JP6887476B2 - Semiconductor power module - Google Patents

Semiconductor power module Download PDF

Info

Publication number
JP6887476B2
JP6887476B2 JP2019200438A JP2019200438A JP6887476B2 JP 6887476 B2 JP6887476 B2 JP 6887476B2 JP 2019200438 A JP2019200438 A JP 2019200438A JP 2019200438 A JP2019200438 A JP 2019200438A JP 6887476 B2 JP6887476 B2 JP 6887476B2
Authority
JP
Japan
Prior art keywords
electrode
power module
insulating member
semiconductor element
semiconductor power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019200438A
Other languages
Japanese (ja)
Other versions
JP2021077661A (en
Inventor
一貴 新
一貴 新
隼人 中田
隼人 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019200438A priority Critical patent/JP6887476B2/en
Publication of JP2021077661A publication Critical patent/JP2021077661A/en
Application granted granted Critical
Publication of JP6887476B2 publication Critical patent/JP6887476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Wire Bonding (AREA)

Description

本願は、半導体パワーモジュールの構造に関するものである。 The present application relates to the structure of a semiconductor power module.

半導体素子を用いた半導体パワーモジュールは、半導体素子をエポキシ樹脂などの熱硬化樹脂で封止したトランスファーモールド型のパワーモジュールと、ゲル状樹脂で封止したゲル封止型のパワーモジュールが使用されている。 As the semiconductor power module using a semiconductor element, a transfer mold type power module in which the semiconductor element is sealed with a thermosetting resin such as an epoxy resin and a gel-sealed type power module in which the semiconductor element is sealed with a gel-like resin are used. There is.

トランスファーモールド型のパワーモジュールは、主に半導体素子および電極の電気的接続はワイヤーボンディングで行う。一方、ゲル封止型のパワーモジュールでは、半導体素子と電極を直接接合するDLB(Direct−Lead−Bonding)と呼ばれる接続方法が多く用いられており、最近では半導体との主な接続はDLBを用いて、ワイヤーボンディング接続を併用したトランスファーモールド封止を行うパワーモジュール構造の開発もされている(特許文献1)。 In the transfer mold type power module, the electrical connection between the semiconductor element and the electrode is mainly performed by wire bonding. On the other hand, in gel-sealed power modules, a connection method called DLB (Direct-Lead-Bonding) in which a semiconductor element and an electrode are directly bonded is often used, and recently, DLB is mainly used for connection with a semiconductor. Further, a power module structure for performing transfer mold encapsulation using a wire bonding connection has also been developed (Patent Document 1).

特開2014−36077号公報Japanese Unexamined Patent Publication No. 2014-36077

特許文献1において、DLB接続とワイヤーボンディング接続を併用して電極と半導体素子を接続している。それらをトランスファーモールド封止する構造では、ワイヤーボンディングを行う電極はその接合部の下側に治具を設けなくてはならず、半導体素子を実装しているベース電極の実装面上の外側にこれら電極を配置する必要があり、モジュールの全体が大型化するという課題があった。 In Patent Document 1, the electrode and the semiconductor element are connected by using both the DLB connection and the wire bonding connection. In the structure in which they are transfer-molded and sealed, the electrodes for wire bonding must be provided with a jig under the bonding portion, and these are outside on the mounting surface of the base electrode on which the semiconductor element is mounted. It is necessary to arrange the electrodes, and there is a problem that the entire module becomes large.

これはワイヤーボンディング工程上、接合時にワイヤーボンディング装置からボンディングワイヤーへ与える荷重または超音波等の振動を受け止める下治具が必要となるためであり、ワイヤーボンディングの接合部分が自由端のような状態では、接合部がボンディング時に必要な荷重または超音波等の振動をうまく受けることができず、ボンディングワイヤーと電極間の接合が不良となり、製造工程上での破断など信頼性が低下するといったリスクが生まれるためである。 This is because the wire bonding process requires a lower jig that receives the load applied from the wire bonding device to the bonding wire or vibrations such as ultrasonic waves at the time of bonding. , The joint cannot receive the load required for bonding or vibration such as ultrasonic waves well, the bonding between the bonding wire and the electrode becomes poor, and there is a risk that reliability such as breakage in the manufacturing process will decrease. Because.

本願は、上記課題に鑑みてなされたものであって、半導体素子を実装しているベース電極の実装面上においてもワイヤーボンディングが可能な電極を設けた半導体パワーモジュールを提供することを目的とする。 The present application has been made in view of the above problems, and an object of the present application is to provide a semiconductor power module provided with an electrode capable of wire bonding even on a mounting surface of a base electrode on which a semiconductor element is mounted. ..

本願に開示される半導体パワーモジュールは、第一の電極と、前記第一の電極の上に設けられた半導体素子と、前記第一の電極の上に設けられた絶縁部材と、前記絶縁部材を介して設けられ、前記半導体素子とのワイヤーボンディングの接合部を有する第二の電極と、前記半導体素子の上に接合された第三の電極と、前記第一の電極に接続された第四の電極と、を備え、前記第二の電極の前記接合部は、前記第二の電極を支える前記絶縁部材の上方に配設され、前記絶縁部材は、第二の電極を支えると共に、前記第一の電極と前記第三の電極との間、および前記第一の電極と前記第四の電極との間に設けられ、前記第三の電極および前記第四の電極を支えるものである。

The semiconductor power module disclosed in the present application includes a first electrode, a semiconductor element provided on the first electrode, an insulating member provided on the first electrode, and the insulating member. A second electrode provided via the wire and having a wire bonding joint with the semiconductor element, a third electrode bonded on the semiconductor element, and a fourth electrode connected to the first electrode. The second electrode is provided with an electrode, and the joint portion of the second electrode is disposed above the insulating member that supports the second electrode, and the insulating member supports the second electrode and the first. It is provided between the electrode of the above and the third electrode, and between the first electrode and the fourth electrode, and supports the third electrode and the fourth electrode.

本願によれば、第一の電極の上に設けられた絶縁部材を介して第二の電極を設け、半導体素子とのワイヤーボンディングの接合部が、第二の電極を支える前記絶縁部材の上方に配設されているので、第一の電極の実装面上にワイヤーボンディングが可能な第二の電極を持つことが可能となった。そのため、モジュールの全体が大型化することなく、かつ、ワイヤーボンディングの接合部に必要な荷重または超音波等の振動を十分に受け止めることができる信頼度の高い接合部を実現できる。 According to the present application, a second electrode is provided via an insulating member provided on the first electrode, and a wire bonding joint with the semiconductor element is above the insulating member that supports the second electrode. Since it is arranged, it is possible to have a second electrode capable of wire bonding on the mounting surface of the first electrode. Therefore, it is possible to realize a highly reliable joint portion that can sufficiently receive the load required for the joint portion of the wire bonding or the vibration such as ultrasonic waves without increasing the size of the entire module.

実施の形態1における半導体パワーモジュールの構造を示す模式図で、(A)は平面図、(B)は正面図である。It is a schematic diagram which shows the structure of the semiconductor power module in Embodiment 1, (A) is a plan view, (B) is a front view. 実施の形態2における半導体パワーモジュールの構造を示す模式図で、(A)は平面図、(B)は平面図(A)における線AAに沿った断面図である。It is a schematic diagram which shows the structure of the semiconductor power module in Embodiment 2, (A) is a plan view, (B) is a sectional view along the line AA in the plan view (A). 実施の形態3における半導体パワーモジュールの構造を示す模式図で、(A)は平面図、(B)は平面図(A)における線AAに沿った断面図であるIt is a schematic diagram which shows the structure of the semiconductor power module in Embodiment 3, (A) is a plan view, (B) is a sectional view along the line AA in the plan view (A). 実施の形態4における半導体パワーモジュールの構造を示す模式図で、(A)は平面図、(B)は平面図(A)における線AAに沿った断面図である。It is a schematic diagram which shows the structure of the semiconductor power module in Embodiment 4, (A) is a plan view, (B) is a sectional view along the line AA in the plan view (A). 実施の形態5における半導体パワーモジュールの構造を示す正面模式図である。It is a front schematic diagram which shows the structure of the semiconductor power module in Embodiment 5.

実施の形態1.
図1は、本願の実施の形態1の半導体パワーモジュールの構造を示す模式図であり、図1(A)は平面図を、図1(B)は正面図を示す。図1(A)および(B)において、半導体パワーモジュール100は、半導体素子1、この半導体素子1が上面に設けられたベース電極となる第一の電極2、半導体素子1に外部からの制御信号を伝える第二の電極3、半導体素子1の出力を外部に取り出す出力端子となる第三の電極4、第一の電極2に接続され、外部からの入力を受ける入力端子となる第四の電極5を備えている。この第四の電極5は図中破線の位置でL字状に折れて第一の電極2に接続されている。また、第一の電極2の上に絶縁部材6を介して第二の電極3が設けられる。この第二の電極3と半導体素子1は、ボンディングワイヤー7によって、接合部7aで接続されている。その接合部7aは第一の電極2の実装面上で第二の電極3を支える絶縁部材6の上方に配設されている。また、これらの構成要素は封止樹脂8によって封止されている。なお、説明の都合上、図1(A)および(B)は封止樹脂8が透かされた状態で示されている。
Embodiment 1.
1A and 1B are schematic views showing the structure of the semiconductor power module according to the first embodiment of the present application, FIG. 1A shows a plan view, and FIG. 1B shows a front view. In FIGS. 1A and 1B, the semiconductor power module 100 has a semiconductor element 1, a first electrode 2 serving as a base electrode on which the semiconductor element 1 is provided on the upper surface, and a control signal from the outside to the semiconductor element 1. The second electrode 3 that transmits the above, the third electrode 4 that is the output terminal that takes out the output of the semiconductor element 1 to the outside, and the fourth electrode that is connected to the first electrode 2 and is the input terminal that receives the input from the outside. It has 5. The fourth electrode 5 is folded in an L shape at the position of the broken line in the figure and is connected to the first electrode 2. Further, a second electrode 3 is provided on the first electrode 2 via an insulating member 6. The second electrode 3 and the semiconductor element 1 are connected by a bonding wire 7 at a bonding portion 7a. The joint portion 7a is arranged above the insulating member 6 that supports the second electrode 3 on the mounting surface of the first electrode 2. Further, these components are sealed by the sealing resin 8. For convenience of explanation, FIGS. 1A and 1B are shown in a state where the sealing resin 8 is transparent.

半導体素子1は、たとえばIGBT(Insulated Gate Bipolar Transistor)またはMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)などの電力制御用半導体素子といったパワー半導体素子が用いられる。なお、半導体素子1は、シリコン製半導体素子の他に、シリコンに比べてバンドギャップの大きいワイドバンドギャップ半導体、例えば、窒化ケイ素または窒化ガリウムなどがあり、印加できる許容電流密度が高く、電力損失も低い為、半導体パワーモジュール100の小型化が可能となる。 As the semiconductor element 1, for example, a power semiconductor element such as a power control semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effective Transistor) is used. In addition to the silicon semiconductor element, the semiconductor element 1 includes a wide bandgap semiconductor having a larger bandgap than silicon, such as silicon nitride or gallium nitride, and has a high allowable current density that can be applied and also has a power loss. Since it is low, the semiconductor power module 100 can be miniaturized.

図1では、1つのパワーモジュール内に1つの半導体素子1しか搭載されていないが、これに限定するものではなく、使用される用途に応じて、必要な個数の半導体素子1を搭載することが可能である。また、半導体素子1と第一の電極2は、たとえばハンダ、Agナノ粒子、またはCuナノ粒子からなる焼結剤などにより接合されている。 In FIG. 1, only one semiconductor element 1 is mounted in one power module, but the present invention is not limited to this, and a required number of semiconductor elements 1 may be mounted depending on the intended use. It is possible. Further, the semiconductor element 1 and the first electrode 2 are bonded by, for example, a solder, Ag nanoparticles, a sintering agent composed of Cu nanoparticles, or the like.

第一の電極2、第二の電極3、第三の電極4、および第四の電極5はたとえば銅または銅合金など熱伝導率が高く、放熱性に優れた金属材料を使用することで半導体パワーモジュール100を小型化することができる。第一の電極2の半導体素子1の実装面との反対側の面は、封止樹脂8より露出しており、半導体素子1、第三の電極4、および第四の電極5で発生した熱を放熱している。 The first electrode 2, the second electrode 3, the third electrode 4, and the fourth electrode 5 are semiconductors by using a metal material having high thermal conductivity and excellent heat dissipation, such as copper or a copper alloy. The power module 100 can be miniaturized. The surface of the first electrode 2 opposite to the mounting surface of the semiconductor element 1 is exposed from the sealing resin 8, and the heat generated by the semiconductor element 1, the third electrode 4, and the fourth electrode 5 is generated. Is radiating heat.

第三の電極4は、半導体素子1の上面とたとえばハンダにより接合されており(図示なし)、第四の電極5は第一の電極2の半導体素子1の実装部の周囲にたとえばハンダにより接合されており(図示なし)、第三の電極4と第四の電極5は封止樹脂8の側面方向から取り出されている。図1では封止樹脂8の側面の一方向からしか取り出されていないが、各電極の取り出し方はその限りではなく、別方向の側面または上面でもよい。また半導体パワーモジュール100内部の電気的接続方法について、半導体素子1と第三の電極4、第一の電極2と第四の電極5はハンダにより接合しているが、必要な電流密度の電流を流すことが可能な接続方法であれば、特に限定するものではない。 The third electrode 4 is bonded to the upper surface of the semiconductor element 1 by, for example, solder (not shown), and the fourth electrode 5 is bonded to the periphery of the mounting portion of the semiconductor element 1 of the first electrode 2, for example, by solder. (Not shown), and the third electrode 4 and the fourth electrode 5 are taken out from the side surface direction of the sealing resin 8. In FIG. 1, the sealing resin 8 is taken out from only one direction of the side surface, but the method of taking out each electrode is not limited to this, and the side surface or the upper surface may be taken out in another direction. Regarding the electrical connection method inside the semiconductor power module 100, the semiconductor element 1 and the third electrode 4 and the first electrode 2 and the fourth electrode 5 are joined by solder, but a current having a required current density can be obtained. The connection method is not particularly limited as long as it can be flowed.

第二の電極3は、半導体素子1の上面とボンディングワイヤー7により接続されており、第二の電極3とボンディングワイヤー7との接合部7aは、第一の電極2の実装面上において第二の電極3が対向している面の領域内に存在している。第二の電極3と第一の電極2の間に挟まれている絶縁部材6は、これらの電極間の絶縁を確保しつつ、ボンディング工程におけるボンディング装置からの荷重または超音波等の振動を受け止め、第二の電極3の接合部7aを支持する支持部材としての機能を持つ。このような構造を設けたことで、第一の電極2の実装面上において第二の電極3を配置でき、半導体パワーモジュール100の小型化が可能となる。 The second electrode 3 is connected to the upper surface of the semiconductor element 1 by a bonding wire 7, and the bonding portion 7a between the second electrode 3 and the bonding wire 7 is second on the mounting surface of the first electrode 2. The electrodes 3 of the above are present in the region of the surface facing each other. The insulating member 6 sandwiched between the second electrode 3 and the first electrode 2 receives a load from a bonding device or vibration such as ultrasonic waves in a bonding process while ensuring insulation between these electrodes. , Has a function as a support member for supporting the joint portion 7a of the second electrode 3. By providing such a structure, the second electrode 3 can be arranged on the mounting surface of the first electrode 2, and the semiconductor power module 100 can be miniaturized.

また、第一の電極2の実装面上で、絶縁部材6とこれに支持される第二の電極3の接合部7aを半導体素子1の近くに設け、ボンディングワイヤー7の長さを短くすることで、ボンディングワイヤー7の剛性が上がり信頼性が向上し、さらに距離が短くなるためボンディングワイヤー7のインダクタンスを抑えることができ半導体パワーモジュール100の高周波駆動が可能となる。 Further, on the mounting surface of the first electrode 2, the bonding portion 7a of the insulating member 6 and the second electrode 3 supported by the insulating member 6 is provided near the semiconductor element 1 to shorten the length of the bonding wire 7. As a result, the rigidity of the bonding wire 7 is increased, the reliability is improved, and the distance is shortened, so that the inductance of the bonding wire 7 can be suppressed and the semiconductor power module 100 can be driven at a high frequency.

さらに絶縁部材6を第一の電極2、および第二の電極3の両電極にたとえば接着剤を用いて接着させることで固定すれば、半導体パワーモジュール100の製造工程における位置ずれ防止および脱落防止にもなる。 Further, if the insulating member 6 is fixed to both the first electrode 2 and the second electrode 3 by, for example, using an adhesive, it is possible to prevent misalignment and fall off in the manufacturing process of the semiconductor power module 100. It also becomes.

絶縁部材6の材料としては、絶縁性を有するたとえば熱硬化系樹脂などの絶縁樹脂を使用すれば支持部材としての効果を得られる。さらに、熱伝導性の高い絶縁部材6たとえばアルミナ、窒化アルミ、または窒化ケイ素といったセラミック材料を含有している材料を用いれば、半導体パワーモジュール100の放熱効果を高めることができる。また接着性を有する絶縁シートであれば、接着剤を使用せずに電極同士を固定できるため、製造時間の短縮が可能となる。 As the material of the insulating member 6, if an insulating resin having an insulating property such as a thermosetting resin is used, the effect as a supporting member can be obtained. Further, if a material containing a ceramic material such as an insulating member 6 having high thermal conductivity 6 such as alumina, aluminum nitride, or silicon nitride is used, the heat dissipation effect of the semiconductor power module 100 can be enhanced. Further, if the insulating sheet has adhesiveness, the electrodes can be fixed to each other without using an adhesive, so that the manufacturing time can be shortened.

また、第二の電極3と絶縁部材6をたとえばPPS(Poly Phenylene Sulfide Resin)などで一体成形することで、第二の電極3の第一の電極2に対する位置および高さの精度を上げることができる。 Further, by integrally molding the second electrode 3 and the insulating member 6 with, for example, PPS (Poly Phene sulfide Resin), the accuracy of the position and height of the second electrode 3 with respect to the first electrode 2 can be improved. it can.

実施の形態2.
実施の形態2は実施の形態1の変形例で、図2に実施の形態2における半導体パワーモジュールの構造を示す模式図を示す。(A)は平面図、(B)は平面図(A)における線AAに沿った断面図である。図2に示すようにこの半導体パワーモジュール200では第一の電極2と第二の電極3との間に挟まれている絶縁部材6を延伸させ、絶縁部材6が第一の電極2と第三の電極4との間に設けられている。
Embodiment 2.
The second embodiment is a modification of the first embodiment, and FIG. 2 shows a schematic diagram showing the structure of the semiconductor power module according to the second embodiment. (A) is a plan view, and (B) is a cross-sectional view taken along line AA in the plan view (A). As shown in FIG. 2, in the semiconductor power module 200, the insulating member 6 sandwiched between the first electrode 2 and the second electrode 3 is stretched, and the insulating member 6 is the first electrode 2 and the third electrode 2. It is provided between the electrode 4 and the electrode 4.

このような形状においても、実施の形態1と同様に支持部材としての効果を得ることができ、さらに実施の形態1と同様に絶縁部材6の材料を熱伝導率の高い絶縁性の材料とすることで、半導体素子1で発生する熱を接続されている第三の電極4、絶縁材料6経由で第一の電極2から放熱することにより半導体素子1の放熱経路を増やすことができ、高い冷却効果を得られる。 Even in such a shape, the effect as a support member can be obtained as in the first embodiment, and the material of the insulating member 6 is used as an insulating material having high thermal conductivity as in the first embodiment. As a result, the heat generated by the semiconductor element 1 can be dissipated from the first electrode 2 via the connected third electrode 4 and the insulating material 6, so that the heat dissipation path of the semiconductor element 1 can be increased, resulting in high cooling. The effect can be obtained.

絶縁部材6と第一の電極2、第二の電極3、および第三の電極4とは、接触しているだけでもボンディング工程における支持部材として実施の形態1と同様の効果が得られる。さらに、たとえば接着剤によって、絶縁部材6を介して第三の電極4と第一の電極2とを接着することで、接触している状態より熱抵抗が小さくなり、放熱性能向上の効果を得られる。 Even if the insulating member 6 and the first electrode 2, the second electrode 3, and the third electrode 4 are in contact with each other, the same effect as that of the first embodiment can be obtained as a support member in the bonding step. Further, by adhering the third electrode 4 and the first electrode 2 via the insulating member 6, for example, the thermal resistance becomes smaller than in the state of contact, and the effect of improving the heat dissipation performance is obtained. Be done.

また、第二の電極3と第三の電極4と絶縁部材6とをたとえばPPSなどで一体成形することで、第二の電極3、第三の電極4の第一の電極2に対する位置および高さの精度を上げることができる。 Further, by integrally molding the second electrode 3, the third electrode 4, and the insulating member 6 with, for example, PPS, the positions and heights of the second electrode 3 and the third electrode 4 with respect to the first electrode 2 are obtained. The accuracy of the electrode can be increased.

実施の形態3.
実施の形態3は実施の形態1の変形例で、図3に実施の形態3における半導体パワーモジュールの構造を示す模式図を示す。(A)は平面図、(B)は平面図(A)における線AAに沿った断面図である。図3に示すように、この半導体パワーモジュール300では絶縁部材6が第一の電極2と第四の電極5との間にも設けられている。
Embodiment 3.
The third embodiment is a modification of the first embodiment, and FIG. 3 shows a schematic diagram showing the structure of the semiconductor power module according to the third embodiment. (A) is a plan view, and (B) is a cross-sectional view taken along line AA in the plan view (A). As shown in FIG. 3, in the semiconductor power module 300, an insulating member 6 is also provided between the first electrode 2 and the fourth electrode 5.

このような形状においても、実施の形態1と同様に支持部材としての効果を得ることができ、さらに絶縁部材6の材料を熱伝導率の高い絶縁性の材料とすることで、第四の電極5の発する熱を、絶縁材料6経由で第一の電極2から放熱する効果を得られる。 Even in such a shape, the effect as a support member can be obtained as in the first embodiment, and further, by using the material of the insulating member 6 as an insulating material having high thermal conductivity, the fourth electrode The effect of dissipating the heat generated by 5 from the first electrode 2 via the insulating material 6 can be obtained.

絶縁部材6と第一の電極2、および第二の電極3、第四の電極5とは、接触しているだけでもボンディング工程における支持部材として実施の形態1と同様の効果が得られる。さらに、たとえば接着剤によって、絶縁部材6と第四の電極5と第一の電極2とを接着することで、接触している状態よりも熱抵抗が小さくなり、放熱性能向上の効果を得られる。 Even if the insulating member 6, the first electrode 2, the second electrode 3, and the fourth electrode 5 are in contact with each other, the same effect as that of the first embodiment can be obtained as a support member in the bonding step. Further, by adhering the insulating member 6, the fourth electrode 5, and the first electrode 2 with, for example, an adhesive, the thermal resistance becomes smaller than in the state of contact, and the effect of improving heat dissipation performance can be obtained. ..

また、第四の電極5と第二の電極3と絶縁部材6をたとえばPPSなどで一体成形することで、第四の電極5、第二の電極3の第一の電極2に対する位置および高さの精度を上げることができる。 Further, by integrally molding the fourth electrode 5, the second electrode 3, and the insulating member 6 with, for example, PPS, the positions and heights of the fourth electrode 5, the second electrode 3, and the first electrode 2 are obtained. The accuracy of can be increased.

実施の形態4.
実施の形態4は実施の形態1の変形例で、図4に実施の形態4における半導体パワーモジュールの構造を示す模式図を示す。(A)は平面図、(B)は平面図(A)における線AAに沿った断面図である。図4に示すようにこの半導体パワーモジュール400では第一の電極2と第二の電極3との間に挟まれている絶縁部材6を第一の電極2と第三の電極4との間、および第一の電極2と第四の電極5との間まで延伸している。
Embodiment 4.
The fourth embodiment is a modification of the first embodiment, and FIG. 4 shows a schematic diagram showing the structure of the semiconductor power module according to the fourth embodiment. (A) is a plan view, and (B) is a cross-sectional view taken along line AA in the plan view (A). As shown in FIG. 4, in this semiconductor power module 400, the insulating member 6 sandwiched between the first electrode 2 and the second electrode 3 is placed between the first electrode 2 and the third electrode 4. And extends between the first electrode 2 and the fourth electrode 5.

このような形状においても、実施の形態1と同様に支持部材としての効果を得ることができ、さらに絶縁部材6の材料を熱伝導率の高い絶縁性の材料とすることで、実施の形態1、実施の形態2、および実施の形態3にて述べた半導体素子1、第一の電極2、第三の電極4、第四の電極5の放熱効果が得られることはいうまでもない。 Even in such a shape, the effect as a support member can be obtained as in the first embodiment, and further, by using the material of the insulating member 6 as an insulating material having high thermal conductivity, the first embodiment 1 Needless to say, the heat dissipation effect of the semiconductor element 1, the first electrode 2, the third electrode 4, and the fourth electrode 5 described in the second embodiment and the third embodiment can be obtained.

絶縁部材6と第一の電極2、第二の電極3、第三の電極4、および第四の電極5とは、接触しているだけでもボンディング工程における支持部材としての実施の形態1と同様の効果が得られる。さらに、たとえば接着剤によって接着させることで、電極間の密着性が向上し、第三の電極4と第四の電極5の放熱性向上の効果が得られる。 The insulating member 6 and the first electrode 2, the second electrode 3, the third electrode 4, and the fourth electrode 5 are in contact with each other as in the first embodiment as a support member in the bonding step. The effect of is obtained. Further, for example, by adhering with an adhesive, the adhesion between the electrodes is improved, and the effect of improving the heat dissipation of the third electrode 4 and the fourth electrode 5 can be obtained.

また、第二の電極3、第三の電極4、および第四の電極5と絶縁部材6とをたとえばPPSなどで一体成形することで、第二の電極3、第三の電極4、および第四の電極5の第一の電極2に対する位置および高さの精度上げることができる。 Further, by integrally molding the second electrode 3, the third electrode 4, the fourth electrode 5, and the insulating member 6 with, for example, PPS, the second electrode 3, the third electrode 4, and the second electrode are formed. The accuracy of the position and height of the four electrodes 5 with respect to the first electrode 2 can be improved.

実施の形態5.
実施の形態5は実施の形態1の変形例で、図5に実施の形態5における半導体パワーモジュールの構造を正面から見た模式図を示す。ただし、説明の都合上、封止樹脂8が透かされた状態で示されている。図5に示すようにこの半導体パワーモジュール500では第一の電極2の実装面の反対側(下側)に絶縁層9を一面に介して金属板10が配置されている。絶縁層9は、たとえばエポキシ樹脂に熱伝導性に優れたシリカ、アルミナなどの無機粉末が充填されている絶縁シートを用いることができる。
Embodiment 5.
The fifth embodiment is a modification of the first embodiment, and FIG. 5 shows a schematic view of the structure of the semiconductor power module according to the fifth embodiment as viewed from the front. However, for convenience of explanation, the sealing resin 8 is shown in a transparent state. As shown in FIG. 5, in the semiconductor power module 500, a metal plate 10 is arranged on the opposite side (lower side) of the mounting surface of the first electrode 2 with an insulating layer 9 interposed therebetween. As the insulating layer 9, for example, an insulating sheet in which an epoxy resin is filled with an inorganic powder such as silica or alumina having excellent thermal conductivity can be used.

また、金属板10の絶縁層9との接合面との反対面は、封止樹脂8より露出しており、絶縁層9が外部からの接触により傷つかない為の保護層としての役目も果たす。この目的を満足するものであれば、材料を特に限定することはなく、銅またはアルミなどの金属板または金属箔の適用も可能である。このように構成することで、放熱効果を維持したまま、半導体モジュール500の底部の絶縁と保護を図ることができる。このような構成とした場合でも、第二の電極3と第一の電極2の間に挟まれている絶縁部材6は、ボンディング工程におけるボンディング装置からの荷重または超音波等の振動を受けることができ、第三の電極4とボンディングワイヤー7との接合性を良好に保つことが可能となる。 Further, the surface of the metal plate 10 opposite to the joint surface with the insulating layer 9 is exposed from the sealing resin 8, and also serves as a protective layer to prevent the insulating layer 9 from being damaged by external contact. As long as this object is satisfied, the material is not particularly limited, and a metal plate such as copper or aluminum or a metal foil can be applied. With this configuration, it is possible to insulate and protect the bottom portion of the semiconductor module 500 while maintaining the heat dissipation effect. Even with such a configuration, the insulating member 6 sandwiched between the second electrode 3 and the first electrode 2 may be subjected to a load from a bonding device in the bonding process or vibration such as ultrasonic waves. This makes it possible to maintain good bondability between the third electrode 4 and the bonding wire 7.

なお、実施の形態5で示された絶縁層9および金属板10による構造を、これまでの実施の形態1から4に用いることができることは言うまでもない。 Needless to say, the structure of the insulating layer 9 and the metal plate 10 shown in the fifth embodiment can be used in the first to fourth embodiments so far.

実施の形態1から5において、半導体素子1、第一の電極2、第二の電極3、第三の電極4、第四の電極5、および絶縁部材6、の搭載個数は、説明のために限定した例で示したが、これに限定されるものではなく、同じ1つの半導体パワーモジュール100,200,300,400,500内に必要に応じて必要な個数を搭載することが可能である。また、絶縁部材6について、必要に応じて電極ごとに分割してもよいし、1つの絶縁部材6に複数の電極を搭載してもよい。 In the first to fifth embodiments, the number of mounted semiconductor elements 1, the first electrode 2, the second electrode 3, the third electrode 4, the fourth electrode 5, and the insulating member 6 is for illustration purposes. Although shown by a limited example, the present invention is not limited to this, and the same one semiconductor power module 100, 200, 300, 400, 500 can be equipped with a required number as needed. Further, the insulating member 6 may be divided into electrodes as needed, or a plurality of electrodes may be mounted on one insulating member 6.

本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations. Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1 半導体素子、2 第一の電極、3 第二の電極、4 第三の電極、5 第四の電極、6 絶縁部材、7 ボンディングワイヤー、7a 接合部、8 封止樹脂、9 絶縁層、10 金属板、100,200,300,400,500 半導体パワーモジュール 1 Semiconductor element, 2 1st electrode, 3 2nd electrode, 4 3rd electrode, 5 4th electrode, 6 Insulation member, 7 Bonding wire, 7a junction, 8 Encapsulating resin, 9 Insulation layer, 10 Metal plate, 100,200,300,400,500 semiconductor power module

Claims (6)

第一の電極と、
前記第一の電極の上に設けられた半導体素子と、
前記第一の電極の上に設けられた絶縁部材と、
前記絶縁部材を介して設けられ、
前記半導体素子とのワイヤーボンディングの接合部を有する第二の電極と、
前記半導体素子の上に接合された第三の電極と、
前記第一の電極に接続された第四の電極と、
を備え、
前記第二の電極の前記接合部は、前記第二の電極を支える前記絶縁部材の上方に配設され、
前記絶縁部材は、第二の電極を支えると共に、
前記第一の電極と前記第三の電極との間、および前記第一の電極と前記第四の電極との間に設けられ、前記第三の電極および前記第四の電極を支えていることを特徴とする半導体パワーモジュール。
With the first electrode,
A semiconductor element provided on the first electrode and
An insulating member provided on the first electrode and
Provided via the insulating member
A second electrode having a wire bonding joint with the semiconductor element,
With the third electrode bonded on the semiconductor element,
With the fourth electrode connected to the first electrode,
With
The joint portion of the second electrode is disposed above the insulating member that supports the second electrode.
The insulating member supports the second electrode and also supports the second electrode.
It is provided between the first electrode and the third electrode, and between the first electrode and the fourth electrode, and supports the third electrode and the fourth electrode. A semiconductor power module featuring.
前記絶縁部材は、前記第一の電極、前記第二の電極、記第三の電極、および前記第四の電極との間で接着されている請求項1に記載の半導体パワーモジュール。 Said insulating member, said first electrode, said second electrode, the semiconductor power module according to claim 1 which is bonded between the front Symbol third electrode, and the fourth electrode. 前記第一の電極の下側に絶縁層を介して金属板を設けた請求項1または請求項2に記載の半導体パワーモジュール。 The semiconductor power module according to claim 1 or 2, wherein a metal plate is provided under the first electrode via an insulating layer. 前記絶縁部材は絶縁樹脂である請求項1から請求項3のいずれか1項に記載の半導体パワーモジュール。 The semiconductor power module according to any one of claims 1 to 3, wherein the insulating member is an insulating resin. 前記絶縁部材は絶縁シートである請求項1から請求項4のいずれか1項に記載の半導体パワーモジュール。 The semiconductor power module according to any one of claims 1 to 4, wherein the insulating member is an insulating sheet. 前記絶縁部材にセラミック材料が含有された請求項1から請求項5のいずれか1項に記載の半導体パワーモジュール。 The semiconductor power module according to any one of claims 1 to 5, wherein the insulating member contains a ceramic material.
JP2019200438A 2019-11-05 2019-11-05 Semiconductor power module Active JP6887476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019200438A JP6887476B2 (en) 2019-11-05 2019-11-05 Semiconductor power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200438A JP6887476B2 (en) 2019-11-05 2019-11-05 Semiconductor power module

Publications (2)

Publication Number Publication Date
JP2021077661A JP2021077661A (en) 2021-05-20
JP6887476B2 true JP6887476B2 (en) 2021-06-16

Family

ID=75898208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200438A Active JP6887476B2 (en) 2019-11-05 2019-11-05 Semiconductor power module

Country Status (1)

Country Link
JP (1) JP6887476B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076442A (en) * 2013-10-07 2015-04-20 ローム株式会社 Power module and manufacturing method of the same
JP2015076562A (en) * 2013-10-11 2015-04-20 三菱電機株式会社 Power module
JP2015097237A (en) * 2013-11-15 2015-05-21 住友電気工業株式会社 Semiconductor device
JP6057926B2 (en) * 2014-01-09 2017-01-11 三菱電機株式会社 Semiconductor device
JP6031642B2 (en) * 2014-02-28 2016-11-24 板橋精機株式会社 Power module and manufacturing method thereof
JP2016163024A (en) * 2015-03-05 2016-09-05 三菱電機株式会社 Power module

Also Published As

Publication number Publication date
JP2021077661A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US10559538B2 (en) Power module
JP5656907B2 (en) Power module
US9171773B2 (en) Semiconductor device
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP6218898B2 (en) Power semiconductor device
KR100536115B1 (en) Power semiconductor device
US20120306086A1 (en) Semiconductor device and wiring substrate
JP6813259B2 (en) Semiconductor device
JP6786416B2 (en) Semiconductor device
JP5895220B2 (en) Manufacturing method of semiconductor device
JP6988345B2 (en) Semiconductor device
JP2013069782A (en) Semiconductor device
JP2016018866A (en) Power module
JP2006253516A (en) Power semiconductor device
KR102172689B1 (en) Semiconductor package and method of fabricating the same
JP2019071412A (en) Chip package
KR20100120006A (en) Power module package
JP5845634B2 (en) Semiconductor device
KR101388857B1 (en) Semiconductor package and method of manufacturing the semiconductor package
JP7163583B2 (en) semiconductor equipment
JP5172290B2 (en) Semiconductor device
US20130256920A1 (en) Semiconductor device
JP2004221381A (en) Semiconductor device
JP2014170801A (en) Semiconductor device
JP6887476B2 (en) Semiconductor power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210518

R151 Written notification of patent or utility model registration

Ref document number: 6887476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250