JP6869389B1 - Transmission line current calculation system and current calculation method - Google Patents

Transmission line current calculation system and current calculation method Download PDF

Info

Publication number
JP6869389B1
JP6869389B1 JP2020022775A JP2020022775A JP6869389B1 JP 6869389 B1 JP6869389 B1 JP 6869389B1 JP 2020022775 A JP2020022775 A JP 2020022775A JP 2020022775 A JP2020022775 A JP 2020022775A JP 6869389 B1 JP6869389 B1 JP 6869389B1
Authority
JP
Japan
Prior art keywords
current
calculation
voltage
value
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020022775A
Other languages
Japanese (ja)
Other versions
JP2021129415A (en
Inventor
啓 田畑
啓 田畑
真衣 荒木
真衣 荒木
久保 達也
達也 久保
彰 中筋
彰 中筋
良 馬渕
良 馬渕
Original Assignee
株式会社エネゲート
四国電力送配電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エネゲート, 四国電力送配電株式会社 filed Critical 株式会社エネゲート
Priority to JP2020022775A priority Critical patent/JP6869389B1/en
Application granted granted Critical
Publication of JP6869389B1 publication Critical patent/JP6869389B1/en
Publication of JP2021129415A publication Critical patent/JP2021129415A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

【課題】多端子送電線の任意の部分の電流の算出を時刻の同期をせずに行うことが可能な電流算出システムおよび電流の算出方法を提供する。【解決手段】過負荷検出システム1は、多端子送電線の2以上の端子21、22に設けられ端子の少なくとも電流値を計測する計測部11a、11bと、計測部11a、11bによって計測された電流値を用いて演算を行い、多端子送電線の電流算出対象区間の電流ベクトルIを算出する演算部13とを備える。電流値は、電流実効値または振幅値|In|と、自端電圧を基準とした電流位相θnである。演算部13は、少なくとも、各計測部11a、11bによって計測された端子の電流実効値または振幅値|In|と電流位相θnを各端子の電流ベクトルInに変換し、2以上の端子について得られたそれぞれの電流ベクトルInの合成計算によって電流算出対象区間の電流ベクトルIを算出するように構成されている。【選択図】図2PROBLEM TO BE SOLVED: To provide a current calculation system and a current calculation method capable of calculating a current of an arbitrary portion of a multi-terminal transmission line without synchronizing the time. An overload detection system 1 is provided by two or more terminals 21 and 22 of a multi-terminal transmission line, and is measured by measuring units 11a and 11b and measuring units 11a and 11b for measuring at least the current value of the terminals. It is provided with a calculation unit 13 that performs a calculation using the current value and calculates the current vector I of the current calculation target section of the multi-terminal transmission line. The current value is a current effective value or an amplitude value | In | and a current phase θn with reference to the self-end voltage. The calculation unit 13 converts at least the current effective value or amplitude value | In | of the terminals measured by the measurement units 11a and 11b and the current phase θn into the current vector In of each terminal, and obtains the current vector In of two or more terminals. It is configured to calculate the current vector I of the current calculation target section by the combined calculation of each current vector In. [Selection diagram] Fig. 2

Description

この発明は、複数の端子を有する送電線の任意の区間の電流の算出を行うための多端子送電線の電流算出システムと電流の算出方法に関する。 The present invention relates to a multi-terminal transmission line current calculation system and a current calculation method for calculating a current in an arbitrary section of a transmission line having a plurality of terminals.

従来、例えば送電線の過負荷を検出するために、多端子送電線の電流を算出する様々な方法が提案されている。送電線の過負荷を検出するためには、例えば、過負荷を検出したい区間の電流を算出し、算出された電流を利用して過電流方式などで過負荷を検出することができる。 Conventionally, various methods for calculating the current of a multi-terminal transmission line have been proposed, for example, in order to detect an overload of a transmission line. In order to detect the overload of the transmission line, for example, the current in the section where the overload is to be detected can be calculated, and the calculated current can be used to detect the overload by an overcurrent method or the like.

送電線のある区間の電流の算出に関しては、例えば、特開平10−257665号公報(特許文献1)には、途中分岐点を介して結ばれn端子(n≧4)で構成される送電線の各端子に設けられる端末装置から収集する各端子の電流情報を用いて過負荷検出を行う多端子送電線過負荷検出継電装置が記載されている。この多端子送電線過負荷検出継電装置では、送電線の任意の区間の過負荷検出を可能にするため、各端末装置が各端子に流れる電流情報を取込み、各端末装置から伝送路を介して取込まれた各電流情報に基づき、過負荷検出対象区間に流れる電流が演算される。これにより、従来の継電器で実現できなかった任意の途中分岐点間の過負荷が検出できる。 Regarding the calculation of the current in a section of the transmission line, for example, Japanese Patent Application Laid-Open No. 10-257665 (Patent Document 1) describes a transmission line composed of n terminals (n ≧ 4) connected via an intermediate branch point. A multi-terminal transmission line overload detection relay device that performs overload detection using the current information of each terminal collected from the terminal device provided at each terminal of the above is described. In this multi-terminal transmission line overload detection relay device, in order to enable overload detection in any section of the transmission line, each terminal device takes in current information flowing to each terminal, and each terminal device passes through a transmission line. Based on each current information taken in, the current flowing in the overload detection target section is calculated. As a result, an overload between arbitrary intermediate branch points, which could not be realized by a conventional relay, can be detected.

また、近年、電力会社ではない一般の発電事業者の送電系統への連系の需要が高まっている。平成30年10月に電力広域的運営推進機関より「流通設備の整備計画の策定(送配電等業務指針第55条)におけるN−1電制の先行適用の考え方について」が示され、系統アクセス検討等を実施する場合、ローカル系統については、原則、N−1電制を適用することにより運用容量を拡大することになった。なお、N−1電制について、単一の電力設備(送電線・変圧器・遮断器等)の故障をN−1事故という。送電線では通常、2回線構成になっており、送電線の容量は50%を超えないようにされており、片方の送電線がN−1事故で系統から切り離されても支障を起こさずに運用できる設計になっている。しかし、近年、一般の発電事業者の系統接続の要求が増えている。それに対応するため容量を超えて発電設備を接続し、N−1事故の際にはその電源を制限する制限方法がN−1電制である。以上のように、送電線の高精度で安価な過負荷保護システムの需要が増えている。 Moreover, in recent years, there has been an increasing demand for interconnection to the transmission system of general power generation companies that are not electric power companies. In October 2018, the OCCTO announced "About the concept of prior application of the N-1 electrical system in the formulation of distribution equipment maintenance plans (Article 55 of the business guidelines for power transmission and distribution, etc.)", and grid access. When conducting studies, etc., it was decided to expand the operating capacity of the local system by applying the N-1 electronic control in principle. Regarding N-1 electric control, a failure of a single electric power facility (transmission line, transformer, circuit breaker, etc.) is called an N-1 accident. The transmission line usually has a two-line configuration, and the capacity of the transmission line does not exceed 50%, so even if one transmission line is disconnected from the grid due to an N-1 accident, it will not cause any problems. It is designed to be operational. However, in recent years, there has been an increase in demand for grid connection of general power generation companies. In order to deal with this, the N-1 electronic control is a limiting method in which power generation equipment is connected in excess of capacity and the power source is limited in the event of an N-1 accident. As described above, there is an increasing demand for high-precision and inexpensive overload protection systems for transmission lines.

特開平10−257665号公報Japanese Unexamined Patent Publication No. 10-257665

しかしながら、特許文献1に記載の多端子送電線過負荷検出継電装置では、電圧情報を取込むことなく、電流情報のみを取込んで電流ベクトルを計算するために、電流の位相を合わせる必要がある。電流の位相を合わせるためには、時刻を同期させる必要がある。特許文献1に記載の多端子送電線過負荷検出継電装置において時刻を正確に同期させるためには、例えば送電線電流差動リレーのように時刻同期する必要がある。特許文献1に記載の多端子送電線過負荷検出継電装置では、時刻同期の手段として例えば特開昭62−262615号に開示されている方法を使用することができる。この方法では相手端に情報を送信してから、相手端の情報を受信するまでの時間を計測し、この時間をもとにサンプリング同期を行う。この方法では、例えば光専用回線を使用することによって、伝送時間が変化しない通信手段を使用する必要があるが、各システム毎に光専用回線を用意するとコストが大きくなる。しかし、上述のように、送電線の過負荷保護システムでは高精度かつ安価であることの要求が高まっている。 However, in the multi-terminal transmission line overload detection relay device described in Patent Document 1, it is necessary to match the phase of the current in order to calculate the current vector by taking in only the current information without taking in the voltage information. is there. In order to match the phase of the current, it is necessary to synchronize the time. In order to accurately synchronize the time in the multi-terminal transmission line overload detection relay device described in Patent Document 1, it is necessary to synchronize the time, for example, as in the transmission line current differential relay. In the multi-terminal transmission line overload detection relay device described in Patent Document 1, for example, the method disclosed in Japanese Patent Application Laid-Open No. 62-262615 can be used as a means for time synchronization. In this method, the time from the transmission of information to the other end to the reception of the information of the other end is measured, and sampling synchronization is performed based on this time. In this method, for example, by using an optical dedicated line, it is necessary to use a communication means in which the transmission time does not change, but if an optical dedicated line is prepared for each system, the cost increases. However, as described above, there is an increasing demand for high accuracy and low cost in the overload protection system of the transmission line.

そこで、本発明の目的は、多端子送電線の任意の部分の電流の算出を時刻の同期をせずに行うことが可能な電流算出システムおよび電流の算出方法を提供することである。 Therefore, an object of the present invention is to provide a current calculation system and a current calculation method capable of calculating the current of an arbitrary portion of a multi-terminal transmission line without synchronizing the times.

本発明者らは、多端子送電線の任意の部分の電流の算出を時刻の同期をせずに行うことを可能にする電流算出システムと電流の算出方法を鋭意検討した。その結果、本発明の電流算出システムと電流の算出方法は以下のように構成される。 The present inventors have diligently studied a current calculation system and a current calculation method that enable the calculation of the current of an arbitrary part of a multi-terminal transmission line without synchronizing the time. As a result, the current calculation system and the current calculation method of the present invention are configured as follows.

本発明に従った電流算出システムは、多端子送電線の2以上の端子に設けられ端子の少なくとも電流値を計測する計測部と、計測部によって計測された電流値を用いて演算を行い、多端子送電線の電流算出対象区間の電流ベクトルIを算出する演算部とを備える。電流値は、電流実効値または振幅値|In|と、自端電圧を基準とした電流位相θnである。演算部は、少なくとも、各計測部によって計測された端子の電流実効値または振幅値|In|と電流位相θnを各端子の電流ベクトルInに変換し、2以上の端子について得られたそれぞれの電流ベクトルInの合成計算によって電流算出対象区間の電流ベクトルIを算出するように構成されている。 The current calculation system according to the present invention is provided at two or more terminals of a multi-terminal transmission line and performs calculations using a measuring unit that measures at least the current value of the terminals and a current value measured by the measuring unit. It is provided with a calculation unit for calculating the current vector I of the current calculation target section of the terminal transmission line. The current value is a current effective value or an amplitude value | In | and a current phase θn with reference to the self-end voltage. The arithmetic unit converts at least the current effective value or amplitude value | In | of the terminals measured by each measuring unit and the current phase θn into the current vector In of each terminal, and each current obtained for two or more terminals. It is configured to calculate the current vector I of the current calculation target section by the combined calculation of the vector In.

本発明に従った電流の算出方法は、演算部が多端子送電線の2以上の端子の少なくとも電流値を用いて演算を行い、多端子送電線の電流算出対象区間の電流ベクトルIを算出する方法であって、電流値は、電流実効値または振幅値|In|と、自端電圧を基準とした電流位相θnであり、演算部は、少なくとも端子の電流実効値または振幅値|In|と電流位相θnを各端子の電流ベクトルInに変換し、2以上の端子について得られたそれぞれの電流ベクトルInの合成計算によって電流算出対象区間の電流ベクトルIを算出する。 In the current calculation method according to the present invention, the calculation unit performs a calculation using at least the current values of two or more terminals of the multi-terminal transmission line, and calculates the current vector I of the current calculation target section of the multi-terminal transmission line. In the method, the current value is the current effective value or the amplitude value | In | and the current phase θn based on the own end voltage, and the calculation unit has at least the current effective value or the amplitude value | In | of the terminal. The current phase θn is converted into the current vector In of each terminal, and the current vector I of the current calculation target section is calculated by the combined calculation of the respective current vectors In obtained for the two or more terminals.

以上のように、本発明によれば、多端子送電線の任意の部分の過負荷検出を低コストで行うことが可能な過負荷検出システムおよび過負荷検出方法を提供することができる。 As described above, according to the present invention, it is possible to provide an overload detection system and an overload detection method capable of detecting an overload of an arbitrary portion of a multi-terminal transmission line at low cost.

本発明の過負荷検出システムが設置される送電線の各区間を模式的に示す図である。It is a figure which shows typically each section of the transmission line in which the overload detection system of this invention is installed. 本発明の過負荷検出システムの第1実施形態を示す構成図である。It is a block diagram which shows 1st Embodiment of the overload detection system of this invention. 本発明の第1実施形態の過負荷検出システムの演算部の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the arithmetic part of the overload detection system of 1st Embodiment of this invention. 本発明の過負荷検出システムの第2実施形態を示す構成図である。It is a block diagram which shows the 2nd Embodiment of the overload detection system of this invention. 本発明の第2実施形態の過負荷検出システムの演算部の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the arithmetic part of the overload detection system of the 2nd Embodiment of this invention. 本発明の第2実施形態の過負荷検出システムにおいて充電電流を補正する場合の過負荷検出システムの端子と過負荷検出対象区間を含む構成の模式図である。It is a schematic diagram of the configuration including the terminal of the overload detection system and the overload detection target section when correcting the charging current in the overload detection system of the second embodiment of the present invention.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示される実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments shown below, and various modifications can be made without departing from the technical idea of the present invention.

<第1実施形態>
本発明の電流算出システムは、例えば過負荷検出システムとして用いられ得る。図1は、本発明の電流算出システムの1つの形態として過負荷検出システムが設置される送電線の各区間を模式的に示す図である。図1に示すように、送電線は複数の端子と分岐点を有する。例えば電源端(端子21)に過負荷検出システムの親装置として演算部を設置し、過負荷を検出する過負荷検出対象区間の手前の分岐まで計測部を備える子装置を設置する。過負荷検出対象区間は多端子送電線の電流算出対象区間の一例である。親装置に各端子の子装置の計測部によって計測される電流値および電圧値が集約される。
<First Embodiment>
The current calculation system of the present invention can be used, for example, as an overload detection system. FIG. 1 is a diagram schematically showing each section of a transmission line in which an overload detection system is installed as one form of the current calculation system of the present invention. As shown in FIG. 1, the transmission line has a plurality of terminals and branch points. For example, a calculation unit is installed at the power supply end (terminal 21) as a parent device of the overload detection system, and a child device including a measurement unit is installed up to the branch before the overload detection target section for detecting the overload. The overload detection target section is an example of the current calculation target section of the multi-terminal transmission line. The current value and voltage value measured by the measuring unit of the child device of each terminal are collected in the parent device.

図2は、本発明の過負荷検出システムの第1実施形態を示す構成図である。図2に示すように、過負荷検出システム1は、多端子送電線2の各端子21,22に設けられ端子21,22の電流値および電圧値を計測する計測部11a,11bと、計測部11a,11bによって計測された電流値および電圧値を用いて演算を行い、過負荷検出対象区間2aの電流ベクトルを算出する演算部13とを備える。演算部13は、いずれかの計測部11a,11b内に設けられていてもよく、計測部11a,11bとは別に設けられていてもよい。 FIG. 2 is a configuration diagram showing a first embodiment of the overload detection system of the present invention. As shown in FIG. 2, the overload detection system 1 includes measuring units 11a and 11b provided at each terminal 21 and 22 of the multi-terminal transmission line 2 and measuring the current value and voltage value of the terminals 21 and 22 and a measuring unit. It is provided with a calculation unit 13 that performs a calculation using the current value and the voltage value measured by 11a and 11b and calculates the current vector of the overload detection target section 2a. The calculation unit 13 may be provided in any of the measurement units 11a and 11b, or may be provided separately from the measurement units 11a and 11b.

計測部11a,11bは、電流入力部111と、電圧入力部112と、実効値位相計算部113と、情報送信部114とを備える。 The measuring units 11a and 11b include a current input unit 111, a voltage input unit 112, an effective value phase calculation unit 113, and an information transmission unit 114.

電流入力部111は、各端子21,22の電流を測定する。電圧入力部112は、各端子21,22の電圧を測定する。 The current input unit 111 measures the current of each of the terminals 21 and 22. The voltage input unit 112 measures the voltage of each of the terminals 21 and 22.

実効値位相計算部113は、電流入力部111によって測定された電流と電圧入力部112によって測定された電圧とに基づいて、一般的には、電流実効値|I|と、自端電圧を基準とした電流位相θを計算する。すなわち、端子21の実効値位相計算部113では、電流実効値|I21|と自端電圧を基準とした電流位相θ21が計算され、端子22の実効値位相計算部113では、電流実効値|I22|と自端電圧を基準とした電流位相θ22が計算される。なお、電流実効値の代わりに電流振幅値が計算されてもよい。 Rms phase calculation unit 113, based on the voltage measured by the current and voltage input unit 112 measured by the current input section 111, in general, effective current value | I n | and the local end voltage The reference current phase θ n is calculated. That is, the effective value phase calculation unit 113 of the terminal 21 calculates the current effective value | I 21 | and the current phase θ 21 based on the own end voltage, and the effective value phase calculation unit 113 of the terminal 22 calculates the current effective value. | I 22 | and the current phase θ 22 based on the self-end voltage are calculated. The current amplitude value may be calculated instead of the current effective value.

情報送信部114は、実効値位相計算部113によって計算された電流実効値|I|(|I21|,|I22|)と電流位相θ(θ21,θ22)を演算部13に送信する。 Information transmitting unit 114, the current effective value computed by the effective value phase calculation unit 113 | I n | (| I 21 |, | I 22 |) between the current phase θ n (θ 21, θ 22 ) an arithmetic unit 13 Send to.

演算部13は、情報受信部131と、電流合成演算部132と、過負荷判定部135とを備える。 The calculation unit 13 includes an information receiving unit 131, a current synthesis calculation unit 132, and an overload determination unit 135.

図3は、本発明の第1実施形態の過負荷検出システムの演算部の制御処理を示すフローチャートである。図3に示すように、演算部13は以下の処理を行う。 FIG. 3 is a flowchart showing a control process of a calculation unit of the overload detection system according to the first embodiment of the present invention. As shown in FIG. 3, the calculation unit 13 performs the following processing.

ステップS11では、演算部13は、端子21の情報送信部114から送信された電流実効値|I21|と電流位相θ21とを電流ベクトルI21に変換し、端子22の情報送信部114から送信された電流実効値|I22|と電流位相θ22とを電流ベクトルI22に変換する。 In step S11, the calculation unit 13 converts the current effective value | I 21 | and the current phase θ 21 transmitted from the information transmission unit 114 of the terminal 21 into the current vector I 21 and from the information transmission unit 114 of the terminal 22. transmitted current effective value | converts between the current phase theta 22 to the current vector I 22 | I 22.

ステップS12では、演算部13は、同一分岐に接続される2区間それぞれにおける、電流ベクトル(2区間が区間221,222である場合は電流ベクトルI21,I22)に基づいて、次の区間(2区間が区間221,222である場合は次の区間は区間2a)の電流ベクトルIを算出する。 In step S12, the calculation unit 13 determines the next section ( current vectors I 21 and I 22 when the two sections are sections 221 and 222) in each of the two sections connected to the same branch. When the two sections are sections 221 and 222, the current vector I of the section 2a) is calculated in the next section.

送電線事故による電圧の変化は保護によって短時間で除去されることを考えると、測定時点相互間の電圧位相差は線路による電圧降下によるもののみとみなせる。線路による電圧降下がもとの電圧に対して小さく、電圧降下による測定地点ごとの電圧位相差がないものと考えられる場合、2区間221,222の電流ベクトルI21,I22を用いた以下の加算計算によって、次の区間2aの電流ベクトルIが算出される。
I=I21−I22
Considering that the voltage change due to the transmission line accident is removed in a short time by protection, the voltage phase difference between the measurement time points can be regarded as only due to the voltage drop due to the line. When it is considered that the voltage drop due to the line is smaller than the original voltage and there is no voltage phase difference for each measurement point due to the voltage drop, the following using the current vectors I 21 and I 22 of the two sections 221,222 The current vector I in the next section 2a is calculated by the addition calculation.
I = I 21- I 22

ステップS13では、演算部13は、次の区間(区間2a)が計算すべき最後の区間であるか否かを判断する。最後の区間であれば、ステップS14に進む。最後の区間でなければ、ステップS15で区間を1つ進めて、ステップS12に戻る。 In step S13, the calculation unit 13 determines whether or not the next section (section 2a) is the last section to be calculated. If it is the last section, the process proceeds to step S14. If it is not the last section, the section is advanced by one in step S15, and the process returns to step S12.

ステップS14では、演算部13は、電流ベクトルIの大きさから、例えば過電流方式によって過負荷検出対象区間の過負荷を検出する。 In step S14, the calculation unit 13 detects the overload of the overload detection target section from the magnitude of the current vector I, for example, by the overcurrent method.

ステップS12は、隣接する別の区間を新たな過負荷対象区間として、新たな過負荷検出対象区間の電流ベクトルを算出することを繰り返し、系統のすべての区間について電流ベクトルが算出されるまで繰り返されてもよい。 Step S12 repeats the calculation of the current vector of the new overload detection target section with another adjacent section as a new overload target section, and repeats until the current vector is calculated for all the sections of the system. You may.

以上のように、図1に示す区間2aの過負荷は区間221と区間222の電流ベクトルから求められ、次の区間2bの過負荷は区間2aの電流ベクトル(すなわち区間221と区間222の電流ベクトル)と区間223の電流ベクトルから求められ、さらに次の区間2cの過負荷は区間2b(すなわち区間221と区間222と区間223)の電流ベクトルと区間224の電流ベクトルから求められる。このようにして、必要であれば、系統のすべての区間について電流ベクトルを求めることができる。この実施形態のように電流算出システムを過負荷検出システムとして用いる場合には、求められた各区間の電流ベクトルに基づいて各区間の過負荷が求められてもよく、系統のすべての区間について過負荷が求められてもよい。 As described above, the overload of the section 2a shown in FIG. 1 is obtained from the current vectors of the section 221 and the section 222, and the overload of the next section 2b is the current vector of the section 2a (that is, the current vector of the section 221 and the section 222). ) And the current vector of the section 223, and the overload of the next section 2c is obtained from the current vector of the section 2b (that is, the section 221 and the section 222 and the section 223) and the current vector of the section 224. In this way, if necessary, the current vector can be obtained for all sections of the system. When the current calculation system is used as the overload detection system as in this embodiment, the overload of each section may be obtained based on the obtained current vector of each section, and the overload may be obtained for all the sections of the system. A load may be required.

このように、本発明の過負荷検出システム1では、計測部で計測された電流実効値または振幅値と電流位相とに基づいて演算された電流ベクトルの合成計算によって過負荷検出対象区間の電流の大きさを求めるので、時刻を同期させる必要がない。また、過負荷の区間と向きが特定され、過負荷の原因となる電源が正確に特定される。 As described above, in the overload detection system 1 of the present invention, the current in the overload detection target section is calculated by combining the current vector calculated based on the current effective value or amplitude value measured by the measuring unit and the current phase. Since the size is calculated, there is no need to synchronize the time. In addition, the section and direction of the overload are specified, and the power source that causes the overload is accurately identified.

過負荷を検出した場合、演算部13は例えば、区間と電流方向に応じて制御指令を送信し、電源制限、負荷制限、系統変更等を行って過負荷を解消させることができる。なお、本発明の過負荷検出システムまたは過負荷検出方法によって過負荷が検出された場合、必要に応じて適切な処置がとられればよい。本発明の過負荷検出システムと過負荷検出方法は、N−1事故、N−1電制だけでなく、過負荷一般に対して適用されることができる。 When an overload is detected, the calculation unit 13 can, for example, transmit a control command according to the section and the current direction, and perform power supply limitation, load limitation, system change, and the like to eliminate the overload. When an overload is detected by the overload detection system or the overload detection method of the present invention, appropriate measures may be taken as necessary. The overload detection system and overload detection method of the present invention can be applied not only to N-1 accidents and N-1 electronic control, but also to overloads in general.

情報送信部114から演算部13に伝送路を通じて通信する際、通信間隔は過負荷検出時間である数十秒から数十分と比べて十分小さい時間であればよい。また、正確な時刻同期も必要なく、同様に数十秒から数十分と比べて十分小さい時間のタイミングのずれまで許容される。 When communicating from the information transmission unit 114 to the calculation unit 13 through the transmission line, the communication interval may be a time sufficiently smaller than the overload detection time of several tens of seconds to several tens of minutes. In addition, accurate time synchronization is not required, and similarly, timing deviations of several tens of seconds to a sufficiently small time compared to several tens of seconds are allowed.

本発明の伝送路は、例えば既設のTCP/IPネットワーク等に接続して0.1秒オーダーで通信すればよく、時刻同期も必要ないため設備が非常に廉価になる。 The transmission line of the present invention may be connected to an existing TCP / IP network or the like for communication on the order of 0.1 seconds, and time synchronization is not required, so that the equipment is very inexpensive.

以上のように、本発明の第1実施形態の過負荷検出システム1は、多端子送電線の2以上の端子21,22に設けられ端子の少なくとも電流値を計測する計測部11a,11bと、計測部11a,11bによって計測された電流値を用いて演算を行い、多端子送電線の電流算出対象区間の電流ベクトルIを算出する演算部13とを備える。電流値は、電流実効値または振幅値|In|と、自端電圧を基準とした電流位相θnである。演算部13は、少なくとも、各計測部11a,11bによって計測された端子の電流実効値または振幅値|In|と電流位相θnを各端子の電流ベクトルInに変換し、2以上の端子について得られたそれぞれの電流ベクトルInの合成計算によって電流算出対象区間の電流ベクトルIを算出するように構成されている。 As described above, the overload detection system 1 of the first embodiment of the present invention includes measuring units 11a and 11b provided at two or more terminals 21 and 22 of the multi-terminal transmission line and measuring at least the current value of the terminals. It is provided with a calculation unit 13 that performs a calculation using the current values measured by the measurement units 11a and 11b and calculates the current vector I of the current calculation target section of the multi-terminal transmission line. The current value is a current effective value or an amplitude value | In | and a current phase θn with reference to the self-end voltage. The calculation unit 13 converts at least the current effective value or amplitude value | In | of the terminals measured by the measurement units 11a and 11b and the current phase θn into the current vector In of each terminal, and obtains the current vector In of two or more terminals. It is configured to calculate the current vector I of the current calculation target section by the combined calculation of each current vector In.

また、第1実施形態の過負荷検出システム1においては、演算部13は、電流算出対象区間の電流ベクトルIの大きさから電流算出対象区間の過負荷を検出するように構成されている。 Further, in the overload detection system 1 of the first embodiment, the calculation unit 13 is configured to detect the overload of the current calculation target section from the magnitude of the current vector I of the current calculation target section.

また、本発明の第1実施形態の過負荷検出システム1において行われる電流ベクトルの算出方法は、演算部13が多端子送電線の2以上の端子21,22の少なくとも電流値を用いて演算を行い、多端子送電線の電流算出対象区間の電流ベクトルIを算出する方法であって、電流値は、電流実効値または振幅値|In|と、自端電圧を基準とした電流位相θnであり、演算部13は、少なくとも端子の電流実効値または振幅値|In|と電流位相θnを各端子の電流ベクトルInに変換し、2以上の端子について得られたそれぞれの電流ベクトルInの合成計算によって電流算出対象区間の電流ベクトルIを算出する。 Further, in the method of calculating the current vector performed in the overload detection system 1 of the first embodiment of the present invention, the calculation unit 13 calculates using at least the current values of two or more terminals 21 and 22 of the multi-terminal transmission line. This is a method of calculating the current vector I of the current calculation target section of the multi-terminal transmission line, in which the current value is the current effective value or the amplitude value | In | and the current phase θn based on the own end voltage. , The calculation unit 13 converts at least the current effective value or amplitude value | In | of the terminals and the current phase θn into the current vector In of each terminal, and calculates the combined calculation of the respective current vectors In obtained for the two or more terminals. The current vector I of the current calculation target section is calculated.

また、第1実施形態の過負荷検出システム1において行われる電流ベクトルの算出方法においては、演算部13は、電流算出対象区間の電流ベクトルIの大きさから電流算出対象区間の過負荷を検出する。 Further, in the current vector calculation method performed in the overload detection system 1 of the first embodiment, the calculation unit 13 detects the overload of the current calculation target section from the magnitude of the current vector I of the current calculation target section. ..

以上のように、本発明によれば、多端子送電線の任意の部分の電流の算出を時刻の同期をせずに行うことが可能な電流算出システムおよび電流の算出方法を提供することができる。 As described above, according to the present invention, it is possible to provide a current calculation system and a current calculation method capable of calculating the current of an arbitrary portion of a multi-terminal transmission line without synchronizing the times. ..

この実施形態においては、電流算出システムの一例として過負荷検出システムを用いて説明したが、本発明の電流算出システムは、制御、保護、計測等の様々な目的のために電流ベクトルを算出することが求められる種々のシステムに適用されることができる。 In this embodiment, the overload detection system has been described as an example of the current calculation system, but the current calculation system of the present invention calculates the current vector for various purposes such as control, protection, and measurement. Can be applied to various systems in which is required.

また、各計測部11a,11bは、内部に計測した電流情報をもとに、本発明に従った電流算出システムおよび電流の算出方法における電流合成計算とは独立して、自区間の過負荷検出・制御が可能であるように構成されてもよい。 Further, each of the measuring units 11a and 11b detects the overload of its own section based on the current information measured internally, independently of the current synthesis calculation in the current calculation system and the current calculation method according to the present invention. -It may be configured to be controllable.

<第2実施形態>
図4は、本発明の電流算出システムの別の形態として過負荷検出システムの第2実施形態を示す構成図である。図4に示すように、過負荷検出システム1bは、多端子送電線2の各端子21,22に設けられ端子21,22の電流値および電圧値を計測する計測部11a,11bと、計測部11a,11bによって計測された電流値および電圧値を用いて演算を行い、過負荷検出対象区間2aの電流を算出する演算部13とを備える。演算部13は、いずれかの計測部11a,11b内に設けられていてもよく、計測部11a,11bとは別に設けられていてもよい。
<Second Embodiment>
FIG. 4 is a configuration diagram showing a second embodiment of the overload detection system as another embodiment of the current calculation system of the present invention. As shown in FIG. 4, the overload detection system 1b includes measuring units 11a and 11b provided at each terminal 21 and 22 of the multi-terminal transmission line 2 and measuring the current value and voltage value of the terminals 21 and 22 and the measuring unit. It is provided with a calculation unit 13 that performs a calculation using the current value and the voltage value measured by 11a and 11b and calculates the current in the overload detection target section 2a. The calculation unit 13 may be provided in any of the measurement units 11a and 11b, or may be provided separately from the measurement units 11a and 11b.

計測部11a,11bは、電流入力部111と、電圧入力部112と、実効値位相計算部113と、情報送信部114とを備える。 The measuring units 11a and 11b include a current input unit 111, a voltage input unit 112, an effective value phase calculation unit 113, and an information transmission unit 114.

電流入力部111は、各端子21,22の電流を測定する。電圧入力部112は、各端子21,22の電圧を測定する。 The current input unit 111 measures the current of each of the terminals 21 and 22. The voltage input unit 112 measures the voltage of each terminal 21 and 22.

実効値位相計算部113は、電流入力部111によって測定された電流と電圧入力部112によって測定された電圧とに基づいて、一般的には、電流実効値|I|と、電圧実効値Vと、自端電圧を基準とした電流位相θを計算する。すなわち、端子21の実効値位相計算部113では、電流実効値|I21|と、電圧実効値|V21|と、自端電圧を基準とした電流位相θ21が計算され、端子22の実効値位相計算部113では、電流実効値|I22|と、電圧実効値|V22|と、自端電圧を基準とした電流位相θ22が計算される。なお、電流実効値の代わりに電流振幅値が計算されてもよく、電圧実効値の代わりに電圧振幅値が計算されてもよい。 Rms phase calculation unit 113, based on the voltage measured by the current and voltage input unit 112 measured by the current input section 111, in general, effective current value | I n | a, voltage effective value V n and the current phase θ n with reference to the self-end voltage are calculated. That is, the effective value phase calculation unit 113 of the terminal 21 calculates the current effective value | I 21 |, the voltage effective value | V 21 |, and the current phase θ 21 based on the own end voltage, and the effective value of the terminal 22 is calculated. The value phase calculation unit 113 calculates the current effective value | I 22 |, the voltage effective value | V 22 |, and the current phase θ 22 based on the own end voltage. The current amplitude value may be calculated instead of the current effective value, or the voltage amplitude value may be calculated instead of the voltage effective value.

情報送信部114は、実効値位相計算部113によって計算された電流実効値|I|(|I21|,|I22|)と、電圧実効値|V|(|V21|,|V22|)と、電流位相θ(θ21,θ22)を演算部13に送信する。 Information transmitting unit 114, the calculated current effective value by an effective value phase calculation unit 113 | I n | (| I 21 |, | I 22 |) and the voltage effective value | V n | (| V 21 |, | V 22 |) and the current phase θ n21 , θ 22 ) are transmitted to the calculation unit 13.

演算部13は、情報受信部131と、電流合成演算部132と、内部メモリ133と、位相補正演算部134と、過負荷判定部135とを備える。 The calculation unit 13 includes an information receiving unit 131, a current synthesis calculation unit 132, an internal memory 133, a phase correction calculation unit 134, and an overload determination unit 135.

図5は、本発明の過負荷検出システムの演算部の制御処理を示すフローチャートである。図5に示すように、演算部13は以下の処理を行う。 FIG. 5 is a flowchart showing a control process of the calculation unit of the overload detection system of the present invention. As shown in FIG. 5, the calculation unit 13 performs the following processing.

ステップS21では、演算部13は、端子21の情報送信部114から送信された電流実効値|I21|と電流位相θ21とを電流ベクトルI21に変換し、端子22の情報送信部114から送信された電流実効値|I22|と電流位相θ22とを電流ベクトルI22に変換する。 In step S21, the calculation unit 13 converts the current effective value | I 21 | and the current phase θ 21 transmitted from the information transmission unit 114 of the terminal 21 into the current vector I 21, and from the information transmission unit 114 of the terminal 22. transmitted current effective value | converts between the current phase theta 22 to the current vector I 22 | I 22.

ステップS22では、演算部13は、同一分岐に接続される2区間それぞれにおける、電流ベクトルI21,I22と、電圧実効値|V21|,|V22|と、あらかじめ設定された線路インピーダンスZ(Z21,Z22)とに基づいて、基準電圧と自端電圧の電圧位相差θを計算する。 In step S22, the calculation unit 13 sets the current vectors I 21 and I 22 , the effective voltage values | V 21 |, | V 22 |, and the preset line impedance Z in each of the two sections connected to the same branch. The voltage phase difference θ between the reference voltage and the self-end voltage is calculated based on n (Z 21 , Z 22).

ステップS23では、演算部13は電流ベクトルI(I21,I22)の位相を、ステップS22において計算した基準電圧と自端電圧の電圧位相差θによって補正し、位相基準を共通にする。各端末は線路の電圧降下分だけ電圧の位相が変化している。そこで、端末毎に取得された電圧値および電流値と、予め設定された線路インピーダンスZを入力とし、以下の演算によって電圧の位相差を補正する。 In step S23, the arithmetic unit 13 the phase of the current vector I n (I 21, I 22 ), corrected by the voltage phase difference of the calculated reference voltage and Zidane voltage θ in step S22, the phase reference in common. At each terminal, the phase of the voltage changes by the amount of the voltage drop on the line. Therefore, the voltage and current values obtained for each terminal, inputs the preset line impedance Z n, to correct the phase difference between the voltage by the following calculation.

端子21の電圧V21を基準とした端子22の電圧V22aと電流I22aを用いると、分岐20における電圧V20は、次のように表される。
20=V21−Z21・I21=V22a+Z22・I22a ・・・(1)
実際に端子22の計測部11a,11bで測定される電圧V22と電流I22は、V21基準のV22分だけ位相がずれる。電流も同様の電圧基準で測定するため、同じだけ位相がずれる。V21に対するV22の位相をθとすると、実際に測定される電圧V22と電流I22は次のように表される。
22=V22a・ejθ
22=I22a・ejθ
電圧V21を基準とした端子22の電圧V22aと電流I22aは次のように表される。
22a=V22/ejθ ・・・(2a)
22a=I22/ejθ ・・・(2b)
式2a,2bを式1に代入する。
20=V21−Z21・I21=V22/ejθ+Z22・I22/ejθ
jθ=(V22+Z22・I22)/(V21−Z21・I21
With voltage V 22a and the current I 22a of terminal 22 relative to the voltage V 21 of the terminal 21, the voltage V 20 at the branch 20 is expressed as follows.
V 20 = V 21- Z 21 · I 21 = V 22a + Z 22 · I 22a ... (1)
The voltage V 22 and the current I 22 actually measured by the measuring units 11a and 11b of the terminal 22 are out of phase by V 22 based on the V 21. Since the current is measured with the same voltage reference, the phase shifts by the same amount. Assuming that the phase of V 22 with respect to V 21 is θ, the actually measured voltage V 22 and current I 22 are expressed as follows.
V 22 = V 22a · e
I 22 = I 22a · e
The voltage V 22a and the current I 22a of the terminal 22 with reference to the voltage V 21 are expressed as follows.
V 22a = V 22 / e ... (2a)
I 22a = I 22 / e ... (2b)
Substitute equations 2a and 2b into equation 1.
V 20 = V 21 −Z 21 · I 21 = V 22 / e + Z 22 · I 22 / e
e = (V 22 + Z 22 · I 22 ) / (V 21 −Z 21 · I 21 )

ステップS24では、演算部13は、2区間の電流ベクトル(2区間が区間221,222である場合には電流ベクトルI21,I22)を用いた以下の加算計算によって、次の区間(2区間が区間221,222である場合は次の区間は区間2a)の電流ベクトルIを算出する。
I=I21−I22a=I21−I22/ejθ
In step S24, the calculation unit 13 performs the following addition calculation using the current vectors of the two sections (current vectors I 21 and I 22 when the two sections are sections 221 and 222) to perform the next section (two sections). When is a section 221,222, the next section calculates the current vector I of the section 2a).
I = I 21- I 22a = I 21- I 22 / e

充電電流は次のように補正される。図6は、充電電流を補正する場合の過負荷検出システムの端子21,22と過負荷検出対象区間を含む構成の模式図である。 The charging current is corrected as follows. FIG. 6 is a schematic diagram of a configuration including terminals 21 and 22 of the overload detection system and an overload detection target section when the charging current is corrected.

図6において、I21b,I22bは測定地点より得られる電流であり、I22bは位相補正後の電流である。C21,C22は正相キャパシタンスである。IC21,IC22は充電電流である。 In FIG. 6, I 21b and I 22b are currents obtained from the measurement points, and I 22b is the current after phase correction. C 21 and C 22 are positive phase capacitances. IC21 and IC22 are charging currents.

基本の合成式は次の通りである。
I=I21a−I22a ・・・(3)
図6から測定点で得られる電流は次のように表される。
21b=I21a+IC21
22b=I22a−IC22
21a=I21b−IC21 ・・・(4a)
22a=I22b+IC22 ・・・(4b)
式3、式4a,4bより、
I=I21b−I22b−IC21−IC22
=IC21+IC22と置くと、
I=I21b−I22b−I
ステップS3の演算と組み合わせると、
I=I21b−I22b/ejθ−I
以下に充電電流の算出方法を示す。正相キャパシタンスC21,C22は、線路に分布定数的に存在するが簡単のためV20地点に集中して存在すると考えると、
=IC21+IC22
=V20・jωC21+V・jωC22
ただしV20は相電圧で、式1より、
20=V21−Z21・I21
である。
The basic composition formula is as follows.
I = I 21a- I 22a ... (3)
The current obtained at the measurement point from FIG. 6 is expressed as follows.
I 21b = I 21a + IC21
I 22b = I 22a- IC22
I 21a = I 21b- IC21 ... (4a)
I 22a = I 22b + IC22 ... (4b)
From Equations 3, 4a and 4b
I = I 21b- I 22b- I C21- I C22
When you place the I C = I C21 + I C22 ,
I = I 21b -I 22b -I C
When combined with the calculation in step S3,
I = I 21b -I 22b / e jθ -I C
The calculation method of the charging current is shown below. Positive-phase capacitance C 21, C 22, given a is present distributed constant type to the line are concentrated to the V 20 point for simplicity,
I C = I C21 + I C22
= V 20・ jωC 21 + V ・ jωC 22
However, V 20 is the phase voltage, and from Equation 1,
V 20 = V 21- Z 21 · I 21
Is.

なお、C21,C22はV20地点に集中していると仮定したが、C21はV21、C22はV22に集中していると考えてもよく、π型線路を仮定してC21はV21とV20に、C22はV22とV20に1/2ずつ集中していると仮定してもよい。 Although it is assumed that C 21 and C 22 are concentrated at the V 20 point, it may be considered that C 21 is concentrated at V 21 and C 22 is concentrated at V 22 , assuming a π-type line. It may be assumed that C 21 is concentrated in V 21 and V 20 and C 22 is concentrated in V 22 and V 20 by 1/2.

ステップS25では、演算部13は、次の区間(区間2a)が計算すべき最後の区間であるか否かを判断する。最後の区間であれば、ステップS26に進む。最後の区間でなければ、ステップS27で区間を1つ進めて、ステップS22に戻る。 In step S25, the calculation unit 13 determines whether or not the next section (section 2a) is the last section to be calculated. If it is the last section, the process proceeds to step S26. If it is not the last section, the section is advanced by one in step S27, and the process returns to step S22.

ステップS26では、演算部13は、電流ベクトルIの大きさから、例えば過電流方式によって過負荷検出対象区間の過負荷を検出する。 In step S26, the calculation unit 13 detects the overload of the overload detection target section from the magnitude of the current vector I, for example, by the overcurrent method.

ステップS25の後、隣接する別の区間を新たな過負荷対象区間として、新たな過負荷検出対象区間の電流ベクトルを算出することを繰り返し、系統のすべての区間について電流ベクトルを算出してもよい。 After step S25, the current vector of the new overload detection target section may be repeatedly calculated with another adjacent section as a new overload target section, and the current vector may be calculated for all the sections of the system. ..

過負荷を検出した場合、演算部13は、区間と電流方向に応じて制御指令を送信し、電源制限、負荷制限、系統変更等を行って過負荷を解消させる。 When an overload is detected, the calculation unit 13 transmits a control command according to the section and the current direction, and performs power supply limitation, load limitation, system change, etc. to eliminate the overload.

以上のように、第2実施形態の過負荷検出システム1bにおいては、計測部11a,11bは、さらに端子21,22の電圧値を計測する計測部11a,11bであり、電圧値は、電圧実効値または振幅値であり、演算部13は、電流ベクトルInと電圧実効値または振幅値|Vn|と予め設定された線路インピーダンスZnに基づいて基準電圧と自端電圧の電圧位相差θを計算し、電流位相θnを電圧位相差θによって補正して位相基準を共通にするように構成されている。 As described above, in the overload detection system 1b of the second embodiment, the measurement units 11a and 11b are the measurement units 11a and 11b that further measure the voltage values of the terminals 21 and 22, and the voltage values are voltage effective. It is a value or an amplitude value, and the calculation unit 13 calculates the voltage phase difference θ between the reference voltage and the self-end voltage based on the current vector In, the voltage effective value or the amplitude value | Vn |, and the preset line impedance Zn. , The current phase θn is corrected by the voltage phase difference θ so that the phase reference is common.

また、第2実施形態の過負荷検出システム1bにおいて行われる電流ベクトルの算出方法においては、演算部13は、さらに端子21,22の電圧値を用いて演算を行い、電圧値は、電圧実効値または振幅値であり、演算部13は、電流ベクトルInと電圧実効値または振幅値|Vn|と予め設定された線路インピーダンスZnに基づいて基準電圧と自端電圧の電圧位相差θを計算し、電流位相θnを電圧位相差θによって補正して位相基準を共通にする。 Further, in the method of calculating the current vector performed in the overload detection system 1b of the second embodiment, the calculation unit 13 further performs a calculation using the voltage values of the terminals 21 and 22, and the voltage value is the voltage effective value. Alternatively, the calculation unit 13 calculates the voltage phase difference θ between the reference voltage and the self-end voltage based on the current vector In and the voltage effective value or the amplitude value | Vn | and the preset line impedance Zn. The current phase θn is corrected by the voltage phase difference θ to make the phase reference common.

第2実施形態の過負荷検出システム1bと過負荷検出方法のその他の構成は第1実施形態と同様である。 Other configurations of the overload detection system 1b and the overload detection method of the second embodiment are the same as those of the first embodiment.

この実施形態においては、電流算出システムの一例として過負荷検出システムを用いて説明したが、本発明の電流算出システムは、制御、保護、計測等の様々な目的のために電流ベクトルを算出することが求められる種々のシステムに適用されることができる。 In this embodiment, the overload detection system has been described as an example of the current calculation system, but the current calculation system of the present invention calculates the current vector for various purposes such as control, protection, and measurement. Can be applied to various systems in which is required.

以上に開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものである。 It should be considered that the embodiments and examples disclosed above are exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims, not the above embodiments and examples, and includes all modifications and modifications within the meaning and scope equivalent to the scope of claims.

1,1b:過負荷検出システム、11a,11b:計測部、13:演算部、
2:多端子送電線、21,22:端子。
1,1b: Overload detection system, 11a, 11b: Measurement unit, 13: Calculation unit,
2: Multi-terminal transmission line, 21, 22: Terminal.

Claims (6)

多端子送電線の2以上の端子に設けられ前記端子の少なくとも電流値を計測する計測部と、
前記計測部によって計測された前記電流値を用いて演算を行い、前記多端子送電線の電流算出対象区間の電流ベクトルIを算出する演算部とを備え、
前記電流値は、電流実効値または振幅値|In|と、自端電圧を基準とした電流位相θnであり、
前記演算部は、少なくとも、
各前記計測部によって計測された前記端子の前記電流実効値または振幅値|In|と前記電流位相θnを各端子の電流ベクトルInに変換し、
2以上の前記端子について得られたそれぞれの前記電流ベクトルInの合成計算によって前記電流算出対象区間の電流ベクトルIを算出するように構成されている、
電流算出システム。
A measuring unit provided at two or more terminals of a multi-terminal transmission line and measuring at least the current value of the terminal,
It is provided with a calculation unit that performs a calculation using the current value measured by the measurement unit and calculates the current vector I of the current calculation target section of the multi-terminal transmission line.
The current value is a current effective value or an amplitude value | In | and a current phase θn with reference to the self-end voltage.
The calculation unit is at least
The current effective value or amplitude value | In | of the terminal measured by each measuring unit and the current phase θn are converted into the current vector In of each terminal.
It is configured to calculate the current vector I of the current calculation target section by the combined calculation of the current vector In obtained for each of the two or more terminals.
Current calculation system.
前記計測部は、さらに前記端子の電圧値を計測する計測部であり、
前記電圧値は、電圧実効値または振幅値であり、
前記演算部は、前記電流ベクトルInと前記電圧実効値または振幅値|Vn|と予め設定された線路インピーダンスZnに基づいて基準電圧と自端電圧の電圧位相差θを計算し、前記電流位相θnを前記電圧位相差θによって補正して位相基準を共通にするように構成されている、請求項1に記載の電流算出システム。
The measuring unit is a measuring unit that further measures the voltage value of the terminal.
The voltage value is a voltage effective value or an amplitude value, and is
The calculation unit calculates the voltage phase difference θ between the reference voltage and its own end voltage based on the current vector In, the voltage effective value or the amplitude value | Vn |, and the preset line impedance Zn, and the current phase θn. The current calculation system according to claim 1, wherein the voltage phase difference θ is corrected by the voltage phase difference θ to make the phase reference common.
前記演算部は、前記電流算出対象区間の前記電流ベクトルIの大きさから前記電流算出対象区間の過負荷を検出するように構成されている、請求項1または請求項2に記載の電流算出システム。 The current calculation system according to claim 1 or 2, wherein the calculation unit is configured to detect an overload in the current calculation target section from the magnitude of the current vector I in the current calculation target section. .. 演算部が多端子送電線の2以上の端子の少なくとも電流値を用いて演算を行い、前記多端子送電線の電流算出対象区間の電流ベクトルIを算出する方法であって、
前記電流値は、電流実効値または振幅値|In|と、自端電圧を基準とした電流位相θnであり、
前記演算部は、少なくとも
前記端子の前記電流実効値または振幅値|In|と前記電流位相θnを各端子の電流ベクトルInに変換し、
2以上の前記端子について得られたそれぞれの前記電流ベクトルInの合成計算によって前記電流算出対象区間の電流ベクトルIを算出する、電流の算出方法。
A method in which the calculation unit performs a calculation using at least the current values of two or more terminals of the multi-terminal transmission line, and calculates the current vector I of the current calculation target section of the multi-terminal transmission line.
The current value is a current effective value or an amplitude value | In | and a current phase θn with reference to the self-end voltage.
The calculation unit converts at least the current effective value or amplitude value | In | of the terminal and the current phase θn into the current vector In of each terminal.
A current calculation method for calculating the current vector I of the current calculation target section by a combined calculation of the current vector In obtained for each of the two or more terminals.
前記演算部は、さらに前記端子の電圧値を用いて演算を行い、
前記電圧値は、電圧実効値または振幅値であり、
前記演算部は、前記電流ベクトルInと前記電圧実効値または振幅値|Vn|と予め設定された線路インピーダンスZnに基づいて基準電圧と自端電圧の電圧位相差θを計算し、前記電流位相θnを前記電圧位相差θによって補正して位相基準を共通にする、請求項4に記載の方法。
The calculation unit further performs a calculation using the voltage value of the terminal, and then performs a calculation.
The voltage value is a voltage effective value or an amplitude value, and is
The calculation unit calculates the voltage phase difference θ between the reference voltage and its own end voltage based on the current vector In, the voltage effective value or the amplitude value | Vn |, and the preset line impedance Zn, and the current phase θn. The method according to claim 4, wherein is corrected by the voltage phase difference θ to make the phase reference common.
前記演算部は、前記電流算出対象区間の前記電流ベクトルIの大きさから前記電流算出対象区間の過負荷を検出する、請求項4または請求項5に記載の電流の算出方法。

The current calculation method according to claim 4 or 5, wherein the calculation unit detects an overload in the current calculation target section from the magnitude of the current vector I in the current calculation target section.

JP2020022775A 2020-02-13 2020-02-13 Transmission line current calculation system and current calculation method Active JP6869389B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020022775A JP6869389B1 (en) 2020-02-13 2020-02-13 Transmission line current calculation system and current calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022775A JP6869389B1 (en) 2020-02-13 2020-02-13 Transmission line current calculation system and current calculation method

Publications (2)

Publication Number Publication Date
JP6869389B1 true JP6869389B1 (en) 2021-05-12
JP2021129415A JP2021129415A (en) 2021-09-02

Family

ID=75801846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022775A Active JP6869389B1 (en) 2020-02-13 2020-02-13 Transmission line current calculation system and current calculation method

Country Status (1)

Country Link
JP (1) JP6869389B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143460A (en) * 1976-05-26 1977-11-30 Tokyo Electric Power Co Inc:The Trouble point decision system
JPS62177463A (en) * 1986-01-30 1987-08-04 Mitsubishi Electric Corp Fault point locating system
JPH03245069A (en) * 1990-02-22 1991-10-31 Toshiba Corp Apparatus for locating fault point
JP3284589B2 (en) * 1992-06-01 2002-05-20 株式会社日立製作所 Transmission line protection method and protection relay device
JPH07109427B2 (en) * 1993-03-30 1995-11-22 株式会社近計システム Power system accident aspect identification device
JPH0798352A (en) * 1993-09-28 1995-04-11 Nissin Electric Co Ltd Fault zone selecting method
JP2007132897A (en) * 2005-11-14 2007-05-31 Hioki Ee Corp Measuring instrument
JP5021341B2 (en) * 2006-03-06 2012-09-05 関西電力株式会社 Ground fault bank identification method and ground fault bank identification device
JP4921929B2 (en) * 2006-11-09 2012-04-25 株式会社東芝 Distribution system short circuit protection system and method

Also Published As

Publication number Publication date
JP2021129415A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US9547044B2 (en) Method and apparatus for the measurement of a resistance of a switching contact of an electrical circuit breaker
CN100431232C (en) Estimating of power transmission net state
US20170108542A1 (en) Determining status of electric power transmission lines in an electric power transmission system
EP3506445B1 (en) System for identification of a feeder with high-ohmic earth fault in a distribution network
US10859612B2 (en) Method and testing device for testing wiring of transformers
US20100301872A1 (en) Method for Determination of a Setting Value Which Indicates a Ground Impedance, and Measurement Device
Li et al. Multi-sample differential protection scheme in DC microgrids
CN111937264B (en) Method and apparatus for protection in a multi-terminal power transmission system
CN111226363B (en) Method and device for identifying fault sections in a multi-terminal hybrid line
US20130304406A1 (en) Apparatus and Method of Fault Detection and Location Determination
KR102378031B1 (en) Current Differential Relay and Sampling Synchronization Method
JP6869389B1 (en) Transmission line current calculation system and current calculation method
US10916930B2 (en) Electrical power systems
JP2012163384A (en) Short circuit capacity measuring system
CN111527661A (en) Fault location in multi-terminal tapped lines
CN108427058A (en) It is a kind of based on synchronize vector overhead transmission line short-circuit impedance measuring device
CN208860909U (en) A kind of overhead transmission line short-circuit impedance measuring device based on synchronous vector
JP2012090386A (en) Distribution line switching load permission determination system
WO2015044803A1 (en) Method for connecting subsystems of an electrical power system and an intelligent electronic device therefor
KR101108683B1 (en) Apparatus and method for compensating a phase difference of differential protection ied based on process bus
Brown et al. A power swing relay for predicting generation instability
RU2741261C1 (en) Method of adaptation of distance protection and power line fault location detector using model thereof
JPS61106028A (en) System stabilizer
JPH04140016A (en) Method and device for locating ground fault, and ground fault distance relay
JP2008118763A (en) System and method for determining quality of busbar characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6869389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250