発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
図1は、本実施形態のアクチュエータの部分断面図である。図1の断面は、回転軸AXを含む平面による断面であるが、後述するナット51の内部構成は、省略している。図1の断面において、固定部材の位置を示すため、適宜、他の断面がわかるように、部分断面が示されている。図2は、図1における要部(二軸一体型モータMP)を示す要部断面図である。図3は、回転軸AXと直交する平面による二軸一体型モータMPの断面図である。図4は、図1における要部(後述するスプライン外筒用ハウジング)を示す要部断面図である。図5は、ネジ部を上昇させた状態を示す図である。
図1に示すアクチュエータ1は、例えば、ピックアンドプレース装置として用いられる。アクチュエータ1は、ワークを移送するアーム部80と、アーム部80を駆動する二軸一体型モータMPと、二軸一体型モータMPに接続されたボールねじ50及びボールスプライン60と、を有する。以下、Z軸に平行な方向であって、二軸一体型モータMPからアーム部80に向けた方向を上方とし、アーム部80から二軸一体型モータMPに向けた方向を下方として説明する。
アーム部80は、例えば、単一のアームのみを有する片持ちのアームである。アクチュエータ1は、例えば、アーム部80の回転軸AXをZ方向に向けて図示略の支持台に固定されている。図1に示すように、アクチュエータ1は、アーム部80をZ方向(直動方向)に移動させてアーム部80をZ方向に上下させ、アーム部80をZ方向と直交する任意の平面内で、回転軸AXの軸回り方向に回転あるいは回動させてワークを所望の位置に移送する。
二軸一体型モータMPは、ステータ10と、第1ロータ20と、第2ロータ30と、ハウジング40と、第1回転検出部101と、第2回転検出部102と、を有する。ステータ10、第1ロータ20及び第2ロータ30は、回転軸AXを中心として、互いに同軸に配置されている。ステータ10は、第1ロータ20と第2ロータ30との間に配置されている。例えば、第1ロータ20は、ステータ10の径方向内側に配置され、ステータ10に対して相対回転する。第2ロータ30は、ステータ10の径方向外側に配置され、ステータ10に対して相対回転する。
ステータ10は、ステータコア11と、第1励磁コイル12と、第2励磁コイル13と、を有する。図3に示すように、ステータ10は、回転軸AXの周りに筒状に設けられている。ステータコア11は、筒状のバックヨーク15と、バックヨーク15の径方向内側に配置された複数の第1ティース14と、バックヨーク15の径方向外側に配置された複数の第2ティース16と、を有する。
複数の第1ティース14は、バックヨーク15の内周に沿って並んでいる。複数の第1ティース14は、バックヨーク15と接続されている。第1励磁コイル12は、第1ティース14の周りに巻き回されている。第1励磁コイル12は、第1ドライバ121と電気的に接続されている。第1ドライバ121は、第1励磁コイル12に第1駆動電流I1を供給することにより、第1ロータ20を駆動する。
第1励磁コイル12を励磁させて得られる回転磁界は、例えば3相である。第1励磁コイル12には、駆動信号の各位相が120°ずれたU相用、V相用及びW相用の励磁コイルが含まれる。
複数の第2ティース16は、バックヨーク15の外周に沿って並んでいる。複数の第2ティース16は、バックヨーク15と接続されている。第2励磁コイル13は、第2ティース16の周りに巻き回されている。第2励磁コイル13は、第2ドライバ122と電気的に接続されている。第2ドライバ122は、第2励磁コイル13に第2駆動電流I2を供給することにより、第2ロータ30を駆動する。
第2励磁コイル13を励磁させて得られる回転磁界は、例えば3相である。第2励磁コイル13には、駆動信号の各位相が120°ずれたU相用、V相用及びW相用の励磁コイルが含まれる。
第1ドライバ121と第2ドライバ122は、コントローラー120と電気的に接続されている。コントローラー120は、第1ドライバ121と第2ドライバ122とを独立して制御する。コントローラー120は、第1駆動電流I1の電流量と第2駆動電流I2の電流量とを独立に制御する。第1駆動電流I1の電流量によって、第1ロータ20の回転角が制御される。第2駆動電流I2の電流量によって、第2ロータ30の回転角が制御される。コントローラー120は、第1ロータ20の回転角と第2ロータ30の回転角とを独立に制御する。
複数の第1ティース14の軸方向長さは、複数の第2ティース16の軸方向長さより、長い。この構造により、第1駆動電流I1の電流量と、第2駆動電流I2の電流量とが同じでも、第1ロータ20のトルクが、第2ロータ30のトルクよりも極端に小さくならない。第1駆動電流I1の電流量と、第2駆動電流I2の電流量とが同じ場合、第1ロータ20のトルクが、第2ロータ30のトルクが小さくなるように、複数の第1ティース14の軸方向長さを、複数の第2ティース16の軸方向長さより長くする。これにより、コントローラー120は、第1ロータ20と、第2ロータ30とを独立して制御しやすくなる。
第1ロータ20は、第1ロータブラケット21と、永久磁石によって構成された第1ロータコア22と、後述のナット51に連結される連結ブラケット23、24を有する。図3に示すように、第1ロータブラケット21は、回転軸AXの周りに筒状に設けられている。第1ロータブラケット21は、内径側の円筒出力軸とも言える。第1ロータ20の内径は、後述のナット51及びスプライン外筒61の外形よりも小さくなっている。
第1ロータコア22は、N極のマグネット部とS極のマグネット部とを有する。N極のマグネット部とS極のマグネット部は、回転方向に交互に等間隔で配置されている。第1ロータコア22は、第1励磁コイル12が第1ティース14に励磁した回転磁界に応じて回転する。第1ロータコア22は、第1ロータブラケット21に外周面に貼り付けられてもよいし、第1ロータコア22の内部に埋め込まれてもよい。
連結ブラケット23は、筒状に形成され、第1ロータブラケット21の内周側に配置されている。本実施形態において、連結ブラケット23は、第1ロータブラケット21の上端に固定され、第1ロータブラケット21の内周に沿って下方に延びている構成である。連結ブラケット24は、連結ブラケット23の下端に固定され、連結ブラケット23から下方に延びている構成である。したがって、第1ロータブラケット21から後述のナット51までの間は、第1ロータブラケット21の上端から内側下方に折り返されるように連結ブラケット23、24が連結された構成となっている。
第2ロータ30は、第2ロータブラケット31と、永久磁石によって構成された第2ロータコア32とを有する。第2ロータブラケット31は、第2ロータコア32の外周側に配置されている。図3に示すように、第2ロータブラケット31は、回転軸AXの周りに筒状に設けられている。第2ロータブラケット31は、外径側の円筒出力軸とも言える。 第2ロータコア32は、N極のマグネット部とS極のマグネット部とを有する。N極のマグネット部とS極のマグネット部は、回転方向に交互に等間隔で配置されている。第2ロータコア32は、第2励磁コイル13が第2ティース16に励磁した回転磁界に応じて回転する。第2ロータコア32は、第2ロータブラケット31に内周面に貼り付けられてもよいし、第2ロータブラケット31の内部に埋め込まれてもよい。
第1ティース14及び第1励磁コイル12と、Z方向において重ならない位置に、第1軸受25が配置されている。第1軸受25は、バックヨーク15と、第1ロータブラケット21との間にあり、第1ロータ20を回転自在に支持している。第1軸受25は、軸受25a及び軸受25bを有する複数組み合わせ軸受である。バックヨーク15内には、径方向内側と、径方向外側とを分ける非磁性のスリットを設けることが望ましい。第1軸受25は、第1ロータブラケット21の外周にある突起部で位置決めされ、固定されている。
第2ティース16及び第2励磁コイル13と、Z方向において重ならない位置に、第2軸受35が配置されている。第2軸受35は、バックヨーク15と、第2ロータブラケット31との間にあり、第2ロータ30を回転自在に支持している。第2軸受35は、軸受35a及び軸受35bを有する複数組み合わせ軸受である。第2軸受35は、第2ロータブラケット31の内周にある突起部で位置決めされ、固定されている。
第1軸受25とZ方向において重ならない位置に、第1回転検出部101が設けられている。第1回転検出部101は、ハウジング40に対する第1ロータブラケット21の回転角を検出し、コントローラー120(図3参照)に供給する。
第1回転検出部101は、例えば、レゾルバである。第1回転検出部101は、レゾルバステータ101aと、レゾルバロータ101bと、を有する。レゾルバロータ101bは、第1ロータブラケット21の外周面に固定されている。レゾルバステータ101aは、レゾルバロータ101bの径方向において対向する位置に配置される。コントローラー120は、第1ロータ20において所望の回転角を得られるように、第1回転検出部101の検出結果に基づいて第1駆動電流I1の電流量を調節する。
第2軸受35とZ方向において重ならない位置に、第2回転検出部102が設けられている。第2回転検出部102は、ハウジング40に対する第2ロータブラケット31の回転角を検出し、コントローラー120(図3参照)に供給する。
第2回転検出部102は、例えば、レゾルバである。第2回転検出部102は、レゾルバロータ102aと、レゾルバステータ102bと、を有する。レゾルバロータ102aは、第2ロータブラケット31の内周面に固定されている。レゾルバロータ102aは、レゾルバステータ102bの径方向において対向する位置に配置されている。コントローラー120は、第2ロータ30において所望の回転角を得られるように、第2回転検出部102の検出結果に基づいて第2駆動電流I2の電流量を調節する。
第1回転検出部101と、第2回転検出部102とは、円環板状のカバー99で覆われている。円環板状のカバー99は、異物が第1回転検出部101と、第2回転検出部102との周囲に侵入しないよう、抑制している。
ボールねじ50は、ナット51と、ネジ軸(第1部分)52と、不図示の転動体とを有する。ナット51は、第1ロータブラケット21の下方に配置されている。つまり、ナット51は、第1ロータ20に対して軸線方向の下方の外側に配置されている。ナット51は、第1ロータ20と同軸に配置され、第1ロータ20の回転とともに回転する。ナット51は、フランジ部51aを有する。フランジ部51aは、固定部材51bにより連結ブラケット24に固定されている。ナット51は、当該連結ブラケット24と、連結ブラケット23とを介して第1ロータブラケット21に連結されている。例えば、第1ロータブラケット21と連結ブラケット23との間は、固定部材26で固定されている。また、連結ブラケット23と連結ブラケット24との間は、固定部材27で固定されている。固定部材26、27としては、例えばボルト等が用いられる。ナット51は、連結ブラケット23、24により、第1ロータブラケット21と一体に設けられる。したがって、ナット51は、第1ロータ20が回転する場合、第1ロータ20と一体で回転軸AXの軸回り方向に回転する。
ネジ軸52は、第1ロータ20から下方に突出している。ネジ軸52は、ナット51の内径側に挿入されている。ネジ軸52は、ナット51と螺合している。ナット51が回転すると、回転に応じてネジ軸52が軸方向(Z方向)に移動する。ナット51の内部には、転動体が配置される。
ボールねじ50には、負作動電磁ブレーキ53が設けられる。負作動電磁ブレーキ53は、フィールド53aと、サイドプレート53bと、アーマチュア53cと、ブレーキディスク53dと、電磁コイル53eとを有する。フィールド53a内には、不図示のコイルばねが配置されている。コイルばねは、アーマチュア53cをブレーキディスク53d側に押し付ける。電磁コイル53eの通電時には、コイルばねの弾性力よりも強い力でアーマチュア53eがフィールド53a側に引き付けられ、ブレーキディスク53dが開放される。また、電磁コイル53eの非通電時には、電磁コイル53eによる引き付け力が作用しなくなるため、コイルばねの弾性力によりアーマチュア53cがブレーキディスク53d側に急速に押し付けられる。ブレーキディスク53dは、連結ブラケット24の下方側の端部24aに連結されており、当該連結ブラケット24を介してナット51に連結される。ブレーキディスク53dが開放される場合には、ナット51が回転可能となる。また、ブレーキディスク53dにアーマチュア53cが押し付けられる場合には、ブレーキディスク53dの回転が規制され、これによりナット51の回転が規制される。したがって、電磁コイル53eの非通電時には、ネジ軸52の落下が抑制される。なお、負作動電磁ブレーキ53の構成については、上記構成に限定されず、他の構成であってもよい。
ネジ軸52の下端部には、ストッパ54が取り付けられている。ストッパ54は、ネジ軸52の上昇を規制する。
ボールスプライン60は、スプライン外筒61と、シャフト(第2部分)62と、不図示の転動体とを有する。スプライン外筒61は、第2ロータブラケット31の上方に配置されている。つまり、スプライン外筒61は、第1ロータ20に対して軸線方向の上方の外側に配置されている。スプライン外筒61は、第2ロータ30と同軸に配置され、第2ロータ30の回転とともに回転する。スプライン外筒61は、連結ブラケット33を介して第2ロータブラケット31に連結されている。例えば、第2ロータブラケット31と連結ブラケット33との間は、固定部材36で固定されている。固定部材36としては、例えばボルト等が用いられる。スプライン外筒61は、連結ブラケット33により、第2ロータブラケット31と一体に設けられる。したがって、スプライン外筒61は、第2ロータ30が回転する場合、第2ロータ30と一体で回転軸AXの軸回り方向に回転する。
スプライン外筒61の上端には、連結ブラケット34が配置されている。連結ブラケット34は、固定部材37により連結ブラケット33に固定されている。固定部材37としては、例えばボルト等が用いられる。
シャフト62は、第1ロータ20から上方に突出している。シャフト62は、スプライン外筒61の内径側に挿入されている。シャフト62は、下端側が連結部56を介してネジ軸52と一体に連結されている。本実施形態においては、ネジ軸52とシャフト62とが連結部56において圧入され、一体となって軸部材SFを構成している。連結部56には、ネジ軸52とシャフト62とを圧入する際に空気を逃がす孔部56aが設けられる。シャフト62は、回転軸AXの軸線方向に平行な溝部62aが周方向に複数並んで設けられる。シャフト62は、上端に縮径部62bを有する。縮径部62bは、後述のアーム取り付け部材70に固定される。
また、スプライン外筒61の内周面には、シャフト62の溝部62aに対応した凸部が周方向に複数並んで設けられる。シャフト62の溝部62aにスプライン外筒61の凸部が挿入されることにより、回転軸AXの軸回り方向におけるスプライン外筒61とシャフト62との相対移動が規制され、かつ、回転軸AXの軸線方向におけるスプライン外筒61とシャフト62との相対移動が許容される。このため、スプライン外筒61が回転する場合、回転に応じてシャフト62が軸方向(Z方向)に移動する。また、スプライン外筒61を回転させない状態でナット51の回転によりネジ軸52が回転軸AXの軸線方向に移動する場合、シャフト62がネジ軸52と共に軸線方向に移動する。スプライン外筒61の内部には、転動体が配置される。
ハウジング40は、モータ用ハウジング41と、ナット用ハウジング42と、スプライン外筒用ハウジング43とを有する。モータ用ハウジング41は、例えば円筒状に形成され、二軸一体型モータMPを収容する。
ナット用ハウジング42は、フランジ部42aと、筒状部42bとを有する。フランジ部42aは、円環状に形成され、固定部材44によりモータ用ハウジング41の下端に固定される。フランジ部42aには、ステータコア固定ハウジング17を固定する固定部材45が取り付けられる。固定部材45により、ステータコア11がハウジング40に対して固定される。筒状部42bは、フランジ部42aの内周から下方に延びている。筒状部42bは、ボールねじ50のナット51を収容する。筒状部42bの下端には、負作動電磁ブレーキ53が固定される。
また、ナット用ハウジング42は、連結ブラケット24との間で第3軸受(第1転がり軸受)28を保持する。第3軸受28は、ナット51を回転自在に支持している。第3軸受28は、例えば転がり軸受である。第3軸受28は、ウェーブワッシャ29a及び押さえ部材29bを介してフランジ部42aに支持されている。第3軸受28は、ウェーブワッシャ29a及び押さえ部材29により、筒状部42b側に押し付けられている。例えば、アーム部80により物体を支持し、アーム部80及び物体の荷重の重心が回転軸AXと一致しない場合又はアーム部80及び物体の回転モーメントを受ける場合には、軸部材SFが回転軸AXに対して傾く方向に力を受ける可能性がある。これに対して、第3軸受28がウェーブワッシャ29a及び押さえ部材29bを介してナット用ハウジング42及び固定台STで径方向に支持されているので、回転軸AXの軸線方向に直交する方向へのナット51の変位又は振動が抑制される。
スプライン外筒用ハウジング43は、フランジ部43aと、第1筒状部43bと、第2筒状部43cとを有する。フランジ部43aは、円環状に形成され、固定部材46によりモータ用ハウジング41の上端に固定される。また、フランジ部43aは、固定部材47により、固定台STに固定される。フランジ部43aが固定台STに固定されることにより、アクチュエータ1が固定台STに固定される。
第1筒状部43bは、円筒状に形成され、フランジ部43aの内周から上方に延びている。第1筒状部43bは、ボールスプライン60のスプライン外筒61を収容する。第1筒状部43bは、第1段部43d及び第2段部43eを介して第2筒状部43cに接続される。
第1筒状部43bは、第1段部43dにおいて、連結ブラケット34との間で第4軸受(第2転がり軸受)38を保持する。第4軸受38は、スプライン外筒61を回転自在に支持している。第4軸受38は、例えば転がり軸受である。第4軸受38は、ウェーブワッシャ39a及び押さえ部材39を介して第2段部43eに支持されている。第4軸受38は、ウェーブワッシャ39a及び押さえ部材39により、連結ブラケット34側に押し付けられている。また、第4軸受38は、スプライン外筒用ハウジング43及び固定台ST(図1参照)で径方向に支持されている。例えば、アーム部80により物体を支持し、アーム部80及び物体の荷重の重心が回転軸AXと一致しない場合又はアーム部80及び物体の回転モーメントを受ける場合には、軸部材SFが回転軸AXに対して傾く方向に力を受ける可能性がある。これに対して、第4軸受38がウェーブワッシャ39a及び押さえ部材39を介してスプライン外筒用ハウジング43及び固定台STで径方向に支持されているので、回転軸AXの軸線方向に直交する方向へのスプライン外筒61の変位又は振動が抑制される。
第2段部43eには、エア供給部43fが設けられる。エア供給部43fは、エアパージ用のエア継手を取り付け可能である。エア供給部43fは、外部と、第2筒状部43cとシャフト62との間に形成される空間との間を連通する。エア供給部43fには、閉塞用のボルト43gが設けられている。ボルト43gは、エア供給部43fに着脱可能に取り付けられる。ボルト43gは、エア供給部43fに埃等の異物が入らないように閉塞する。
第2筒状部43cは、円筒状に形成され、第1筒状部43bの上端から上方に延びている。第2筒状部43cは、第1筒状部43bよりも径が小さい。第2筒状部43cは、シャフト62の外周面の一部を覆うように配置される。例えば、図1に示すように、回転軸AXの軸線方向についての第2筒状部43cの寸法は、軸部材SFが最も下端に配置された状態で、第2筒状部43cの上端と軸部材SFの上端(シャフト62の上端)とが面一状態となるように設定される。
アーム取り付け部材70は、シャフト62の先端(上端)に連結される。アーム取り付け部材70は、連結部71と、筒状部72と、蓋部73とを有する。連結部71は、シャフト62の縮径部62bに連結される。連結部71は、縮径部62bを貫通させる貫通部71aと、連結部材74を挿入する凹部71bと、アーム80を取り付けるアーム取り付け面71cと、蓋部73を取り付ける蓋部取り付け面71dとを有する。
貫通部71aは、縮径部62bの形状に対応して形成される。凹部71bは、貫通部71aに縮径部62bを挿入した状態において、縮径部62bとの間に空間を形成する。この空間には、連結部材74が配置される。連結部材74は、対向する等しい傾斜のテーパ面が形成された凹状部材74a及び凸状部材74bを有する。凹状部材74aは、環状に形成され、凹部71bの内周に接して配置される。凸状部材74bは、環状に形成され、凹部71bの内側に挿入される。凸状部材74bの内周は、縮径部62bの外周に接して配置される。連結部材74は、固定部材75により凸状部材74bが凹状部材74aの内側に圧入されて固定される。これにより、凹部71bの内周と凹状部材74aの外周との間、凹状部材74aのテーパ面と凸状部材74bのテーパ面との間、及び、凸状部材74bの内周と縮径部62bの外周との間が、互いに押し付け合った状態となる。そのため、凹部71b、凹状部材74a、凸状部材74b及び縮径部62bの間にそれぞれ摩擦力が生じる。この摩擦力により、アーム取り付け部材70が縮径部62bに一体で連結される。
アーム取り付け面71cは、アーム80が取り付けられる。アーム取り付け面71cには、アーム80を固定するための不図示の固定部材を挿入する挿入孔71eが設けられている。蓋部取り付け面71dは、後述の蓋部73が取り付けられる。
筒状部72は、円筒状に形成され、連結部71からスプライン外筒61側(下方)に延びた状態で設けられる。筒状部72は、スプライン外筒用ハウジング43の第2筒状部43cよりも外側に配置され、第2筒状部43cの先端(上端)を収容する。筒状部72は、下端部に段部72aを有する。段部72aは、内周面の下端が拡径された構成である。段部72aには、シール部77が配置される。シール部77は、筒状部72とスプライン外筒用ハウジング43の第2筒状部43cとの間に形成される隙間を封止する。シール部77としては、例えば断面視でU字状又はコ字状の部材をリング状に形成した構造等が挙げられる。シール部77は、例えば弾性変形可能な材料を用いて形成される。シール部77は、段部72aの内周面と第2筒状部43cの外周面との間に当接されて弾性変形した状態で配置される。シール部77により、シャフト62が外部から保護された状態となる。なお、段部72aの下端部には、内側に突出する突起部が形成される。この突起部により、シール部77の落下が抑制される。また、電源遮断時においては、シール部77のシール抵抗により、シャフト62(軸部材SF)の回転が抑制される。
また、図1及び図4に示すように、筒状部72と第2筒状部43cとの間に円筒状の隙間が形成される。この隙間により、シャフト62と外部との間にラビリンス構造が形成されるため、防塵性及び防水性が高められる。
蓋部73は、ボルト等の固定部材76により連結部71の蓋部取り付け面71dに取り付けられる。蓋部73は、シャフト62の縮径部62bを外部環境から保護する。
アクチュエータ1において、アーム80を回転軸AXの軸線方向(Z方向)に移動させる場合、コントローラー120は、第2ロータ30を回転させることなく、第1ロータ20を回転軸AXの軸回り方向の一方又は他方に回転させる。この場合、第1ロータ20の回転に伴ってボールねじ50のナット51が一体となって回転する。ナット51の回転により、ナット51とネジ軸52とが回転軸AXの軸回り方向に相対的に回転するため、ネジ軸52がZ方向に移動する。ネジ軸52の移動により、ネジ軸52と一体に連結されたシャフト62、つまり軸部材SFがZ方向に移動する。軸部材SFの移動により、シャフト62の上端に連結されたアーム取り付け部材70及びアーム80がZ方向に移動する。軸部材SFを上方に移動させる場合、図5に示すように、ネジ軸52の下端のストッパ54が連結ブラケット24の下端に当接し、軸部材SFの上方への移動が規制される。また、軸部材SFを下方に移動させる場合、図1及び図4に示すように、連結部71がスプライン外筒用ブラケット43の第2筒状部43cの上端に当接し、軸部材SFの下方への移動が規制される。
アクチュエータ1において、アーム80を回転軸AXの軸線周り方向に移動させる場合、コントローラー120は、第1ロータ20及び第2ロータ30を同期させて回転させる。この場合、第1ロータ20の回転に伴ってボールねじ50のナット51が一体となって回転する。また、第2ロータ30の回転に伴ってボールスプライン60のスプライン外筒61が一体となって回転する。スプライン外筒61の回転により、シャフト62がスプライン外筒61と一体で回転する。シャフト62の回転により、シャフト62と連結されたネジ軸62、つまり軸部材SFが回転する。したがって、ボールねじ50においては、ナット51とネジ軸52とが相対的に回転することが無く、ボールねじ50のネジ軸52はナット51に対してZ方向に移動しない。つまり、軸部材SFは、Z方向に移動することなく、回転軸AXの軸回り方向に回転する。この軸部材SFの回転により、アーム取り付け部材70及びアーム80が回転軸AXの軸回り方向に回転する。
以上説明した本実施形態のアクチュエータ1は、ハウジング40と、第1ロータ20と、第2ロータ30と、軸部材SF(ネジ軸52及びシャフト62)と、ナット51と、スプライン外筒61と、を備える。第1ロータ20は、ハウジング40に対して回転自在である。第2ロータ30は、第1ロータ20の径方向外側に配置され、ハウジング40に対して回転自在である。軸部材SFは、第1ロータ20の回転軸AXの軸線方向に第1ロータ20を貫通して配置され、第1ロータ20から軸線方向の一方に突出するネジ軸52を有し、第1ロータ20から軸線方向の他方に突出するシャフト62に軸線方向に沿った溝部62aを有する。ナット51は、第1ロータ20に対して軸線方向の下方の外側に配置され、ネジ軸52に螺合され、第1ロータ20と共に回転して軸部材SFを回転軸AXの軸線方向に移動させる。スプライン外筒61は、第1ロータ20に対して軸線方向の上方の外側に配置され、溝部62aに沿って軸部材SFを軸線方向に案内し、かつ第2ロータ30と共に回転して軸部材SFを第2ロータ30の回転軸AXの軸回り方向に回転させる。
この構成によれば、ナット51及びスプライン外筒61が第1ロータ20に対して回転軸AXの軸線方向の外側に配置されるため、第1ロータ20及び第2ロータ30を径方向について小型化することができる。これにより、フットプリントを小さくすることができる。また、スプライン外筒61により、第2ロータ30を回転させる際の軸部材SFの連れ回りを抑制することが可能となる。
本実施形態のアクチュエータ1は、第1ロータ20の内径は、ナット51及びスプライン外筒61の外径よりも小さい。この構成によれば、第1ロータ20及び第2ロータ30を径方向について小型化することができる。
本実施形態のアクチュエータ1は、シャフト62の先端に連結され、アーム80を取り付けるアーム取り付け部材70を更に備える。この構成によれば、アーム取り付け部材70にアーム80を取り付けることで、搬送装置を構成することができる。
本実施形態のアクチュエータ1において、ハウジング40は、スプライン外筒61を収容しシャフト62の一部を覆うスプライン外筒用ハウジング43を有し、アーム取り付け部材70は、スプライン外筒61側に延びてスプライン外筒用ハウジング43の軸線方向の先端を収容する筒状部72を有し、筒状部72は、スプライン外筒用ハウジング43との間でシャフト62を封止する隙間72bを有する。この構成によれば、外部環境からのシール性を確保することができる。
本実施形態のアクチュエータ1は、ナット51は、第3軸受28を介してハウジング40に支持され、スプライン外筒61は、第4軸受38を介してハウジング40に支持される。この構成によれば、ナット51及びスプライン外筒61の変位を抑制できる。
本実施形態のアクチュエータ1は、ナット51に接続された負作動電磁ブレーキ53を更に備える。この構成によれば、軸部材SFの落下を抑制できる。
また、本実施形態のアクチュエータ1は、ハウジング40と、第1ロータ20と、第2ロータ30と、軸部材SF(ネジ軸52及びシャフト62)と、ナット51と、スプライン外筒61と、を備える。第1ロータ20は、ハウジング40に対して回転自在である。第2ロータ30は、第1ロータ20の径方向外側に配置され、ハウジング40に対して回転自在である。軸部材SFは、第1ロータ20の回転軸AXの軸線方向に第1ロータ20を貫通して配置され、第1ロータ20から軸線方向の一方に突出するネジ軸51を有し、第1ロータ20から軸線方向の他方に突出するシャフト62に軸線方向に沿った溝部62aを有する。ナット51は、ネジ軸52に螺合され、第1ロータ20と共に回転して軸部材SFを回転軸AXの軸線方向に移動させる。スプライン外筒61は、溝部62aに沿って軸部材SFを軸線方向に案内し、かつ第2ロータ30と共に回転して軸部材SFを第2ロータ30の回転軸AXの軸回り方向に回転させる。
この構成によれば、スプライン外筒61により、第2ロータ30を回転させる際の軸部材SFの連れ回りを抑制することが可能となる。
以上、本発明の好適な実施形態を説明したが、本発明は上記の実施形態に記載されたものに限定されない。例えば、上記の実施形態では、第1ロータ20及び第2ロータ30の回転子として、PM(Permanent Magnet)型の回転子が用いられたが、第1ロータ20及び第2ロータ30の回転子として、VR(Variable Reluctance)型の回転子が用いられてもよい。
また、上記の実施形態では、内側の第1ロータ20にボールねじ50のナット51を連結し、外側の第2ロータ30にボールスプライン60のスプライン外筒61を連結する構成としたが、これに限定されない。例えば、内側の第1ロータ20にボールスプライン60のスプライン外筒61を連結し、外側の第2ロータ30にボールねじ50のナット51を連結する構成としてもよい。
また、上記の実施形態では、二軸一体型モータMPに対して上側にボールスプライン60が配置され、下側にボールねじ50が配置された構成としたが、これに限定されない。例えば、二軸一体型モータMPに対して上側にボールねじ50が配置され、下側にボールスプライン60が配置された構成としてもよい。