
  • One end portions (upper end portions) of the hollow fiber membranes 2 are collectively fixed in a liquid-tight manner in the cylindrical container 3 with the end surfaces of the hollow fiber membranes open at the bonding portions 4.
  • the other end portion (lower end portion) of the hollow fiber membrane 2 is divided into small bundles 9 of several tens to several thousands in the small bundle fixing section 10. The end surfaces of the hollow fiber membranes are bonded in a sealed state.
  • the small bundle fixing portion 10 includes at least one air diffusion hole 11 penetrating in the longitudinal direction of the hollow fiber membrane 2. Further, the small bundle fixing portion 10 is not fixed to the cylindrical container 3, and can move freely for each small bundle 9. In the hollow fiber membrane 2, a region other than the adhesive portion 4 and the small bundle fixing portion 10 is a filtration region.
  • fixed part 10 cylindrical, spherical shape, a cone shape, a pyramid shape, etc. are arbitrary.
  • the material of the hollow fiber membrane 2 is not particularly limited, and polysulfone, polyethersulfone, polyacrylonitrile, polyimide, polyetherimide, polyamide, polyetherketone, polyetheretherketone, polyethylene, polypropylene, ethylene-vinyl alcohol copolymer, Examples thereof include cellulose, cellulose acetate, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene, and composite materials thereof.
  • the hollow fiber membrane 2 preferably has an outer diameter in the range of 0.3 to 3 mm. This is because if the outer diameter of the hollow fiber membrane is too small, the hollow fiber membrane will break during handling of the hollow fiber membrane when manufacturing the hollow fiber membrane module, and during filtration and washing when using the hollow fiber membrane module. This is because, if the outer diameter is too large, the number of hollow fiber membranes that can be inserted into a cylindrical container of the same size decreases and the filtration area decreases.
  • the hollow fiber membrane preferably has a thickness in the range of 0.1 to 1 mm. This is because, if the film thickness is too small, there is a problem that the film is broken by pressure, and conversely, if the film thickness is too large, there is a problem that it leads to pressure loss and an increase in raw material cost.
  • polymeric materials such as an epoxy resin, a urethane resin, and an epoxy acrylate resin, which are general-purpose goods and are inexpensive and have little influence on water quality Is preferably used.
  • an upper cap 5a for collecting filtered water and a lower cap 5b for supplying raw water and aeration gas for cleaning are respectively attached to both ends of the cylindrical container 3, and a filtered water outlet 6 is attached to the upper cap 5a.
  • the lower cap 5b is provided with a supply port 8 respectively.
  • Examples of the material of the cylindrical container 3, the upper cap 5a, and the lower cap 5b include polyolefins such as polyethylene, polypropylene, and polybutene, polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin, and the like.
  • polyolefins such as polyethylene, polypropylene, and polybutene
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin and the like.
  • PFA tetrafluoroethylene / hexafluoropropylene copolymer resin
  • FEP ethylene / tetrafluoroethylene copolymer resin
  • EFE ethylene / tetrafluoroethylene copolymer resin
  • PCTFE poly (trifluoroethylene chloride)
  • ECTFE copolymer resins
  • PVDF polyvinylidene fluoride
  • chlorine resins such as polyvinyl chloride and polyvinylidene chloride
  • AS Acrylo A tolyl-butadiene-styrene copolymer resin
  • ABS Acrylo A tolyl-butadiene-styrene copolymer resin
  • ABS Acrylo A tolyl-butadiene-styrene copolymer resin
  • ABS Acrylo A tolyl-butadiene-styrene copolymer resin
  • ABS Acrylo A tolyl-butadiene-styren
  • the cylindrical container 3, the upper cap 5a, and the lower cap 5b may be made of the same material or different materials.
  • the cylindrical container 3 and the lower cap 5b may be omitted in the configuration described above.
  • the cylindrical container 3 it is preferable to provide the cylindrical container 3 in order to guide the diffused gas at the time of physical cleaning to the upper part of the hollow fiber membrane, and in that case, the cylindrical container 3 has a structure such as a mesh structure that allows water to pass therethrough.
  • a member may be used.
  • a skirt member 5c having a cylindrical shape or the like may be attached instead of the lower cap 5b.
  • the cylindrical hollow fiber membrane module has been described.
  • the hollow fiber membrane module of the present invention is not limited to this, and the cross section may be polygonal.
  • the shape of the air diffuser 11 provided in the small bundle fixing part 10 may be a through hole whose cross section is circular, elliptical, or polygonal. Further, the cross-sectional area does not need to be constant in the axial direction, but is preferably at least 20 mm 2 or more from the viewpoint of preventing pressure loss of the gas passing through the diffuser holes. Furthermore, it is more preferable that the small bundle fixing unit 10 has a structure in which a recess is provided on the gas introduction side of the air diffusion hole 11 to increase the gas introduction efficiency into the air diffusion hole 11, that is, a structure in which the gas reservoir 12 is provided. Thereby, since the total amount of the diffused gas introduced into the diffuser holes 11 is increased and the pressure loss of the gas when passing through the diffuser holes is reduced, the physical cleaning ability by the gas can be improved.
  • more diffused gas introduced into the small bundle fixing unit 10 such as a conical shape, a cylindrical shape, or a polygonal column shape as shown in FIGS. 4 and 5 is accumulated, and Any shape that can be introduced into the air diffuser 11 may be used. Note that even if the cross-sectional area on the gas outflow side of the air diffuser 11 is increased, the physical cleaning ability tends to be improved. However, since the filtration area is reduced due to a decrease in the number of small bundles, the type and turbidity of raw water, It is preferable to determine appropriately according to the operation flow.
  • the method for forming the air diffuser may be such that the small bundle insertion container provided with the air diffuser in advance is fixed to the small bundle, or may be formed using a nest when the small bundle is bonded and fixed. Further, a diffused hole-shaped member may be embedded in the small bundle fixing portion.
  • air or oxygen is generally used as the aeration gas, but nitrogen gas or reaction gas is used when the raw water is a fermentation broth.
  • raw water is supplied from the supply port 8 provided in the lower cap 5b into the hollow fiber membrane module 1 using a pressure pump or the like.
  • Part of the raw water that has reached the filtration region in the cylindrical container 3 passes through each hollow fiber membrane 2 and enters the hollow fiber membrane 2 before being discharged from the discharge port 7.
  • the filtered water that has entered the inside of the hollow fiber membrane 2 is collected in the upper cap 5 a from the opening surface at the end of the hollow fiber membrane 2 and taken out from the filtered water outlet 6.
  • the concentrated water that has not permeated through the hollow fiber membrane 2 is discharged from the discharge port 7.
  • the hollow fiber membrane 2 is swung also from the inside of the small bundles. Or it can be flushed. Therefore, the hollow fiber membrane in the vicinity of the small bundle fixing portion can be sufficiently washed, and the accumulation of suspended solids on the small bundle fixing portion can be greatly reduced, and the filtration performance is stably maintained. be able to.
  • the external pressure type hollow fiber membrane module that supplies raw water from the supply port 8 and performs pressure filtration has been described.
  • the hollow fiber membrane module 1 is immersed in a treated water tank containing raw water, and the filtered water outlet 6 is immersed.
  • An immersion type hollow fiber membrane module that performs suction filtration from the side may be used.
  • the hollow fiber membrane 2 used is a porous hollow fiber membrane made of polyvinylidene fluoride having an outer diameter of 1.5 mm, an inner diameter of 0.9 mm, and a length of about 1000 mm, and is bundled for about 3000 pieces to form a mesh structure with a pitch of 10 mm.
  • the cylindrical container 3 was made of polyethylene resin and had an inner diameter of about 140 mm and a length of about 1000 mm. Further, urethane resin was used for the bonding portion 4 and the small bundle fixing portion 10 respectively.
  • the small bundle fixing part 10 has a cylindrical shape with an outer diameter of 45 mm, a diffused hole 11 with an outer diameter of 8 mm is passed through the center, and 420 to 430 hollow fiber membranes are gathered around the periphery and the end face is sealed Fixed with.
  • the number of small bundles was 7 bundles so as to achieve the closest packing in the cylindrical container 3.
  • the hollow fiber membrane module in Example 1 was an immersion type hollow fiber membrane module having the above configuration.
  • the hollow fiber membrane module in Comparative Example 1 was an immersion type hollow fiber membrane module in which the air diffusion holes 11 in Example 1 were not provided.
  • Example 2 The hollow fiber membrane module in Example 2 is the same as the hollow fiber membrane module in Example 1, but is an immersion type hollow in which a conical gas reservoir 12 as shown in FIG. 4 is formed on the gas introduction side of the air diffusion hole 11. A thread membrane module was obtained.
  • the height of the conical shape was 20 mm, and the outer diameter of the bottom surface portion was 43 mm.
  • the small bundle fixing part 10 was formed into a cylindrical shape having an outer diameter of 25 mm (no air diffusion hole), and 150 to 160 hollow fiber membranes were collectively fixed with the end surfaces sealed. .
  • the number of small bundles was 19 bundles so as to achieve the closest packing in the cylindrical container 3.
  • the submerged hollow fiber membrane module in which the number of small bundles is increased without providing the air diffuser holes 11 in the small bundle fixing portion 10 decreases the number of hollow fiber membranes in each small bundle.
  • the effect and the effect of preventing the accumulation of suspended solids are expected to be approximately the same as the effect obtained in the first embodiment, the cost increases due to the increase in the number of members and the number of manufacturing steps, and the cost is not competitive.
  • Test 1 The hollow fiber membrane modules of Example 1 and Comparative Example 1 were immersed in a treated water tank in which Lake Biwa water was stored, and membrane filtration treatment of raw water was performed. Filtration at a suction pressure of 20 kPa for 30 minutes, followed by backwashing with 50 L / m 2 ⁇ hr of filtered water, and suction of a series of treatment cycles in which aeration gas is blown into the module from the bottom of the module at 50 L / min for 1 minute The process was repeated until the pressure reached 70 kPa.
  • Example 1 From the result of Test 1, in Example 1, the diffused gas flows into the small bundle through the diffused holes during the physical cleaning of the hollow fiber membrane module, and the hollow fiber membrane in the vicinity of the small bundle fixing portion can be sufficiently cleaned. And the accumulation of suspended solids on the small bundle fixing part could be greatly reduced.
  • Test 2 Using the hollow fiber membrane modules of Example 1 and Example 2, a test similar to Test 1 described above was performed.
  • Example 2 From the result of Test 2, in Example 2, the total amount of gas per unit time introduced into the small bundle during physical cleaning was increased by providing the gas reservoir on the side where the diffused gas flows into the diffused holes. This shows that the effect obtained in Test 1 is significantly improved by reducing the pressure loss of the gas when passing through the air holes.
  • the hollow fiber membrane module of the present invention can be suitably used for, for example, water purification treatment such as river water, lake water, groundwater, seawater, or membrane separation treatment such as sewage and industrial wastewater.

Abstract

The present invention pertains to a hollow fiber membrane module formed by housing hollow fiber membranes in a tube-shaped container. One end of each of the hollow fiber membranes is adhered and affixed to the tube-shaped container in such a manner that such ends are collected together while the end surfaces thereof are open, the other ends of the respective hollow fiber membranes are divided into small bundles, and the small bundles are formed into a small bundle affixation section in which each of the small bundles is adhered while the end surfaces of the other ends are sealed. The small bundle affixation sections have at least one gas dispersion hole penetrating in the longitudinal direction of the hollow fiber membranes.

Description

中空糸膜モジュールHollow fiber membrane module
 本発明は、膜分離に用いられる中空糸膜モジュール関する。更に詳しくは、例えば、河川水、湖沼水、地下水、海水などの浄水処理、あるいは下水、工業廃水などの膜分離処理などに用いられる中空糸膜モジュールに関する。 The present invention relates to a hollow fiber membrane module used for membrane separation. More specifically, for example, the present invention relates to a hollow fiber membrane module used for water purification treatment such as river water, lake water, ground water, seawater, etc., or membrane separation treatment such as sewage and industrial wastewater.
 中空糸膜を用いた膜分離技術は、上水道における飲料用水製造分野、工業用水、工業用超純水、食品、医療といった産業用水製造分野、都市下水の浄化および工業廃水処理といった下廃水処理分野などの幅広い分野に利用されている。この中空糸膜モジュールは加圧型と浸漬型とに分類され、更に加圧型中空糸膜モジュールは、内圧式と外圧式に大別される。これらのうち、外圧式中空糸膜モジュールおよび浸漬型中空糸膜モジュールは、被処理水である原水を膜の外側に配置し、加圧あるいは吸引圧や水頭差の圧力により原水から濾過水を得る。 Membrane separation technology using hollow fiber membranes includes drinking water production in waterworks, industrial water, industrial ultrapure water, industrial water production such as food and medicine, sewage treatment such as municipal sewage purification and industrial wastewater treatment, etc. It is used in a wide range of fields. This hollow fiber membrane module is classified into a pressure type and an immersion type, and the pressure type hollow fiber membrane module is roughly classified into an internal pressure type and an external pressure type. Among these, the external pressure hollow fiber membrane module and the submerged hollow fiber membrane module arrange raw water, which is the water to be treated, on the outside of the membrane, and obtain filtered water from the raw water by pressurization, suction pressure, or water head pressure .
 具体的には、外圧式中空糸膜モジュールは、数百~数万本の中空糸膜が束ねられた中空糸膜束を筒状容器に収納し、その中空糸膜束の両端部を樹脂のポッティングによって筒状容器の内壁に接着している。また、このように中空糸膜束の両端部をそれぞれポッティングするにあたり、一方のポッティング端部は中空糸膜端を開口させ、他方のポッティング端部では中空糸膜端を封止し、この両ポッティング端部間に挟まれた領域に原水を加圧供給することにより多数本の中空糸膜を透過させ、その濾過水を中空糸膜端が開口したポッティング端部の外側に取り出すようにしている。また、中空糸膜端を封止した側の樹脂部には、圧縮性気体導入のための散気孔を複数設けている。一方、浸漬型中空糸膜モジュールは、上述した筒状容器で覆わないことが多く、容器で覆う場合であっても原水が流通できる孔を複数設けた筒状容器で覆われる。 Specifically, the external pressure type hollow fiber membrane module stores a hollow fiber membrane bundle in which hundreds to tens of thousands of hollow fiber membranes are bundled in a cylindrical container, and both ends of the hollow fiber membrane bundle are made of resin. It is bonded to the inner wall of the cylindrical container by potting. In addition, when potting both ends of the hollow fiber membrane bundle in this way, one potting end opens the hollow fiber membrane end, and the other potting end seals the hollow fiber membrane end. A plurality of hollow fiber membranes are permeated by pressurizing and supplying raw water to a region sandwiched between the end portions, and the filtered water is taken out of the potting end portion where the hollow fiber membrane ends are opened. In addition, the resin part on the side where the hollow fiber membrane end is sealed is provided with a plurality of aeration holes for introducing a compressible gas. On the other hand, the immersion type hollow fiber membrane module is often not covered with the above-described cylindrical container, and is covered with a cylindrical container provided with a plurality of holes through which raw water can flow even when covered with the container.
 上述のモジュール構造にて濾過を進行させると、中空糸膜外表面に原水中の懸濁物質が付着し濾過抵抗が大きくなり膜透過流束(Flux)が徐々に低下する。そこで、濾過抵抗を元の低い状態に回復させるため、原水の供給を停止し、濾過水を中空糸膜の内側から所定量供給するいわゆる逆洗を行うと共に、散気孔を介して圧縮性気体(散気気体)を吹き込んでエアースクラビングを行い、懸濁物質を落脱させ中空糸膜モジュール外部へと排出する。 When filtration proceeds with the module structure described above, suspended substances in the raw water adhere to the outer surface of the hollow fiber membrane, the filtration resistance increases, and the membrane permeation flux (Flux) gradually decreases. Therefore, in order to restore the filtration resistance to the original low state, the supply of raw water is stopped, so-called backwashing is performed in which a predetermined amount of filtered water is supplied from the inside of the hollow fiber membrane, and a compressible gas ( Air scrubbing is performed by blowing in a diffused gas, and suspended substances are removed and discharged to the outside of the hollow fiber membrane module.
 しかしながら、上述のモジュール構造では、中空糸膜の両端が樹脂で把持されているため、エアースクラビング等の物理洗浄時に中空糸膜が揺れにくく、それゆえ、ポッティング樹脂近傍の中空糸膜を充分に洗浄できずに懸濁物質が残留するといった問題があった。この問題を解決するために、例えば特許文献1や特許文献2、非特許文献1に示されたような、中空糸膜モジュールの膜端封止側において、中空糸膜を複数の小束に分割し、該小束ごとに端部を封止した構造が提案されている。特許文献1や特許文献2、非特許文献1に示された構造の中空糸膜モジュールを用いた場合、物理洗浄時に封止側のポッティング樹脂近傍の懸濁物質を効率的に脱落させることができ、使用時に下側に配置される小束ごとの封止部は筒状容器に対して固定されないため、ポッティング樹脂上に残留する懸濁物質も軽減される。 However, in the above-mentioned module structure, since both ends of the hollow fiber membrane are gripped by the resin, the hollow fiber membrane is not easily shaken during physical cleaning such as air scrubbing, and therefore the hollow fiber membrane near the potting resin is sufficiently washed. There was a problem that suspended solids could not be retained. In order to solve this problem, for example, as shown in Patent Document 1, Patent Document 2, and Non-Patent Document 1, the hollow fiber membrane is divided into a plurality of small bundles on the membrane end sealing side of the hollow fiber membrane module. And the structure which sealed the edge part for every said small bundle is proposed. When the hollow fiber membrane module having the structure shown in Patent Document 1, Patent Document 2, or Non-Patent Document 1 is used, suspended substances in the vicinity of the potting resin on the sealing side can be efficiently dropped during physical cleaning. Since the sealing portion for each small bundle disposed on the lower side during use is not fixed to the cylindrical container, suspended substances remaining on the potting resin are also reduced.
日本国特開2005-230813号公報Japanese Unexamined Patent Publication No. 2005-2320813 国際公開第2010/001680号International Publication No. 2010/001680
 一方で、特許文献1や特許文献2に示された構造の中空糸膜モジュールを用いて濾過処理を継続していくと、小束ごとに封止されたポッティング樹脂近傍の中空糸膜(中空糸膜の下方部分)を充分に洗浄できず、懸濁物質が各小束のポッティング樹脂上に蓄積する場合がある。蓄積した懸濁物質は、物理洗浄によっても除去することができないため、濾過に必要な膜の有効面積を減少させるだけでなく、一部の懸濁物質が再び濾過域内に押し戻され、中空糸膜束の表面に付着することにより濾過性能を低下させるおそれがある。このような不具合は、特に原水の濁度が高い場合や、中空糸の充填膜面積を増大させるために小束断面積を大きくした場合に、懸念される。 On the other hand, when the filtration process is continued using the hollow fiber membrane module having the structure shown in Patent Document 1 or Patent Document 2, the hollow fiber membrane near the potting resin sealed for each small bundle (hollow fiber) The lower part of the membrane) may not be sufficiently washed and suspended material may accumulate on each small bundle of potting resin. Since the accumulated suspended solids cannot be removed even by physical washing, not only the effective area of the membrane required for filtration is reduced, but also some suspended solids are pushed back into the filtration zone, resulting in hollow fiber membranes. There is a possibility of reducing the filtration performance by adhering to the surface of the bundle. Such inconvenience is a concern especially when the raw water has high turbidity or when the small bundle cross-sectional area is increased in order to increase the area of the hollow fiber filled membrane.
 本発明は、かかる課題を解決することを目的としている。 The present invention aims to solve such problems.
 上記課題を解決するために、本発明は下記(1)~(3)を特徴とする。 In order to solve the above problems, the present invention is characterized by the following (1) to (3).
(1)複数本の中空糸膜が筒状容器に収納された中空糸膜モジュールであって、
 前記複数本の中空糸膜のそれぞれの一方の端部は、端面が開口された状態でまとめて前記筒状容器に接着固定され、前記複数本の中空糸膜のそれぞれの他方の端部は、複数の小束に分割され、端面が封止された状態で該小束ごとに接着された小束固定部とされ、
 該小束固定部が、前記中空糸膜の長手方向に貫通する散気孔を少なくとも1つ有する中空糸膜モジュール。
(1) A hollow fiber membrane module in which a plurality of hollow fiber membranes are housed in a cylindrical container,
One end of each of the plurality of hollow fiber membranes is bonded and fixed to the cylindrical container together with an end face opened, and the other end of each of the plurality of hollow fiber membranes is It is divided into a plurality of small bundles, and is a small bundle fixing portion bonded to each small bundle in a state where the end face is sealed,
The hollow fiber membrane module in which the small bundle fixing part has at least one air diffusion hole penetrating in the longitudinal direction of the hollow fiber membrane.
(2)上記(1)において、前記筒状容器が、通水可能な開放系筒状容器である中空糸膜モジュール。 (2) The hollow fiber membrane module according to (1), wherein the cylindrical container is an open-type cylindrical container capable of passing water.
(3)上記(1)または(2)において、前記小束固定部の下部に、前記散気孔と連通する気体溜まり部を備えた中空糸膜モジュール。 (3) In the above (1) or (2), a hollow fiber membrane module comprising a gas reservoir part communicating with the air diffuser at a lower part of the small bundle fixing part.
 上記(1)または(2)の中空糸膜モジュールによれば、小束固定部に散気孔を設けたことにより、中空糸膜モジュールの物理洗浄時に該散気孔を通して散気気体が該小束内部に流入することになり、小束固定部近傍の中空糸膜(中空糸膜の下方部分)を充分に洗浄することができるばかりでなく、小束固定部上への懸濁物質の蓄積を大幅に減少させることができる。そのため、経時的な膜の有効面積の減少を抑制することができ、かつ中空糸膜束の表面に再付着する残留懸濁物質の量を激減させることができる。したがって、濾過性能の安定維持および耐久性に優れた中空糸膜モジュールを提供することができる。 According to the hollow fiber membrane module of the above (1) or (2), by providing the air diffuser holes in the small bundle fixing portion, the air diffused gas passes through the air diffuser holes during the physical cleaning of the hollow fiber membrane module. In addition to being able to sufficiently wash the hollow fiber membrane (the lower part of the hollow fiber membrane) in the vicinity of the small bundle fixing part, the accumulation of suspended substances on the small bundle fixing part is greatly increased. Can be reduced. For this reason, it is possible to suppress a decrease in the effective area of the membrane over time, and to drastically reduce the amount of the suspended suspended matter that reattaches to the surface of the hollow fiber membrane bundle. Therefore, it is possible to provide a hollow fiber membrane module having excellent filtration performance and excellent durability.
 上記(3)の中空糸膜モジュールによれば、小束固定部の下部に散気孔と連通する気体溜まり部を備えたことにより、物理洗浄時に小束内に導入される単位時間あたりの気体総量を増大させることができるため、中空糸膜モジュールの物理洗浄時により優れた効果を得ることができる。したがって、濾過性能の安定維持および耐久性に優れた中空糸膜モジュールを提供することができる。 According to the hollow fiber membrane module of the above (3), the total amount of gas per unit time introduced into the small bundle at the time of physical cleaning is provided by providing the gas reservoir portion communicating with the air diffuser at the lower portion of the small bundle fixing portion. Therefore, a more excellent effect can be obtained at the time of physical cleaning of the hollow fiber membrane module. Therefore, it is possible to provide a hollow fiber membrane module having excellent filtration performance and excellent durability.
 また、本発明の中空糸膜モジュールを用いることで、エアースクラビングや逆圧洗浄、フラッシングなどの物理洗浄による濁質排除性を向上することができ、物理洗浄頻度の低減あるいは物理洗浄時間の短縮ができ、省エネルギー化に貢献することができる膜濾過処理方法を提供することができる。 In addition, by using the hollow fiber membrane module of the present invention, it is possible to improve the turbidity elimination by physical cleaning such as air scrubbing, back pressure cleaning, and flushing, and it is possible to reduce physical cleaning frequency or physical cleaning time. And a membrane filtration method that can contribute to energy saving can be provided.
図1は、本発明の一実施形態にかかる中空糸膜モジュールの構成を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration of a hollow fiber membrane module according to an embodiment of the present invention. 図2は、図1における小束固定部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the small bundle fixing portion in FIG. 図3は、本発明の他の実施形態にかかる中空糸膜モジュールの構成を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a configuration of a hollow fiber membrane module according to another embodiment of the present invention. 図4は、本発明のさらに他の実施形態にかかる気体溜まり部の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a gas reservoir according to still another embodiment of the present invention. 図5は、図4における気体溜まり部の別の一例を示す断面図である。FIG. 5 is a cross-sectional view showing another example of the gas reservoir in FIG.
 以下、本発明の中空糸膜モジュールについて図1および図2に基づいて説明する。なお、本発明を説明するための全図において、同一機能を有するものは同一符号を付けて説明する。 Hereinafter, the hollow fiber membrane module of the present invention will be described with reference to FIG. 1 and FIG. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the present invention.
 図1は本発明にかかる外圧式中空糸膜モジュールの一例を示す概略断面図である。図2は図1における小束固定部10の拡大断面図である。
 この中空糸膜モジュール1は、数百本~数万本の中空糸膜2を筒状容器3内に収納して構成されている。中空糸膜2のそれぞれの一方の端部(上方の端部)は、接着部4において中空糸膜端面が開口した状態でまとめて筒状容器3内に液密に接着固定されている。一方、中空糸膜2のそれぞれの他方の端部(下方の端部)は、小束固定部10において、数十本~数千本ごとの小束9に分割され、それぞれの小束9を、中空糸膜端面が封止された状態で接着している。小束固定部10は中空糸膜2の長手方向に貫通する散気孔11を少なくとも1つ具備している。また、小束固定部10は筒状容器3には固定されておらず、小束9ごとに自由に動ける状態となっている。そして、中空糸膜2のうち、接着部4、小束固定部10以外の領域が濾過領域となる。なお、小束固定部10の形状としては、円筒形、球形、円錐形や角錐形など任意である。
FIG. 1 is a schematic sectional view showing an example of an external pressure type hollow fiber membrane module according to the present invention. FIG. 2 is an enlarged cross-sectional view of the small bundle fixing portion 10 in FIG.
This hollow fiber membrane module 1 is configured by storing hundreds to tens of thousands of hollow fiber membranes 2 in a cylindrical container 3. One end portions (upper end portions) of the hollow fiber membranes 2 are collectively fixed in a liquid-tight manner in the cylindrical container 3 with the end surfaces of the hollow fiber membranes open at the bonding portions 4. On the other hand, the other end portion (lower end portion) of the hollow fiber membrane 2 is divided into small bundles 9 of several tens to several thousands in the small bundle fixing section 10. The end surfaces of the hollow fiber membranes are bonded in a sealed state. The small bundle fixing portion 10 includes at least one air diffusion hole 11 penetrating in the longitudinal direction of the hollow fiber membrane 2. Further, the small bundle fixing portion 10 is not fixed to the cylindrical container 3, and can move freely for each small bundle 9. In the hollow fiber membrane 2, a region other than the adhesive portion 4 and the small bundle fixing portion 10 is a filtration region. In addition, as a shape of the small bundle fixing | fixed part 10, cylindrical, spherical shape, a cone shape, a pyramid shape, etc. are arbitrary.
 中空糸膜2の素材は特に限定されず、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリイミド、ポリエーテルイミド、ポリアミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン、エチレン-ビニルアルコール共重合体、セルロース、酢酸セルロース、ポリフッ化ビニリデン、エチレン-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレンなどや、これらの複合素材を例示することができる。 The material of the hollow fiber membrane 2 is not particularly limited, and polysulfone, polyethersulfone, polyacrylonitrile, polyimide, polyetherimide, polyamide, polyetherketone, polyetheretherketone, polyethylene, polypropylene, ethylene-vinyl alcohol copolymer, Examples thereof include cellulose, cellulose acetate, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene, and composite materials thereof.
 中空糸膜2は、外径が0.3~3mmの範囲であることが好ましい。これは、中空糸膜の外径が小さすぎると、中空糸膜モジュールを製作する際の中空糸膜取り扱い時や、中空糸膜モジュールを使用する際の濾過、洗浄時などに中空糸膜が折れて損傷するなどの問題があり、逆に外径が大きすぎると同じサイズの筒状容器内に挿入できる中空糸膜の本数が減って濾過面積が減少するなどの問題があるためである。また、中空糸膜は、膜厚が0.1~1mmの範囲であることが好ましい。これは、膜厚が小さすぎると、圧力で膜が折れるなどの問題があり、逆に膜厚が大き過ぎると圧損や原料代の増加につながるなどの問題があるためである。 The hollow fiber membrane 2 preferably has an outer diameter in the range of 0.3 to 3 mm. This is because if the outer diameter of the hollow fiber membrane is too small, the hollow fiber membrane will break during handling of the hollow fiber membrane when manufacturing the hollow fiber membrane module, and during filtration and washing when using the hollow fiber membrane module. This is because, if the outer diameter is too large, the number of hollow fiber membranes that can be inserted into a cylindrical container of the same size decreases and the filtration area decreases. The hollow fiber membrane preferably has a thickness in the range of 0.1 to 1 mm. This is because, if the film thickness is too small, there is a problem that the film is broken by pressure, and conversely, if the film thickness is too large, there is a problem that it leads to pressure loss and an increase in raw material cost.
 また、接着部4および小束固定部10において中空糸膜2を接着する樹脂としては、汎用品で安価であり、水質への影響も小さいエポキシ樹脂、ウレタン樹脂、エポキシアクリレート樹脂などの高分子材料を用いることが好ましい。 Moreover, as resin which adhere | attaches the hollow fiber membrane 2 in the adhesion part 4 and the small bundle fixing | fixed part 10, polymeric materials, such as an epoxy resin, a urethane resin, and an epoxy acrylate resin, which are general-purpose goods and are inexpensive and have little influence on water quality Is preferably used.
 次に、筒状容器3の両端には濾過水を集める上部キャップ5aと原水や洗浄用の散気気体を供給する下部キャップ5bがそれぞれ取り付けられており、上部キャップ5aには濾過水出口6が、下部キャップ5bには供給口8がそれぞれ設けられている。 Next, an upper cap 5a for collecting filtered water and a lower cap 5b for supplying raw water and aeration gas for cleaning are respectively attached to both ends of the cylindrical container 3, and a filtered water outlet 6 is attached to the upper cap 5a. The lower cap 5b is provided with a supply port 8 respectively.
 これら、筒状容器3、上部キャップ5a、下部キャップ5bの材質としては、例えばポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィンや、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合樹脂(FEP)、エチレン・四フッ化エチレン共重合樹脂(ETFE)、ポリ三フッ化塩化エチレン(PCTFE)、エチレン・三フッ化塩化エチレン共重合樹脂(ECTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、そしてポリ塩化ビニル、ポリ塩化ビニリデン等の塩素樹脂、さらにポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリルスルホン樹脂、ポリフェニルエーテル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS)、アクリロニトリル-スチレン共重合体樹脂、ポリフェニレンサルファイド樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂などが単独または混合して用いられる。また、樹脂以外ではアルミニウム、ステンレス鋼などが好ましく、さらに、樹脂と金属の複合体や、ガラス繊維強化樹脂、炭素繊維強化樹脂などの複合材料を使用してもかまわない。また、筒状容器3、上部キャップ5a、下部キャップ5bは同一の材質でもそれぞれ異なる材質でもかまわない。 Examples of the material of the cylindrical container 3, the upper cap 5a, and the lower cap 5b include polyolefins such as polyethylene, polypropylene, and polybutene, polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin, and the like. (PFA), tetrafluoroethylene / hexafluoropropylene copolymer resin (FEP), ethylene / tetrafluoroethylene copolymer resin (ETFE), poly (trifluoroethylene chloride) (PCTFE), ethylene / trifluoroethylene chloride Fluorine resins such as copolymer resins (ECTFE) and polyvinylidene fluoride (PVDF), and chlorine resins such as polyvinyl chloride and polyvinylidene chloride, as well as polysulfone resins, polyethersulfone resins, polyallylsulfone resins, and polyphenyl ether resins , Acrylo A tolyl-butadiene-styrene copolymer resin (ABS), an acrylonitrile-styrene copolymer resin, a polyphenylene sulfide resin, a polyamide resin, a polycarbonate resin, a polyether ketone resin, a polyether ether ketone resin, or the like is used alone or in combination. . Other than the resin, aluminum, stainless steel, and the like are preferable, and a composite material such as a resin-metal composite, a glass fiber reinforced resin, and a carbon fiber reinforced resin may be used. The cylindrical container 3, the upper cap 5a, and the lower cap 5b may be made of the same material or different materials.
 図3に一例として示した浸漬型中空糸膜モジュールにおいては、上述した構成において、筒状容器3および下部キャップ5bはなくてもかまわない。しかしながら、物理洗浄時の散気気体を中空糸膜の上方まで誘導するために筒状容器3を具備することが好ましく、その場合には、筒状容器3はメッシュ構造などの通水可能な構造部材を用いればよい。また、上述した同様の理由により、下部キャップ5bの代わりに、円筒形などの通水可能なスカート部材5cなどを装着させてもよい。 In the submerged hollow fiber membrane module shown as an example in FIG. 3, the cylindrical container 3 and the lower cap 5b may be omitted in the configuration described above. However, it is preferable to provide the cylindrical container 3 in order to guide the diffused gas at the time of physical cleaning to the upper part of the hollow fiber membrane, and in that case, the cylindrical container 3 has a structure such as a mesh structure that allows water to pass therethrough. A member may be used. For the same reason as described above, a skirt member 5c having a cylindrical shape or the like may be attached instead of the lower cap 5b.
 以上、図1、図3では円筒形状の中空糸膜モジュールについて述べたが、本発明の中空糸膜モジュールは、これに限ることはなく、横断面が多角形であってもかまわない。 1 and 3, the cylindrical hollow fiber membrane module has been described. However, the hollow fiber membrane module of the present invention is not limited to this, and the cross section may be polygonal.
 ここで、本発明を構成する小束固定部10に設けられた散気孔11について詳しく説明する。 Here, the air diffusion holes 11 provided in the small bundle fixing portion 10 constituting the present invention will be described in detail.
 小束固定部10に設けられた散気孔11の形状は、その横断面が円形や楕円あるいは多角形の形状をした貫通孔であればよい。また、その断面積は軸方向に渡って一定である必要はないが、散気孔を通過する気体の圧力損失防止の点から少なくとも20mm以上であることが好ましい。さらに、小束固定部10において、散気孔11の気体導入側に凹部を設けて散気孔11への気体導入効率を高めた構造、すなわち気体溜まり部12を設けた構造とするとより好ましい。これにより、散気孔11に導入される散気気体の総量が増大し、かつ散気孔通過時の気体の圧力損失が軽減されるため、気体による物理洗浄能力を向上させることができる。 The shape of the air diffuser 11 provided in the small bundle fixing part 10 may be a through hole whose cross section is circular, elliptical, or polygonal. Further, the cross-sectional area does not need to be constant in the axial direction, but is preferably at least 20 mm 2 or more from the viewpoint of preventing pressure loss of the gas passing through the diffuser holes. Furthermore, it is more preferable that the small bundle fixing unit 10 has a structure in which a recess is provided on the gas introduction side of the air diffusion hole 11 to increase the gas introduction efficiency into the air diffusion hole 11, that is, a structure in which the gas reservoir 12 is provided. Thereby, since the total amount of the diffused gas introduced into the diffuser holes 11 is increased and the pressure loss of the gas when passing through the diffuser holes is reduced, the physical cleaning ability by the gas can be improved.
 気体溜まり部12の形状については、図4や図5に示したような円錐形や円柱形、あるいは多角柱形など、小束固定部10に導入される散気気体をより多く集積させ、かつ散気孔11に導入できる形状であればよい。なお、散気孔11の気体流出側の断面積を大きくとっても、物理洗浄能力は向上する傾向にあるが、小束の膜本数減少に伴う濾過面積の低下を招くため、原水の種類や濁度、運転フローなどに合わせて適宜定めることが好ましい。また、散気孔11の数も複数個あることが物理洗浄能力の向上に対しては好ましいが、上述した理由により濾過面積との兼ね合いで適宜定めることが好ましい。さらに、中空糸膜モジュール内の各小束固定部10に散気気体を均等に分散させるために、小束固定部10と散気管出口との距離を適宜定めることが好ましく、必要であれば小束固定部10の下方に多数の穴が開いたバッフル板を設けてもよい。 As for the shape of the gas reservoir 12, more diffused gas introduced into the small bundle fixing unit 10 such as a conical shape, a cylindrical shape, or a polygonal column shape as shown in FIGS. 4 and 5 is accumulated, and Any shape that can be introduced into the air diffuser 11 may be used. Note that even if the cross-sectional area on the gas outflow side of the air diffuser 11 is increased, the physical cleaning ability tends to be improved. However, since the filtration area is reduced due to a decrease in the number of small bundles, the type and turbidity of raw water, It is preferable to determine appropriately according to the operation flow. Moreover, although it is preferable for the improvement of the physical cleaning capability that there are a plurality of air diffusion holes 11 as well, it is preferable to appropriately determine it in consideration of the filtration area for the reasons described above. Furthermore, in order to uniformly disperse the diffused gas in each small bundle fixing portion 10 in the hollow fiber membrane module, it is preferable to appropriately determine the distance between the small bundle fixing portion 10 and the diffuser tube outlet. A baffle plate having a large number of holes may be provided below the bundle fixing unit 10.
 上記の散気孔を形成する方法は、あらかじめ散気孔を設けた小束挿入用容器を小束に固定してもよいし、小束を接着固定する際に入れ子を用いて形成してもよい。また、散気孔形状の部材を小束固定部に埋め込んで形成してもよい。 The method for forming the air diffuser may be such that the small bundle insertion container provided with the air diffuser in advance is fixed to the small bundle, or may be formed using a nest when the small bundle is bonded and fixed. Further, a diffused hole-shaped member may be embedded in the small bundle fixing portion.
 また、散気気体は、一般的には空気や酸素が用いられるが、原水が発酵液である時は窒素ガスや反応ガスが用いられる。 In addition, air or oxygen is generally used as the aeration gas, but nitrogen gas or reaction gas is used when the raw water is a fermentation broth.
 次に、上述した構成からなる中空糸膜モジュールによる原水の膜濾過処理工程を説明する。 Next, a membrane filtration process of raw water by the hollow fiber membrane module having the above-described configuration will be described.
 まず、下部キャップ5bに設けた供給口8から原水を中空糸膜モジュール1内に加圧ポンプ等を用いて供給する。筒状容器3内の濾過領域に到達した原水は、排出口7から排出されるまでの間に、一部が各中空糸膜2を透過して中空糸膜2の内部に浸入する。中空糸膜2の内部に浸入した濾過水は中空糸膜2の端部の開口面から上部キャップ5aに集められて濾過水出口6から取り出される。中空糸膜2を透過しなかった濃縮水は、排出口7から排出される。 First, raw water is supplied from the supply port 8 provided in the lower cap 5b into the hollow fiber membrane module 1 using a pressure pump or the like. Part of the raw water that has reached the filtration region in the cylindrical container 3 passes through each hollow fiber membrane 2 and enters the hollow fiber membrane 2 before being discharged from the discharge port 7. The filtered water that has entered the inside of the hollow fiber membrane 2 is collected in the upper cap 5 a from the opening surface at the end of the hollow fiber membrane 2 and taken out from the filtered water outlet 6. The concentrated water that has not permeated through the hollow fiber membrane 2 is discharged from the discharge port 7.
 上述した一連の膜濾過工程を一定時間実施した後、あるいは膜濾過工程中に物理洗浄を実施する。具体的には、濾過水または散気気体を濾過水出口6側から原水側へ流す逆圧洗浄や、散気気体を混入させた原水または散気気体のみを供給口8側から供給し、中空糸膜モジュール1内に蓄積した懸濁物質を排出するエアースクラビング、あるいは中空糸膜モジュール1の原水側の膜面を膜濾過処理時よりも高い流束で原水または散気気体を混入させた原水を供給するフラッシングを実施する。このとき、本実施形態においては、小束間のみならず、小束固定部10に設けられた散気孔11からも散気気体が流入するため、小束内部からも中空糸膜2を揺動またはフラッシングさせることができる。したがって、小束固定部近傍の中空糸膜を充分に洗浄することができ、かつ小束固定部上への懸濁物質の蓄積を大幅に減少させることができ、濾過性能を安定的に維持することができる。 After performing the above-described series of membrane filtration processes for a certain period of time or during the membrane filtration process, physical cleaning is performed. Specifically, reverse pressure cleaning in which filtered water or aeration gas flows from the filtered water outlet 6 side to the raw water side, or only raw water or aeration gas mixed with aeration gas is supplied from the supply port 8 side, Air scrubbing for discharging suspended substances accumulated in the yarn membrane module 1 or raw water in which the raw water side of the hollow fiber membrane module 1 is mixed with raw water or aeration gas with a higher flux than during membrane filtration treatment Flushing to supply is performed. At this time, in this embodiment, since the diffused gas flows not only between the small bundles but also from the diffuser holes 11 provided in the small bundle fixing portion 10, the hollow fiber membrane 2 is swung also from the inside of the small bundles. Or it can be flushed. Therefore, the hollow fiber membrane in the vicinity of the small bundle fixing portion can be sufficiently washed, and the accumulation of suspended solids on the small bundle fixing portion can be greatly reduced, and the filtration performance is stably maintained. be able to.
 上述の説明は、原水を供給口8から供給して加圧濾過する外圧式中空糸膜モジュールについて述べたが、中空糸膜モジュール1を原水が入った処理水槽内に浸漬させ、濾過水出口6側から吸引濾過する浸漬型中空糸膜モジュールであってもかまわない。 In the above description, the external pressure type hollow fiber membrane module that supplies raw water from the supply port 8 and performs pressure filtration has been described. However, the hollow fiber membrane module 1 is immersed in a treated water tank containing raw water, and the filtered water outlet 6 is immersed. An immersion type hollow fiber membrane module that performs suction filtration from the side may be used.
 以下、本発明の中空糸膜モジュールの実施例について説明するが、本発明は本実施例により限定されるものではない。 Hereinafter, examples of the hollow fiber membrane module of the present invention will be described, but the present invention is not limited to the examples.
 なお、各実施例および比較例では、浸漬型中空糸膜モジュールをもとに説明する。用いた中空糸膜2は、外径1.5mm、内径0.9mm、長さ約1000mmのポリフッ化ビニリデン製多孔質中空糸膜であり、これを約3000本用束ねて10mmピッチのメッシュ構造をした筒状容器3に挿入した。筒状容器3は、ポリエチレン樹脂製で、内径約140mm、長さ約1000mmであった。また、接着部4と小束固定部10にはそれぞれウレタン樹脂を使用した。 In each example and comparative example, description will be made based on an immersion type hollow fiber membrane module. The hollow fiber membrane 2 used is a porous hollow fiber membrane made of polyvinylidene fluoride having an outer diameter of 1.5 mm, an inner diameter of 0.9 mm, and a length of about 1000 mm, and is bundled for about 3000 pieces to form a mesh structure with a pitch of 10 mm. Was inserted into the cylindrical container 3. The cylindrical container 3 was made of polyethylene resin and had an inner diameter of about 140 mm and a length of about 1000 mm. Further, urethane resin was used for the bonding portion 4 and the small bundle fixing portion 10 respectively.
<実施例1>
 小束固定部10を外径45mmの円筒形とし、その中心部に外径8mmの散気孔11を貫通させ、その周囲に420本から430本の中空糸膜をまとめて端面を封止した状態で固定した。小束の個数は、筒状容器3内で最密充填となるよう7束とした。実施例1における中空糸膜モジュールは、以上の構成をした浸漬型中空糸膜モジュールとした。
<Example 1>
The small bundle fixing part 10 has a cylindrical shape with an outer diameter of 45 mm, a diffused hole 11 with an outer diameter of 8 mm is passed through the center, and 420 to 430 hollow fiber membranes are gathered around the periphery and the end face is sealed Fixed with. The number of small bundles was 7 bundles so as to achieve the closest packing in the cylindrical container 3. The hollow fiber membrane module in Example 1 was an immersion type hollow fiber membrane module having the above configuration.
<比較例1>
 比較例1における中空糸膜モジュールは、実施例1における散気孔11を設けない浸漬型中空糸膜モジュールとした。
<Comparative Example 1>
The hollow fiber membrane module in Comparative Example 1 was an immersion type hollow fiber membrane module in which the air diffusion holes 11 in Example 1 were not provided.
<実施例2>
 実施例2における中空糸膜モジュールは、実施例1における中空糸膜モジュールにおいて、散気孔11の気体導入側に、図4に示したような、円錐状の気体溜まり部12を形成した浸漬型中空糸膜モジュールとした。なお、円錐形状の高さは20mm、底面部の外径は43mmとした。
<Example 2>
The hollow fiber membrane module in Example 2 is the same as the hollow fiber membrane module in Example 1, but is an immersion type hollow in which a conical gas reservoir 12 as shown in FIG. 4 is formed on the gas introduction side of the air diffusion hole 11. A thread membrane module was obtained. The height of the conical shape was 20 mm, and the outer diameter of the bottom surface portion was 43 mm.
<比較例2>
 比較例2における中空糸膜モジュールは、小束固定部10を外径25mmの円筒形とし(散気孔なし)、150本から160本の中空糸膜をまとめて端面を封止した状態で固定した。小束の個数は、筒状容器3内で最密充填となるよう19束とした。
<Comparative Example 2>
In the hollow fiber membrane module in Comparative Example 2, the small bundle fixing part 10 was formed into a cylindrical shape having an outer diameter of 25 mm (no air diffusion hole), and 150 to 160 hollow fiber membranes were collectively fixed with the end surfaces sealed. . The number of small bundles was 19 bundles so as to achieve the closest packing in the cylindrical container 3.
 以上のように、小束固定部10に散気孔11を設けず、小束の数を増大させた浸漬型中空糸膜モジュールは、各小束内の中空糸膜本数が減少するため、物理洗浄効果や懸濁物質の蓄積防止効果は実施例1で得られる効果と同等程度と見込まれるが、部材点数の増大、製作工数の増加による原価上昇を招き、コスト面での競争力を失う。 As described above, the submerged hollow fiber membrane module in which the number of small bundles is increased without providing the air diffuser holes 11 in the small bundle fixing portion 10 decreases the number of hollow fiber membranes in each small bundle. Although the effect and the effect of preventing the accumulation of suspended solids are expected to be approximately the same as the effect obtained in the first embodiment, the cost increases due to the increase in the number of members and the number of manufacturing steps, and the cost is not competitive.
 次に、上記実施例1、2及び比較例1について下記の試験1および試験2を行った。 Next, the following Test 1 and Test 2 were performed on Examples 1 and 2 and Comparative Example 1 described above.
(試験1)
 琵琶湖水を溜めた処理水槽内に実施例1および比較例1の中空糸膜モジュールを浸漬させ、原水の膜濾過処理を行った。吸引圧20kPaにて濾過を30分間行い、その後、濾過水50L/m・hrで逆洗し、散気気体を50L/minで1分間、モジュール下部よりモジュール内へ吹き込む一連の処理サイクルを吸引圧が70kPaになるまで繰り返した。
(Test 1)
The hollow fiber membrane modules of Example 1 and Comparative Example 1 were immersed in a treated water tank in which Lake Biwa water was stored, and membrane filtration treatment of raw water was performed. Filtration at a suction pressure of 20 kPa for 30 minutes, followed by backwashing with 50 L / m 2 · hr of filtered water, and suction of a series of treatment cycles in which aeration gas is blown into the module from the bottom of the module at 50 L / min for 1 minute The process was repeated until the pressure reached 70 kPa.
 その結果、比較例1の中空糸膜モジュールを用いた場合では、約4ヶ月経過後に吸引圧が70kPaに到達したのに対して、実施例1の中空糸膜モジュールを用いた場合では、約8ヶ月経過後に上記吸引圧に到達した。 As a result, when the hollow fiber membrane module of Comparative Example 1 was used, the suction pressure reached 70 kPa after about 4 months, whereas when the hollow fiber membrane module of Example 1 was used, about 8 The suction pressure was reached after a lapse of months.
 試験1の結果より、実施例1では、中空糸膜モジュールの物理洗浄時に散気孔を通して散気気体が小束内に流入し、小束固定部近傍の中空糸膜を充分に洗浄することができ、かつ小束固定部上への懸濁物質の蓄積を大幅に減少させることができたことを示している。 From the result of Test 1, in Example 1, the diffused gas flows into the small bundle through the diffused holes during the physical cleaning of the hollow fiber membrane module, and the hollow fiber membrane in the vicinity of the small bundle fixing portion can be sufficiently cleaned. And the accumulation of suspended solids on the small bundle fixing part could be greatly reduced.
(試験2)
 実施例1および実施例2の中空糸膜モジュールを用いて、上述した試験1と同様の試験を実施した。
(Test 2)
Using the hollow fiber membrane modules of Example 1 and Example 2, a test similar to Test 1 described above was performed.
 その結果、実施例1の中空糸膜モジュールを用いた場合では、約8ヶ月経過後に吸引圧が70kPaに到達したのに対して、実施例2の中空糸膜モジュールを用いた場合では、10ヶ月経過しても吸引圧が70kPaに到達することはなかった。 As a result, when the hollow fiber membrane module of Example 1 was used, the suction pressure reached 70 kPa after about 8 months, whereas when the hollow fiber membrane module of Example 2 was used, 10 months. Even after the lapse, the suction pressure did not reach 70 kPa.
 試験2の結果より、実施例2では、気体溜まり部を散気孔の散気気体が流入する側に設けたことによって、物理洗浄時に小束内に導入される単位時間あたりの気体総量が増大したこと、および散気孔通過時の気体の圧力損失が低減されたことにより、試験1で得られた効果がより顕著に向上したことを示している。 From the result of Test 2, in Example 2, the total amount of gas per unit time introduced into the small bundle during physical cleaning was increased by providing the gas reservoir on the side where the diffused gas flows into the diffused holes. This shows that the effect obtained in Test 1 is significantly improved by reducing the pressure loss of the gas when passing through the air holes.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2011年3月28日出願の日本特許出願(特願2011-069553)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on Mar. 28, 2011 (Japanese Patent Application No. 2011-069553), the contents of which are incorporated herein by reference.
 本発明の中空糸膜モジュールは、例えば、河川水、湖沼水、地下水、海水などの浄水処理、あるいは下水、工業廃水などの膜分離処理などに好適に用いることができる。 The hollow fiber membrane module of the present invention can be suitably used for, for example, water purification treatment such as river water, lake water, groundwater, seawater, or membrane separation treatment such as sewage and industrial wastewater.
 1 :中空糸膜モジュール
 2 :中空糸膜
 3 :筒状容器
 4 :接着部
 5a:上部キャップ
 5b:下部キャップ
 5c:スカート部材
 6 :濾過水出口
 7 :排出口
 8 :供給口
 9 :小束
10 :小束固定部
11 :散気孔
12 :気体溜まり部
DESCRIPTION OF SYMBOLS 1: Hollow fiber membrane module 2: Hollow fiber membrane 3: Cylindrical container 4: Adhesion part 5a: Upper cap 5b: Lower cap 5c: Skirt member 6: Filtrated water outlet 7: Discharge port 8: Supply port 9: Small bundle 10 : Small bundle fixing part 11: Air diffusion hole 12: Gas reservoir

Claims (3)

  1.  複数本の中空糸膜が筒状容器に収納された中空糸膜モジュールであって、
     前記複数本の中空糸膜のそれぞれの一方の端部は、端面が開口された状態でまとめて前記筒状容器に接着固定され、前記複数本の中空糸膜のそれぞれの他方の端部は、複数の小束に分割され、端面が封止された状態で該小束ごとに接着された小束固定部とされ、
     該小束固定部が、前記中空糸膜の長手方向に貫通する散気孔を少なくとも1つ有する中空糸膜モジュール。
    A hollow fiber membrane module in which a plurality of hollow fiber membranes are housed in a cylindrical container,
    One end of each of the plurality of hollow fiber membranes is bonded and fixed to the cylindrical container together with an end face opened, and the other end of each of the plurality of hollow fiber membranes is It is divided into a plurality of small bundles, and is a small bundle fixing portion bonded to each small bundle in a state where the end face is sealed,
    The hollow fiber membrane module in which the small bundle fixing part has at least one air diffusion hole penetrating in the longitudinal direction of the hollow fiber membrane.
  2.  前記筒状容器が、通水可能な開放系筒状容器である請求項1に記載の中空糸膜モジュール。 The hollow fiber membrane module according to claim 1, wherein the cylindrical container is an open cylindrical container through which water can flow.
  3.  前記小束固定部の下部に前記散気孔と連通する気体溜まり部を備えた請求項1または2に記載の中空糸膜モジュール。 The hollow fiber membrane module according to claim 1 or 2, further comprising a gas reservoir part communicating with the air diffuser at a lower part of the small bundle fixing part.
PCT/JP2012/057240 2011-03-28 2012-03-21 Hollow fiber membrane module WO2012133068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012543385A JPWO2012133068A1 (en) 2011-03-28 2012-03-21 Hollow fiber membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011069553 2011-03-28
JP2011-069553 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012133068A1 true WO2012133068A1 (en) 2012-10-04

Family

ID=46930798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057240 WO2012133068A1 (en) 2011-03-28 2012-03-21 Hollow fiber membrane module

Country Status (2)

Country Link
JP (1) JPWO2012133068A1 (en)
WO (1) WO2012133068A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659258A (en) * 2020-06-01 2020-09-15 江苏诺莱智慧水务装备有限公司 Novel air-water mixing hollow fiber ultrafiltration membrane component
CN112105445A (en) * 2018-06-27 2020-12-18 株式会社可乐丽 Hollow fiber membrane module and method for cleaning same
US11141699B2 (en) * 2018-12-07 2021-10-12 Seojin Energy Co., Ltd. Integral type immersed hollow fiber membrane module equipment for air scouring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197108A (en) * 1986-02-25 1987-08-31 Nitto Electric Ind Co Ltd Hollow yarn membrane
JPH02241523A (en) * 1989-03-16 1990-09-26 Sumitomo Bakelite Co Ltd Hollow yarn membrane module
JPH04110023A (en) * 1990-08-31 1992-04-10 Japan Organo Co Ltd Method for scrubbing filtration tower using hollow-fiber membrane
JP2000157846A (en) * 1998-11-26 2000-06-13 Asahi Chem Ind Co Ltd Hollow fiber membrane cartridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197108A (en) * 1986-02-25 1987-08-31 Nitto Electric Ind Co Ltd Hollow yarn membrane
JPH02241523A (en) * 1989-03-16 1990-09-26 Sumitomo Bakelite Co Ltd Hollow yarn membrane module
JPH04110023A (en) * 1990-08-31 1992-04-10 Japan Organo Co Ltd Method for scrubbing filtration tower using hollow-fiber membrane
JP2000157846A (en) * 1998-11-26 2000-06-13 Asahi Chem Ind Co Ltd Hollow fiber membrane cartridge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105445A (en) * 2018-06-27 2020-12-18 株式会社可乐丽 Hollow fiber membrane module and method for cleaning same
CN112105445B (en) * 2018-06-27 2023-01-10 株式会社可乐丽 Hollow fiber membrane module and method for cleaning same
US11141699B2 (en) * 2018-12-07 2021-10-12 Seojin Energy Co., Ltd. Integral type immersed hollow fiber membrane module equipment for air scouring
CN111659258A (en) * 2020-06-01 2020-09-15 江苏诺莱智慧水务装备有限公司 Novel air-water mixing hollow fiber ultrafiltration membrane component

Also Published As

Publication number Publication date
JPWO2012133068A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
KR100523778B1 (en) Hollow fiber membrane cartridge, and hollow fiber membrane module and tank type filtration apparatus which use the cartridge
JP4932492B2 (en) Hollow fiber membrane cartridge
JP5821838B2 (en) Hollow fiber membrane filtration device and method for cleaning hollow fiber membrane module
WO2000030740A1 (en) Hollow fiber membrane cartridge
JP2003024751A (en) Hollow fiber membrane cartridge
JP5353693B2 (en) Filtration membrane device
JP5359872B2 (en) Immersion type hollow fiber membrane module
JP2006247540A (en) Hollow fiber membrane module and its operation method
JP4498373B2 (en) Hollow fiber membrane cartridge, and hollow fiber membrane module and tank type filtration device using the same
WO2012133068A1 (en) Hollow fiber membrane module
JP2016068046A (en) Vertically-arranged external pressure type hollow fiber membrane module and method of operating the same
JPH09220446A (en) External pressure type hollow yarn membrane module
JP5126153B2 (en) Membrane separation activated sludge treatment equipment
WO2011150210A2 (en) Hollow fiber membrane module
JP4269171B2 (en) Filtration method of external pressure type hollow fiber membrane module for aeration flushing
JP2006239642A (en) Hollow fiber membrane module, and operating method of dipped type filtering device using the same
JP2008080262A (en) Manufacturing method of hollow fiber membrane module
JP5874866B1 (en) Operation method of turbidity removal membrane module
JP4934978B2 (en) Hollow fiber membrane module
JP2005262206A (en) Hollow fiber membrane module
JP2009220010A (en) Frame for hollow fiber membrane element and membrane filtration apparatus
JP2006281198A (en) Immersion type filter
WO2020105203A1 (en) External-pressure-type filtration module
JP2010012372A (en) Dipping type hollow fiber membrane module
JP2014195775A (en) Hollow fiber membrane module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012543385

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765212

Country of ref document: EP

Kind code of ref document: A1