JP6886866B2 - Vacuum drying device - Google Patents

Vacuum drying device Download PDF

Info

Publication number
JP6886866B2
JP6886866B2 JP2017107517A JP2017107517A JP6886866B2 JP 6886866 B2 JP6886866 B2 JP 6886866B2 JP 2017107517 A JP2017107517 A JP 2017107517A JP 2017107517 A JP2017107517 A JP 2017107517A JP 6886866 B2 JP6886866 B2 JP 6886866B2
Authority
JP
Japan
Prior art keywords
solvent
exhaust
chamber
collecting portion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017107517A
Other languages
Japanese (ja)
Other versions
JP2018204810A (en
Inventor
明典 島村
明典 島村
林 輝幸
輝幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2017107517A priority Critical patent/JP6886866B2/en
Priority to TW107116715A priority patent/TWI766997B/en
Priority to KR1020180056369A priority patent/KR102474469B1/en
Priority to CN201810552163.9A priority patent/CN108987310A/en
Publication of JP2018204810A publication Critical patent/JP2018204810A/en
Application granted granted Critical
Publication of JP6886866B2 publication Critical patent/JP6886866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Solid Materials (AREA)

Description

本発明は、基板の表面に塗布された有機材料膜中の溶媒を減圧状態で乾燥させる減圧乾燥装置に関する。 The present invention relates to a vacuum drying device that dries a solvent in an organic material film coated on the surface of a substrate under reduced pressure.

従来、有機EL(Electroluminescence)の発光を利用した発光ダイオードである有機発光ダイオード(OLED:Organic Light Emitting Diode)が知られている。かかる有機発光ダイオードを用いた有機ELディスプレイは、薄型軽量かつ低消費電力であるうえ、応答速度や視野角、コントラスト比の面で優れているといった利点を有していることから、次世代のフラットパネルディスプレイ(FPD)として近年注目されている。 Conventionally, an organic light emitting diode (OLED), which is a light emitting diode utilizing light emission of organic EL (Electroluminescence), is known. An organic EL display using such an organic light emitting diode has advantages such as thinness, light weight, low power consumption, and excellent response speed, viewing angle, and contrast ratio. Therefore, it is a next-generation flat. In recent years, it has been attracting attention as a panel display (FPD).

有機発光ダイオードは、基板上の陽極と陰極の間に有機EL層を挟んだ構造を有している。有機EL層は、例えば陽極側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層が積層されて形成される。これらの有機EL層の各層(特に正孔注入層、正孔輸送層及び発光層)を形成するにあたっては、例えばインクジェット方式で有機材料の液滴を基板上に吐出するといった方法が用いられる。 The organic light emitting diode has a structure in which an organic EL layer is sandwiched between an anode and a cathode on a substrate. The organic EL layer is formed by laminating, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode side. In forming each of these organic EL layers (particularly the hole injection layer, the hole transport layer and the light emitting layer), a method of ejecting droplets of an organic material onto a substrate by, for example, an inkjet method is used.

インクジェット方式で基板上に吐出された有機材料中には、多量の溶媒が含まれている。そのため、溶媒を除去することを目的として、該溶媒を減圧状態で乾燥する減圧乾燥処理が行われている。
減圧乾燥処理を行うための減圧乾燥装置は、減圧乾燥対象の基板を収容する、真空引き可能な処理容器と、一端が処理容器に接続され他端が排気装置にされる排気管と、を備え、処理容器内が排気装置によって排気される(特許文献1、2参照)。
A large amount of solvent is contained in the organic material discharged onto the substrate by the inkjet method. Therefore, for the purpose of removing the solvent, a vacuum drying treatment is performed in which the solvent is dried under reduced pressure.
The vacuum drying device for performing the vacuum drying process includes a vacuum-drawable processing container for accommodating the substrate to be vacuum-dried, and an exhaust pipe having one end connected to the processing container and the other end being an exhaust device. , The inside of the processing container is evacuated by the exhaust device (see Patent Documents 1 and 2).

特許文献1の減圧乾燥装置は、基板を速く乾燥させること等を目的として、基板上の有機材料膜から揮発する溶媒を捕集する溶媒捕集部が排気管に設けられており、基板の減圧乾燥が終了すると、溶媒捕集部と処理容器との間に設けられたバルブが閉じられ、処理容器内が大気圧に戻され、基板が処理容器内から搬出される。 The vacuum drying device of Patent Document 1 is provided with a solvent collecting portion in the exhaust pipe for collecting the solvent volatilized from the organic material film on the substrate for the purpose of quickly drying the substrate, and depressurizes the substrate. When the drying is completed, the valve provided between the solvent collecting portion and the processing container is closed, the inside of the processing container is returned to atmospheric pressure, and the substrate is carried out from the inside of the processing container.

また、特許文献2の減圧乾燥装置は、処理容器内の溶媒を短時間に効率良く除去するために、上記溶媒捕集部が処理容器内に設けられると共に、紫外線照射部が処理容器に対して設けられている。この減圧乾燥装置は、紫外線照射部から溶媒捕集部に紫外線を照射して、該溶媒捕集部に捕集された溶媒中に含まれる有機化合物を揮散しやすいように分解している。 Further, in the vacuum drying apparatus of Patent Document 2, in order to efficiently remove the solvent in the processing container in a short time, the solvent collecting unit is provided in the processing container, and the ultraviolet irradiation unit is provided on the processing container. It is provided. In this vacuum drying device, the solvent collecting part is irradiated with ultraviolet rays from the ultraviolet irradiation part, and the organic compound contained in the solvent collected in the solvent collecting part is decomposed so as to be easily volatilized.

特開2005−85814号公報Japanese Unexamined Patent Publication No. 2005-85814 特開2014−238194号公報Japanese Unexamined Patent Publication No. 2014-238194

しかしながら、基板の減圧乾燥が完了するまでの時間、言い換えると、処理容器内の圧力が所定値以下となり処理容器内を大気圧に戻しても問題がなくなるまでの時間(タクトタイム)を、特許文献1及び2の減圧乾燥装置よりも短くすることを求められることがある。 However, the patent document describes the time until the vacuum drying of the substrate is completed, in other words, the time (tact time) until the pressure in the processing container becomes equal to or less than a predetermined value and there is no problem even if the inside of the processing container is returned to atmospheric pressure. It may be required to be shorter than the vacuum drying devices 1 and 2.

本発明は、かかる点に鑑みてなされたものであり、基板の減圧乾燥が完了するまでの時間が短い減圧乾燥装置を提供することを目的とする。 The present invention has been made in view of this point, and an object of the present invention is to provide a vacuum drying apparatus in which the time required for vacuum drying of a substrate to be completed is short.

前記の目的を達成するため、本発明は、基板の表面に塗布された有機材料膜中の溶媒を減圧状態で乾燥させる減圧乾燥装置であって、前記基板を収容するチャンバと、該チャンバ内の空間と前記チャンバ内を排気する排気装置とを接続する複数の排気路とを備え、前記複数の排気路はそれぞれ、当該排気路を開閉自在に塞ぐ塞ぎ部材を有し、前記複数の排気路は、前記基板から気化した前記有機材料膜中の溶媒を捕集する溶媒捕集部が前記塞ぎ部材の下流に設けられた溶媒捕集部有り排気路と、前記溶媒捕集部が設けられていない溶媒捕集部無し排気路とを含み、前記溶媒捕集部有り排気路の前記チャンバ側の端部は、前記溶媒捕集部無し排気路の前記チャンバ側の端部に比べて、前記チャンバに収容された前記基板の角部から遠いことを特徴としている。 In order to achieve the above object, the present invention is a vacuum drying device that dries a solvent in an organic material film applied to the surface of a substrate under reduced pressure, and comprises a chamber accommodating the substrate and a chamber in the chamber. A plurality of exhaust passages for connecting the space and the exhaust device for exhausting the inside of the chamber are provided, and each of the plurality of exhaust passages has a closing member for opening and closing the exhaust passage, and the plurality of exhaust passages have a closing member. An exhaust passage with a solvent collecting portion in which a solvent collecting portion for collecting the solvent in the organic material film vaporized from the substrate is provided downstream of the closing member, and the solvent collecting portion are not provided. look containing a solvent collecting unit without exhaust path, the ends of the chamber side of the exhaust passage there the solvent collecting unit, as compared to the ends of the chamber side of the solvent collecting unit without exhaust passage, said chamber It is characterized in that it is far from the corner portion of the substrate housed in the solvent.

前記の目的を達成するため、本発明は、基板の表面に塗布された有機材料膜中の溶媒を減圧状態で乾燥させる減圧乾燥装置を用いた減圧乾燥方法であって、前記減圧乾燥装置が、前記基板を収容するチャンバと、該チャンバ内の空間と前記チャンバ内を排気する排気装置とを接続する複数の排気路とを備え、前記複数の排気路がそれぞれ、当該排気路を開閉自在に塞ぐ塞ぎ部材を有し、前記複数の排気路が、前記基板から気化した前記有機材料膜中の溶媒を捕集する溶媒捕集部が前記塞ぎ部材の下流に設けられた溶媒捕集部有り排気路と、前記溶媒捕集部が設けられていない溶媒捕集部無し排気路とを含み、当該減圧乾燥方法は、前記複数の排気路のうち少なくとも前記溶媒捕集部有り排気路については前記塞ぎ部材を開状態とする基板乾燥ステップと、該基板乾燥ステップ後、前記複数の排気路のうち前記溶媒捕集部有り排気路については前記塞ぎ部材を閉状態とし、前記溶媒捕集部無し排気路については前記塞ぎ部材を開状態とするチャンバ乾燥ステップとを含む。 In order to achieve the above object, the present invention is a vacuum drying method using a vacuum drying device that dries the solvent in the organic material film coated on the surface of the substrate in a reduced pressure state. A chamber for accommodating the substrate and a plurality of exhaust passages for connecting the space in the chamber and the exhaust device for exhausting the inside of the chamber are provided, and the plurality of exhaust passages block the exhaust passages so as to be openable and closable. An exhaust passage having a solvent collecting portion having a closing member and having a solvent collecting portion for collecting the solvent in the organic material film vaporized from the substrate by the plurality of exhaust passages provided downstream of the closing member. And the exhaust passage without the solvent collecting portion, which is not provided with the solvent collecting portion, and the vacuum drying method includes the closing member for at least the exhaust passage with the solvent collecting portion among the plurality of exhaust passages. After the substrate drying step and the substrate drying step, the closing member is closed for the exhaust passage with the solvent collecting portion among the plurality of exhaust passages, and the exhaust passage without the solvent collecting portion is closed. Includes a chamber drying step that opens the closing member.

前記基板乾燥ステップは、前記溶媒捕集部を冷却するステップを含むことが好ましい。 The substrate drying step preferably includes a step of cooling the solvent collecting portion.

前記チャンバ乾燥ステップは、前記溶媒捕集部を加熱するステップを含むことが好ましい。 The chamber drying step preferably includes a step of heating the solvent collecting portion.

前記チャンバ乾燥ステップは、前記塞ぎ部材と前記溶媒捕集部との間に設けられたガス供給部から、当該溶媒捕集部に捕集された溶媒の気化を促進するガスを供給するステップを含むことが好ましい。 The chamber drying step includes a step of supplying a gas for promoting vaporization of the solvent collected in the solvent collecting portion from a gas supply portion provided between the closing member and the solvent collecting portion. Is preferable.

前記溶媒捕集部有り排気路の前記チャンバ側の端部は、前記溶媒捕集部無し排気路の前記チャンバ側の端部に比べて、前記チャンバに収容された前記基板の角部から遠く、前記基板乾燥ステップは、前記複数の排気路のうち前記溶媒捕集部有り排気路について前記塞ぎ部材を開状態とし、その後、前記複数の排気路の全てについて前記塞ぎ部材を開状態とするステップを含むことが好ましい。 The end of the exhaust passage with the solvent collecting portion on the chamber side is farther from the corner portion of the substrate housed in the chamber than the end of the exhaust passage without the solvent collecting portion on the chamber side. The substrate drying step is a step of opening the closing member for the exhaust passage having a solvent collecting portion among the plurality of exhaust passages, and then opening the closing member for all of the plurality of exhaust passages. It is preferable to include it.

本発明によれば、基板の減圧乾燥が完了するまでの時間すなわちタクトタイムを短くすることができる。 According to the present invention, the time until the vacuum drying of the substrate is completed, that is, the tact time can be shortened.

本発明の実施の形態に係る減圧乾燥装置の概略構成を示す図である。It is a figure which shows the schematic structure of the vacuum drying apparatus which concerns on embodiment of this invention. 図1の減圧乾燥装置の効果を説明する図である。It is a figure explaining the effect of the vacuum drying apparatus of FIG. 減圧乾燥装置の他の例における、溶媒捕集部に関する構成を示す図である。It is a figure which shows the structure about the solvent collecting part in another example of a vacuum drying apparatus. 他の例の塞ぎ部材が設けられた排気管の周辺の様子を示す図である。It is a figure which shows the state around the exhaust pipe provided with the closing member of another example. チャンバの底板の他の例を示す図である。It is a figure which shows another example of the bottom plate of a chamber. 減圧乾燥装置の排気ラインの他の例を示す側面図である。It is a side view which shows another example of the exhaust line of the vacuum drying apparatus. 減圧乾燥装置の排気ラインの別の例の説明図である。It is explanatory drawing of another example of the exhaust line of the vacuum drying apparatus.

以下、添付図面を参照して、本発明の実施の形態について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、以下に示す実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted. Further, the present invention is not limited to the embodiments shown below.

(第1の実施形態)
図1は、本発明の実施の形態に係る減圧乾燥装置の概略構成を示す図であり、図1(A)は減圧乾燥装置の構成の概略を示す模式断面図、図1(B)は減圧乾燥装置内の構成の概略を示す模式上面図である。なお、図1(B)では後述の天板等の図示は省略されている。
(First Embodiment)
FIG. 1 is a diagram showing a schematic configuration of a vacuum drying device according to an embodiment of the present invention, FIG. 1 (A) is a schematic cross-sectional view showing a schematic configuration of a vacuum drying device, and FIG. 1 (B) is a reduced pressure. It is a schematic top view which shows the outline of the structure in a drying apparatus. Note that in FIG. 1B, the illustration of the top plate and the like, which will be described later, is omitted.

本実施形態に係る減圧乾燥装置は、基板の表面にインクジェット方式で塗布された有機材料膜中の溶媒を、減圧状態で乾燥させるものであり、本装置の処理対象の基板は例えば有機ELディスプレイ用のガラス基板である。
なお、本装置の処理対象の基板に塗布される溶液は、溶質と溶媒からなり、減圧乾燥処理の対象となる成分は主に溶媒である。溶媒に含まれる有機化合物としては、高沸点のものが多く、例えば、1,3−ジメチル−2−イミダゾリジノン(1,3-dimethyl-2-imidazolidinone、沸点220℃、融点8℃)、4−tert-ブチルアニソール(4-tert-Butylanisole、沸点222℃、融点18℃)、Trans−アネトール(Trans-Anethole、沸点235℃、融点20℃)、1,2−ジメトキシベンゼン(1,2-Dimethoxybenzene、沸点206.7℃、融点22.5℃)、2−メトキシビフェニル(2-Methoxybiphenyl、沸点274℃、融点28℃)、フェニルエーテル(Phenyl Ether、沸点258.3℃、融点28℃)、2−エトキシナフタレン(2-Ethoxynaphthalene、沸点282℃、融点35℃)、ベンジルフェニルエーテル(Benzyl Phenyl Ether、沸点288℃、融点39℃)、2,6−ジメトキシトルエン(2,6-Dimethoxytoluene、沸点222℃、融点39℃)、2−プロポキシナフタレン(2-Propoxynaphthalene、沸点305℃、融点40℃)、1,2,3−トリメトキシベンゼン(1,2,3-Trimethoxybenzene、沸点235℃、融点45℃)、シクロヘキシルベンゼン(cyclohexylbenzene、沸点237.5℃、融点5℃)、ドデシルベンゼン(dodecylbenzene、沸点288℃、融点-7℃)、1,2,3,4-テトラメチルベンゼン(1,2,3,4-tetramethylbenzene、沸点203℃、融点76℃)等を挙げることができる。これらの高沸点有機化合物は、2種以上が組み合わされて溶液中に配合されている場合もある。
The vacuum drying apparatus according to the present embodiment dries the solvent in the organic material film coated on the surface of the substrate by an inkjet method in a reduced pressure state, and the substrate to be processed by this apparatus is, for example, for an organic EL display. It is a glass substrate of.
The solution applied to the substrate to be treated by this apparatus is composed of a solute and a solvent, and the component to be dried under reduced pressure is mainly a solvent. Many of the organic compounds contained in the solvent have a high boiling point, for example, 1,3-dimethyl-2-imidazolidinone (boiling point 220 ° C., boiling point 8 ° C.), 4 −tert-Butylanisole (4-tert-Butylanisole, boiling point 222 ° C, melting point 18 ° C), Trans-Anethole (boiling point 235 ° C, melting point 20 ° C), 1,2-dimethoxybenzene (1,2-Dimethoxybenzene) , Boiling point 206.7 ℃, boiling point 22.5 ℃), 2-Methoxybiphenyl (boiling point 274 ℃, boiling point 28 ℃), phenyl ether (boiling point 258.3 ℃, boiling point 28 ℃), 2-ethoxynaphthalene (2-ethoxynaphthalene) Ethoxynaphthalene, boiling point 282 ° C, melting point 35 ° C), Benzyl Phenyl Ether (boiling point 288 ° C, melting point 39 ° C), 2,6-Dimethoxytoluene (boiling point 222 ° C, melting point 39 ° C), 2-Propoxynaphthalene (boiling point 305 ° C, melting point 40 ° C), 1,2,3-Trimethoxybenzene (boiling point 235 ° C, melting point 45 ° C), cyclohexylbenzene, Boiling point 237.5 ° C, melting point 5 ° C), dodecylbenzene (boiling point 288 ° C, boiling point -7 ° C), 1,2,3,4-tetramethylbenzene (1,2,3,4-tetramethylbenzene, boiling point 203 ° C, Melting point 76 ° C) and the like. These high boiling point organic compounds may be blended in a solution in combination of two or more.

本実施形態に係る減圧乾燥装置は、図1(A)及び図1(B)に示すように、チャンバ10と、載置台20と、複数の排気管30と、を備え、排気装置Pに接続されている。 As shown in FIGS. 1 (A) and 1 (B), the vacuum drying device according to the present embodiment includes a chamber 10, a mounting table 20, and a plurality of exhaust pipes 30, and is connected to the exhaust device P. Has been done.

チャンバ10は、気密に構成されるものであり、ステンレス等の金属材料から形成される。チャンバ10は、角筒状の本体部11と、本体部11の上側に取り付けられる天板12と、本体部11の下側に取り付けられる底板13と、を有する。 The chamber 10 is airtight and is made of a metal material such as stainless steel. The chamber 10 has a square tubular main body portion 11, a top plate 12 attached to the upper side of the main body portion 11, and a bottom plate 13 attached to the lower side of the main body portion 11.

本体部11には、基板Wをチャンバ10内に搬入出するための不図示の搬入出口が設けられている。
天板12は、本体部11の上側の開口を塞ぐものである。
The main body 11 is provided with a carry-in / out port (not shown) for carrying in / out the substrate W into the chamber 10.
The top plate 12 closes the opening on the upper side of the main body 11.

底板13は、本体部11の下側の開口を塞ぐものであり、底板13の上側の中央には載置台20が配設されている。また、底板13には、載置台20の外周を囲うように複数の開口13a、13bが設けられている。本例では、開口13a、13bは、載置台20の一辺に沿って6個、上記一辺と対向する辺に沿って6個、合計12個設けられている。
また、開口13aそれぞれに対し排気管30が連通している。
The bottom plate 13 closes the opening on the lower side of the main body 11, and the mounting table 20 is arranged in the center of the upper side of the bottom plate 13. Further, the bottom plate 13 is provided with a plurality of openings 13a and 13b so as to surround the outer circumference of the mounting table 20. In this example, six openings 13a and 13b are provided along one side of the mounting table 20, and six openings 13a and 13b are provided along the side facing the one side, for a total of twelve.
Further, the exhaust pipe 30 communicates with each of the openings 13a.

載置台20は、基板Wが載置されるものである。載置台20には、基板Wの受け渡しを行う不図示の昇降ピンが設けられており、該昇降ピンは昇降機構により自在に上下動できる。 The mounting table 20 is for mounting the substrate W. The mounting table 20 is provided with an elevating pin (not shown) for transferring the substrate W, and the elevating pin can be freely moved up and down by an elevating mechanism.

複数の排気管30はそれぞれ、チャンバ10と排気装置Pとを接続するものである。排気管30と底板13の開口13a、13bにより、本発明に係る「排気路」が構成されている。なお、排気路はチャンバ10内の基板収容空間と排気装置Pとを接続するものである。減圧乾燥装置1では、上記「排気路」を構成する排気管30及び開口13a、13bを介して、排気装置Pによりチャンバ10内が減圧される。 Each of the plurality of exhaust pipes 30 connects the chamber 10 and the exhaust device P. The "exhaust passage" according to the present invention is formed by the openings 13a and 13b of the exhaust pipe 30 and the bottom plate 13. The exhaust passage connects the substrate accommodating space in the chamber 10 and the exhaust device P. In the vacuum drying device 1, the inside of the chamber 10 is depressurized by the exhaust device P through the exhaust pipe 30 and the openings 13a and 13b constituting the "exhaust passage".

なお、排気装置Pは、真空ポンプから構成され、具体的には、ターボ分子ポンプとドライポンプとが例えば上流側からこの順に直列に接続されて構成される。この排気装置Pは、各排気路に対して、具体的には、各排気管30に対して1つずつ配設されている。 The exhaust device P is composed of a vacuum pump, specifically, a turbo molecular pump and a dry pump are connected in series in this order from, for example, the upstream side. This exhaust device P is specifically arranged for each exhaust passage, specifically for each exhaust pipe 30.

また、排気管30はそれぞれ、当該排気管30を開閉自在に塞ぐ塞ぎ部材としての自動圧力制御バルブ(APC(Adaptive Pressure Control)バルブ)31を有する。言い換えると、排気管30の開口13a、13bと排気装置Pとの間の部分にはAPCバルブ31が設けられている。減圧乾燥装置1では、排気装置Pを作動させた状態で、APCバルブ31の開度を調節することにより、減圧排気の際のチャンバ10内の真空度/圧力を制御し、基板Wの乾燥速度を制御することができる。 Further, each of the exhaust pipes 30 has an automatic pressure control valve (APC (Adaptive Pressure Control) valve) 31 as a closing member for closing the exhaust pipe 30 so as to be openable and closable. In other words, the APC valve 31 is provided in the portion between the openings 13a and 13b of the exhaust pipe 30 and the exhaust device P. In the vacuum drying device 1, the degree of vacuum / pressure in the chamber 10 at the time of vacuum exhaust is controlled by adjusting the opening degree of the APC valve 31 while the exhaust device P is operated, and the drying speed of the substrate W is controlled. Can be controlled.

なお、減圧乾燥装置1は、チャンバ10内の圧力を測定する不図示の圧力計を有する。該圧力計での計測結果は電気信号としてAPCバルブ31や後述の制御部40に入力される。 The vacuum drying device 1 has a pressure gauge (not shown) for measuring the pressure in the chamber 10. The measurement result of the pressure gauge is input to the APC valve 31 and the control unit 40 described later as an electric signal.

さらに、複数の排気管30のうちの一部のみ、基板W上にインクジェット方式により塗布された溶液から気化した溶媒を捕集する溶媒捕集部32をAPCバルブ31の下流に有する。具体的には、複数の排気管30のうち、載置台20上の基板Wの角部に近い開口13aに対して設けられた排気管30には溶媒捕集部32は設けられず、上記角部から遠い開口13bに対して設けられた排気管30には溶媒捕集部32が設けられている。 Further, only a part of the plurality of exhaust pipes 30 has a solvent collecting portion 32 downstream of the APC valve 31 for collecting the solvent vaporized from the solution applied on the substrate W by the inkjet method. Specifically, of the plurality of exhaust pipes 30, the exhaust pipe 30 provided for the opening 13a near the corner of the substrate W on the mounting table 20 is not provided with the solvent collecting portion 32, and the above corners. A solvent collecting portion 32 is provided in the exhaust pipe 30 provided for the opening 13b far from the portion.

つまり、複数の排気路は、溶媒捕集部32がAPCバルブ31の下流に設けられた溶媒捕集部有り排気路と、溶媒捕集部32が設けられていない溶媒捕集部無し排気路とを含む。また、溶媒捕集部有り排気路のチャンバ10側の端部すなわち開口13aは、溶媒捕集部無し排気路10側の端部すなわち開口13bに比べて、チャンバ10内に収容され載置台20上に載置されたウェハWの角部から遠くなっている。 That is, the plurality of exhaust passages include an exhaust passage with a solvent collecting portion in which the solvent collecting portion 32 is provided downstream of the APC valve 31 and an exhaust passage without a solvent collecting portion 32 in which the solvent collecting portion 32 is not provided. including. Further, the end portion of the exhaust passage with the solvent collecting portion on the chamber 10 side, that is, the opening 13a is accommodated in the chamber 10 as compared with the end portion of the exhaust passage without the solvent collecting portion, that is, the opening 13b, on the mounting table 20. It is far from the corner of the wafer W placed on the.

溶媒捕集部32は、チャンバ10内から排気された気体を通過させながら気体中の溶媒を捕集できるように、開口が格子状に均一に形成された形状の薄板すなわち網状板(不図示)を有する。上記網状板は、ステンレスやアルミ、銅、金といった金属材料ら形成され、例えば、鋼板を冷間切延することにより製造されるエキスパンドメタルから構成される。
溶媒捕集部32が有する網状板は1枚であってもよいし、複数枚を積層してもよい。また、網状板は、その外径が排気管30の内径と略等しくなるよう形成される。
The solvent collecting unit 32 is a thin plate, that is, a net plate (not shown) having a shape in which openings are uniformly formed in a grid pattern so that the solvent in the gas can be collected while passing the gas exhausted from the chamber 10. Has. The net-like plate is formed of a metal material such as stainless steel, aluminum, copper, or gold, and is composed of, for example, expanded metal produced by cold-cutting a steel plate.
The solvent collecting unit 32 may have one net-like plate, or a plurality of net plates may be laminated. Further, the net-like plate is formed so that its outer diameter is substantially equal to the inner diameter of the exhaust pipe 30.

以上の各部を有する減圧乾燥装置1は、さらにAPCバルブ31等を制御する制御部40備える。制御部40は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、減圧乾燥装置1における減圧乾燥処理を制御するプログラムが格納されている。なお、上記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部40にインストールされたものであってもよい。
この制御部40は、排気装置Pの制御も行うことができる。
The vacuum drying device 1 having each of the above parts further includes a control unit 40 for controlling the APC valve 31 and the like. The control unit 40 is, for example, a computer and has a program storage unit (not shown). The program storage unit stores a program that controls the vacuum drying process in the vacuum drying device 1. The above program is recorded on a computer-readable storage medium such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnet optical desk (MO), or memory card. It may be the one installed in the control unit 40 from the storage medium.
The control unit 40 can also control the exhaust device P.

続いて、減圧乾燥装置1を用いた減圧乾燥処理について説明する。 Subsequently, the vacuum drying process using the vacuum drying device 1 will be described.

(基板搬入ステップ)
減圧乾燥装置1を用いた減圧乾燥処理では、まず、インクジェット方式で処理液が塗布された基板Wを載置台20に載置する。
(Board loading step)
In the vacuum drying process using the vacuum drying device 1, first, the substrate W coated with the processing liquid by the inkjet method is placed on the mounting table 20.

(基板乾燥ステップ)
次いで、排気装置Pのドライポンプを作動させた状態で、複数の排気管30のうち少なくとも溶媒捕集部32が設けられた排気管30(以下、溶媒捕集部有り排気管30)について、本例では、全ての排気管30について、APCバルブ31を開状態とし、チャンバ10内の減圧排気を開始する。ドライポンプによる減圧排気はチャンバ10内の圧力が例えば10Paとなるまで行う。
その後、排気装置Pのターボ分子ポンプを作動させてさらに減圧排気する。
さらなる減圧排気により、チャンバ10内の圧力が、基板Wの温度における溶媒の蒸気圧以下(基板Wの温度が23℃の場合、0.2Pa以下)となると、基板W上の溶媒Sの蒸発速度が大きくなる。
また、減圧排気の際、チャンバ10内の気体が断熱膨張され冷却されており、このように冷却されたチャンバ10内の気体により、溶媒捕集部32の温度が低下する。具体的には、チャンバ10内の圧力が0.2Paまで減圧された時点で、溶媒捕集部32は5〜12℃まで冷却される。この5〜12℃は、0.2Paにおける溶媒の露点である23℃より小さい。
また、溶媒捕集部32の温度は、基板W上の溶媒Sの蒸発が完了するまでの間、各時点でのチャンバ10内の圧力における溶媒Sの露点以下に維持される。
したがって、基板Wから気化した溶媒は、溶媒捕集部32により高効率で捕集されるため、チャンバ10内の気体状の溶媒の濃度は低く維持される。よって、基板W上の溶媒を速く除去することができる。
なお、上述のように溶媒捕集部32の温度が上記露点以下に維持されるための方法として、溶媒捕集部32の網状板として熱容量の小さいものを用いる方法が考えられる。
また、この基板乾燥ステップは、基板Wが乾燥するまで、例えば、チャンバ10内の圧力が第1の所定値以下となるまでや、排気装置Pのターボ分子ポンプの作動開始から第2の所定時間経過するまで行われる。
(Substrate drying step)
Next, with respect to the exhaust pipe 30 provided with at least the solvent collecting portion 32 (hereinafter, the exhaust pipe 30 having the solvent collecting portion) among the plurality of exhaust pipes 30 in the state where the dry pump of the exhaust device P is operated, the present In the example, for all the exhaust pipes 30, the APC valve 31 is opened and the decompression exhaust in the chamber 10 is started. The reduced pressure exhaust by the dry pump is performed until the pressure in the chamber 10 becomes, for example, 10 Pa.
After that, the turbo molecular pump of the exhaust device P is operated to further reduce the pressure and exhaust the gas.
When the pressure in the chamber 10 becomes equal to or less than the vapor pressure of the solvent at the temperature of the substrate W (0.2 Pa or less when the temperature of the substrate W is 23 ° C.) due to the further reduced pressure exhaust, the evaporation rate of the solvent S on the substrate W Becomes larger.
Further, at the time of reduced pressure exhaust, the gas in the chamber 10 is adiabatically expanded and cooled, and the temperature in the solvent collecting unit 32 is lowered by the gas in the chamber 10 cooled in this way. Specifically, when the pressure in the chamber 10 is reduced to 0.2 Pa, the solvent collecting unit 32 is cooled to 5 to 12 ° C. This 5 to 12 ° C. is smaller than the dew point of the solvent at 0.2 Pa, which is 23 ° C.
Further, the temperature of the solvent collecting unit 32 is maintained below the dew point of the solvent S at the pressure in the chamber 10 at each time point until the evaporation of the solvent S on the substrate W is completed.
Therefore, the solvent vaporized from the substrate W is collected with high efficiency by the solvent collecting unit 32, so that the concentration of the gaseous solvent in the chamber 10 is kept low. Therefore, the solvent on the substrate W can be quickly removed.
As a method for maintaining the temperature of the solvent collecting portion 32 below the dew point as described above, a method of using a net-like plate of the solvent collecting portion 32 having a small heat capacity can be considered.
Further, this substrate drying step is performed until the substrate W is dried, for example, until the pressure in the chamber 10 becomes equal to or lower than the first predetermined value, or a second predetermined time from the start of operation of the turbo molecular pump of the exhaust device P. It will be done until it elapses.

(チャンバ乾燥ステップ)
基板乾燥ステップ後、溶媒捕集部有り排気管30についてはAPCバルブ31を閉状態とし、溶媒捕集部32が設けられていない排気管30(以下、溶媒捕集部無し排気管30)についてはAPCバルブ31を開状態で維持する。
このチャンバ乾燥ステップは、例えば、チャンバ10内の溶媒が所定量以下となるまで、すなわち、チャンバ内の圧力が第2の所定値以下となるまでや、排気装置Pのターボ分子ポンプの作動開始から第2の所定時間経過するまで行われる。なお、第2の所定値や第2の所定時間は、チャンバ10内の圧力を大気圧に戻したときに、チャンバ10内に残留していた溶媒が基板Wに再付着することがない値や時間である。
(Chamber drying step)
After the substrate drying step, the APC valve 31 is closed for the exhaust pipe 30 with the solvent collecting portion, and the exhaust pipe 30 without the solvent collecting portion 32 (hereinafter, the exhaust pipe 30 without the solvent collecting portion) is closed. Keep the APC valve 31 open.
This chamber drying step is performed, for example, until the solvent in the chamber 10 becomes a predetermined amount or less, that is, until the pressure in the chamber becomes a second predetermined value or less, or from the start of operation of the turbo molecular pump of the exhaust device P. It is performed until the second predetermined time elapses. The second predetermined value and the second predetermined time are values such that the solvent remaining in the chamber 10 does not reattach to the substrate W when the pressure in the chamber 10 is returned to the atmospheric pressure. It's time.

(溶媒捕集部乾燥ステップ)
チャンバ乾燥ステップの際、溶媒捕集部乾燥ステップも並行して行われる。溶媒捕集部乾燥ステップでは、排気管30の側壁やターボ分子ポンプ等からの輻射熱を利用して溶媒捕集部32を加熱し乾燥させる。例えば、溶媒捕集部32の温度は、上記輻射熱により、その時点の排気管30内の圧力における溶媒の露点以上(排気管30内の圧力が0.05Pa場合、18〜23℃以上)まで上昇する。したがって、溶媒捕集部32から溶媒を速く除去/脱離し、溶媒捕集部32を乾燥させることができる。
(Solvent collector drying step)
During the chamber drying step, the solvent collecting part drying step is also performed in parallel. In the solvent collecting section drying step, the solvent collecting section 32 is heated and dried by using the radiant heat from the side wall of the exhaust pipe 30, the turbo molecular pump, or the like. For example, the temperature of the solvent collecting unit 32 rises above the dew point of the solvent at the pressure inside the exhaust pipe 30 at that time (18 to 23 ° C. or more when the pressure inside the exhaust pipe 30 is 0.05 Pa) due to the radiant heat. To do. Therefore, the solvent can be quickly removed / removed from the solvent collecting unit 32, and the solvent collecting unit 32 can be dried.

(基板搬出ステップ)
チャンバ乾燥ステップ及び溶媒捕集部乾燥ステップの終了後、全ての排気管30についてAPCバルブ31を閉状態とし、その後、チャンバ10内の圧力を大気圧まで戻し、基板Wをチャンバ10から搬出する。
(Board unloading step)
After the chamber drying step and the solvent collecting section drying step are completed, the APC valves 31 are closed for all the exhaust pipes 30, and then the pressure in the chamber 10 is returned to the atmospheric pressure, and the substrate W is carried out from the chamber 10.

この基板搬出ステップ後、排気装置Pのターボ分子ポンプを停止し、基板搬入ステップから順に各ステップが繰り返される。 After this substrate loading step, the turbo molecular pump of the exhaust device P is stopped, and each step is repeated in order from the substrate loading step.

上述のように、減圧乾燥装置1では、複数の排気管30のうちの一部のみが、溶媒捕集部32をAPCバルブ31の下流に有する。そのため、複数の排気管30のうち溶媒捕集部有り排気管30についてAPCバルブ31を開状態とする基板乾燥ステップと、複数の排気管30のうち溶媒捕集部有り排気管30についてAPCバルブ31を閉状態とし溶媒捕集部無し排気管30についてはAPCバルブ31の開状態を維持するチャンバ乾燥ステップを順次行うことできる。したがって、以下の効果がある。 As described above, in the vacuum drying device 1, only a part of the plurality of exhaust pipes 30 has the solvent collecting portion 32 downstream of the APC valve 31. Therefore, the substrate drying step in which the APC valve 31 is opened for the exhaust pipe 30 having the solvent collecting portion among the plurality of exhaust pipes 30, and the APC valve 31 for the exhaust pipe 30 having the solvent collecting portion among the plurality of exhaust pipes 30. For the exhaust pipe 30 without the solvent collecting portion, the chamber drying step for maintaining the open state of the APC valve 31 can be sequentially performed. Therefore, it has the following effects.

図2は、減圧乾燥装置1の効果を説明する図であり、横軸は排気開始からの経過時間、具体的には、チャンバ10内の圧力が大気圧の状態でAPCバルブ31を開状態としてからの経過時間を示し、縦軸は、チャンバ10内の圧力を示す。 FIG. 2 is a diagram for explaining the effect of the vacuum drying device 1. The horizontal axis is the elapsed time from the start of exhaust gas, specifically, the APC valve 31 is in the open state when the pressure in the chamber 10 is atmospheric pressure. The elapsed time from is shown, and the vertical axis shows the pressure in the chamber 10.

(ケース1)
減圧乾燥装置1において、複数の排気管30全てが溶媒捕集部32を有さない場合、全ての排気管30についてAPCバルブ31を開状態としても、図2に示すように、チャンバ10内の圧力が、高い状態(約1Pa)で維持された後、徐々に低下していくが、チャンバ10内の圧力が前述の第2の所定値(例えば0.09Pa)以下となるまでに140秒以上かかる。
(Case 1)
In the vacuum drying device 1, when all of the plurality of exhaust pipes 30 do not have the solvent collecting portion 32, even if the APC valves 31 are opened for all the exhaust pipes 30, as shown in FIG. 2, in the chamber 10. After the pressure is maintained in a high state (about 1 Pa), it gradually decreases, but it takes 140 seconds or more until the pressure in the chamber 10 becomes equal to or less than the above-mentioned second predetermined value (for example, 0.09 Pa). It takes.

(ケース2)
減圧乾燥装置1において、複数の排気管30全てが溶媒捕集部32を有する場合、全ての排気管30についてAPCバルブ31を開状態としても、チャンバ10内の圧力を、0.2Pa程度までは、上記ケース1に比べて速く低下させることができる。しかし、200秒経過した時点でも、チャンバ10内の圧力を前述の第2の所定値(0.09Pa)以下とすることができない。
(Case 2)
In the vacuum drying device 1, when all of the plurality of exhaust pipes 30 have the solvent collecting portion 32, even if the APC valve 31 is opened for all the exhaust pipes 30, the pressure in the chamber 10 is up to about 0.2 Pa. , It can be lowered faster than the above case 1. However, even after 200 seconds have passed, the pressure in the chamber 10 cannot be set to the above-mentioned second predetermined value (0.09 Pa) or less.

それに対し、複数の排気管30のうちの一部のみが、溶媒捕集部32をAPCバルブ31の下流に有し、溶媒捕集部有り排気管30を含む全ての排気管30についてAPCバルブ31を開状態とする基板乾燥ステップを約80秒間にわたって行い、その後、溶媒捕集部有り排気管30についてAPCバルブ31を閉状態とし溶媒捕集部無し排気管30についてはAPCバルブ31の開状態を維持するチャンバ乾燥ステップを行ったとする。この場合、ケース1と同様の速度で、チャンバ10内の圧力を0.2Paまで低下させることができ、さらに、チャンバ10内の圧力を前述の第2の所定値以下とすることができるばかりだけでなく、第2の所定値以下とするまでに約85秒しかかからない。
このように減圧乾燥装置1を用いた減圧乾燥ステップでは、チャンバ10内の圧力を前述の第2の所定値以下まで迅速に低下させることができる。
On the other hand, only a part of the plurality of exhaust pipes 30 has the solvent collecting portion 32 downstream of the APC valve 31, and the APC valve 31 is provided for all the exhaust pipes 30 including the exhaust pipe 30 having the solvent collecting portion. The substrate drying step is performed for about 80 seconds, after which the APC valve 31 is closed for the exhaust pipe 30 with the solvent collecting portion and the APC valve 31 is opened for the exhaust pipe 30 without the solvent collecting portion. Suppose a chamber drying step is performed to maintain. In this case, the pressure in the chamber 10 can be reduced to 0.2 Pa at the same speed as in the case 1, and the pressure in the chamber 10 can be reduced to the above-mentioned second predetermined value or less. Instead, it takes only about 85 seconds to bring it below the second predetermined value.
As described above, in the vacuum drying step using the vacuum drying device 1, the pressure in the chamber 10 can be rapidly reduced to the above-mentioned second predetermined value or less.

また、減圧乾燥装置1には以下の効果がある。上面視四角形状の基板Wを減圧乾燥する場合、基板Wの角部が他の部分に比べて乾燥しやすい。しかし、基板Wの乾燥時間は、同一基板内において均一となることが好ましい。また、基板における、溶媒捕集部32が設けられた排気管30に遠い部分に比べて近い部分の方が乾燥しやすい。そこで、減圧乾燥装置1では、複数の排気管30のうち、載置台20上の基板Wの角部から遠い開口13bに対して設けられた排気管30にのみ溶媒捕集部32が設けられている。これにより、APCバルブ31の開度を排気管30毎に異ならせなくても、基板Wの乾燥時間の面内均一性を高めることができる。 In addition, the vacuum drying device 1 has the following effects. When the substrate W having a quadrangular top view is dried under reduced pressure, the corners of the substrate W are more likely to be dried than other portions. However, it is preferable that the drying time of the substrate W is uniform in the same substrate. Further, the portion of the substrate closer to the exhaust pipe 30 provided with the solvent collecting portion 32 is easier to dry than the portion farther from the exhaust pipe 30. Therefore, in the vacuum drying device 1, the solvent collecting portion 32 is provided only in the exhaust pipe 30 provided for the opening 13b far from the corner portion of the substrate W on the mounting table 20 among the plurality of exhaust pipes 30. There is. As a result, the in-plane uniformity of the drying time of the substrate W can be improved without making the opening degree of the APC valve 31 different for each exhaust pipe 30.

図3は、減圧乾燥装置1の他の例における、溶媒捕集部32に関する構成を示す図である。
前述の例では、溶媒捕集部32の冷却や昇温すなわち加熱は、減圧時に断熱膨張し冷却されたチャンバ10内の気体や、排気管30等からの輻射熱により行っていた。
FIG. 3 is a diagram showing a configuration regarding a solvent collecting unit 32 in another example of the vacuum drying device 1.
In the above example, the solvent collecting unit 32 is cooled or raised, that is, heated by the gas in the chamber 10 which is adiabatically expanded and cooled at the time of depressurization, or the radiant heat from the exhaust pipe 30 or the like.

これに代えて、溶媒捕集部32を冷却及び加熱する温度可変機構として図3に示すように複数の冷媒管50を備える構成とし、溶媒を捕集する網状板32aにこれら冷媒管50を溶接等により固定し、冷却された冷媒と加熱された冷媒とを切替可能に流すことで溶媒捕集部32すなわち網状板32aを冷却及び加熱するようにしてもよい。これにより、より迅速に溶媒捕集部32を適宜冷却/加熱することができる。 Instead of this, as shown in FIG. 3, a plurality of refrigerant pipes 50 are provided as a temperature variable mechanism for cooling and heating the solvent collecting portion 32, and these refrigerant pipes 50 are welded to the net-like plate 32a for collecting the refrigerant. The solvent collecting portion 32, that is, the net-like plate 32a may be cooled and heated by fixing the refrigerant with or the like and allowing the cooled refrigerant and the heated refrigerant to flow in a switchable manner. As a result, the solvent collecting unit 32 can be appropriately cooled / heated more quickly.

なお、このように減圧乾燥装置1に、温度可変機構を設ける場合、前述の基板乾燥ステップで溶媒捕集部32を上記温度可変機構により冷却することが好ましい。これにより基板乾燥ステップに要する時間を短縮できるからである。
また、温度可変機構を設ける場合、前述のチャンバ乾燥ステップと並行して行われる溶媒捕集部乾燥ステップにおいて、溶媒捕集部32を上記温度可変機構で加熱することが好ましい。これにより、溶媒捕集部乾燥ステップに要する時間を短縮できるからである。
When the vacuum drying device 1 is provided with the temperature variable mechanism in this way, it is preferable to cool the solvent collecting unit 32 by the temperature variable mechanism in the substrate drying step described above. This is because the time required for the substrate drying step can be shortened.
When the temperature variable mechanism is provided, it is preferable to heat the solvent collecting unit 32 by the temperature variable mechanism in the solvent collecting unit drying step performed in parallel with the chamber drying step described above. This is because the time required for the solvent collecting part drying step can be shortened.

図4は、塞ぎ部材の他の例を説明するために、塞ぎ部材が設けられた排気管30の周辺の様子を示す図であり、排気管30のみ断面で示している。
前述の例では、減圧乾燥装置1が、開度を調節可能なAPCバルブ31を「塞ぎ部材」として有していたが、図4に示すように、開度の調節はできないが排気管30を開閉自在に塞ぐシャッター60を「塞ぎ部材」として有していてもよい。図4の例ではシャッター60はヒンジ式で排気管30に対して取り付けられている。該シャッター60は制御部40により制御される。
FIG. 4 is a diagram showing a state around the exhaust pipe 30 provided with the closing member in order to explain another example of the closing member, and only the exhaust pipe 30 is shown in cross section.
In the above example, the vacuum drying device 1 has an APC valve 31 whose opening degree can be adjusted as a "closing member", but as shown in FIG. 4, the opening degree cannot be adjusted, but the exhaust pipe 30 is provided. A shutter 60 that can be opened and closed and closed may be provided as a "closing member". In the example of FIG. 4, the shutter 60 is hinged and attached to the exhaust pipe 30. The shutter 60 is controlled by the control unit 40.

また、シャッター60を有する構成では、シャッター60を開状態とする排気管30の数を調整することにより、チャンバ10内の減圧速度を制御することができる。例えば、シャッター60を有する構成において、基板乾燥ステップの前半部分の減圧速度を低くし後半部分で高くする必要がある場合は、まず、溶媒捕集部有り排気管30についてはシャッター60を閉状態としたまま、溶媒捕集部無し排気管30についてシャッター60を開状態とし、減圧速度を低くする必要がなくなってから、溶媒捕集部有り排気管30についてもシャッター60を開状態とする。また、例えば、シャッター60を有する構成において、基板乾燥ステップの前半部分の減圧速度を高くし後半部分で低くする必要がある場合は、まず、全ての排気管30についてシャッター60を開状態とし、減圧速度を低くする必要が生じてから、溶媒捕集部有り排気管30についてのみシャッター60を開状態で維持したまま、溶媒捕集部無し排気管30についてはシャッター60を閉状態とする。 Further, in the configuration having the shutter 60, the decompression speed in the chamber 10 can be controlled by adjusting the number of the exhaust pipes 30 that open the shutter 60. For example, in a configuration having a shutter 60, when it is necessary to lower the decompression rate in the first half of the substrate drying step and increase it in the second half, first, the shutter 60 is closed for the exhaust pipe 30 with the solvent collecting portion. The shutter 60 is opened for the exhaust pipe 30 without the solvent collecting portion, and the shutter 60 is also opened for the exhaust pipe 30 with the solvent collecting portion after it is no longer necessary to reduce the depressurizing speed. Further, for example, in a configuration having a shutter 60, when it is necessary to increase the decompression speed in the first half portion of the substrate drying step and decrease it in the second half portion, first, the shutter 60 is opened for all the exhaust pipes 30 to reduce the pressure. After it becomes necessary to reduce the speed, the shutter 60 is kept in the open state only for the exhaust pipe 30 with the solvent collecting portion, and the shutter 60 is closed for the exhaust pipe 30 without the solvent collecting portion.

図5は、チャンバ10の底板13の他の例を示す図である。
前述の例では、底板13は、開口13a、13bが、載置台20の一辺に沿って複数個、上記一辺と対向する辺に沿って同数個個設けられていた。しかし、底板13は、この例に限られず、図5に示すように、載置台20の各辺に沿って同数個ずつ設けられていてもよい。
また、以上の例では、底板13に設けられた開口13a、13bの数は、12個であったが、複数個であればよく、12個未満でも12個より多くてもよい。
また、開口13a、13bそれぞれに対し排気管30が連通している。
FIG. 5 is a diagram showing another example of the bottom plate 13 of the chamber 10.
In the above example, the bottom plate 13 is provided with a plurality of openings 13a and 13b along one side of the mounting table 20 and the same number of openings 13a and 13b along the side facing the one side. However, the number of bottom plates 13 is not limited to this example, and as shown in FIG. 5, the same number of bottom plates 13 may be provided along each side of the mounting table 20.
Further, in the above example, the number of openings 13a and 13b provided in the bottom plate 13 is 12, but it may be a plurality of openings, and may be less than 12 or more than 12.
Further, the exhaust pipe 30 communicates with each of the openings 13a and 13b.

図6は、減圧乾燥装置1の排気ラインの他の例を示す側面図であり、チャンバ10の底板13と排気ラインのみを示している
前述の例では、減圧乾燥装置1の排気ラインは、排気管30それぞれに排気装置Pが一つ接続された構成であった。しかし、減圧乾燥装置1の排気ラインは、この例に限られず、図6に示すように、複数の排気管30で1つの排気装置Pを共有する構成であってもよい。
FIG. 6 is a side view showing another example of the exhaust line of the vacuum drying device 1, and in the above-mentioned example showing only the bottom plate 13 of the chamber 10 and the exhaust line, the exhaust line of the vacuum drying device 1 is exhausted. One exhaust device P was connected to each of the pipes 30. However, the exhaust line of the vacuum drying device 1 is not limited to this example, and as shown in FIG. 6, a plurality of exhaust pipes 30 may share one exhaust device P.

この場合も、複数の排気管30のうち一部のみ、溶媒捕集部32をAPCバルブ31の下流に設け、前述と同様に、基板乾燥ステップとチャンバ乾燥ステップを行うことで、複数の排気管30全てに溶媒捕集部32を設ける構成や、複数の排気管30のいずれにも溶媒捕集部32を設けない構成に比べて迅速に、チャンバ10内の溶媒が少量の状態を達成すること、すなわちチャンバ10内の圧力が十分に低い状態を達成することができる。 Also in this case, only a part of the plurality of exhaust pipes 30 is provided with the solvent collecting portion 32 downstream of the APC valve 31, and the substrate drying step and the chamber drying step are performed in the same manner as described above to perform the plurality of exhaust pipes. Achieving a state in which a small amount of solvent is contained in the chamber 10 more quickly than a configuration in which the solvent collecting unit 32 is provided in all 30 or a configuration in which the solvent collecting unit 32 is not provided in any of the plurality of exhaust pipes 30. That is, a state in which the pressure in the chamber 10 is sufficiently low can be achieved.

図7は、減圧乾燥装置1の排気ラインの別の例を説明するために、排気管30の周辺の様子を示す図である。
前述の例では、減圧乾燥装置1の排気ラインの排気管30において、塞ぎ部材と溶媒捕集部32との間には何も設けられていなかったが、図7に示すように、塞ぎ部材(図の例ではAPCバルブ31)と溶媒捕集部32との間に、溶媒捕集部32に捕集された溶媒の気化を促進するガスを排気管30内に供給するガス供給部70を設けてもよい。
FIG. 7 is a diagram showing a state around the exhaust pipe 30 in order to explain another example of the exhaust line of the vacuum drying device 1.
In the above example, in the exhaust pipe 30 of the exhaust line of the vacuum drying device 1, nothing was provided between the closing member and the solvent collecting portion 32, but as shown in FIG. 7, the closing member ( In the example of the figure, a gas supply unit 70 is provided between the APC valve 31) and the solvent collection unit 32 to supply the gas that promotes the vaporization of the solvent collected in the solvent collection unit 32 into the exhaust pipe 30. You may.

このようにガス供給部70を設けた場合、前述のチャンバ乾燥ステップ及び溶媒捕集部乾燥ステップにおいて、溶媒捕集部有り排気管30についてAPCバルブ31を閉状態とする際に、これと連動させて、ガス供給部70へのガス供給すなわち溶媒捕集部32へのガス供給を開始することが好ましい。このガス供給部70から供給するガスは、例えば不活性ガスである。当該ガスの供給量が、排気管30内の溶媒捕集部32の周辺の圧力が溶媒捕集部32へ捕集された溶媒の蒸気圧を超えない量であれば、効率的に溶媒捕集部32を乾燥させることができる。 When the gas supply unit 70 is provided in this way, when the APC valve 31 of the exhaust pipe 30 with the solvent collection unit is closed in the chamber drying step and the solvent collection unit drying step described above, the gas supply unit 70 is interlocked with the gas supply unit 70. Therefore, it is preferable to start the gas supply to the gas supply unit 70, that is, the gas supply to the solvent collection unit 32. The gas supplied from the gas supply unit 70 is, for example, an inert gas. If the supply amount of the gas is such that the pressure around the solvent collecting portion 32 in the exhaust pipe 30 does not exceed the vapor pressure of the solvent collected in the solvent collecting portion 32, the solvent is efficiently collected. The part 32 can be dried.

(その他の変形例)
以上の例では、基板乾燥ステップにおけるチャンバ10内の減圧排気の際、全ての排気管30についてAPCバルブ31を開状態としていた。しかし、基板乾燥ステップにおいて、複数の排気管30のうち溶媒捕集部有り排気管30についてのみAPCバルブ31を開状態としてもよい。この場合、チャンバ10内の圧力が所定値より小さくなってから、すなわち基板Wの乾燥がある程度進行してから、全てのAPCバルブ31を開状態としてもよい。
複数の排気管30のうち溶媒捕集部有り排気管30についてのみAPCバルブ31を開状態とすることで、溶剤によっては基板Wをより均一に乾燥させることができる。この場合、当初から全ての排気管30を開状態とする場合に比べて、基板Wの乾燥に要する時間は長くなるが、基板Wの乾燥がある程度進行してから、全てのAPCバルブ31を開状態とすることで、基板Wを均一に乾燥することと、基板Wの乾燥を短時間で行うことを両立することができる。
(Other variants)
In the above example, the APC valves 31 were opened for all the exhaust pipes 30 at the time of decompression exhaust in the chamber 10 in the substrate drying step. However, in the substrate drying step, the APC valve 31 may be opened only for the exhaust pipe 30 having the solvent collecting portion among the plurality of exhaust pipes 30. In this case, all the APC valves 31 may be opened after the pressure in the chamber 10 becomes smaller than the predetermined value, that is, after the substrate W has been dried to some extent.
By opening the APC valve 31 only for the exhaust pipe 30 having the solvent collecting portion among the plurality of exhaust pipes 30, the substrate W can be dried more uniformly depending on the solvent. In this case, the time required for drying the substrate W is longer than in the case where all the exhaust pipes 30 are opened from the beginning, but after the substrate W has been dried to some extent, all the APC valves 31 are opened. By setting the state, it is possible to achieve both uniform drying of the substrate W and drying of the substrate W in a short time.

以上の例では、溶媒捕集部乾燥工ステップの終了後、基板の搬出ステップを行っていた。しかし、排気管30それぞれに一つの排気装置Pが設けられた構成であれば、溶媒捕集部乾燥ステップに要する時間がチャンバ乾燥ステップに要する時間より長い場合は、溶媒捕集部乾燥ステップの終了前に、基板の搬出ステップや次の基板の搬入ステップを行うようにしてもよい。 In the above example, the substrate is carried out after the solvent collecting part drying step is completed. However, in the case where one exhaust device P is provided for each of the exhaust pipes 30, if the time required for the solvent collecting unit drying step is longer than the time required for the chamber drying step, the solvent collecting unit drying step is completed. Before, the board unloading step and the next board loading step may be performed.

また、以上の例では、APCバルブ31等の塞ぎ部材は排気管30に設けられていたが、排気路に対して設けられていればよく、例えば、開口13a、13b内に設けられていてもよく、また、底板13の上面に開口13a、13bを塞ぐように設けられていてもよい。
同様に、溶媒捕集部32は、上記塞ぎ部材の下流であれば、排気管30ではなく開口13b内に設けられていてもよい。
Further, in the above example, the closing member such as the APC valve 31 is provided in the exhaust pipe 30, but it may be provided in the exhaust passage, for example, even if it is provided in the openings 13a and 13b. It may be provided on the upper surface of the bottom plate 13 so as to close the openings 13a and 13b.
Similarly, the solvent collecting portion 32 may be provided in the opening 13b instead of the exhaust pipe 30 as long as it is downstream of the closing member.

本発明はインクジェット方式で溶液が塗布された基板に対し減圧乾燥を行う技術に有用である。 The present invention is useful in a technique for vacuum drying a substrate coated with a solution by an inkjet method.

1 減圧乾燥装置
10 処理容器
11 本体部
12 天板
13 底板
13a、13b 開口
20 載置台
30 排気管
31 バルブ
32 溶媒捕集部
32a 網状板
40 制御部
50 冷媒管
60 シャッター
1 Vacuum drying device 10 Processing container 11 Main body 12 Top plate 13 Bottom plates 13a, 13b Opening 20 Mounting stand 30 Exhaust pipe 31 Valve 32 Solvent collecting part 32a Net-like plate 40 Control part 50 Refrigerant pipe 60 Shutter

Claims (6)

基板の表面に塗布された有機材料膜中の溶媒を減圧状態で乾燥させる減圧乾燥装置であって、
前記基板を収容するチャンバと、
該チャンバ内の空間と前記チャンバ内を排気する排気装置とを接続する複数の排気路とを備え、
前記複数の排気路はそれぞれ、当該排気路を開閉自在に塞ぐ塞ぎ部材を有し、
前記複数の排気路は、前記基板から気化した前記有機材料膜中の溶媒を捕集する溶媒捕集部が前記塞ぎ部材の下流に設けられた溶媒捕集部有り排気路と、前記溶媒捕集部が設けられていない溶媒捕集部無し排気路とを含み、
前記溶媒捕集部有り排気路の前記チャンバ側の端部は、前記溶媒捕集部無し排気路の前記チャンバ側の端部に比べて、前記チャンバに収容された前記基板の角部から遠いことを特徴とする減圧乾燥装置。
A vacuum drying device that dries the solvent in the organic material film applied to the surface of the substrate under reduced pressure.
A chamber for accommodating the substrate and
A plurality of exhaust passages connecting the space in the chamber and the exhaust device for exhausting the inside of the chamber are provided.
Each of the plurality of exhaust passages has a closing member that closes the exhaust passage so as to be openable and closable.
The plurality of exhaust passages include an exhaust passage having a solvent collecting portion in which a solvent collecting portion for collecting a solvent in the organic material film vaporized from the substrate is provided downstream of the closing member, and the solvent collecting portion. part saw including a solvent collecting unit without exhaust passage is not provided,
The end of the exhaust passage with the solvent collecting portion on the chamber side is farther from the corner portion of the substrate housed in the chamber than the end of the exhaust passage without the solvent collecting portion on the chamber side. A vacuum drying device characterized by.
基板の表面に塗布された有機材料膜中の溶媒を減圧状態で乾燥させる減圧乾燥装置を用いた減圧乾燥方法であって、
前記減圧乾燥装置が、前記基板を収容するチャンバと、該チャンバ内の空間と前記チャンバ内を排気する排気装置とを接続する複数の排気路とを備え、前記複数の排気路がそれぞれ、当該排気路を開閉自在に塞ぐ塞ぎ部材を有し、前記複数の排気路が、前記基板から気化した前記有機材料膜中の溶媒を捕集する溶媒捕集部が前記塞ぎ部材の下流に設けられた溶媒捕集部有り排気路と、前記溶媒捕集部が設けられていない溶媒捕集部無し排気路とを含み、
当該減圧乾燥方法は、
前記複数の排気路のうち少なくとも前記溶媒捕集部有り排気路については前記塞ぎ部材を開状態とする基板乾燥ステップと、
該基板乾燥ステップ後、前記複数の排気路のうち前記溶媒捕集部有り排気路については前記塞ぎ部材を閉状態とし、前記溶媒捕集部無し排気路については前記塞ぎ部材を開状態とするチャンバ乾燥ステップとを含むことを特徴とする減圧乾燥方法。
A vacuum drying method using a vacuum drying device that dries the solvent in the organic material film applied to the surface of the substrate under reduced pressure.
The vacuum drying device includes a chamber for accommodating the substrate and a plurality of exhaust passages connecting a space in the chamber and an exhaust device for exhausting the inside of the chamber, and the plurality of exhaust passages each have the exhaust. A solvent having a closing member that opens and closes the path so as to be openable and closable, and a solvent collecting portion that collects the solvent in the organic material film vaporized from the substrate by the plurality of exhaust passages is provided downstream of the closing member. Includes an exhaust passage with a collecting portion and an exhaust passage without a solvent collecting portion without the solvent collecting portion.
The vacuum drying method is
Of the plurality of exhaust passages, at least the exhaust passage with a solvent collecting portion has a substrate drying step in which the closing member is opened.
After the substrate drying step, the chamber in which the closing member is closed for the exhaust passage with the solvent collecting portion and the closing member is opened for the exhaust passage without the solvent collecting portion among the plurality of exhaust passages. A vacuum drying method comprising a drying step.
前記基板乾燥ステップは、前記溶媒捕集部を冷却するステップを含むことを特徴とする請求項に記載の減圧乾燥方法。 The vacuum drying method according to claim 2 , wherein the substrate drying step includes a step of cooling the solvent collecting portion. 前記チャンバ乾燥ステップは、前記溶媒捕集部を加熱するステップを含むことを特徴とする請求項2または3に記載の減圧乾燥方法。 The vacuum drying method according to claim 2 or 3 , wherein the chamber drying step includes a step of heating the solvent collecting portion. 前記チャンバ乾燥ステップは、前記塞ぎ部材と前記溶媒捕集部との間に設けられたガス供給部から、当該溶媒捕集部に捕集された溶媒の気化を促進するガスを供給するステップを含むことを特徴とする請求項2〜4のいずれか1項に記載の減圧乾燥方法。 The chamber drying step includes a step of supplying a gas for promoting vaporization of the solvent collected in the solvent collecting portion from a gas supply portion provided between the closing member and the solvent collecting portion. The vacuum drying method according to any one of claims 2 to 4, wherein the method is characterized by that. 前記溶媒捕集部有り排気路の前記チャンバ側の端部は、前記溶媒捕集部無し排気路の前記チャンバ側の端部に比べて、前記チャンバに収容された前記基板の角部から遠く、
前記基板乾燥ステップは、前記複数の排気路のうち前記溶媒捕集部有り排気路について前記塞ぎ部材を開状態とし、その後、前記複数の排気路の全てについて前記塞ぎ部材を開状態とするステップを含むことを特徴とする請求項2〜5のいずれか1項に記載の減圧乾燥方法。
The end of the exhaust passage with the solvent collecting portion on the chamber side is farther from the corner portion of the substrate housed in the chamber than the end of the exhaust passage without the solvent collecting portion on the chamber side.
The substrate drying step is a step of opening the closing member for the exhaust passage with the solvent collecting portion among the plurality of exhaust passages, and then opening the closing member for all of the plurality of exhaust passages. The vacuum drying method according to any one of claims 2 to 5, wherein the method comprises the same.
JP2017107517A 2017-05-31 2017-05-31 Vacuum drying device Active JP6886866B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017107517A JP6886866B2 (en) 2017-05-31 2017-05-31 Vacuum drying device
TW107116715A TWI766997B (en) 2017-05-31 2018-05-17 Vacuum drying device and vacuum drying method
KR1020180056369A KR102474469B1 (en) 2017-05-31 2018-05-17 Decompression drying apparatus
CN201810552163.9A CN108987310A (en) 2017-05-31 2018-05-31 Decompression dry device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107517A JP6886866B2 (en) 2017-05-31 2017-05-31 Vacuum drying device

Publications (2)

Publication Number Publication Date
JP2018204810A JP2018204810A (en) 2018-12-27
JP6886866B2 true JP6886866B2 (en) 2021-06-16

Family

ID=64540249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107517A Active JP6886866B2 (en) 2017-05-31 2017-05-31 Vacuum drying device

Country Status (4)

Country Link
JP (1) JP6886866B2 (en)
KR (1) KR102474469B1 (en)
CN (1) CN108987310A (en)
TW (1) TWI766997B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6920131B2 (en) * 2017-08-10 2021-08-18 東京エレクトロン株式会社 Decompression drying device
KR102206766B1 (en) * 2019-02-18 2021-01-25 엘지전자 주식회사 Reduced-pressure drying apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022186B2 (en) 2003-09-04 2007-12-12 東京エレクトロン株式会社 Vacuum drying device, vacuum drying method and collection device
JP5089288B2 (en) * 2007-01-26 2012-12-05 大日本スクリーン製造株式会社 Vacuum dryer
TWI385266B (en) * 2010-05-25 2013-02-11 Univ Shu Te Atomization coating device
JP6114636B2 (en) * 2013-06-06 2017-04-12 東京エレクトロン株式会社 Drying apparatus and drying processing method
JP6189161B2 (en) * 2013-09-27 2017-08-30 東京エレクトロン株式会社 Drying apparatus, drying processing method, substrate holder, and solvent adsorption sheet
JP6429189B2 (en) * 2014-11-27 2018-11-28 エリーパワー株式会社 Vacuum drying apparatus, vacuum drying method, and battery electrode manufacturing method
JP6639175B2 (en) * 2015-09-29 2020-02-05 東京エレクトロン株式会社 Drying apparatus and drying method

Also Published As

Publication number Publication date
KR20180131400A (en) 2018-12-10
TWI766997B (en) 2022-06-11
CN108987310A (en) 2018-12-11
KR102474469B1 (en) 2022-12-05
TW201907132A (en) 2019-02-16
JP2018204810A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR101994874B1 (en) Drying apparatus and drying method
JP6328434B2 (en) Drying apparatus and drying processing method
TWI666418B (en) Decompression drying device
EP2962324B1 (en) Method and system for naturally oxidizing a substrate
JP6114636B2 (en) Drying apparatus and drying processing method
KR102651514B1 (en) Substrate processing method, recording medium and substrate processing apparatus
JP6886866B2 (en) Vacuum drying device
JP7316095B2 (en) Vacuum dryer
CN107878044B (en) Decompression drying device
JP2014183063A (en) Substrate processing apparatus and substrate processing method
JP6920131B2 (en) Decompression drying device
KR102333617B1 (en) Substrate processing system
JP5569514B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
WO2022234716A1 (en) Depressurization drying device, depressurization drying method, and method for shortening time required for depressurization drying process
JP2022172691A (en) Vacuum dryer, vacuum drying method, and method for shortening the time for vacuum drying process
JP2022172684A (en) Vacuum dryer, vacuum drying method, and method for shortening the time for vacuum drying process
JP2022172679A (en) Vacuum dryer, vacuum drying method, and method for shortening the time for vacuum drying process
KR20200121733A (en) Decompression drying apparatus
JP2021167696A (en) Reduced pressure drying apparatus and reduced pressure drying method
KR102206766B1 (en) Reduced-pressure drying apparatus
JP2022170308A (en) Vacuum drying device and vacuum drying treatment method
JP2020155453A (en) Drying method for semiconductor transfer container

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210517

R150 Certificate of patent or registration of utility model

Ref document number: 6886866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250