JP6866660B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6866660B2
JP6866660B2 JP2017016902A JP2017016902A JP6866660B2 JP 6866660 B2 JP6866660 B2 JP 6866660B2 JP 2017016902 A JP2017016902 A JP 2017016902A JP 2017016902 A JP2017016902 A JP 2017016902A JP 6866660 B2 JP6866660 B2 JP 6866660B2
Authority
JP
Japan
Prior art keywords
combustion
pressure signal
angle
combustion chamber
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017016902A
Other languages
English (en)
Other versions
JP2018123768A (ja
Inventor
真也 増原
真也 増原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2017016902A priority Critical patent/JP6866660B2/ja
Publication of JP2018123768A publication Critical patent/JP2018123768A/ja
Application granted granted Critical
Publication of JP6866660B2 publication Critical patent/JP6866660B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関を気筒の燃焼室内の燃焼安定性に応じて制御可能に構成される内燃機関の制御装置に関する。
内燃機関、特に、HCCI(Homogeneous Charge Compression Ignition、予混合圧縮着火)エンジンにおいては、燃料を燃焼室内で安定的に燃焼させることが求められる。例えば、内燃機関を搭載した車両において、燃焼室内の燃焼が不安定になると、内燃機関の出力が安定しなくなり、その結果、車両のドライバビリティが悪化するおそれがある。さらに、不安定な燃焼が継続すると、最悪の場合には失火、部分燃焼等が発生し、ひいては、触媒被毒、アフターファイア等が発生するおそれがある。そのため、燃焼が不安定になった場合には、内燃機関の制御装置が、これを検知し、かつ検知後直ぐに、燃焼を安定的な状態とするように内燃機関を制御している。
一般的に、内燃機関の制御装置においては、その燃焼室内の燃焼圧力に基づいて燃焼安定性を判定することが行われている。例えば、内燃機関のうちレシプロエンジンにおいては、燃焼圧力を直接的に検出するようにシリンダヘッドに搭載された圧力センサ(以下、「筒内圧力センサ」という)が採用されている。しかしながら、シリンダヘッドに筒内圧力センサを搭載するためには、筒内圧力センサを挿入するための孔をシリンダヘッドに形成する必要がある。さらに、かかる孔とシリンダヘッド内に形成されている冷却水経路との間をシールする追加工が必要となり、かかる追加工は特に厳密に行う必要がある。かかる孔に筒内圧力センサを挿入した状態で筒内圧力センサと孔の周面との間をシールする追加工もまた必要となる。製造効率を向上させるためには、このような追加工は省略することが望ましい。また、筒内圧力センサは、燃焼圧力に対する耐久性、高い燃焼圧力検出精度等を必要とするために高価になっている。製造コストを低減するためには、より安価な圧力センサを用いることが望まれる。
そこで、製造効率を向上させ、かつ製造コストを低減すべく、内燃機関の制御装置の一例として、安価な座金型の圧力センサ(以下、「座金センサ」という)を点火プラグとシリンダヘッドとの間に取り付けて、かかる座金センサにより検出された燃焼圧力のバラツキに基づいて燃焼安定性を判定する技術が提案されている。(例えば、特許文献1を参照。)
特開平6−74079号公報
しかしながら、上記制御装置の一例においては、座金センサが、燃焼圧力だけでなく、内燃機関の振動、異常燃焼に伴う振動等のノイズをも検出するおそれがある。そのため、燃焼圧力のバラツキを正確に抽出できず、その結果、燃焼安定性の判定精度が低くなるおそれがある。さらには、安定的な燃焼を維持できないおそれがある。
よって、内燃機関の制御装置においては、製造効率を向上させ、製造コストを低減させ、内燃機関の燃焼安定性の判定精度を高め、さらには、安定的な燃焼を維持することが望まれる。
課題を解決するために、本発明の一態様に係る内燃機関の制御装置によれば、内燃機関における気筒の燃焼室内の燃焼圧力を検出可能とするように前記気筒にその外側から接触し、かつ前記燃焼圧力に応じて圧力信号を出力するように構成される座金型の圧力センサと、前記内燃機関のクランクシャフトのクランク角を取得するように構成されるクランク角取得部とを備え、前記燃焼室内の燃焼の安定性に応じて前記内燃機関を制御可能に構成される内燃機関の制御装置であって、前記圧力信号を前記クランク角に関連付けた角度−圧力信号を算出するように構成される角度−圧力信号算出部と、前記角度−圧力信号を用いて、前記燃焼室内の燃焼状態を推定するための燃焼推定パラメータを算出するように構成される燃焼状態推定部と、前記燃焼推定パラメータを用いて、前記燃焼室内の燃焼の安定性を判定するように構成される安定性判定部とを備え、前記燃焼状態推定部が、前記角度−圧力信号に基づいて、前記燃焼室内の各燃焼サイクルにて、前記クランク角の一定区間にて変化する前記角度−圧力信号の強度の割合である複数の変化率を算出するように構成される変化率算出部と、前記燃焼室内の各燃焼サイクルにおける前記複数の変化率のうち1つの選別変化率を選別するように構成される変化率選別部と、複数の前記燃焼サイクルにおける複数の前記選別変化率を用いて前記燃焼推定パラメータを算出するように構成される燃焼推定パラメータ算出部とを有し、前記燃焼推定パラメータ算出部が、それぞれ前記複数の選別変化率の標準偏差及び平均値を算出するように構成される標準偏差算出部及び平均値算出部と、前記燃焼推定パラメータとして、前記標準偏差を前記平均値により割ることによって得られる変動係数を算出するように構成される変動係数算出部とを有し、前記異常判定部は、前記変動係数が所定の安定性判定閾値よりも大きい場合に、前記燃焼室内の燃焼が不安定であると判定し、かつ前記変動係数が前記安定性判定閾値以下である場合に、前記燃焼室内の燃焼が安定していると判定するように構成されている
本発明の一態様に係る内燃機関の制御装置によれば、製造効率を向上させることができ、内燃機関の燃焼安定性の判定精度を高めることができ、さらには、安定的な燃焼を維持することができる。
本発明の第1実施形態に係るHCCIエンジンの制御装置を含む制御システムを示す模式図である。 図1のA部拡大図である。 本発明の第1実施形態に係る制御装置の構成図である。 本発明の第1実施形態にて、HCCIエンジンの1つの気筒にて得られる典型的な角度−圧力信号を概略的に示す図である。 本発明の第1実施形態に係る制御方法を説明するためのフローチャートである。 1つの気筒の燃焼行程にて、エンジンの回転速度が3000rpmであり、かつBMEPが600kPaである場合に、実施例1の第1及び第2の設定にて座金センサを用いて得られる角度−圧力信号と、比較例1の第1及び第2の設定にて筒内圧力センサを用いて得られる角度−圧力信号とを示す図である。 実施例2の第1のケースにて得られた最大変化率と比較例2の第1のケースにて得られたIMEPとの相関図である。 連続100回の燃焼サイクルにおいて、実施例2の第1のケースにて得られた最大変化率と比較例2の第1のケースにて得られたIMEPとの関係を示すグラフである。 実施例2の第2のケースにて得られた最大変化率と比較例2の第2のケースにて得られたIMEPとの相関図である。 連続100回の燃焼サイクルにおいて、実施例2の第2のケースにて得られた最大変化率と比較例2の第2のケースにて得られたIMEPとの関係を示すグラフである。 実施例3において、エンジンの回転速度が3000rpmであり、かつBMEPが600kPaである場合に、連続100回の燃焼サイクルにて得られた変動係数を示すグラフである。
本発明の第1及び第2実施形態に係る内燃機関の制御装置を含む制御システムについて以下に説明する。なお、好ましい一例として、第1及び第2実施形態に係る制御装置により制御される内燃機関は、自動車に搭載されるNVO(Negative Valve Overlap)方式のHCCIエンジンとする。しかしながら、本発明はこれに限定されず、HCCIエンジンは、NVO方式以外のものであってもよく、例えば、HCCIエンジンは、ポート噴射方式のものであってもよい。また、内燃機関は、レシプロエンジンであればよく、例えば、かかるレシプロエンジンは、火花点火方式のエンジン、PFI(Port Fuel Injection、吸気ポート燃料噴射)方式のガソリンエンジン、ガソリン直噴エンジン、ディーゼルエンジン、CNG(Compressed Natural Gas、圧縮天然ガス)エンジンであってもよい。
なお、レシプロエンジンは、特に、4ストローク方式のものであると好ましい。しかしながら、レシプロエンジンは、2ストローク方式のものとすることもできる。レシプロエンジンは、特に、複数の気筒を有すると好ましい。しかしながら、レシプロエンジンは、単気筒のものとすることもできる。内燃機関は、自動車以外の車両に搭載されてもよく、例えば、内燃機関は、自動二輪車に搭載されてもよい。内燃機関はまた、発電用の内燃機関、各種作業機械等に搭載される汎用エンジン、船内機、船外機、船内外機等であってもよい。
[第1実施形態]
本発明の第1実施形態に係る制御装置を含む制御システムについて説明する。
[制御システムの概略について]
最初に、制御システムの概略について説明する。図1に示すように、本実施形態に係る制御システムは、HCCIエンジン(以下、単に「エンジン」という)1と、自動車のアクセル操作部として構成されるアクセルペダル2と、エンジン1を制御可能に構成される制御装置3とを備える。エンジン1は複数の気筒11を有し、図1においては、エンジン1における複数の気筒11のうち1つの断面が模式的に示されている。
アクセル操作部は、アクセルペダル以外であってもよく、特に、自動二輪車の場合、アクセル操作部はアクセルグリップであるとよい。制御装置3は、エンジン1の制御に用いられる制御ユニットとして構成されるECU(Engine Control Unit)31と、各気筒11に取り付けられる座金型の圧力センサ(以下、「座金センサ」という)32とを有する。
ECU31は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等の電子部品、かかる電子部品等を配置した電気回路等を含むように構成されると好ましい。また、座金センサ32は圧電素子(図示せず)を有し、特に図2に断面を示すように、座金センサ32は略リング形状に形成されている。かかる座金センサ32が、各気筒11の燃焼室12内の燃焼圧力を検出可能とするように各気筒11にその外側から接触した状態で取り付けられている。なお、座金センサ32は、複数の気筒11のうち少なくとも1つに取り付けられていればよいが、特に、座金センサ32は複数の気筒11の全てに取り付けられると好ましい。
このような制御システム及びその制御装置3は、製造効率及び燃焼安定性の判定精度を高めることができ、かつ安定的な燃焼を維持できるように、座金センサ32によって検出された燃焼圧力を用いて燃焼室12内の不安定な燃焼を検知する構成となっている。また、制御システム及びその制御装置3は、不安定な燃焼状態を解消できるようにエンジン1を制御する構成となっている。
[エンジンの詳細について]
ここで、図1を参照してエンジン1の詳細について説明する。エンジン1の複数の気筒11はシリンダブロック13によって画定されている。エンジン1は、各気筒11内をその軸線方向に往復運動可能に構成されるピストン14を備える。各気筒11の頂部側にはシリンダヘッド15が配置されている。燃焼室12は、気筒11とピストン14とシリンダヘッド15とによって囲まれている。
シリンダブロック13に対して気筒11の底部側にはクランクケース16が配置され、クランクケース16内にはクランクシャフト17が配置されている。各気筒11内のピストン14は、コネクティングロッド18を介してクランクシャフト17に連結されている。ピストン14の往復運動はクランクシャフト17の回転運動に変換されるようになっている。
シリンダヘッド15には、燃焼室12内で火花放電を可能とするように構成される点火プラグ19が取り付けられている。また、シリンダヘッド15には吸気ポート20及び排気ポート21が接続されている。吸気ポート20は、シリンダヘッド15との接続部にて燃焼室12に向けて開口する吸気開口部20aを有し、かつ排気ポート21は、シリンダヘッド15との接続部にて燃焼室12に向けて開口する排気開口部21aを有する。吸気ポート20は、空気を燃焼室12に送る経路を画定し、かつ排気ポート21は、燃焼室12内の燃焼後に発生する排気ガスを触媒(図示せず)に向けて送る経路を画定している。しかしながら、本発明はこれに限定されず、PFI方式のエンジンの場合には、吸気ポートが、燃料及び空気を含む予混合気を燃焼室に送る経路を画定するとよい。さらに、吸気開口部20aは吸気バルブ22によって開閉可能になっており、かつ排気開口部21aは排気バルブ23によって開閉可能になっている。
吸気ポート20に対して空気流の上流側にはスロットルバルブ24が配置されており、スロットルバルブ24は、吸気ポート20から燃焼室12に送られる空気の流量を調節可能とするように構成されている。シリンダヘッド15にはまた、直噴用インジェクタ25が取り付けられており、直噴用インジェクタ25は、燃焼室12内に燃料を直接噴射するように構成されている。
エンジン1においては、吸気ポート20から送られる空気と直噴用インジェクタ25から噴射される燃料とによって、HCCI燃焼に適した混合気を燃焼室12内にて生成できるようになっており、かかる混合気を充填した燃焼室内12では、点火プラグ19を用いずに自着火を発生させることができる。また、エンジン1は、低負荷運転時等のように着火時期が不安定になり易い運転状態、又は高負荷運転時等のようにHCCI燃焼が困難な運転状態では、点火プラグ19を用いて燃焼室12内にて火花放電を発生させることによって燃焼のための火炎核を発生させるように構成されるとよい。
特に、4ストローク方式であるエンジン1の1回の燃焼サイクルにおいては、燃焼行程ST1、排気行程ST2、吸気行程ST3、及び圧縮行程ST4がかかる順番にて行われる。1回の燃焼サイクルにおいて、クランクシャフト17は2回転する。そのため、1回の燃焼サイクルにおいて、クランクシャフト17のクランク角は原則的には720°変化し、燃焼行程ST1、排気行程ST2、吸気行程ST3、及び圧縮行程ST4のそれぞれにおいて、クランクシャフト17のクランク角は原則的には180°変化する。
[制御装置の詳細について]
次に、制御装置3の詳細について説明する。特に図2に示すように、座金センサ32は、シリンダヘッド15と点火プラグ19との間にて締め付けられている。そのため、燃焼室12内での燃焼に起因して振動が発生すると、かかる振動によって座金センサ32の締付荷重が圧縮方向又は弛緩方向に変化し、締付荷重の変化によって圧電素子の表面電位が変化する。座金センサ32は、圧電素子の表面電位の変化に応じた電荷信号(以下、「圧力信号」という)を出力する。しかしながら、本発明はこれに限定されず、座金センサは、気筒の燃焼室内の燃焼圧力を検出可能であれば、シリンダヘッドと点火プラグ以外の部材との間に締め付けられてもよい。かかる座金センサ32は、燃焼室12内の燃焼圧力に応じて圧力信号を生成することができる。
図1に示すように、制御装置3はまた、クランクシャフト17のクランク角を検出可能なクランク角検出部として構成されるクランク角センサ33を有する。クランク角センサ33は、クランクシャフト17の回転速度、すなわち、エンジン1の回転速度を検出することもできる。クランク角センサ33は、特に、クランクシャフト17に取り付けられたタイミングロータ(図示せず)の回転角度及び回転速度を非接触式に検出可能に構成され、かつタイミングロータの周囲に配置されると好ましい。
さらに、制御装置3は、スロットルバルブ24の開度を検出可能なスロットル開度検出部として構成されるスロットル開度センサ34と、アクセルペダル2の操作量を検出可能なアクセル操作量検出部として構成されるアクセルセンサ35とを有する。制御装置3はまた、吸気ポート20内の空気の圧力を検出可能な吸気圧検出部として構成される吸気圧センサ36と、燃焼室12から排気ポート21に送られた排気ガス中の酸素濃度及び未燃ガス濃度に基づいて燃焼室12内の混合気の空燃比を検出可能な空燃比検出部として構成されるLAFセンサ(Linear Air-Fuel ratio sensor)37とを有する。吸気圧センサ36は、吸気バルブ22とスロットルバルブ24との間の吸気ポート20上に配置されている。LAFセンサ37は排気ポート21上に配置されている。
[ECUの詳細について]
図3を参照して制御装置3のECU31の詳細について説明する。座金センサ32から送られる圧力信号は微弱であるので、ECU31は、この圧力信号を受け取り、かつ圧力信号を増幅するように構成される圧力信号増幅部41を有する。圧力信号増幅部41は座金センサ32と電気的に接続されている。
ECU31は、圧力信号増幅部41により増幅された圧力信号を取得可能に構成される圧力信号取得部42と、クランク角センサ33から送られるクランク角の検出値θを取得するように構成されるクランク角取得部43とを有する。ECU31はまた、圧力信号取得部42により取得された圧力信号をクランク角取得部43により取得されたクランク角の検出値θに関連付けた角度−圧力信号を算出するように構成される角度−圧力信号算出部44を有する。
角度−圧力信号算出部44は、吸気バルブ22及び排気バルブ23の両方を閉じた状態に対応するクランク角の検出値θの範囲内で角度−圧力信号を算出すると好ましい。なお、典型的には、吸気下死点から排気下死点までの間に吸気バルブ22及び排気バルブ23の両方が閉じる。さらには、角度−圧力信号算出部44は、燃焼開始時期から起算したクランク角の検出値θの範囲で角度−圧力信号を算出すると好ましく、特に、角度−圧力信号算出部44は、燃焼開始時期からそれ以降に現れる角度−圧力信号の最初の変曲点又は最大ピークまでの期間に対応するクランク角の検出値θの範囲で、角度−圧力信号を算出するとより好ましい。
ここで、典型的な角度−圧力信号の概略を図4に示す。なお、図4において、横軸θはクランク角の検出値θ(°)を示し、縦軸Iは角度−圧力信号の強度I(V)を示し、かつ実線L1が角度−圧力信号を示す。気筒11内においては、クランク角の検出値θが原則的に0°〜180°の範囲にあるときに燃焼行程ST1が行われ、クランク角の検出値θが原則的に180°〜360°の範囲にあるときに排気行程ST2が行われ、クランク角の検出値θが原則的に360°〜540°の範囲にあるときに吸気行程ST3が行われ、かつクランク角の検出値θが原則的に540°〜720°の範囲にあるときに圧縮行程ST4が行われる。この場合、クランク角の検出値θが原則的に180°である状態が排気下死点に相当し、クランク角の検出値θが原則的に540°である状態が吸気下死点に相当する。このような角度−圧力信号は、圧縮行程ST4から燃焼行程ST1に渡る期間にて突出するパルス波形を有する。かかるパルス波形は燃焼行程ST1にて最大ピークに達する。
再び図3を参照すると、ECU31は、所定の遮断周波数よりも高い周波数の成分を逓減するフィルタ処理を、角度−圧力信号算出部44から送られる角度−圧力信号に施すように構成されるフィルタ部45を有すると好ましい。フィルタ部45は、ローパスフィルタ処理又はバンドパスフィルタ処理を実施するように構成されている。遮断周波数は、FFT解析(Fast Fourier Transform Analysis、高速フーリエ変換解析)等の手法を用いて、エンジンの駆動振動、ノッキング等に起因するノイズ信号の周波数帯域を確認した上で設定されるとよい。一例として、遮断周波数は、約5kHzであるとよく、特に、約1kHzであると好ましい。しかしながら、本発明はこれに限定されず、遮断周波数は、ノイズ信号を除去でき、かつ燃焼室内の燃焼に起因する角度−圧力信号を精度良く抽出できれば、その他の値になっていてもよい。
ECU31は、角度−圧力信号算出部44からフィルタ部45を経由して送られる角度−圧力信号を用いて、各気筒11の燃焼室12内の燃焼状態を推定するための燃焼推定パラメータを算出するように構成される燃焼状態推定部46と、この燃焼状態推定部46により算出された燃焼推定パラメータを用いて、各燃焼室12内の燃焼安定性を判定するように構成される安定性判定部47とを有する。さらに、ECU31は、直噴用インジェクタ25からの燃料の噴射を調節可能に構成される直噴調節部48と、気筒11の燃焼室12内に充填された混合気の空燃比を調節可能に構成される空燃比調節部49とを有する。
さらに、図1を参照して説明すると、ECU31は、クランク角センサ33から送られるエンジン1の回転速度の検出値、スロットル開度センサ34から送られるスロットル開度の検出値、アクセルセンサ35から送られるアクセル操作量の検出値に応じて定められる要求トルク、吸気圧センサ36から送られる空気の圧力の検出値等のうち少なくとも1つに基づいて、空気の流量を調節するように構成されている。空気の流量は、吸気バルブ22の開閉時期、スロットルバルブ24の開度等の制御によって調節することができる。
[燃焼状態推定部の詳細について]
図3を参照してECU31の燃焼状態推定部46の詳細について説明する。燃焼状態推定部46は、角度−圧力信号上で、燃焼室12内の各燃焼サイクルにおいて、クランク角の検出値θの一定区間にて変化する角度−圧力信号の強度Iの割合である複数の変化率C(=dI/dθ)を算出するように構成される変化率算出部51を有する。かかる変化率算出部51は算出した変化率Cを記憶可能になっている。また、変化率Cを定めるクランク角の検出値θの一定区間は、デジタル化された角度−圧力信号の分解能に応じて定められるとよい。例えば、かかる一定区間は、単位角度、すなわち、約1°とすることができる。しかしながら、本発明はこれに限定されず、クランク角の検出値θの一定区間は、約0.05°以上かつ約5°以下の範囲内にて定められてもよい。
燃焼状態推定部46は、燃焼室12内の各燃焼サイクルにおいて変化率算出部51により算出された複数の変化率Cのうち最大値(以下、「最大変化率」という)Mを選別するように構成される変化率選別部52を有する。具体的には、変化率選別部52は、1つの燃焼サイクルにおいて変化率算出部51により記憶された複数の変化率Cから最大変化率Mを選別する。さらに、変化率選別部52は、算出した最大変化率Mを記憶可能になっている。しかしながら、本発明はこれに限定されず、変化率選別部は、最大変化率Mと実質的に等しい値が得られるのであれば、最大変化率M以外の変化率Cを選別してもよい。例えば、変化率選別部は、複数の変化率Cのうちn番目に大きなものを選別してもよい。なお、nは2以上の整数とし、特に、nは2又は3であると好ましい。さらに、変化率選別部52は、算出した最大変化率Mを記憶可能になっている。
ここで、最大変化率Mは、燃焼安定性の評価項目として一般的に用いられるIMEP(Indicated Mean Effective Pressure、図示平均有効圧力)に対して高い相関性を有する。具体的には、最大変化率Mは、燃焼開始時期からそれ以降最初に現れる角度−圧力信号の最大ピークまでの期間にて得ることができ、かかる期間にて得られる最大変化率M及びIMEPは互いに対して高い相関性を有する。そのため、かかる最大変化率Mを用いて、後述のように燃焼室12内の燃焼安定性を評価することができる。
燃焼状態推定部46は、それぞれ複数の燃焼サイクルにて変化率選別部52により算出された複数の最大変化率Mを用いて、燃焼推定パラメータを算出するように構成される燃焼推定パラメータ算出部53を有する。かかる燃焼推定パラメータ算出部53は、それぞれ複数の最大変化率Mの標準偏差σ及び平均値μを算出するように構成される標準偏差算出部61及び平均値算出部62を有する。標準偏差算出部61及び平均値算出部62は、最新の燃焼サイクル及びその前の燃焼サイクルにて変化率選別部52に記憶された複数の最大変化率Mに基づいて、標準偏差σ及び平均値μを算出する。さらに、燃焼推定パラメータ算出部53は、燃焼推定パラメータとして、それぞれ標準偏差算出部61及び平均値算出部62により算出される標準偏差σ及び平均値μを用いて変動係数V(=(σ/μ)×100(%))を算出するように構成される変動係数算出部63を有する。
しかしながら、本発明はこれに限定されず、燃焼推定パラメータ算出部が、標準偏差算出部の代わりに、複数の最大変化率Mの最小値を算出するように構成される最小値算出部を有し、さらに、燃焼推定パラメータ算出部の変動係数算出部が、標準偏差σの代わりに、最小値算出部により算出される最小値を用いて変動係数を算出してもよい。また、燃焼推定パラメータ算出部が、最大変化率MからIMEPを推定し、かつ推定した複数のIMEPから変動係数を算出し、安定性判定部が、かかる変動係数に基づいて燃焼安定性を判定してもよい。この場合、最大変化率MとIMEPとの関係を定義した計算式又はマップを予め求めておき、さらに、燃焼推定パラメータ算出部に、かかる計算式又はマップが格納されて、計算式又はマップを用いて最大変化率MからIMEPが推定されるとよい。なお、最大変化率MとIMEPとの関係は、運転条件に応じた適合試験等の実験、数値シミュレーション等によって予め求められるとよい。
[安定性判定部の詳細について]
図3を参照してECU31の安定性判定部47の詳細について説明する。安定性判定部47は、変動係数算出部63により算出された変動係数Vが所定の安定性判定閾値Tよりも大きい場合に、燃焼室12内の燃焼が不安定であると判定し、かつかかる変動係数Vが安定性判定閾値T以下である場合に、燃焼室12内の燃焼が安定していると判定するようになっている。ここで、安定性判定閾値は次のように予め決定されると好ましい。すなわち、実験、数値シミュレーション等によって、本実施形態のエンジン1と同様の燃焼特性を有するエンジンにて燃焼が安定している状態で変動係数Vを求め、さらに、実験、数値シミュレーション等によって、燃焼室12内の燃焼が安定するように、特に、燃焼室12内の失火又は部分燃焼の発生を確実に回避できるように、求めた変動係数に対して、0%より大きく、かつ40%よりも小さな範囲内にて安定性判定閾値Tを決定するとよい。
安定性判定閾値Tはエンジン1の仕様に応じて変更することができる。また、安定性判定閾値Tは、エンジン1のあらゆる運転条件にて一定とすることができる。しかしながら、本発明はこれに限定されず、安定性判定閾値は、エンジンの運転条件に応じて変更可能になっていてもよい。例えば、エンジンの燃焼が安定し難い場合、特に、エンジンが低回転かつ低負荷の状態にある場合の安定性判定閾値を、エンジンが定常運転の状態にある場合の安定性判定閾値に対して減少させ、かつエンジンの燃焼が安定し易い場合の安定性判定閾値を、エンジンが定常運転の状態にある場合の安定性判定閾値に対して増加させるとよい。
[直噴調節部の詳細について]
図3を参照してECU31の直噴調節部48の詳細について説明する。直噴調節部48は、クランク角センサ33から送られるエンジン1の回転速度の検出値及びスロットル開度センサ34から送られるスロットル開度の検出値に基づいて、それぞれ直噴用インジェクタ25からの燃料の噴射量及び噴射時期の目標値を算出する目標噴射量算出部71及び目標噴射時期算出部72を有する。目標噴射量算出部71及び目標噴射時期算出部72のそれぞれは、クランク角センサ33及びスロットル開度センサ34と電気的に接続されている。
目標噴射量算出部71には噴射量マップが格納されていると好ましく、さらに、目標噴射量算出部71は、噴射量マップに基づいて、エンジン1の回転速度及びスロットル開度の検出値から噴射量の目標値を算出すると好ましい。具体的には、噴射量の目標値は、噴射量マップ上でエンジン1の回転速度及びスロットル開度の検出値に対応する補正係数を用いて算出されると好ましい。また、目標噴射時期算出部72には噴射時期マップが格納されていると好ましく、さらに、目標噴射時期算出部72は、噴射時期マップに基づいて、エンジン1の回転速度及びスロットル開度の検出値から噴射時期の目標値を算出すると好ましい。具体的には、噴射時期の目標値は、噴射時期マップ上でエンジン1の回転速度及びスロットル開度の検出値に対応する補正係数を用いて算出されると好ましい。
直噴調節部48は、目標噴射量算出部71により算出された噴射量の目標値と、目標噴射時期算出部72により算出された噴射時期の目標値とに応じて直噴用インジェクタ25からの燃料の噴射を制御するように構成される直噴用インジェクタ制御部73を有する。直噴用インジェクタ制御部73はパルス波形を含む制御信号を直噴用インジェクタ25に送るようになっており、直噴用インジェクタ25は、かかる制御信号に基づいて燃料を噴射するとよい。この場合、直噴用インジェクタ25からの燃料噴射量は、制御信号のパルス振幅及びパルス幅に応じて決定されるとよい。また、直噴用インジェクタ25の燃料噴射時期は、制御信号のパルス間隔に応じて決定されるとよい。
[空燃比調節部の詳細について]
図3を参照して、空燃比調節部49の詳細について説明する。空燃比調節部49は、クランク角センサ33から送られるエンジン1の回転速度の検出値及びスロットル開度センサ34から送られるスロットル開度の検出値に基づいて、燃焼室12内に充填される混合気の空燃比の目標値を算出するように構成される目標空燃比算出部81を有する。目標空燃比算出部81は、クランク角センサ33及びスロットル開度センサ34と電気的に接続されている。目標空燃比算出部81には空燃比マップが格納されていると好ましく、さらに、目標空燃比算出部81は、空燃比マップに基づいて、エンジン1の回転速度及びスロットル開度の検出値から空燃比の目標値を算出すると好ましい。具体的には、空燃比の目標値は、空燃比マップ上でエンジン1の回転速度及びスロットル開度の検出値に対応する補正係数を用いて算出されると好ましい。
さらに、目標空燃比算出部81は、安定性判定部47が燃焼室12内の燃焼が不安定であると判定した場合、特に、燃焼室内12にて失火又は部分燃焼が発生し得ると判定した場合、空燃比の目標値をリッチ側に補正するようになっている。この場合、目標空燃比算出部81は、空燃比マップの一部又は全体の領域における混合気の空燃比の目標値を増加させるように空燃比マップを補正すると好ましい。特に、目標空燃比算出部81において、空燃比マップが、このように空燃比の目標値を増加させように予め補正されたものに書き換えられるとよい。
空燃比調節部49は、LAFセンサ37から送られる混合気の空燃比の検出値を目標空燃比算出部81により算出される混合気の空燃比の目標値と略一致させるようにエンジン1を制御する空燃比補正部82を有する。空燃比補正部82はLAFセンサ37と電気的に接続されている。例えば、空燃比補正部82は、混合気の空燃比の検出値を混合気の空燃比の目標値と略一致させるように、目標噴射量算出部71にて算出される噴射量の目標値を修正する。具体的には、空燃比補正部82が、目標噴射量算出部71の噴射量マップを補正するとよく、かかる補正によって、直噴用インジェクタ制御部73から直噴用インジェクタ25に送られる制御信号のパルス幅が変更されるとよい。
[制御方法について]
図5を参照して、本実施形態に係るエンジン1の制御方法について以下に説明する。圧力信号取得部42が圧力信号を取得し、かつクランク角取得部43がクランク角の検出値θを取得する(ステップS1)。角度−圧力信号算出部44が、圧力信号をクランク角の検出値θに関連付けた角度−圧力信号を算出する(ステップS2)。フィルタ部45が、角度−圧力信号に対して遮断周波数よりも高い周波数の成分を逓減するフィルタ処理を施す(ステップS3)。
変化率算出部51が、角度−圧力信号上で、燃焼室12内の各燃焼サイクルにおいて、クランク角の検出値θの一定区間にて変化する角度−圧力信号の強度Iの割合である複数の変化率Cを算出かつ記憶する(ステップS4)。変化率選別部52が、各燃焼サイクルにて、複数の変化率Cの最大変化率Mを選別かつ記憶する(ステップS5)。標準偏差算出部61が、複数の最大変化率Mの標準偏差σを算出し、かつ平均値算出部62が複数の最大変化率Mの平均値μを算出する(ステップS6)。変動係数算出部63が、標準偏差σ及び平均値μを用いて変動係数Vを算出する(ステップS7)。安定性判定部47が、変動係数Vが安定性判定閾値T以下であるか否かを判定する(ステップS8)。
安定性判定部47が、変動係数Vが安定性判定閾値Tよりも大きいと判定した場合(NО)、燃焼室12内の燃焼が不安定であると判定される(ステップS9)。この場合、目標空燃比算出部81が、混合気の空燃比の目標値をリッチ側に補正する(ステップS10)。LAFセンサ37により検出された混合気の空燃比の検出値を補正された空燃比の目標値と略一致させるように、目標噴射量算出部71にて設定された噴射量の目標値を補正し、かつ補正された噴射量の目標値に応じて直噴用インジェクタ25からの燃料噴射量を増加させる(ステップS11)。その一方で、安定性判定部47が、変動係数Vが安定性判定閾値T以下であると判定した場合(NО)、燃焼室12内の燃焼が安定していると判定される(ステップS12)。この場合、気筒11に関するこれまでの運転状態を維持する(ステップ13)。かかる制御方法は、燃焼が安定するまで繰り返されるフィードバック制御の態様にて実施されてもよい。
しかしながら、本発明はこれに限定されず、本発明の制御方法においては、上記制御システムの変形例等に対応してそのステップが変更されてもよい。
以上、本実施形態に係る制御装置3によれば、気筒11にその外側から接触するように取り付けられる座金センサ32のコストは、燃焼室内で直接的に燃焼圧力を検出するようにシリンダヘッド15に搭載される従来の圧力センサ(以下、「筒内圧力センサ」という)のコストと比較して低くすることができるので、製造コストを低減できる。また、座金センサ32が、座金型になっており、かつ気筒11にその外側から接触するように取り付けられるので、取付が容易になっている。特に、座金センサ32がシリンダヘッド15と点火プラグ19との間で締め付けられるので、取付がより容易になる。その結果、製造効率を向上させることができる。さらに、燃焼圧力の圧力信号をクランクシャフト17のクランク角に関連付けた角度−圧力信号を用いて、燃焼室12内の燃焼状態を推定する燃焼推定パラメータを算出し、かかる燃焼推定パラメータを用いて燃焼安定性を判定するので、燃焼安定性の判定精度を高めることができ、ひいては、安定的な燃焼を維持することができる。
本実施形態に係る制御装置3によれば、吸気バルブ22及び排気バルブ23を閉じた状態で検出された燃焼圧力に対応する圧力信号は、吸気バルブ22及び排気バルブ23の着座時に生ずる振動の影響を受けないので、燃焼安定性の判定精度を高めることができる。付随的には、演算処理に用いられる圧力信号が限定されるので、演算負荷を低減することができる。
本実施形態に係る制御装置3によれば、角度−圧力信号にて遮断周波数よりも高い周波数の成分に含まれるノイズ、例えば、エンジン1の振動、吸気バルブ22及び排気バルブ23の着座時に生ずる振動、ノッキングに伴う振動等を、フィルタ部45によって除去することができるので、角度−圧力信号から燃焼状態を正確に把握できるように角度−圧力信号を精度良く検出することができる。その結果、燃焼安定性の判定精度を高めることができる。
本実施形態に係る制御装置3によれば、クランク角の検出値θの一定区間にて変化する角度−圧力信号の強度Iの割合である複数の変化率C間の最大変化率Mは、燃焼安定性の評価項目として一般的に用いられるIMEPに対して高い相関性を有しており、かかる最大変化率Mを用いて算出される燃焼推定パラメータに基づいて燃焼安定性が判定されるので、燃焼安定性の判定精度を極めて高くすることができる。なお、最大変化率Mの代わりに、複数の変化率Cのうち最大変化率Mと実質的に等しいものを用いた場合にも、同様の効果を得ることができる。
本実施形態に係る制御装置3によれば、複数の最大変化率Mの標準偏差σ及び平均値μに基づく変動係数Vは、上記IMEPに対して高い相関性を有しており、さらに、このような変動係数Vに基づいて燃焼安定性が判定されるので、燃焼安定性の判定精度を極めて高くすることができる。
本実施形態に係る制御装置3によれば、燃焼室12内の不安定な燃焼に関する上述のような正確な判定に基づいて、燃焼室12内の燃焼を安定させるべく混合気の空燃比をリッチ側に変化させるので、安定的な燃焼を確実に維持することができる。特に、本実施形態のようにエンジン1がHCCI方式である場合には、燃焼室12内の失火又は部分燃焼を回避できるので、HCCI燃焼を確実に維持することができる。
[第2実施形態]
本発明の第2実施形態に係る制御装置を含む制御システムについて説明する。本実施形態に係る制御システムは、燃焼室内の燃焼が不安定な場合に燃焼を安定化させるための制御を除いて、第1実施形態に係る制御システムと同様である。
[燃焼室内の燃焼の安定化制御について]
本実施形態における燃焼室内の燃焼の安定化制御について説明する。本実施形態に係る制御システムにおいては、目標噴射時期算出部72が、安定性判定部47が燃焼室12内の燃焼が不安定であると判定した場合、特に、燃焼室内12にて失火又は部分燃焼が発生し得ると判定した場合、各燃焼サイクルにて直噴用インジェクタ25により燃焼室12内に燃料を直接噴射する時期を早めるようになっている。この場合、目標噴射時期算出部72は、噴射時期マップの一部または全体の領域における噴射時期を早めるように噴射時期マップを補正すると好ましい。特に、目標噴射時期算出部72において、噴射時期マップが、このように噴射時期の目標値を増加させように予め補正されたものに書き換えられるとよい。
本実施形態に係る制御方法においては、安定性判定部47が、変動係数Vが安定性判定閾値Tよりも大きいと判定した場合(NО)、燃焼室12内の燃焼が不安定であると判定される。この場合、目標噴射時期算出部72が、直噴用インジェクタ25により燃焼室12内に燃料を直接噴射する時期を早める。
以上、本実施形態に係る制御システムによれば、燃焼室12内の燃焼の安定化制御に基づく以下の効果を除いて、第1実施形態に係る制御システムと同様の効果を得ることができる。燃焼室12内の燃焼の安定化制御に基づく効果について、燃焼室12内の不安定な燃焼に関する上述のような正確な判定に基づいて、燃焼室12内の燃焼を安定させるべく直噴用インジェクタ25により燃焼室12内に燃料を直接噴射する時期を早めるので、安定的な燃焼を確実に維持することができる。特に、本実施形態のようにエンジン1がHCCI方式である場合には、燃焼室12内の失火又は部分燃焼を回避できるので、HCCI燃焼を確実に維持することができる。
ここまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明は、その技術的思想に基づいて変形及び変更可能である。
[実施例1]
実施例1について説明する。実施例1では、座金センサ32に加えて、筒内圧力センサをシリンダヘッド15に取り付けた第1実施形態のエンジン1を用いた。さらに、実施例1では、エンジン1において、ATDC(After Top Dead Center)が9°であるときにMBF(Mass Burned Fraction、質量燃焼割合)が50%となるような設定(以下、「第1の設定」という)と、ATDCが15.5°であるときにMBFが50%となるような設定(以下、「第2の設定」という)とのそれぞれにて、最大変化率Mを算出した。具体的には、第1及び第2の設定のそれぞれにおいて、エンジン1の回転速度を3000rpmとし、気筒11の燃焼室12内のBMEP(Break Mean Effective Pressure、正味平均有効圧力)を600kPaとし、かつHCCI燃焼を発生させる条件で、座金センサ32から圧力信号を取得し、かかる圧力信号に基づく角度−圧力信号を算出し、さらに、角度−圧力信号上で、クランク角の検出値θの一定区間を1°とした場合の最大変化率Mを算出した。
[比較例1]
比較例1について説明する。比較例1では、実施例1と同様のエンジンを用いた。さらに、比較例1では、実施例1と同様の第1及び第2の設定のそれぞれにおいて実施例1と同条件で、実施例1にて圧力信号を取得することと同時に筒内圧力センサから筒内圧力信号を取得し、かかる筒内圧力信号に基づいて筒内角度−圧力信号を算出し、さらに、筒内角度−圧力信号上で、クランク角の検出値θの一定区間を1°とした場合の筒内最大変化率Nを算出した。
実施例1及び比較例1においては、図6に示すような角度−圧力信号及び筒内角度−圧力信号が得られた。なお、図6においては、横軸θがクランク角の検出値θ(°)を示し、紙面上左側の縦軸Pが筒内圧力センサより得られる筒内燃焼圧力の検出値P(bar)を示し、かつ紙面上右側の縦軸Iが座金センサ32により得られる角度−圧力信号の強度I(V)を示す。さらに、図6において、実線L2a及び破線L3aがそれぞれ実施例1における第1及び第2の設定の角度−圧力信号を示し、かる実線L2b及び破線L3bがそれぞれ比較例1における第1及び第2の設定の筒内角度−圧力信号を示す。
図6において、実施例1と比較例1との比較の便宜上、実施例1における第1及び2の設定の角度−圧力信号は、角度−圧力信号の強度Iの正負を逆転させて示されている。図6において、実施例1における第1の設定の角度−圧力信号にてクランク角0°以降の最初の最大ピークが現れるタイミングが、燃焼開始タイミングとなる。また、比較例1における第1及び2の設定の筒内角度−圧力信号を積分したものがIMEPとなる。
このような実施例1及び比較例1における第1及び第2の設定における最大変化率M及び筒内最大変化率Nを比較した。その結果、燃焼行程ST1において、実施例1及び比較例1の第1の設定における最大変化率M及び筒内最大変化率Nは同様の傾向にあり、かつこれらの第2の設定における最大変化率M及び筒内最大変化率Nもまた同様の傾向にあることが確認できた。特に、実施例1及び比較例1における第1の設定を用いて説明すると、図6において、実施例1の最大変化率Mは、Δθにより示されるクランク角の検出値θの一定区間にて角度−圧力信号の強度Iの最大変化量ΔIが得られている角度−圧力信号の領域にて算出され、かつ比較例1の筒内最大変化率Nは、筒内燃焼圧力の検出値Pの最大変化量ΔPが得られている筒内角度−圧力信号の領域にて算出された。
[実施例2]
実施例2について説明する。実施例2では、座金センサ32に加えて、筒内圧力センサをシリンダヘッド15に取り付けた第1実施形態のエンジン1を用いた。さらに、実施例2では、かかるエンジン1の回転速度を1000rpmとし、気筒11の燃焼室12内のBMEPを600kPaとし、かつHCCI燃焼を発生させるケース(以下、「第1のケース」という)と、エンジン1の回転速度を3000rpmとし、気筒11の燃焼室12内のBMEPを600kPaとし、かつHCCI燃焼を発生させるケース(以下、「第2のケース」という)とのそれぞれにおいて、最大変化率Mを算出した。具体的には、座金センサ32から圧力信号を取得し、かかる圧力信号に基づく角度−圧力信号を算出し、さらに、角度−圧力信号から複数の変化率C間の最大変化率Mを算出した。かかる最大変化率Mの算出を連続100回の燃焼サイクルにて行った。なお、変化率Cの算出に用いるクランク角の検出値θの一定区間は1°とした。
[比較例2]
比較例2について説明する。比較例2では、実施例2と同様のエンジンを用いた。さらに、比較例2では、実施例2と同様の第1及び第2のケースにて、実施例2にて圧力信号を取得することと同時に筒内圧力センサから燃焼圧力の検出値を取得し、さらに、かかる燃焼圧力の検出値を用いてIMEPを算出した。かかるIMEPの算出を連続100回の燃焼サイクルにて行った。
実施例2及び比較例2の第1のケースを比較すると、図7に示すような最大変化率MとIMEPとの相関図と、図8に示すような最大変化率MとIMEPとの関係を示すグラフが得られた。また、実施例2及び比較例2の第2のケースを比較すると、図9に示すような最大変化率MとIMEPとの相関図と、図10に示すような最大変化率MとIMEPとの関係を示すグラフが得られた。
なお、図7においては、横軸Mが最大変化率M(V/°)を示し、かつ縦軸IMEPがIMEP(kPa)を示す。また、図7の相関図上には、実施例2及び比較例2の第1のケースにより得られた100回の燃焼サイクルの算出結果がプロットされている。図8においては、横軸CCが燃焼サイクル(サイクル)を示し、紙面上左側の縦軸IMEPがIMEP(kPa)を示し、かつ紙面上右側の縦軸Mが最大変化率M(V/°)を示す。また、図8において、実線L4aが実施例2の第1のケースにおける算出結果を示し、かつ実線L4bが比較例2の第1のケースにおける算出結果を示す。図9においては、横軸Mが最大変化率M(V/°)を示し、かつ縦軸IMEPがIMEP(kPa)を示す。また、図9の相関図上には、実施例2及び比較例2の第2のケースにより得られた100回の燃焼サイクルの算出結果がプロットされている。図10においては、横軸CCが燃焼サイクル(サイクル)を示し、紙面上左側の縦軸IMEPがIMEP(kPa)を示し、かつ紙面上右側の縦軸Mが最大変化率M(V/°)を示す。また、図10において、実線L5aが実施例2の第2のケースにおける算出結果を示し、かつ実線L5bが比較例2の第2のケースにおける算出結果を示す。
かかる図7及び図8に示すように、実施例2及び比較例2の第1のケースに関する最大変化率MとIMEPとの相関係数Rが0.8であり、かつ図9及び図10に示すように、実施例2及び比較例2の第2のケースに関する相関係数が0.85であった。そのため、上記いずれのケースにおいても相関係数Rが0.8以上であり、最大変化率MとIMEPとの相関性が高いことが確認できた。すなわち、最大変化率Mを用いて、高い精度の燃焼安定性の判定を行うことができることが確認できた。
[実施例3]
実施例3について説明する。実施例3においては、実施例2と同様の条件で、100回の燃焼サイクルの最大変化率Mに基づいて変動係数Vを算出し、かかる変動係数Vに基づいて燃焼安定性を評価した。このような条件において、燃焼が不安定な状態を50回目以降の燃焼サイクルで再現して、変動係数Vに基づく燃焼安定性判定の確実性を確認した。
かかる実施例3においては、図11に示すような燃焼サイクルと変動係数Vとの関係が得られた。なお、図11においては、横軸CCが燃焼サイクル(サイクル)を示し、縦軸Vが変動係数V(%)を示し、かつ実線L6が実施例3の算出結果を示す。かかる図11に示すように、変動係数Vが、50回以降の燃焼サイクルで増加し、特に、80回以降の燃焼サイクルで急激に増加していた。そのため、燃焼が不安定な状態は変動係数Vによって判定可能であることが確認できた。例えば、安定性判定閾値Tは、図11に示すように、燃焼が安定している状態の変動係数Vよりも大きく定めることができる。燃焼が安定している状態の変動係数Vに対する安定性判定閾値Tの増加量は、燃焼が安定している状態の変動係数Vと、燃焼が不安定な状態の変動係数Vとを確実に判別可能とするように定められるとよい。
1 HCCIエンジン(エンジン)
11 気筒
12 燃焼室
13 シリンダブロック
17 クランクシャフト
22 吸気バルブ
23 排気バルブ
25 直噴用インジェクタ
3 制御装置
31 ECU
32 座金型の圧力センサ(座金センサ)
43 クランク角取得部
44 角度−圧力信号算出部
45 フィルタ部
46 燃焼状態推定部
47 安定性判定部
48 直噴調節部
49 空燃比調節部
51 変化率算出部
52 変化率選別部
53 燃焼推定パラメータ算出部
61 標準偏差算出部
62 平均値算出部
63 変動係数算出部
θ クランク角の検出値
I 角度−圧力信号の強度
C 変化率
M 複数の変化率の最大値(最大変化率)
σ 標準偏差
μ 平均値
V 変動係数
T 安定性判定閾値

Claims (6)

  1. 内燃機関における気筒の燃焼室内の燃焼圧力を検出可能とするように前記気筒にその外側から接触し、かつ前記燃焼圧力に応じて圧力信号を出力するように構成される座金型の圧力センサと、
    前記内燃機関のクランクシャフトのクランク角を取得するように構成されるクランク角取得部と
    を備え、
    前記燃焼室内の燃焼の安定性に応じて前記内燃機関を制御可能に構成される内燃機関の制御装置であって、
    前記圧力信号を前記クランク角に関連付けた角度−圧力信号を算出するように構成される角度−圧力信号算出部と、
    前記角度−圧力信号を用いて、前記燃焼室内の燃焼状態を推定するための燃焼推定パラメータを算出するように構成される燃焼状態推定部と、
    前記燃焼推定パラメータを用いて、前記燃焼室内の燃焼の安定性を判定するように構成される安定性判定部と
    を備え
    前記燃焼状態推定部が、
    前記角度−圧力信号に基づいて、前記燃焼室内の各燃焼サイクルにて、前記クランク角の一定区間にて変化する前記角度−圧力信号の強度の割合である複数の変化率を算出するように構成される変化率算出部と、
    前記燃焼室内の各燃焼サイクルにおける前記複数の変化率のうち1つの選別変化率を選別するように構成される変化率選別部と、
    複数の前記燃焼サイクルにおける複数の前記選別変化率を用いて前記燃焼推定パラメータを算出するように構成される燃焼推定パラメータ算出部と
    を有し、
    前記燃焼推定パラメータ算出部が、
    それぞれ前記複数の選別変化率の標準偏差及び平均値を算出するように構成される標準偏差算出部及び平均値算出部と、
    前記燃焼推定パラメータとして、前記標準偏差を前記平均値により割ることによって得られる変動係数を算出するように構成される変動係数算出部と
    を有し、
    前記異常判定部は、前記変動係数が所定の安定性判定閾値よりも大きい場合に、前記燃焼室内の燃焼が不安定であると判定し、かつ前記変動係数が前記安定性判定閾値以下である場合に、前記燃焼室内の燃焼が安定していると判定するように構成されている、内燃機関の制御装置。
  2. 前記角度−圧力信号算出部が、前記内燃機関の吸気バルブ及び排気バルブの両方を閉じた状態の前記クランク角の範囲内で前記角度−圧力信号を算出するように構成されている、請求項1の内燃機関の制御装置。
  3. 所定の遮断周波数よりも高い周波数の成分を逓減するフィルタ処理を前記角度−圧力信号に施すように構成されるフィルタ部をさらに備え、
    前記燃焼状態推定部は、前記フィルタ部により前記フィルタ処理を施された前記角度−圧力信号を用いて前記燃焼推定パラメータを算出するように構成されている、請求項1又は2に記載の内燃機関の制御装置。
  4. 前記選別変化率が前記複数の変化率の最大値となっている、請求項1〜3のいずれか一項に記載の内燃機関の制御装置。
  5. 前記安定性判定部が前記燃焼室内の燃焼が不安定であると判定した場合、前記燃焼室内の燃焼を安定させるように前記燃焼室内の混合気の空燃比をリッチ側に変化させる構成である空燃比調節部をさらに備える請求項1〜のいずれか一項に記載の内燃機関の制御装置。
  6. 前記安定性判定部が前記燃焼室内の燃焼が不安定であると判定した場合、前記燃焼室内燃焼を安定させるように、各燃焼サイクルにて直噴用インジェクタにより前記燃焼室内に燃料を直接噴射する時期を早める構成である直噴調節部をさらに備える請求項1〜のいずれか一項に記載の内燃機関の制御装置。
JP2017016902A 2017-02-01 2017-02-01 内燃機関の制御装置 Active JP6866660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016902A JP6866660B2 (ja) 2017-02-01 2017-02-01 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016902A JP6866660B2 (ja) 2017-02-01 2017-02-01 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2018123768A JP2018123768A (ja) 2018-08-09
JP6866660B2 true JP6866660B2 (ja) 2021-04-28

Family

ID=63111200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016902A Active JP6866660B2 (ja) 2017-02-01 2017-02-01 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP6866660B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069852A1 (ja) * 2022-09-29 2024-04-04 株式会社Subaru 車両用制御装置
CN117740384B (zh) * 2024-02-07 2024-04-16 中国航发四川燃气涡轮研究院 一种燃烧性能敏感性评估方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830305B2 (ja) * 1990-02-21 1998-12-02 日産自動車株式会社 内燃機関の燃焼状態検出装置
JP3550803B2 (ja) * 1995-06-29 2004-08-04 日産自動車株式会社 内燃機関の安定度制御装置
JP4302843B2 (ja) * 1999-11-26 2009-07-29 日本特殊陶業株式会社 内燃機関制御方法
JP3873580B2 (ja) * 2000-06-15 2007-01-24 日産自動車株式会社 圧縮自己着火式内燃機関
JP2002364447A (ja) * 2001-06-08 2002-12-18 Toyota Motor Corp 内燃機関用ノッキング検出装置
DE102007060223A1 (de) * 2007-12-14 2009-06-18 Robert Bosch Gmbh Verfahren zur Bestimmung einer Kraftstoffzusammensetzung oder einer Kraftstoffqualität
JP5071819B2 (ja) * 2009-11-18 2012-11-14 株式会社デンソー 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2018123768A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
JP4096835B2 (ja) 内燃機関の制御装置および内燃機関の失火判定方法
WO2015071725A1 (en) Controller for internal combustion engine
US8949005B2 (en) Control unit of internal combustion engine
JP2017141693A (ja) 内燃機関の制御装置
JP4050229B2 (ja) 4ストロークエンジンの制御装置及び制御方法
JP2007170203A (ja) 内燃機関の燃焼変動検出装置
US9212647B2 (en) Control apparatus of internal combustion engine
JP6866660B2 (ja) 内燃機関の制御装置
JP4227924B2 (ja) 内燃機関の燃料噴射制御装置
US10094316B2 (en) Control apparatus for internal combustion engine
JP4277280B2 (ja) クランク角測定装置および測定方法
JP6872162B2 (ja) 内燃機関の制御装置
JP2010127229A (ja) 内燃機関の制御装置
US20200300194A1 (en) Internal Combustion Engine Control Device and Internal Combustion Engine Control Method
JP2007224810A (ja) 内燃機関の燃料噴射装置及び方法
JP4186163B2 (ja) 筒内圧測定装置および筒内圧測定方法
JP4269931B2 (ja) 筒内圧測定装置および筒内圧測定方法
JP2003056378A (ja) クランクシャフト回転センサ
US10995690B2 (en) Control device of internal combustion engine
JP5023042B2 (ja) 内燃機関の燃料噴射制御装置
JP6696292B2 (ja) 失火検出装置
JP2010138720A (ja) エンジンの点火制御装置
JP2017110508A (ja) 内燃機関の制御装置
JP2006316655A (ja) 内燃機関の制御装置
JPH08312407A (ja) エンジンの運転状態計測方法および制御方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R151 Written notification of patent or utility model registration

Ref document number: 6866660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151