JP6863729B2 - サーモクロミックセンシングデバイス、システム、および方法 - Google Patents

サーモクロミックセンシングデバイス、システム、および方法 Download PDF

Info

Publication number
JP6863729B2
JP6863729B2 JP2016242851A JP2016242851A JP6863729B2 JP 6863729 B2 JP6863729 B2 JP 6863729B2 JP 2016242851 A JP2016242851 A JP 2016242851A JP 2016242851 A JP2016242851 A JP 2016242851A JP 6863729 B2 JP6863729 B2 JP 6863729B2
Authority
JP
Japan
Prior art keywords
test
thermochromic
thermochromic material
light
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016242851A
Other languages
English (en)
Other versions
JP2017118870A (ja
Inventor
マイケル・アイ・レヒト
ヨルグ・マルティン
ピーター・キーゼル
Original Assignee
パロ アルト リサーチ センター インコーポレイテッド
パロ アルト リサーチ センター インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロ アルト リサーチ センター インコーポレイテッド, パロ アルト リサーチ センター インコーポレイテッド filed Critical パロ アルト リサーチ センター インコーポレイテッド
Publication of JP2017118870A publication Critical patent/JP2017118870A/ja
Application granted granted Critical
Publication of JP6863729B2 publication Critical patent/JP6863729B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Sustainable Development (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Thermal Sciences (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本開示は、一般に、サーモクロミックセンシングを用いて物質を分析するためのデバイスならびに関連するシステムおよび方法に関する。
感受性試験は、例えば細菌、菌類などの生体物質の増殖を阻害するまたは死滅させる物質の有効性を決定するために行われる。場合によって感受性試験の目的は、抗生物質または他の薬剤治療の成功または失敗を予測することである。試験は、種々の薬剤タイプ、薬剤の組み合わせ、および/または薬剤濃度に対する特定微生物の増殖または増殖不足を決定するために試験容器にて行われる。感受性試験は一般に、制御された条件下で行われ、例えば特定タイプの細菌によって生じる感染を処置するために最も有効な薬剤タイプ、組み合わせおよび/または投与量を同定するために使用され得る。
抗生物質試験のための感受性試験は、患者から得られた初代培養液からの細菌の二次培養液を増殖させることを含み得る。現在のところ、細菌の培養は、試験されている薬剤の測定可能な作用が検出可能となる前に、多くの複製サイクルを含んでいる。適切な治療が迅速に患者に送達できるように、感受性試験に必要とされる時間を短縮することが望ましい。
一部の実施形態は、生体物質を培養するのに好適な培地を含有するように構成された1つ以上の試験位置を有する試験容器を含むデバイスを対象とする。サーモクロミック材料は、1つ以上の試験位置に熱的に結合される。サーモクロミック材料は、サーモクロミック材料の温度変化を生じる生体物質によるエネルギー変換の増減に応答してサーモクロミック材料から放射される光のスペクトルシフトを示すように構成される。
一部の実施形態において、例えば試験容器、例えば試験プレートは、生体物質を培養するのに適した培地を含有するように構成された1つ以上の試験ウェルを含む。コーティングは、試験ウェルに熱的に結合される。コーティングは、サーモクロミック材料の温度変化を生じる生体物質によるエネルギー変換の増減に応答してサーモクロミック材料から放射される光のスペクトルシフトを示すように構成されたサーモクロミック材料を含む。
一部の実施形態は、複数の試験位置を有する無菌試験容器を含む試験キットを対象とする。生体物質を培養するのに好適な培地は、試験位置にて試験容器によって含有される。サーモクロミック材料は、試験位置に熱的に結合される。サーモクロミック材料は、サーモクロミック材料の温度変化を生じる生体物質によるエネルギー変換の増減に応答してサーモクロミック材料から放射される光のスペクトルシフトを示すように構成される。
一部の実施形態によれば、方法は、生体物質を培養するのに好適な培地を含有するように構成された1つ以上の試験位置を有する試験容器を提供する工程を含む。サーモクロミック材料は、1つ以上の試験位置に熱的に結合されるように配設される。サーモクロミック材料は、サーモクロミック材料の温度変化を生じる生体物質によるエネルギー変換の増減に応答してサーモクロミック材料から放射される光のスペクトルシフトを示すように構成される。
図1は、一部の実施形態に従うサーモクロミックセンシング試験容器の平面図である。 図2は、図1の試験容器の断面図である。 図3は、一部の実施形態に従ういくつかの試験ウェルの底部付近においてxおよびy方向に試験プレートにわたって延びる層に堆積されたサーモクロミック材料を含む試験プレートの断面図である。 図4は、一部の実施形態に従う試験培地内に配設されたサーモクロミック材料と共に、少なくとも1つの生体物質を培養するための培地を含有するように構成された多数の位置を含む試験容器の断面図である。 図5は、一部の実施形態に従う相対的に平坦な基材上の領域内に生体物質を培養するのに適した培地を含有する位置を含む試験容器の断面ダイアグラムを示す。 図6は、一部の実施形態に従って相対的に平坦な基材上の領域内に生体物質を培養するのに適した培地を含有する位置を含む試験容器の断面ダイアグラムを示す。 図7は、一部の実施形態に従うサーモクロミックセンシング試験容器を製造するためのプロセスを示すフローダイアグラムである。 図8は、生体物質の同定のために構成されたサーモクロミックセンシング試験容器の断面図である。 図9Aは、一部の実施形態に従うサーモクロミック温度センシング試験システムのブロックダイアグラムを示す。 図9Bは、一部の実施形態に従う2つのカラーチャンネルを含むサーモクロミック温度センシング試験システムの一部のダイアグラムを示す。 図10Aは、一部の実施形態に従うサーモクロミック材料から放射される光のスペクトルにおけるシフトの存在および/または量を決定するために使用できる波長シフト検出器を概念的に示す。 図10Bは、一部の実施形態に従う反射光および透過光の両方を検出する波長シフト検出器を概念的に示す。 図11Aは、一部の実施形態に従うサーモクロミック試験プロセスを示すフローダイアグラムである。 図11Bは、一部の実施形態に従うサーモクロミック試験プロセスを示すフローダイアグラムである。 図12Aは、一部の実施形態に従うサーモクロミックセンシングを用いる熱光学抗菌剤感受性試験(TOAST)のためのプロセスを示すフローダイアグラムである。 図12Bは、一部の実施形態に従うサーモクロミックセンシングを用いる熱光学抗菌剤感受性試験(TOAST)のためのプロセスを示すフローダイアグラムである。 図13Aは、一部の実施形態に従うサーモクロミックセンシングを用いる細菌同定および熱光学抗菌剤感受性試験のためのプロセスを示すフローダイアグラムである。 図13Bは、一部の実施形態に従うサーモクロミックセンシングを用いる細菌同定および熱光学抗菌剤感受性試験のためのプロセスを示すフローダイアグラムである。 図13Cは、一部の実施形態に従うサーモクロミックセンシングを用いる細菌同定および熱光学抗菌剤感受性試験のためのプロセスを示すフローダイアグラムである。 図14Aは、図10Aにて議論された波長シフト検出器を用いて、熱イオンセンシングの範囲にわたって抗生物質を用いない場合と最小阻害濃度の抗生物質を用いる場合との増殖E.coliコロニーについての時間に対する温度ΔT(K)のシミュレーションされた変化を示すグラフを示す。 図14Bは、コロニー増殖の最初の20分に対応し、図10Aに議論された波長シフト検出器を用いて達成可能な測定解像度を示す図14Aのグラフの一部を示す。
図は必ずしも正確な縮尺ではない。図で使用される同様の数字は、同様の構成要素を指す。しかし、所与の図においてある構成要素を指すためにある数字を使用することは、同じ数字で標識された別の図の構成要素を制限することを意図するものではないことが理解される。
サーモクロミズムは、温度に基づく材料の色変化である。サーモクロミック材料の色変化は、相対的に不連続で突然であり得るか、または温度範囲にわたって徐々に変動し得る。スペクトル変化は、サーモクロミック材料からの散乱光、反射光、吸収光および/または蛍光に顕著に現れ得る。サーモクロミック材料は、有機もしくは無機物質であってもよく、および/またはモノマーもしくはポリマーであってもよい。本開示の手法に関して特に興味深いものは、サーモクロミック液晶であり、これは光反射率に基づくサーモクロミズムを示す。
本明細書に記載される手法は、生体物質のエネルギー変換によって生じる温度変化を光学的に示すためにサーモクロミック材料を用いた温度センシングを含む。本明細書に記載されるサーモクロミックセンシング技術を用いてモニターできる生体物質の非限定リストは、細菌、古細菌、原生生物、菌類、植物細胞、動物細胞、適切な宿主細胞中のウィルス、適切な宿主細胞中のファージ、癌細胞培養液、および組織細胞培養液の1つ以上を含む。生体物質のエネルギー変換の割合は、生きた細胞のアンサンブル代謝に関連し得る。特に細胞有糸分裂により増大する細胞の数は、アンサンブル代謝の増大の形態である。結合した個々の細胞の代謝は、アンサンブル代謝を含む。代謝は、多くの場合、グルコースまたは他の炭水化物の酸化を含み、エネルギーおよび化学副生物を放出する。この文脈において、代謝は、化学エネルギーが他の形態のエネルギー(熱を含む)に変換される機構であることを意味する。従って熱は、代謝を行う物質または生体の温度変化を生じ得る。生体の温度変化は、細胞培養培地、緩衝材料、容器材料およびサーモクロミック材料を含む周囲材料の温度変化、通常は温度上昇をもたらす。1つの材料から隣の材料への熱移動の量は、材料の特性に依存する。故に、材料選択によって熱移動を制御できる。代謝によって発生する熱は、容器材料への移動から分離され、代わりにサーモクロミック材料に熱的に接続または結合されるのが望ましい。代謝によって発生する熱は、好ましくはサーモクロミック材料の温度変化をもたらす。アンサンブル代謝の増大は、生体物質の「増殖割合」としておよび/または生体物質の量の増減について記載できる。正の増殖割合は、細胞にとって健康的な生存条件を示し、多くの場合アンサンブル内での生きた細胞の数の増大に対応する。本明細書で開示されるサーモクロミックセンシングデバイス、システムおよび方法は、生体物質の増殖を検出および/またはモニターするために使用でき、種々の医薬品、例えば薬剤タイプ、薬剤投与量、および薬剤の組み合わせ、例えば抗菌薬、抗ウィルス薬、および/または抗真菌薬の有効性を決定するのに特に有用である。
スペクトルシフトは、いずれかの種類の発光、吸収、蛍光、反射もしくは透過または他のいずれかの光スペクトルで生じ得る。光スペクトルのスペクトルシフトは、2つの光のスペクトルの重心間の差異として記載できる。波長シフトは、例えば較正測定にて決定される間接的な重心位置または公称重心位置を用いて、測定された重心位置を決定することによって決定されてもよい。波長シフトは、参照される波長シフト測定を行うと同時に有効に2つの異なるスペクトルの2つの異なる重心を比較することによって決定されてもよい。光スペクトルまたは光強度スペクトルは、種々の測定ユニットにおいて測定されてもよい。一般に、スペクトルの変動するパラメータ(すなわち横座標)は、多くの場合波長で測定される光子エネルギーである。こうした測定において、波長シフトは、波長単位、例えばナノメートル(nm)単位で測定できる。特定の発光スペクトル、特に発光ピークまたはガウス型発光プロファイルに関して、ピーク波長は、重心位置の良好な近似であり、または互いに対するピーク位置の差異は波長シフトの良好な近似である。実際の測定において、重心決定は、波長シフト検出範囲にわたって変動し得る測定パラメータによって影響を受ける場合があり、結果として重心測定に寄与する追加の測定因子、例えば検出器の波長依存感受性が存在する。これらの測定影響は、測定のシステム誤差として考慮でき、較正によって補償されることが多い。いずれかのこうした誤差は、補償されない場合であっても、重心、波長または波長シフト測定の一部として考慮されるべきである。注目すべきは、発光スペクトルが、2つの発光最大値を有する、例えば2つの相対的に区別可能な発光分布からなり得ることである。これらの合わせた発光スペクトルの重心はなおも計算および測定でき、波長シフトはなおもこうしたスペクトルについて計算できる。特に、2つの蛍光発光スペクトルは、発光スペクトルの1つが温度により発光強度を変化させるような方法で使用される場合、温度変化がスペクトル全体の波長シフトをもたらす。
図1および図2は、一部の実施形態に従うサーモクロミックセンシング試験容器100のそれぞれ平面図および断面図である。実質的に平面の試験プレートであってもよい試験容器100は、少なくとも1つの生体物質150を培養するために培地140を含有するように構成される1つ以上の位置101を含む。一部の実施形態において、試験位置は、例えば試験プレート上の埋め込まれた位置にある試験ウェルであってもよい。試験容器100は培地を含有するように構成されたいずれかのタイプの容器または構造であってもよいが、一部の実施においては、試験容器100は、MICROTITER試験プレート、例えば標準24ウェルMICROTITERプレート、標準96−ウェルMICROTITERプレート、標準384−ウェルMICROTITERプレート、または標準1536−ウェルMICROTITERプレートなどである。試験容器100が試験プレートである実施において、試験プレートの試験ウェルは、生体物質150を培養するための培地を含有するように構成された位置101を提供する。各試験ウェルは、培地140を含有するために壁101Aおよび底部101Bを有する。一部の実施において、試験容器100は、試験ウェルを覆うおよび/または試験ウェル内の培地をシールするカバー102を含んでいてもよい。
試験容器100は培地を含有するように構成されたいずれかのタイプの容器または構造であってもよいが、一部の実施において試験容器100は、流体の取扱いのために標準MICROTITERプレートピッチ距離、例えば標準24−ウェルMICROTITERプレートピッチ距離、標準96−ウェルMICROTITERプレートピッチ距離、標準384−ウェルMICROTITERプレートピッチ距離、または標準1536−ウェルMICROTITERプレートピッチ距離などを維持してもよい。これは、例えば、試験容器が、互換性のあるMICROTITER流体インターフェースを用いることによって、標準MICROTITER流体取扱いツール(例えばマルチプレックスピペット)で充填できるが、サンプルは、後に、MICROTITER標準と必ずしも互換性が必要ではないいずれかの他の適切な位置、例えば試験ウェルの単列、例えば24、96、384、または1536ウェルにルーティングされることを意味し得る。
サーモクロミック材料110の少なくとも1つのタイプは、1つ以上の試験位置に熱的に結合される。種々の実施形態において、サーモクロミック材料は、試験位置、例えば試験ウェル101中、試験ウェル上および/または試験ウェルの周りに配設されてもよい。サーモクロミック材料110は、試験位置内に含有される培地140および/または生体物質150に熱的に結合される。サーモクロミック材料110は、生体物質150によるエネルギー変換により生体物質150および/または培地140の温度変化に応答したサーモクロミック材料110からの光、例えば散乱光、反射光または蛍光のスペクトルシフトを示すように構成および配列される。サーモクロミック材料110は、生体物質150のエネルギー変換による温度変化に感受性であるように、生体物質150に十分近いおよび/または熱的に結合されるように位置付けられる。
少なくとも1つのタイプのサーモクロミック材料190は、サーモクロミック材料190が試験ウェル101の周囲環境に熱的に結合されるように、試験位置付近に配設される。一部の実施形態において、サーモクロミック材料190は、試験位置に熱的に結合されたサーモクロミック材料のコーティング、例えば試験ウェルの底部に配設されるサーモクロミックコーティングである。
少なくとも1つのタイプのサーモクロミック材料191は、試験ウェルよりも大きい温度範囲をモニターするために、試験プレートに配設される。この温度センシング領域は、試験ウェルのいずれかにある生体物質のエネルギー変換の量によって大きくは影響を受けず、むしろプレートをインキュベータに移動させ、試験プレート温度が名目上の温度条件に近づいたら、試験プレートの温度進展を追跡する。加えて、機能する適切なインキュベータは、この読出により追跡または制御できる。
個々の位置101または試験容器100の全体は、カバー102を含んでいてもよく、これが蓋および/またはシール、例えばシーリングフィルムを含んでいてもよい。1つのタイプのシーリングフィルムは、通気性の無菌膜(例えばCorningマイクロプレートシーリングテープホワイトレーヨン(アクリルを用いる)またはThermo Scientific Gas Permeable Adhesive Seals)である。このシーリングフィルムを試験容器100に直接配置し、無菌バリアを提供して、次いでその上にカバー102(例えば無菌でないプラスチック)を配置できる。
別の実施形態は、容器を覆う蓋102として無菌の非通気性接着剤シール(例えばE&K Scientific SealPlate Adhesive Microplate Seals)を使用する。このタイプのフィルムは気密性シールを提供するので、シーリングフィルムの頂部上に別の蓋を必要としない。嫌気性細菌に関して、カバー102は、O2を排除するためのバリアを提供するために使用できる。培地で試験位置を埋め、気密シールを用いることにより、嫌気性細菌の増殖を可能にする。
図2の断面図に示されるように、サーモクロミック材料110は、それぞれ個々の試験ウェル101の壁101Aおよび/または底部101Bに沿って配設されたサーモクロミック材料110のコーティングであってもよい。サーモクロミック材料は、図3の断面図に示されるように、いくつかの試験ウェル101の底部101B付近においてxおよびy方向に試験プレートにわたって延びる層111、例えば連続層であってもよい。
サーモクロミック材料110(図2を参照)、111(図3を参照)から放射される光のスペクトルシフト、例えば反射光、散乱光、透過光および/または蛍光のスペクトルシフトは、1つ以上の光学検出器を用いて検出できる。光学検出器は、試験容器に対して、サーモクロミック材料から放射される光を検出可能ないずれかの位置に位置してもよい。例えば、一部の実施形態において、検出器は、試験ウェル101の壁101Aの上方、下方および/または沿って位置付けられてもよい。
一部の実施形態において、サーモクロミック材料110から放射される反射光、散乱光、透過光および/または蛍光は、適切な光学構成要素180、例えばレンズ、対物レンズ、レンズの組み合わせ、結像光学系、平面鏡、凹面鏡、凸面鏡、繊維、格子、プリズム、および他の要素によって光学検出器上に中継される。光学構成要素は、画像情報を維持してもよく、またはしなくてもよい。
一部の実施形態において、サーモクロミック材料110から放射される反射光、散乱光、透過光および/または蛍光は、周囲光である測定光、例えば日光、室内灯から生じ、これがサーモクロミック材料110、111と遭遇し、サーモクロミック材料110、111によって散乱、透過、反射または吸収される。一部の実施形態において、少なくとも1つの光源195、196は、測定光195A、196Aを発光し、試験ウェル101に指向させ、こうして測定光195A、196Aは、サーモクロミック材料110、111と遭遇する。
一部の実施形態において、サーモクロミック材料110、111は、測定光195A、196Aの一部を反射する。図2および図3は、試験ウェル101の底部の上方および/または下方に位置付けられた検出器198、199によって検出できる反射光198A、199Aを示す。一部の実施形態において、サーモクロミック材料110、111は、測定光195A、196Aの一部を吸収し、測定光195A、196Aの吸収により、サーモクロミック材料110、111は蛍光を発する。図2および図3は、試験ウェル101の上方および/または下方に位置付けられた1つ以上の検出器198、199によって検出できる蛍光198B、199Bを示す。一部の実施形態において、測定光195A、196Aの一部は、サーモクロミック材料110、111によって散乱される。散乱光198C、199Cは、試験ウェル101の上方および/または下方に位置付けられた1つ以上の検出器198、199によって検出できる。一部の実施形態において、測定光195A、196Aの一部は、サーモクロミック材料110、111によって透過される。透過光198D、199Dは、試験ウェル101の上方および/または下方に位置付けられた1つ以上の検出器198、199によって検出できる。一部の実施形態において、測定光は、導波管、例えば光ファイバーまたはポリマー導波管によってサーモクロミック材料に伝搬されてもよい。一部の実施形態において、サーモクロミック材料からの反射光、散乱光、透過光または蛍光は、導波管を通して検出器に伝搬されてもよい。一部の実施形態において、導波管は、測定光および/またはサーモクロミック材料から放射される光を伝搬するために試験容器に一体的に形成されてもよい。一部の実施形態において、サーモクロミック材料から放射される反射光、散乱光、透過光または蛍光は、ウェルプレート構造に一体化された、例えば試験プレートの射出成形の間に形成されたレンズを通して検出器に伝搬されてもよい。
一部の実施形態において、試験ウェル101の領域において試験プレート100の少なくとも一部100Aは、測定光196Aの波長および/またはサーモクロミック材料110から放射される反射光199A、散乱光199B、透過光199Dまたは蛍光198Cの波長において実質的に光学的に透過性である。実質的に光学的に透過性とは、測定光および/またはサーモクロミック材料から放射される光の波長における光の透過率が50%を超えることを意味する。一部の実施形態において、サーモクロミック材料から放射される反射光、散乱光、透過光または蛍光は、平坦な透明底部、例えばガラス、ポリプロピレン、ポリスチレン、ポリカーボネートまたは石英を通して検出器に伝搬されてもよい。
生体物質のエネルギー変換により、試験位置にてサーモクロミック材料の温度上昇をもたらす。これらの温度上昇は、サブケルビンであり、約1ミリケルビン(mK)未満であってもよい。温度変化は、種々の因子、例えば試験体積、生きた細胞の数、周囲温度、試験体積の断熱、緩衝剤条件などに依存し得る。本明細書において議論されるように、サーモクロミック材料は、試験容器の温度を光学的に示すために使用できる。サーモクロミック材料は、種々の光学作用、例えば温度依存性蛍光強度または温度依存性反射または散乱スペクトルを示すことができる。特にサーモクロミック液晶は、非常に強い温度依存性反射スペクトルを示す。
生体物質のサーモクロミック温度センシングのために使用されるサーモクロミック材料は、いずれかの好適なタイプのサーモクロミック材料、例えばサーモクロミック液晶、ロイコ染料、蛍光体、DPPCに結合したプロダン、および/または蛍光タンパク質を含んでいてもよい。サーモクロミック液晶において、スペクトル変化は、温度依存性分子間隔から生じる。例えば、サーモクロミック液晶表面から特定の選択された反射率をモニターすることにより、レシオメトリックカラー測定におけるKあたりの強度の13,000%までの変化または数百nm/Kから約1000nm/Kまでの波長シフトを示す。ジパルミトイルホスファチジルコリン(ipalmitoylphosphatidylcholine)(DPPC)に結合した6−プロピオニル−2−(ジメチルアミノ)ナフタレン(プロダン)は、40℃〜50℃で、6nm/Kの蛍光発光シフトを示す。約0.3nm/Kの発光波長のシフトを示す緑色蛍光タンパク質は、サーモクロミック材料の例であり、これはサーモクロミック温度センシングのために遺伝的/生物学的に最適化でき、例えば医薬品感受性試験および/または生体物質の増殖/低下の他のモニタリングのために最適化できる。
一部のサーモクロミック材料の蛍光強度の変化は、温度に対して特に感受性であることができる(場合によっては度あたり100%を超える)。一部の状況において、サーモクロミック温度センシングはさらに、2つの異なるタイプのサーモクロミック材料の応答を異なる温度応答に関して比較し、2つのサーモクロミック材料からの2つの発光ピーク間の強度比変化をモニターすることによって向上させることができる。場合によって、2つのサーモクロミック材料は、一方の材料が、温度依存性蛍光強度変化を示し、他方が温度に独立するか、最初の材料とは反対の変化を有するように選択される。
非限定例として、約1000nm/Kの波長シフトを有するサーモクロミック液晶は、生体物質によるエネルギー変換による約10μKの温度変化に供される場合に、約10ピコメートル(pm)の波長シフトを示し得る。一部の実施において、エネルギー変換による1.6×10−6K〜1.6×10−5Kの温度変化は、1.6〜16ピコメートル(pm)の波長シフトをもたらす。一部の実施形態において、サーモクロミック材料は、約0.5nm/K〜約1000nm/Kの範囲において、温度に関する蛍光、反射率または散乱スペクトルにおけるスペクトルシフトを示すように構成されてもよい。
一部の構成において、1つ以上の任意の追加層またはコーティングは、サーモクロミック材料層の1つまたは両方の主要面に沿って配設できる。一部の実施形態において、任意の追加の層は、試験ウェル101の底部101Bおよび/または壁101Aに沿って延びてもよい。例えば、1つ以上の任意の追加層120、121、130、131は、図2および図3に示されるように、各試験ウェル101内においてサーモクロミック材料コーティング110、111と培地140および/または生体物質150との間に位置付けできる。一部の実施において、任意の追加層130の少なくとも1つは、光吸収層であってもよい。サーモクロミック材料110、111と培地140および/または生体物質150との間に位置付けられた光吸収層の使用は、層の吸収特性によりサーモクロミックセンシングの感受性を向上できる。サーモクロミック材料コーティング110、111によって反射、散乱、吸収されない光は、ここで反射光、散乱光または蛍光検出に寄与しない。光ブロッキング層の使用は、検出器によって検出される、非シグナル光により生じた検出器シグナルの構成要素を低減することによってサーモクロミックセンシングのノイズに対するシグナル比を向上でき、ここで非シグナル光はサーモクロミック材料から放射される光以外の光である。
一部の実施において、任意の追加層130、121の少なくとも1つは、熱伝導層であってもよい。サーモクロミック材料110、111と培地140および/または生体物質150との間に位置付けられた熱伝導層の使用により、培地140および/または生体物質150からサーモクロミック材料コーティング110、111への改善された熱伝導率によりサーモクロミックセンシングの感受性を向上できる。生体物質150によって変換されたエネルギーは、培地140内での熱発生をもたらし、それによって培地および/または生体物質150の温度上昇をもたらす。培地と周囲環境との間の温度差は、推移ゾーンにおいて温度勾配を生じる。サーモクロミック材料は推移ゾーンの一部であるので、熱伝導層が培地からサーモクロミック層への熱移動を確実にし、両方が理想的には同じ温度を有する場合が有益である。例えば熱伝導層は、インジウムスズオキシド(ITO)、金属、ダイアモンド、酸化亜鉛、グラフェン、グラファイト、およびインジウムホスフィドからなってもよい。
一部の実施において、任意の追加層131、120の少なくとも1つは、断熱層であってもよい。サーモクロミック材料110、111と試験容器構造のベース材料との間に位置付けされた断熱層の使用により、サーモクロミック材料110、111から周囲平衡温度までの低い熱伝導率によってサーモクロミックセンシングの感受性を向上できる。試験容器構造自体のベース材料は、低い熱伝導率材料から製造されるのが望ましい。
一部の実施形態において、任意の追加層121、130の少なくとも1つは、サーモクロミック材料110、111を培地140から分離するように位置付けられた無菌コーティングであってもよい。例えば、サーモクロミックコーティング110、111は、試験ウェルの底部表面に沿って配設されてもよく、無菌生体適合性コーティングが、サーモクロミックコーティングにわたって配設され、結果としてサーモクロミックコーティングが、試験ウェルの底部と無菌コーティングとの間にある。例えば無菌コーティングは、パリレン、インジウムスズオキシド(ITO)、金属、ポリエチレングリコール(PEG)、ダイアモンド、酸化亜鉛、グラフェン、グラファイト、およびインジウムホスフィドの1つ以上を含んでいてもよい。理想的には、これらのコーティングはまた生体適合性でもある。
図4は、少なくとも1つの生体物質150を培養するための培地140を含有するように構成された多数の位置401を含む試験容器400を示す。一部の実施形態において、サーモクロミック材料、例えばサーモクロミック粒子または領域410は、図4の断面ダイアグラムに示されるように、試験培地140内に配設される。
サーモクロミック材料410から放射される光のスペクトルシフト、例えば反射光、散乱光、透過光および/または蛍光のスペクトルシフトは、1つ以上の光学検出器を用いて検出できる。光学検出器は、試験容器に対して、サーモクロミック材料から放射される光を検出可能ないずれかの位置に位置してもよい。例えば、一部の実施形態において、検出器198、199は、図4に示されるように、試験ウェル401の上方および/または下方に位置付けられてもよい。
一部の実施形態において、サーモクロミック材料から放射される反射光、散乱光、透過光および/または蛍光は、サーモクロミック材料410と遭遇する周囲光である測定光から、例えば日光、室内灯から導かれる。一部の実施形態において、少なくとも1つの光源195、196は、測定光195A、196Aを発光し、試験ウェル401の方に指向させ、こうして測定光195A、196Aは、サーモクロミック材料410と遭遇する。
一部の実施形態において、測定光195A、196Aの一部は、サーモクロミック材料410によって反射される。反射光198A、199Aは、試験ウェル401の底部の上方および/または下方に位置付けられたフォトセンシング素子198、199によって検出できる。
一部の実施形態において、測定光195A、196Aの一部は、サーモクロミック材料410によって吸収され、サーモクロミック材料410が蛍光を発する。蛍光198B、199Bは、試験ウェル401の上方および/または下方に位置付けられた1つ以上のフォトセンシング素子198、199によって検出できる。
一部の実施形態において、測定光195A、196Aの一部は、サーモクロミック材料410によって散乱される。散乱光198C、199Cは、試験ウェル401の上方および/または下方に位置付けられた1つ以上のフォトセンシング素子198、199によって検出できる。
一部の実施形態において、試験ウェル401の領域において試験プレート400の少なくとも一部400Aは、測定光196Aの波長および反射光199A、散乱光199Bおよび/または蛍光198Cの波長において実質的に光学的に透過性である。
一部の構成において、1つ以上の任意の追加層またはコーティング420は、試験ウェル401の底部または他の場所に沿って、例えば試験ウェル401の壁401Aに沿って配設できる。一部の実施形態において、任意の追加の層は、試験ウェル401の底部401Bおよび/または壁401Aの両方に沿って延びてもよい。一部の実施において、任意の追加層420の少なくとも1つは、断熱層であってもよい。断熱層は、試験位置401から試験容器400の犠牲材料または周囲への低い熱移動により、サーモクロミックセンシングの感受性を向上させるように設計できる。
一部の実施において、任意の追加層420の少なくとも1つは、光ブロッキング層であってもよい。光ブロッキング層の使用は、非シグナル光によって生じる検出器シグナルの構成要素を低減することによってサーモクロミックセンシングのノイズに対するシグナル比を向上でき、ここで非シグナル光はサーモクロミック材料から放射される光以外の光である。
図5および図6は、1つ以上の生体物質560を培養するのに好適な培地540を含有するように構成された位置501、601を含む試験容器500、600の断面ダイアグラムを示す。これらの実施形態において、培地540は、相対的に平坦な基材500A上の領域内に含有されてもよい。一部の実施形態において、位置501、601は、位置501、601内に培地を含有するように構成された表面処理またはコーティング505、例えば疎水性表面処理によって規定されてもよい。図5に示されるように、サーモクロミック材料は、位置501にて基材500A上に配設される層510であってもよい。
個々の位置501または試験容器500の全体は、カバー570、例えばシールおよび/または蓋を含むもので覆われてもよい。一部の実施形態において、試験容器は、追加の蓋を有するまたは有していないシーリングフィルムで覆われる。一部の実施形態は、シールを有するまたはシールを有していてない保護蓋を使用する。カバー570は、蒸発による熱損失を低減し、試験位置501において試験容器500内の適切な環境を維持するために役立つ。例えば、一部の実施形態において、哺乳類の細胞を、試験位置に配設し、これは適切なガス雰囲気、例えば5%のCOを含有する特定のヘッド体積を必要とする。別の例として、嫌気性細菌が試験位置に配設され、このカバーは、これらの細菌にとって毒性であるOを排除するのに役立つバリアを提供する。故に、培地で試験位置を満たし、気密シールを用いて嫌気性細菌の増殖を可能にする。
1つのタイプのシールは、通気性の無菌膜(例えばCorningマイクロプレートシーリングテープホワイトレーヨン(アクリルを用いる)またはThermo Scientific Gas Permeable Adhesive Seals)である。このシーリングフィルムを試験容器に直接配置し、無菌バリアを提供して、次いでその上に蓋(例えば無菌でないプラスチック)を配置できる。
別の実施形態は、容器を覆う無菌の非通気性接着剤シール(例えばE&K Scientific SealPlate Adhesive Microplate Seals)を使用する。このタイプのフィルムは気密性シールを提供するので、蓋が所望でないかまたは追加の保護が必要でない限り、シーリングフィルムの頂部上に別の蓋を必要としない。
図6に示されるように、サーモクロミック材料は、培地540内のサーモクロミック領域610、例えば培地内に埋め込まれたサーモクロミック粒子であってもよい。
試験容器500、600は、上記で議論されるように、サーモクロミック材料の上方および/または下方に配設された1つ以上の任意の追加の層520、530、620を含んでいてもよい。例えば、追加の任意層520、530、620は、熱吸収層、光ブロッキング層および無菌生体適合層の1つ以上を含んでいてもよい。場合により、上記で議論されるように、試験容器は、カバー570、例えばシールおよび/または蓋を含む。
図7は、一部の実施形態に従ってサーモクロミックセンシング試験容器を製造するためのプロセスを示すフローダイアグラムである。プロセスは、試験構造を提供する工程710、試験構造の試験位置に熱的に結合されたサーモクロミック材料を配設する工程720を含む。例えば、試験構造が標準MICROTITER試験プレートである一部の実施形態において、サーモクロミック材料は、1つ以上のサーモクロミック材料を用いて標準試験プレートの試験ウェルをコーティングすることによって配設されてもよい。例えば、標準プレートの試験ウェルのすべての底部および/または壁はコーティングできる。一部の実施形態において、一部の試験ウェルの底部および/または壁はサーモクロミック材料でコーティングされてもよいが、他の試験ウェルはコーティングされないままである。一部の実施形態において、サーモクロミック材料は、試験ウェルによって含有される培地にサーモクロミック粒子を配置することによっておよび/または試験ウェル内にサーモクロミック材料を含有する培地を配置することによって試験位置に配設されてもよい。
一部の実施形態において、追加の機能材料層、例えば熱伝導層、光ブロッキング層、断熱層は、試験構造に配設されてもよい730。追加の機能層は、サーモクロミック材料が試験位置に配設される前またはされた後に配設されてもよい。続いて、試験構造を無菌化すること740は、以下の方法:熱、化学物質または照射の1つ以上によって達成されてもよい。
熱無菌化は、湿熱(スチーム)または乾熱のいずれかを用いて達成されてもよい。化学物質は、多くのプラスチックを含む感熱性材料を無菌化するために使用されてもよい。ガスまたは液体のいずれかが使用されてもよい。化学無菌化のために使用されるガスは、エチレンオキシド(EtO)、二酸化窒素(NO)またはオゾンを含む。液体化学無菌化は、グルタルアルデヒド、ホルムアルデヒド、過酸化水素(H)、または過酢酸を用いて達成されてもよい。放射線無菌化は、電子線、X線、ガンマ線、または亜原子粒子による照射を用いて達成されてもよい。
一部の実施形態において、無菌化試験構造は、パッケージの機械的一体性が不注意にまたは意図的に損なわれるまで、パッケージの内容物が無菌状態であるようにパッケージされ、シールされる。通常の意図的な開口部は無菌試験プレートを維持し、意図されたサンプルからの生体のみで試験容器を満たすことができる。
1つ以上の試験物質、例えば医薬、抗菌、抗真菌物質が、培地内に含有されてもよい。試験容器の異なる位置、例えば試験容器100の試験ウェル101は、異なるタイプ、組み合わせ、および/または濃度の試験物質160を含んでいてもよく、ここでこの生体物質150は各試験位置において同じである。設定されたこの試験は、異なるタイプ、組み合わせ、および濃度の試験物質の生体物質への作用をモニターするために使用できる。一部の実施形態において、試験物質160のタイプ、組み合わせおよび/または濃度は、多数の試験位置において実質的に同じであってもよく、生体物質は異なってもよい。設定されたこの試験は、同じタイプ、組み合わせおよび濃度の試験物質の、異なるタイプの生体物質への作用を試験するために使用できる。
一部の実施において、サーモクロミックセンシング試験容器は、医薬、例えば抗菌剤感受性試験(AST)のために使用される。試験物質160は、1つ以上のタイプの抗生物質を含み、試験位置は、異なるタイプ、異なる組み合わせおよび/または異なる濃度の抗生物質を含有する。ASTに使用するのに好適な抗生物質および抗生物質の組み合わせの例としては:アミカシン、アモキシシリン/クラブラン酸、アンピシリン、アンピシリン/スルバクタム、アジスロマイシン、アズトレオナム、セファロチン、セファゾリン、セフェピム、セホキシチン、セフタジジム、セフトリアキソン、セフロキシム、セファロチン、クロラムフェニコール、シプロフロキサシン、クラリスロマイシン、クリンダマイシン、ダプトマイシン、ドリペネム、エルタペネム、エリスロマイシン、ガチフロキサシン、ゲンタマイシン、イミペネム、レボフロキサシン、メロペネム、モキシフロキサシン(Moxiflaxacin)、ナリジクス酸、ニトロフラントイン、ノルフロキサシン、オフロキサシン、オキサシリン、ペニシリン、ピペラシリン、ピペラシリン/タゾバクタム、リファンピシン、スルファメトキサゾール、シナシッド、テトラサイクリン、チカルシリン、チカルシリン/クラブラン酸、チゲサイクリン、トブラマイシン、トリメトプリム、トリメトプリム/スルファメトキサゾールおよびバンコマイシンが挙げられるが、これらに限定されない。
図8に示される一部の実施において、サーモクロミックセンシング試験容器100は、生体物質150の同定のために使用される。試験物質860は、炭素源利用を測定するために1つ以上のタイプの基材(例えばマンニトール、グルコース、ラクトース、マルトース、シトレート、アセテート、アセトアミド)、酵素活性(例えばカタラーゼ、オキシダーゼ、コアグラーゼ、ピラーゼ(pyrase)、ウレアーゼ、デカルボキシラーゼ、ジヒドロラーゼ、フェニルアラニンデアミナーゼ、システインデスルフラーゼ(H2S生成)、トリプトファナーゼ(インドール生成)、またはレジスタンス(例えばバシトラシン、ノボビオシン、オプトヒン)を含む。増殖培地は、試験物質860に加えて、指標物質(861)を含有してもよい。指標物質の例としては:ブロモチモールブルー、クエン酸鉄アンモニウム、ブロモクレゾールパープル、塩化第二鉄、硫酸鉄、4−ジメチルアミノベンズアルデヒドおよびメチルレッドが挙げられるが、これらに限定されない。一部の実施形態において、生体物質の同定のために使用される試験物質860は、適切な生体物質150の存在下でインキュベートされる場合に蛍光または発色性化合物を直接生成する。
他の実施形態において、指標物質861は、試験物質860が適切な生体物質150の存在下でインキュベートされる場合に、蛍光または発色性化合物を生成する。試験化合物の存在下、生体物質の増殖に対するサーモクロミック材料の応答を測定することに加えて、試験化合物860の存在下、生体物質150のインキュベーションから得られる蛍光または吸光度は、光源195、196の一方または両方を用い、検出器198、199および/または追加の光源および/または試験位置の上方または下方に位置付けられる検出器を用いて測定できる。
TOAST機構または他の光学手段によって測定される場合に酵素基材、増殖促進剤および増殖阻害剤の組み合わせは、代謝または他の生化学プロファイルを与え、これは生体の同定のために使用されてもよい。
血流感染の場合、例えばASTは、陽性血液培養液からの生体物質の分離および同定の後に行われてもよい。同定工程は、上記で記載されるようにサーモクロミックセンシング試験容器を用いて行われてもよい。他の実施において、生体物質は、別の方法、例えば標準増殖および生化学特徴または迅速な同定方法、例えばマトリックス支援レーザー脱離/イオン化飛行時間型質量分析(MALDI−TOF MS)を用いて同定されてもよい。別の実施において、ASTは、生体物質の同定の前に開始されてもよく、陽性血液培養液のグラム染色結果により、ASTに使用するための試験化合物の適切なパネルを選択する。
一部の実施形態において、試験容器は1回使用の使い捨て構成要素として設計できる。一部の実施形態において、サーモクロミックセンシング試験容器は、例えば図1から図6と関連して議論されるように、無菌サーモクロミックセンシング試験容器を含むキットの一部であってもよい。一部の実施において、キットのサーモクロミックセンシング試験容器は、培地および試験物質でプレ充填できる。一部の実施において、試験物質は、試験容器の異なる試験位置にプレ充填される異なるタイプ、量および/または組み合わせの医薬品または他の試薬を含む。一部の状況において、キットを受容する試験室は、試験位置に生体物質を挿入し、試験位置それぞれにおいてプレ充填された試験物質のタイプ、量および/または組み合わせの効力の試験し、次いで試験完了後にキットを廃棄する。場合によって、一部の試験位置は、コントロール位置として使用されてもよく、ここで試験物質および/または生体物質は、コントロール試験位置では挿入されない。
試験容器は、サーモクロミックセンシングを用いる試験物質の自動試験を促進するシステムのコンパートメントに脱着可能に挿入されるように構成されてもよい。一部の実施において、試験容器は、このコンパートメントの適合性フィーチャと係合した機械的保持フィーチャを有するカートリッジとして構成されてもよい。図9Aは、一部の実施形態に従ってサーモクロミック温度センシング試験システム900のブロックダイアグラムを示す。一部の実施形態において、試験システム900は、周囲環境、例えば試験容器902の光、温度、湿度、ガス組成、CO濃度などおよび/または試験中のシステムの他の構成要素を自動的に制御するように構成されたインキュベータ905を含む。試験容器の環境が制御されない試験システムまたは追加の熱補償が必要とされるもしくは所望される試験システムにおいて、温度の変動を説明するように構成された回路網930を使用してもよい。温度補償回路網930は、温度作用ひいては生体物質によるエネルギー変換以外の因子によって生じるサーモクロミック材料のスペクトルシフトを補償するように構成された補償回路網に結合された温度センサを含んでいてもよい。これらの温度作用は、室温の変動によって生じる場合があり、個々の試験ウェル101のために使用される光学温度測定範囲の最大温度測定範囲より大きくてもよい。故に、個々の試験ウェル、個々の試験ウェルの群またはすべての試験ウェルの温度は、温度補償回路網930で調節できる。温度補償回路網930は、加熱器、冷却器、抵抗加熱器、放射加熱器、熱交換器、給水器、熱電冷却器、ペルチェ素子、蒸発冷却器、温度センサ、サーミスタ、サーモカプラ、およびサーモクロミック材料の波長シフト検出に基づく光学温度読出センサ(例えば191および190)を含有してもよい。
一部の実施形態において、試験容器902は、試験位置101に流体的に結合された流体チャンネル185B(図1に示す)を含み、結果としてホストインキュベーションおよび読出システム900からの熱平衡化液体、例えば主に水系の液体が、消毒剤の添加を潜在的に伴って、試験容器902に接続できる。流体チャンネル185Bは、流体を、試験位置および/またはコントロール位置付近の試験容器の熱交換領域に導入できる。試験容器902への熱平衡化液体のマスフローは、例えばガスを循環させることによる熱交換または純粋な放射熱交換よりも迅速でより安定な方法で、試験部位101の内容物を含むデバイス温度を熱平衡化する。
一部の実施形態において、試験容器902は、試験位置101に流体結合された流体チャンネル185A(図1に示す)を含み、結果として試験物質は、これらの流体チャンネルを通っていくつかのまたはすべての試験位置に満たされることができる。
図9Aによって示されるように、試験容器902は、試験システム900のコンパートメント901に着脱可能に挿入されてもよいカートリッジとして構成できる。試験容器902は、機械的フィーチャ902A、例えば突起を含み、これが機械的フィーチャ901a、例えばコンパートメントのスロットと係合して、コンパートメント901内に試験容器902を機械的に位置付け、保持する。加えて、試験容器902は、人(例えば英数字の組み合わせ、シリアル番号または名称)、あるいは適切な機械(例えばバーコードまたはQRコード(登録商標))によって読み取られることができる独自のマーキングまたは識別子を保持できる。試験容器902はまた、測定試験領域を規定する位置合わせマーキング、例えば各試験容器101について各サーモクロミック材料領域110(図2を参照)、111(図3を参照)の周りのブルーリング、座標系を形成するライン、試験容器上にいくつかの位置での位置合わせクロスで標識できる。特に、カメラシステム(RGB、差分照明、ハイパースペクトル、ダイクロイックミラーマルチプレックスカメラなど)は、サーモクロミック材料のマルチプレックス読出として作用する場合、試験容器上のマーキングは、自動読出のための関心領域(ROI)、すなわち試験位置101を示し得る。マーキングはまた、座標系を提供することによって関心領域を示し得る。この場合関心領域は、既知の予備規定された座標に位置し得る。
システム900は、測定光を生じ、試験容器902の試験位置に対して測定光を指向させるように構成された測定光源910を含むことができる。光源910は、測定光を発光するように構成された光エミッタ、例えば発光ダイオード(LED)、ランプおよび/またはレーザーおよび試験容器の試験位置に測定光を指向させるように構成される構成要素を含む。一部の実施において、測定光は、試験容器の試験位置にわたって測定光を走査することによって、例えばミラーを走査することによってまたはミラーもしくはミラーアレイを回転させることによって(デジタルライトプロセッシング)、または音響工学モジュレータによってまたは位相アレイ光学系によって複数の試験位置に対して光学的にマルチプレックスまたは指向される。一部の実施において、測定光走査は、例えばレンズおよび/またはミラーアレイを用いて、複数の試験位置にわたって固定測定光エミッタにより実施されてもよい。一部の実施形態において、試験位置にわたって測定光を走査することは、光源および試験容器を互いに物理的に移動させることによって実施されてもよい。一部の実施形態において、測定光は、光学導波管を通して試験位置に指向されてもよい。一部の実施形態において、測定光は、試験関心領域のサブセットに到達してもよく、または測定光は、例えば試験容器のすべてのサーモクロミック材料領域の総面積を照明することによって同時に試験領域すべてに到達してもよい。
一部の実施形態において、測定光は、個々に対処可能な2つ以上の区別可能な測定光源または測定光特徴を含んでいてもよい。例えば、異なるスペクトル発光特徴を示す2つ以上の個々に切替可能なLEDは、測定光源として作用できる。これらの光源は、異なるスペクトルレジームにおいてサーモクロミック液晶の反射率を交互にプローブできる。光強度検出器、例えばモノクロカメラは、この場合第1のLEDの光スペクトル、および次いで第2のLEDの光について空間的に分解された反射光の強度値を比較できる。故に、一部の実施形態において、非常に異なるスペクトル特徴を有するLEDは、波長シフトを測定するためにモノクロム光検出器で利用できる。あるいは、単一の広い光源(例えばランプ、蛍光体コーティングを有するLEDなど)が測定光を提供するために使用でき、反射光、透過光または散乱光の色識別は、RGBカメラを用いて行われることができる。RGBカメラのスペクトル選択性は、人の目の色選択性を表すことを目的とし、故に色選択性の選択は、RGBカメラが検出器として使用される場合に限定されてもよい。一部の実施形態において、光の異なるフィルタ(例えば誘電透過フィルタ、吸収透過フィルタ)を連続して利用する色感受性カメラシステムが使用でき、またはいくつかの画像センサを使用するカメラシステムが使用でき、進入光は図9Bを参照して以下に議論されるように、ダイクロイックミラーのような色選択性素子によって分割される。
システム900は、試験容器のサーモクロミック材料から放射される光、例えば反射、散乱および/または蛍光のスペクトルにおいて変化を検出するように構成された1つ以上の光学検出器を含む検出器サブシステム920を含む。センサは、フォトダイオード、フォトトランジスタ、光電子増倍管、アバランシェフォトダイオード、波長シフト検出器、RGBカメラ、ハイパースペクトルカメラ、スペクトロメータ、分光器、ダイクロイックミラー撮像面分割型画像センサ、フーリエ分光計、およびダイクロイックミラー撮像面分割型センサの1つ以上を含んでいてもよい。一部の実施形態において、センサと試験位置との間の1対1対応が存在してもよい。他の実施形態において、試験位置よりも少ないセンサが存在してもよく、複数の試験位置から放射される光が、単一のセンサに光学的にデマルチプレックスされる。一部の実施において、光学デマルチプレックスは、異なる期間の間に、複数の試験位置それぞれから放射される光をセンサに選択的に指向することによって達成されてもよい、例えば可動ミラー、例えば走査ミラーまたは回転ミラーまたはミラーアレイ(デジタルライトプロセッシング)を用いるデマルチプレックス、または音響工学モジュレータによるもしくは位相アレイ光学系によるデマルチプレックス。一部の実施において、光学マルチプレックスは、試験容器に対してセンサを物理的に移動させることによって、および/またはセンサに対して試験容器を物理的に移動させることによって達成されてもよい。検出器サブシステム920の出力は、放射光のスペクトル変化を検出、分析および/またはモニターするように構成されるプロセッサ940に提供できる。プロセッサ940は、試験結果を分析するようにおよび/または試験結果のレポートをフォーマットに作成するように構成されてもよく、このフォーマットはコンピュータ制御のユーザーインターフェース950を介して表示でき、送信でき、またはいずれかの方法でユーザーに伝搬できる。一部の実施形態において、プロセッサ940は、試験が行われているときに連続アップデートをユーザーインターフェース950に送信してもよく、ここでユーザーインターフェースは連続的にそのディスプレイをアップデートし、ユーザーは試験結果の通知を迅速に受けることができる。一部の実施において、プロセッサ940は、ユーザーインターフェース950に送信される警告シグナルを生じるように構成されてもよく、ここでユーザーインターフェース950は、プロセッサ940によって送信される警告シグナルに基づいて警告、例えば聴覚および/または視覚警告を生じる。
図9Bは、一部の実施形態に従ってサーモクロミック温度センシング試験システム900の一部960を示す。図9Bに示されるシステムの一部は、一部の実施形態に従って試験物質の自動試験を促進する2つのカラーチャンネル971、972を含む。図9Bにおいて、試験位置962Aにて配設されるサーモクロミック材料を有する複数の試験位置962Aを含む試験容器962は、インキュベータ961内に配設されるように示される。インキュベータ961は、試験容器962の周囲環境を制御する。測定光は、例えば広いバンドの測定光を提供する1つ以上の発光デバイスを含む測定光源965によってシステム960に提供される。試験容器962の空間的な領域962Bからの光は、ダイクロイックミラー970によって2つのチャンネルに分離される。結像光学系、例えばレンズ981〜983は、空間領域962B、例えば試験容器962とダイクロイックミラー970との間および/または2つのカラーチャンネル971、972の一方もしくは両方において光の経路に配設されてもよい。レンズ981は、ダイクロイックミラー970上にある空間領域962Bからの光を結像する。ダイクロイックミラー970は、2つの異なるカラーチャンネル971、972に光を分離し、各カラーチャンネルはカメラ991、992と関連する。各カラーチャンネル971、972は、異なる波長において、実質的に同じ空間領域962Bの画像962B−1、962B−2を提供する。ダイクロイックミラー970は、中心波長λ中心を有し、こうしてλ中心より大きい波長を有する光が第1のカラーチャンネル971においてカメラ991に指向され、λ中心未満の波長を有する光が第2のカラーチャンネル972においてカメラ992に向かって指向される。
画像962B−1、962B−2が十分に同一ではない場合、画像962B−1、962B−2における転換、回転またはスケーリング変換が使用されて、画像をオーバレイでき、結果としてそれらは、実質的に同じ空間領域962Bを表す。画像962B−1、962B−2は、通常、1つ、いくつかまたはすべての試験位置962Aを含有し、試験位置962Aに配設されるサーモクロミック材料を含んでいてもよい。一部の実施形態において、画像962B−1、962B−2は、マーキングのような追加情報を含む。追加のマーキングは、コンピュータビジョンおよび画像処理の周知の技術によって同定されてもよく、それらは較正データ、患者データ、機械的位置合わせなどのような操作パラメータを有するシステムを提供してもよい。マーキングに含有されるいずれかの関連情報は、システムのプロセッサ940において処理できる(図9A参照)。画像962B−1、962B−2は、各画像ピクセルについて異なる波長領域において異なる光強度の表示を含む。
一部の実施形態において、空間領域962Bにおけるサーモクロミック材料から放射される光は、画像962B−1、962B−2に含まれる。これらの実施形態において、色画像962B−1、962B−2における各ピクセルについて波長シフトを計算することによって結像領域の温度マップを得ることができる。ピクセルの群は、所与の画像において関心領域(ROI)に組み合わせてもよい。ROI内において、ピクセルの組み合わせは、例えばROIの強度を表すために、ROIのピクセル値に基づいてROIのピクセルの平均強度、ROIの合計強度、ROIの中央強度、またはいずれかの他の数学的操作を計算することによってプロセッサ940により行われてもよい。一部の実施形態において、画像上のROIは、実質的には試験位置962Aとオーバラップする。複数のROIは各画像において規定でき、特に画像の各試験位置962Aは少なくとも1つのROIと関連し得る。ROIは、それと関連する少なくとも2つの値を有する。これらの2つの値は、少なくとも2つのカラーチャンネルを起源とする光強度を表す。ROIの波長シフトは、例えば、2つのカラーチャンネルにおけるROIの平均値を他方から差し引き、その値を2つのROI平均値の合計で除することによって計算されてもよい。一部の実施形態において、ハイパースペクトルカメラシステムは、ROIの波長シフトを決定するために使用される。こうしたシステムにおいて、波長に対するピーク強度は、ROIの最も高い強度を有する波長領域の画像を見出すことによって決定されてもよい。こうした状況において、カラーフレーム間のROIの強度値を外挿することが可能となり得る。一部の実施形態において、RGBカメラシステムが使用される。ROIの波長シフトは、3つのチャンネルの1つ、例えばブルーチャンネルを省略し、レッドおよびグリーンチャンネルを上記で記載される2つのチャンネルとして処理することによって計算されてもよい。レッドおよびグリーンチャンネルを付加し、この合計を第1のカラーチャンネルとして、上記で記載されるような第2のカラーチャンネルを提供するブルーチャンネルで処理することも可能となり得る。
カメラに基づく検出システムを用いて、上記で記載されるようなROIにおける波長シフトを決定するいくつかの方法がある。一部の実施形態において、ROIは試験位置962aを含有でき、サーモクロミック材料は試験位置に熱的に結合される。故に、ROIの波長シフトはそのROIの温度に関連でき、それによって試験容器の試験位置の温度に関連できる。理想的には、カメラシステムは、経時的に試験位置の温度進展を計算するためにすべての試験位置およびすべての陽性および陰性コントロール位置を結像し、それを陽性コントロール位置温度進展と経時的に比較することによって分析する。
上記で記載されたシステム実施形態のいずれかは、容器における局所波長シフトをトレースすることによって試験容器の多くの位置の温度進展をトレースするのに適している。少なくとも1つのサーモクロミック材料が少なくとも関連する試験位置およびコントロール位置において試験プレートにわたって分配されることを仮定すれば、局所的な波長シフトは、プレート上の局所的な温度を表す。
周囲温度変化は、個々の試験位置中/試験位置上の温度変化に独立して、試験プレート全体の波長シフトに影響する。これらの周囲温度変化は、試験プレートにわたって必ずしも均質ではない。試験位置の温度変化は、試験物質を含有しない隣接コントロール位置の温度変化によって参照されることができ、それによって周囲温度変動のコモンモード除去のための試験位置として作用する。コントロール位置は、試験位置を囲んでもよく、または試験位置とは異なるサイズまたは形状を有していてもよいことが注目に値する。特に、コントロール位置は、生体物質を含有しなくてもよく、故にこのコントロール位置は、周囲温度変化をトレースする陰性コントロール位置として作用する。各測定時点において陰性コントロール位置の温度を試験位置の温度から差し引くことによって、周囲温度変化に独立して試験位置の温度変化を時間を通して一次までトレースする。陽性コントロール位置は、生体物質の代謝およびそのコロニー増殖を阻害できる薬剤を有していない生体物質を含有する。実際、システム条件、例えば公称周囲温度、周囲ガス組成などは生体物質の増殖を促進するように選択されるべきである。陽性コントロール位置は、他の試験位置が補正される同じ方法で、陰性のコントロール位置からの読取値を用いて周囲温度変化について補正されてもよい。
図10Aは、スペクトル分布の中心を決定するために、図9Aにおいて議論される検出器サブシステム920として使用できる波長シフト検出器1000を概念的に示す。それによって、例えばサーモクロミック材料から放射される光のスペクトルのシフトの存在および/または量は、スペクトル光分布の2つ以上の中心を比較することによって決定できる。サーモクロミック材料から放射され、中心波長λによって特徴付けられる光1010は、スペクトル変動する光透過構造1020に対するインプット光である。透過構造1020は、その出口表面1020Aの横軸1099に沿った位置の関数として透過関数が変動するように、横変透過関数を有する。透過関数の変動は、例えば勾配に従う波長に関する強度変動を含むことができ、この勾配は横軸1099に沿って継続して均一に変動する場合に、一定の透過勾配であり得る。透過関数の変動は、横軸1099に沿ったステップ様の様式において波長に関して強度が変動する場合に、スパイク様の透過勾配であり得る。より一般的には、光は、インプット光に応答して、透過光またはアウトプット光が波長の関数として横方向の位置で変動する場合に、横変を伴う透過光として本明細書で記載され、この横方向の位置での変動はインプット光には存在しなかった。横方向位置での変動を、領域1042および1044によって図10Aに示す。示されるように、透過構造1020の領域1042は、波長λ付近を中心とするサブ範囲にサブバンドの光を伝搬する。同様に、領域1044は、波長λ付近を中心とするサブ範囲においてサブバンドの光を伝搬する。結果として、線1046および1048によってそれぞれ表される領域1042および1044からの光は、異なる位置でフォトセンシング構成要素1060に入射する。中心波長λによって特徴付けられる光は、位置1062にてフォトセンシング構成要素1060の部分によって主に検出される。中心波長λによって特徴付けられる光は、位置1064にてフォトセンシング構成要素1060の部分によって主に検出される。インプット光1010を特徴とする中心波長が初期にλである場合、インプット光の波長のλへの変化は透過構造1020を出る光の位置の変化を生じる。この位置変化は、フォトセンシング構成要素1060の位置1062および1064において検出される光の変化によって示される。より一般的には、波長λおよびλでの入射光の強度間の相違は、位置1062および1064の位置にて検出された光の差異によって示されることができる。波長λおよびλ間の波長シフトまたは透過構造1020の表面1020Aでの波長分布の別の変化は、位置1062および1064にて提供される光子の関連する量を変化させることができ、2つの位置で提供される量が、それらの変化前とは異なる変化後の互いの関係を有することを意味する。例えば、量は、増大または低減し得るが、1つの位置での量が他方の位置での量より大きいまたはより小さい部分になるような量である;1つの位置での量は、他方の位置での量よりも小さいものから大きいものへ変化でき;または1つの量は増大し得るが、他方は低減し得る;など。これらのタイプの変化すべてが経時的に生じ得る。
図10Aは、ピークエネルギー値を有する光サブバンドを有する2つの異なる入射スペクトルパターンに応答してフォトセンシング構成要素1060にわたって光強度と位置との間の関係を示す。波長λでのピーク強度を有する第1のパターンは、曲線1066によって表される強度分布を有するフォトセンシング構成要素1060上の光スポットをもたらす。波長λにピーク強度を有する第2の分布は、同様に、曲線1068によって表される強度分布を有する光スポットをもたらす。理解されるように、透過構造1020からのインプット光1010の狭い光バンドがλからλに連続的に推移する場合に、曲線1066によって表される第1の光スポットは、それが曲線1068によって表される第2の光スポットの位置に到達するまでに、経時的に連続する一連の位置をたどり得る。
グラフはまた、第1および第2の光スポットに応答して、位置1062および1064によってセンシングされる光子の量を示す。第1のスポットがフォトセンシング構成要素1060に提供される場合、フォトセンシング構成要素1060の位置1062は、位置1062によってセンシングされる光子の量にほぼ比例した測定量I、すなわちIa1を生じ、位置1064によってセンシングされる光子の量にほぼ比例した測定量I、すなわちIb1を生じる。IおよびIは、例えば位置感受性光検出器によって得られる光電流であることができる。第2スポットがフォトセンシング構成要素1060上にある場合、位置1062は、Ia2に比例する量をセンシングし、位置1064はIb2に比例する量をセンシングする。わかるように、位置1062および1064によってセンシングされる相対量は変化し、第1のスポットの相対的な量(Ia1/Ib1)は1より大きく、第2のスポットの相対量(Ia2/Ib2)は1より小さい。同様に、差異(Ia1−Ib1)は正の量である一方で、差異(Ia2−Ib2)は負の量である。さらに、同様の比較が他の隣接または付近の位置で行われる場合、各スポットのピーク強度位置は、最も高いセンシング量を有するフォトセンシング構成要素上の位置を見つけることによって、近似できる。
一部の実施形態において、隣接またはオーバーラップスペクトル領域の強度は、積算され、分布における波長シフトを決定するために比較される。フォトセンシング構成要素1060は、2つの検出器を含んでいてもよく、スペクトル領域にわたる積算は、2つの検出器、例えばフォトダイオード、スプリットフォトダイオードまたは光電子倍増管(PMT)を用いて、2つの隣接領域1062、1064を測定することによって行われることができる。
スペクトル変動する透過構造1020は、線形変動性フィルタまた空間分散素子(例えばプリズム、格子など)を含むことができる。フレキシブル測定のために、スタックされたまたは多極のPMTが分光器に使用できる。測定は、少なくとも約0.01Hzから少なくとも約1MHzまでまたはそれ以上の周波数で行われてもよい。横変透過構造1020および位置感受性フォトセンシング構成要素1060の組み合わせは、波長シフトを、10フェムトメートル(fm)より顕著に小さいまたはさらに5fmよりも小さい、例えば約3fmに分解し得る。フォトセンシング構成要素1060の個々のフォトダイオードは、トランスインピーダンスアンプ1080で増幅される光電流IおよびIを生じることができる。シグナル減算および加算は、分析器によってサンプリングの前に優れたノイズ性能のためにアナログ回路を用いて行われてもよい。次いで波長分布の中心は、λi〜(I−I)/(I+I)によってコンピュータ計算できる。一部の実施形態において、波長シフト検出器1000の総サイズは、フォトセンシング構成要素1060のサイズに近づくことができ、これは載置および長期間の安定性に有益である。本明細書に開示されるサーモクロミック温度センシング手法と関連して使用できるインプット光の波長シフトの測定を含む追加の情報は、同一出願人の米国特許第7,701,590号に記載されている。
図10Bは、スペクトル検出器1070の別の実施形態を示す。測定光に応答するサーモクロミック材料(図10Bには図示せず)から放射される光1071のすべての波長は、ダイクロイックミラー1072を通って指向される。ダイクロイックミラー1072は、特定の波長領域を反射するが、他の波長領域は透過する。例えばダイクロイックミラー1072は、すべての波長λ<λ中心を透過し、すべての波長λ>=λ中心を反射できる。2つの異なる検出器である第1の検出器1081および第2の検出器1082は、ダイクロイックミラー1072からの透過光および反射光を回収するように配設される。検出器1081は、ミラーの中心波長λ中心よりも小さい波長領域に含有される総光強度を測定するために使用されてもよく、検出器1082は、ミラーの中心波長λ中心よりも大きい波長領域に含有される総光強度を測定するために使用されてもよい。中心波長付近を中心とするスペクトル分布に関して、両方の測定された光強度は、同一である(曲線1071A)。より長い波長にシフトするスペクトル分布(曲線1071B)に関して、検出器1082は、検出器1081よりも高い光強度を測定する。故に上記で記載される方法を用いて使用されるこの検出器は、スペクトル光強度分布を検出する別の方法を示す。
一部の実施形態において、追加の光学素子1075が光検出経路に導入されてもよい。例えば、検出器1081、1082の前の追加のバンドパスフィルタは、所与の温度変化に関して最大シフトを示すスペクトル領域に検出された光を制限するために使用されてもよい。一部の実施形態において、追加の光学素子1075は結像レンズを含んでいてもよい。結像は、光検出器が画像検出器、例えばカメラである場合に、特に興味深い場合がある。完全な試験容器の全領域が照明されてもよく、複数の試験部位からの測定光は、試験容器を少なくとも2つのカメラ上で結像させることによって、図10Bに示されるようなスキームにおいて同時にセンシングされてもよい。同時に撮影された2つの画像に関して、色分布、ひいてはすべての試験位置の温度は、ここで両方のカメラにおいて各試験位置に適切なピクセルの記録強度を測定することによって測定できる。試験容器における追加のマーキングは、画像中の試験位置を同定するために使用されてもよい。
サーモクロミックセンシングは、種々の医薬品、例えば抗生物質、抗菌剤、抗真菌剤、癌薬剤などの効力試験するような種々の試験プロトコルのために使用されてもよい。図11Aのフローダイアグラムは、一部の実施形態に従うサーモクロミック試験プロセスを示す。生体物質を、サーモクロミック試験容器の試験位置に配設された培地に挿入する(1101)。一部の実施形態において、試験物質も培地に配設される。生体物質は、試験位置に位置するサーモクロミック材料に熱的に結合される。サーモクロミック材料から放射される光のスペクトルシフトを検出する(1102)。スペクトルシフトは、生体物質によるエネルギー変換によって生じる温度変化に応答して生じる。生体物質によって変換されたエネルギーの量および/または割合は、スペクトルシフトに基づいて決定されてもよい(1103)。例えば、一部の実施において、生体物質は病原体であり、生体物質によって変換されたエネルギーの量および/または割合は、試験物質、例えば抗生物質に対する生体物質の感受性を示す。一部の実施において、生体物質は、細胞または組織培養液であり、生体物質によって変換されたエネルギーは、突然変異または細胞もしくは組織培養液に対する試験物質の他の作用に関連し得る。
上記で議論されるように、サーモクロミックセンシングは、抗生物質または抗菌剤感受性試験に特に有用である。抗菌剤感受性試験の目的は、病原体の可能性としての薬剤耐性を検出すること、および特定の感染のために選択された薬剤に対する病原体の感受性を保証することである。抗菌剤感受性試験は、定量的な結果、例えば抗菌剤試験物質の最小阻害濃度を提供してもよく、および/または病原体に対して試験物質の効力の定性的評価を提供してもよい。多くの細菌によって示される耐性の新規および新興機構は、耐性を正確に検出するためにASTの能力に関するビジランスが必要である。これらの耐性の新興機構の観点において特に、細菌分離株の抗菌剤に対する感受性レベルの表現型の測定が、今後数年間臨床に関連し続ける可能性がある。
ASTは、微生物の複製における薬剤の作用を測定し、どの薬剤が細菌を死滅するのに最も適しているかを決定する。ASTは、どの薬剤がインビボで最良に作用するかを予測するためにインビトロで平行して多くの薬剤を試験してもよい。故に、ASTは、薬剤の広いサンプルを試験してもよく、結果として処置選択を、特定の細菌のために最も有効な抗菌薬剤に向けることができる。
図11Bは、一部の実施形態に従って試験プロセスを示すフローダイアグラムである。サーモクロミックセンシング試験容器の試験位置は、サンプルで満たされる(1112)。サンプルは、培地、生体物質、試験されるべき物質、例えば抗生物質、および一部の実施形態においてはサーモクロミック材料の1つ以上を含んでいてもよい。サンプルおよびサンプル付近の他の構造、例えば試験位置およびコントロール位置は、インキュベーションチャンバにおいて熱平衡化される(1114)。試験位置およびコントロール位置を含む試験容器の1つ以上の領域は、測定光で照明される(1116)。領域の画像は、カメラシステムによって検出される(1118)。一部の実施において、領域の複数の画像が検出され、画像の位置合わせフィーチャは、画像を位置合わせするためにレジストレーションされる(1120)。画像間の変換は、位置合わせに基づいて計算される。画像内の関心領域が同定される(1122)。例えば、関心領域は、試験位置ならびに/あるいは陽性および/または陰性参照コントロール位置を含んでいてもよい。画像の関心領域の光強度(1124)および波長シフト(1126)が決定される。関心領域の温度が決定され(1128)、これは試験位置ならびに陽性および/または陰性コントロール位置の温度を決定することを含む。工程(1118)から(1128)によって示されるプロセスは、試験の結論まで繰り返される。関心領域の温度変化を分析する(1130)。温度変化に基づくいずれかの重要な知見が報告される(1132)。一部の実施形態において、位置合わせフィーチャのレジストレーションおよび画像間の変換の計算は、それぞれの測定ループの間に行われるよりむしろ、一回行われて試験のために使用されてもよい。
相当量の細菌分離株の現在の試験は、共通の病原体における可能性としての薬剤耐性を検出するために12〜24時間かかる。本明細書で議論されるサーモクロミックセンシング手法は、インキュベーション容器、例えばインキュベーション試験ウェルの温度をモニターするために光学熱量測定を使用し、それによって病原体培養液の増殖を決定する。開示された手法は、検出感度を顕著に増大させることによってASTを加速でき、終点測定によるのではなくむしろ、実際の時間で細菌増殖(またはその不存在)をモニターする能力を提供する。一部の実施形態において、本明細書に記載されるサーモクロミックセンシング技術の使用は、現在の手法に比較した場合に、60%を超えて、70%を超えて、またはさらに80%を超えて、抗生物質の最小阻害濃度を得るために必要とされる時間を短縮できる。図12Aは、一部の実施形態に従ってサーモクロミックセンシングを用いる熱光学抗菌剤感受性試験のためのプロセスを示すフローダイアグラムである。患者サンプルが血液培養機器による増殖に関して陽性としてフラッグされた後(1210)、サンプルのアリコートはグラム染色に供され(1220)、グラム陰性またはグラム陽性として細菌を同定する。血液培養培地から分離し、適切な濃度に懸濁した後、細菌をTOAST用の試験容器に導入する(1230)。細菌は、試験容器の試験位置の培地中で培養し(1240)、ここで異なる試験位置は、異なるタイプ、濃度および/または組み合わせの抗生物質を含有する。サーモクロミック材料は試験位置に配設され、細菌のエネルギー変換をセンシングするために熱的に結合される。試験位置それぞれのサーモクロミック材料から放射される光のスペクトルシフトを検出する(1250)。異なるタイプ、濃度および/または組み合わせの抗生物質に対する細菌の感受性はスペクトルシフトに基づいて決定される(1260)。
図12Bは、一部の実施形態に従ってサーモクロミックセンシングを用いるためのプロセスを示すフローダイアグラムである。患者サンプルが血液培養機器による増殖に関して陽性としてフラッグされた後(1210B)、サンプルのアリコートはグラム染色に供され(1220B)、グラム陰性またはグラム陽性として細菌を同定する。培養液は、例えば標準生化学試験または迅速質量分析法を介して同定試験に供される(1230B)。細菌の同定の後、細菌をTOASTのために試験容器に導入する(1240B)。細菌は、試験容器の試験位置にて培地中で培養し(1250B)、ここで異なる試験位置は、異なるタイプ、濃度および/または組み合わせの抗生物質を含有する。サーモクロミック材料は試験位置に配設され、細菌のエネルギー変換をセンシングするために熱的に結合される。試験位置それぞれのサーモクロミック材料から放射される光のスペクトルシフトを検出する(1260B)。異なるタイプ、濃度および/または組み合わせの抗生物質に対する細菌の感受性はスペクトルシフトに基づいて決定される(1270B)。
図13Aは、一部の実施形態に従ってサーモクロミックセンシングを用いる細菌同定および熱光学抗菌剤感受性試験のためのプロセスを示すフローダイアグラムである。患者サンプルが血液培養機器による増殖に関して陽性としてフラッグされた後(1310)、サンプルのアリコートはグラム染色に供され(1320)、グラム陰性またはグラム陽性として細菌を同定する。血液培養培地から分離し、適切な濃度に懸濁した後、細菌を同定(1330)用およびTOAST(1350)用の試験容器に導入する。同定(1330)のために、細菌は、試験容器の試験位置にて培地中で培養され(1335)、ここで異なる試験位置は、異なるタイプ、濃度および/または組み合わせの試験物質および指標物質を含有する。サーモクロミック材料は試験位置に配設され、細菌のエネルギー変換をセンシングするために熱的に結合される。試験位置それぞれのサーモクロミック材料から放射される光のスペクトルシフトを検出する(1370)。細菌の同定は、例えば図8の記載において説明されるように、スペクトルシフトに基づいて決定される(1375)。加えて、試験物質および指標物質の存在下、細菌のインキュベーションから得られた増殖培地の色変化を検出する(1340)。細菌同定は、増殖培地の色変化に基づいて決定される(1345)。TOAST(1350)のために、細菌は、試験容器の試験位置にて培地中で培養し(1355)、ここで異なる試験位置は、異なるタイプ、濃度および/または組み合わせの抗生物質を含有する。サーモクロミック材料は試験位置に配設され、細菌のエネルギー変換をセンシングするために熱的に結合される。試験位置それぞれのサーモクロミック材料から放射される光のスペクトルシフトを検出する(1360)。異なるタイプ、濃度および/または組み合わせの抗生物質に対する細菌の感受性はスペクトルシフトに基づいて決定される(1365)。
図13Bは、一部の実施形態に従ってサーモクロミックセンシングを用いる細菌同定および熱光学抗菌剤感受性試験のためのプロセスを示すフローダイアグラムである。患者サンプルが血液培養機器による増殖に関して陽性としてフラッグされた後(1310B)、サンプルのアリコートはグラム染色に供され(1320B)、グラム陰性またはグラム陽性として細菌を同定する。血液培養培地から分離し、適切な濃度に懸濁した後、細菌を同定(1330B)用および抗菌剤感受性試験TOAST(1350B)用の試験容器に導入する。同定のために、細菌は、試験容器の試験位置にて培地中で培養し(1335B)、ここで異なる試験位置は、異なるタイプ、濃度および/または組み合わせの試験物質および指標物質を含有する。サーモクロミック材料は試験位置に配設され、細菌のエネルギー変換をセンシングするために熱的に結合される。試験位置それぞれのサーモクロミック材料から放射される光のスペクトルシフトを検出する(1340B)。細菌の同定は、スペクトルシフトに基づいて決定される(1345B)。TOASTのために、細菌は、試験容器の試験位置にて培地中で培養し(1355B)、ここで異なる試験位置は、異なるタイプ、濃度および/または組み合わせの抗生物質を含有する。サーモクロミック材料は試験位置に配設され、細菌のエネルギー変換をセンシングするために熱的に結合される。試験位置それぞれのサーモクロミック材料から放射される光のスペクトルシフトを検出する(1360B)。異なるタイプ、濃度および/または組み合わせの抗生物質に対する細菌の感受性はスペクトルシフトに基づいて決定される(1365B)。
図13Cは、一部の実施形態に従ってサーモクロミックセンシングを用いる細菌同定および熱光学抗菌剤感受性試験のためのプロセスを示すフローダイアグラムである。患者サンプルが血液培養機器による増殖に関して陽性としてフラッグされた後(1310C)、サンプルのアリコートはグラム染色に供され(1320C)、グラム陰性またはグラム陽性として細菌を同定する。血液培養培地から分離し、適切な濃度に懸濁した後、細菌を同定(1330C)用およびTOAST(1350C)用の試験容器に導入する。同定のために、細菌は、試験容器の試験位置にて培地中で培養し(1335C)、ここで異なる試験位置は、異なるタイプ、濃度および/または組み合わせの試験物質および指標物質を含有する。試験物質および指標物質の存在下、細菌のインキュベーションから得られた増殖培地の色変化を検出する(1340C)。細菌同定は、増殖培地の色変化に基づいて決定される(1345C)。TOASTのために、細菌は、試験容器の試験位置にて培地中で培養し(1355C)、ここで異なる試験位置は、異なるタイプ、濃度および/または組み合わせの抗生物質を含有する。サーモクロミック材料は試験位置に配設され、細菌のエネルギー変換をセンシングするために熱的に結合される。試験位置それぞれのサーモクロミック材料から放射される光のスペクトルシフトを検出する(1360C)。異なるタイプ、濃度および/または組み合わせの抗生物質に対する細菌の感受性はスペクトルシフトに基づいて決定される(1365C)。
細菌は、生きている場合はセルあたり2pWのオーダーで生じる。故に盛隆な病原体培養液は、有糸分裂または他の複製機構による培養増殖により、それらのエネルギー変換を経時的に増大させる。培養液の阻害されたまたは低下するエネルギー変換アウトプットは培養死を示す。抗菌剤感受性試験において、培養液の阻害または低下エネルギー変換アウトプットは、抗菌剤薬剤の効力に関連する。本明細書に記載される試験容器および/または波長シフト検出器と関連して記載されるサーモクロミックセンシング試験容器を用いるサーモクロミックセンシングは、約100Hzのサンプリング割合にてΔλ≒3fmの波長変化を分解でき、これは約60ナノケルビン(nK)の温度変化についての解像度を提供する。14ビットの解像度でサンプリングされた50nm/Kのスペクトルシフトを示すサーモクロミック材料を用いる場合に温度測定バンド幅は、約1ミリケルビン(mK)である。図14Aは、本明細書で議論された波長シフト検出器を用いて、サーモクロミックセンシングの1mK(約290分)の範囲にわたって、抗生物質を用いない場合(グラフ1401)と最小阻害濃度(MIC)の抗生物質を用いる場合(グラフ1402)とに関して、増殖E.coliコロニーについての時間に対する温度ΔT(K)の変化を示すグラフを示す。総試験体積は0.1mlであると仮定すると、初期細菌濃度は、mlあたり500000コロニー形成ユニットであることが仮定される。
図14Bは、コロニー増殖の最初の20分に対応するグラフ1401、1402の一部を示す。図14BのΔT軸に沿った目盛線は、波長シフト検出器の60nKの解像度を示す。故に、本明細書に開示される手法を用いて最初の約10〜20分の試験は、抗菌剤試験のためのMICを同定するのに十分な増殖トレンドを示すことができることが、図14Bのグラフから理解される。特に、阻害されていないコロニー増殖は試験部位の温度の指数関数的増大をもたらす。故に試験部位の上昇温度は、隆盛な細菌コロニーを示し、阻害された増殖と比較するために温度参照として使用できる。阻害されたコロニー増殖は、増殖が全く起こらない場合に、より小さな温度増大をもたらすか、または一定温度になる。故に生体物質の阻害されたおよび阻害されていない増殖を伴う試験部位は、経時的にそれらの異なる温度進展によって同定できる。故に生体物質は伴うが、増殖阻害剤は伴わない試験ウェルは、一部の実施形態において陽性のコントロール部位として作用する。抗菌剤感受性試験の間、異なる抗菌薬を有する異なる試験部位は、異なる時間での薬剤の作用を示し得る。1つの薬剤は、第2の薬剤よりも迅速に微生物に作用できるが、両方の薬剤は、対象とする細菌コロニーを阻害するのに有効であり得る。故に、異なる試験部位において温度の連続的な報告は、第2の薬剤の効力または第1の薬剤の第2の濃度の効力についてよりも早く特定薬剤の効力についての情報を与えてもよい。結果として、試験部位の差動温度の連続的な報告は、こうした試験部位の細胞生存率の連続的表示を提供し得る。終点測定とは異なり、こうした報告システムは、現在のところ最良に機能する試験物質について連続的にすべてのユーザーにアップデートできる。臨床診療において、医師は、自動化様式、例えば電子メールまたはテキストメッセージによって、対応するウェル中のエネルギー変換が長期間連続して低かった場合に、特定の患者に有効な第1の薬剤が同定されていることをTOASTシステムにより知ることができる。同時に、インキュベータの温度制御された環境内であっても周囲温度は、試験部位の温度上昇に比べて顕著にドリフトし得る。一部の実施形態において、生体物質を有していない陰性のコントロール部位またはウェルは、周囲温度のドリフトを評価するために使用される。
細菌増殖に限定されないが、これらを含む生体物質の増殖を阻害する試験物質の効力を評価するために、試験位置の温度進展を経時的にモニターする。試験プレートの完全なインキュベーションおよび読出システムへの初期挿入の後、温度は強く変動し、初期温度読取は無視されることが予測される。十分な温度安定化の後、陽性コントロール位置は、例えば1401に示されるように、温度変化を示す。生体物質の増殖を有効に阻害する試験物質を有する試験位置は、1402に示されるように温度進展を示す。増殖を阻害するだけでなく、細胞障害性または殺菌作用を生じ、結果としてネクローシスもしくはアポトーシスまたは生体物質の死もしくは代謝低減のいずれかの他の形態が誘導される試験物質は、陽性コントロール位置に比べて試験位置の温度低下をもたらす。経時的な温度変化は、一般に、陽性コントロール位置の1つと陰性コントロール位置の1つとの間にある。試験物質に対する生体の応答を決定するためにいくつかの計量が使用できる。単純な非限定例として、陽性コントロール位置と試験位置との間の温度差の絶対値は、試験位置での試験物質の阻害されない増殖を決定するために、実験期間の過程において、特定の閾値、例えば10μK未満を維持する。あるいは同じ閾値計算は、いくつかの陽性コントロール位置の温度を平均することによって行うことができる。阻害または非阻害増殖計量のための別の例は、コントロール位置の絶対温度によって規格化される温度差であってもよい。計量の別の例は、時間に対する温度導関数の考慮であってもよい。評価手順の別の例は、温度−時間進展データへの曲線適合、例えば指数関数的増殖適合であってもよい。次いでコントロールおよび試験位置の個々の適合パラメータは、試験位置の生体物質の増殖またはその欠失を評価するために使用されてもよい。これらは、TOASTシステムにおいて生じた基本的なデータから意味のある情報を抽出するために使用できる可能性としてのデータ評価概念の単なる例であることが理解される。生体および特定の試験の実際の意図に依存して、これらの概念またはその他が利用されてもよい。
特に断らない限り、明細書および特許請求の範囲において使用されるフィーチャサイズ、量および物理的特性を表現するすべての数は、用語「約」によってすべての場合に修飾されることが理解されるべきある。従って、反対のことが示されない限り、前述の明細書および添付の特許請求の範囲に記載される数値パラメータは、本明細書に開示される教示を利用する当業者が得ようとする所望の特性に依存して変動し得る近似値である。終点によって数値範囲が使用されることは、この範囲内のすべての数字(例えば1〜5は1、1.5、2、2.75、3、3.80、4および5を含む)およびこの範囲内のいずれかの範囲を含む。

Claims (11)

  1. 生体物質を培養するための培地を含有する1つ以上の試験位置を有する試験容器と、
    前記1つ以上の試験位置に熱的に結合されたサーモクロミック材料であって、前記サーモクロミック材料が前記サーモクロミック材料の温度変化に応答して前記サーモクロミック材料から放射される光のスペクトルシフトを示すように構成される、サーモクロミック材料と
    を含むデバイス。
  2. 前記生体物質が、細菌、古細菌、原生生物、菌類、植物細胞、動物細胞、適切な宿主細胞中のウィルス、宿主細胞中のファージ、癌細胞、および組織細胞の1つ以上を含む、請求項1に記載のデバイス。
  3. 前記サーモクロミック材料から放射される光のスペクトルシフトが、前記サーモクロミック材料から放射される散乱光、反射光および蛍光の少なくとも1つのスペクトルシフトを含む、請求項1に記載のデバイス。
  4. 1つ以上の追加層をさらに含む、請求項1に記載のデバイスであって、前記追加層が、生体適合性層、光ブロッキング層、熱伝導層の1つ以上を含み、前記1つ以上の追加層が、前記サーモクロミック材料と前記培地との間に配設される、デバイス。
  5. 生体物質を培養するための培地を含有する1つ以上の試験位置を有する試験容器と、
    前記1つ以上の試験位置に熱的に結合されたコーティングであって、前記コーティングが前記サーモクロミック材料の温度変化に応答して前記サーモクロミック材料から放射される光のスペクトルシフトを示すように構成されるサーモクロミック材料を含むコーティングと
    を含むデバイス。
  6. 前記試験容器が、試験プレートを含み、
    前記1つ以上の試験位置が、試験プレートの試験ウェルであり、
    前記コーティングが、前記試験ウェルに熱的に結合した前記サーモクロミック材料の層である、
    請求項に記載のデバイス。
  7. 1つ以上の追加層をさらに含む、請求項に記載のデバイスであって、前記追加層が、生体適合性層光ブロッキング層、熱伝導層の1つ以上を含み、前記1つ以上の追加層が、前記サーモクロミック材料の層と前記培地との間に配設される、デバイス。
  8. 複数の試験位置を有する無菌試験容器と、
    前記試験位置にて前記試験容器によって含有される培地であって、生体物質を培養するための培地と、
    前記試験位置に熱的に結合されたサーモクロミック材料であって、前記サーモクロミック材料が前記サーモクロミック材料の温度変化に応答して前記サーモクロミック材料から放射される光のスペクトルシフトを示すように構成される、サーモクロミック材料と
    を含むキット。
  9. 前記1つ以上の試験位置に1つ以上の試験物質をさらに含む、請求項に記載のキット。
  10. 前記1つ以上の試験物質が、前記試験位置に、異なるタイプ、異なる量、および異なる組み合わせの薬剤を含む、請求項に記載のキット。
  11. 生体物質を培養するための培地を含有するように構成された1つ以上の試験位置を有する試験容器を提供する工程と、
    1つ以上の試験位置に熱的に結合されるようにサーモクロミック材料を配設する工程であって、前記サーモクロミック材料が、前記サーモクロミック材料の温度変化を生じる前記生体物質によるエネルギー変換の増減に応答して前記サーモクロミック材料から放射される光のスペクトルシフトを示すように構成される工程と
    を含む方法。
JP2016242851A 2015-12-30 2016-12-15 サーモクロミックセンシングデバイス、システム、および方法 Active JP6863729B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/984,719 2015-12-30
US14/984,719 US20170191020A1 (en) 2015-12-30 2015-12-30 Thermochromic sensing devices, systems, and methods

Publications (2)

Publication Number Publication Date
JP2017118870A JP2017118870A (ja) 2017-07-06
JP6863729B2 true JP6863729B2 (ja) 2021-04-21

Family

ID=57821750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242851A Active JP6863729B2 (ja) 2015-12-30 2016-12-15 サーモクロミックセンシングデバイス、システム、および方法

Country Status (5)

Country Link
US (2) US20170191020A1 (ja)
EP (1) EP3187593B1 (ja)
JP (1) JP6863729B2 (ja)
KR (1) KR20170080477A (ja)
CN (1) CN106929402B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598554B2 (en) 2015-12-30 2020-03-24 Palo Alto Research Center Incorporated Thermochromic sensing for nanocalorimetry
US9963732B2 (en) 2015-12-30 2018-05-08 Palo Alto Research Center Incorporated Thermochromic sensing devices, systems, and methods
US20170191020A1 (en) 2015-12-30 2017-07-06 Palo Alto Research Center Incorporated Thermochromic sensing devices, systems, and methods
US10161861B2 (en) * 2016-12-13 2018-12-25 Hong Kong Applied Science and Technology Research Institute Company Limited Compact device for sensing a liquid with energy harvesting from liquid motion
US11714008B2 (en) * 2019-03-07 2023-08-01 Te Connectivity Solutions Gmbh Isolated temperature sensing for hems contacts
US10950743B2 (en) 2019-05-02 2021-03-16 Stmicroelectronics (Research & Development) Limited Time of flight (TOF) sensor with transmit optic providing for reduced parallax effect
EP4038196A4 (en) * 2019-10-01 2024-01-24 Beth Israel Deaconess Medical Center, Inc. RAPID ANTIMICROBIAL SENSITIVITY TEST THROUGH IMAGE ANALYSIS
KR102446416B1 (ko) * 2020-01-06 2022-09-23 주식회사 케이티앤지 에어로졸 생성 장치
KR102145842B1 (ko) * 2020-03-06 2020-08-19 주식회사 퀀타매트릭스 정확한 관찰이 용이한 신속한 세포배양검사 장치
KR102127765B1 (ko) * 2020-03-06 2020-06-29 주식회사 퀀타매트릭스 고형화된 유체의 이탈을 방지할 수 있는 신속한 세포배양검사 장치
CN115377693A (zh) * 2022-08-01 2022-11-22 中国科学院光电技术研究所 一种温度与红外谱段发射率同时可调的超结构及其设计方法
CN116258794B (zh) * 2023-05-10 2023-07-28 广州海洋地质调查局三亚南海地质研究所 一种地震剖面数字化方法及装置

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561269A (en) 1969-12-15 1971-02-09 Thermochromatic Systems Inc Thermochromic temperature indication
US3813554A (en) 1972-12-12 1974-05-28 Ibm Addressable photochromic memory display device
JPH0628599B2 (ja) * 1989-08-18 1994-04-20 克忠 高橋 多試料微生物活性測定装置
US5859700A (en) 1995-11-22 1999-01-12 Kairos Scientific, Inc. High resolution imaging microscope (HIRIM) and uses thereof
TR199700344A3 (tr) 1997-05-02 1999-10-21 Tanil Kocagoez Zuehtue Dio-sensitest hizli antibakteriyel duyarlilik testi.
WO2000024438A1 (en) * 1998-10-27 2000-05-04 Baylor College Of Medicine Microbial activity indicator composition and coating
DE10039377A1 (de) * 1999-09-03 2001-03-08 Merck Patent Gmbh Thermochromes flüssigkristallines Medium
US6734401B2 (en) * 2000-06-28 2004-05-11 3M Innovative Properties Company Enhanced sample processing devices, systems and methods
US7094595B2 (en) 2000-10-30 2006-08-22 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
US7304008B2 (en) * 2001-05-15 2007-12-04 Eurokera Thermochromic material
US7833800B2 (en) 2002-04-01 2010-11-16 Palo Alto Research Center Incorporated Thermal sensing with bridge circuitry
JP2004020433A (ja) * 2002-06-18 2004-01-22 Canon Inc 標的物質の検出処理用プローブ固定基材
AU2003256803B2 (en) 2003-01-24 2009-09-17 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target activated microtransfer
JP2007511244A (ja) 2003-09-17 2007-05-10 セーガン インダストリーズ インコーポレーティッド 複数成分複合材料、その製造法および使用法
US7310153B2 (en) * 2004-08-23 2007-12-18 Palo Alto Research Center, Incorporated Using position-sensitive detectors for wavelength determination
US8685216B2 (en) 2004-12-21 2014-04-01 Palo Alto Research Center Incorporated Apparatus and method for improved electrostatic drop merging and mixing
CA2600427C (en) 2005-03-09 2013-09-10 Coloplast A/S A three-dimensional adhesive device having a microelectronic system embedded therein
US7479404B2 (en) 2005-07-08 2009-01-20 The Board Of Trustees Of The University Of Illinois Photonic crystal biosensor structure and fabrication method
US9341444B2 (en) 2005-11-23 2016-05-17 Robert Levine Thermal electric images
US8437582B2 (en) 2005-12-22 2013-05-07 Palo Alto Research Center Incorporated Transmitting light with lateral variation
US7784173B2 (en) 2005-12-27 2010-08-31 Palo Alto Research Center Incorporated Producing layered structures using printing
US20070199567A1 (en) 2006-01-25 2007-08-30 Kanzer Steve H Droplet collection devices and methods to detect and control airborne communicable diseases utilizing rfid
JP4851831B2 (ja) * 2006-04-07 2012-01-11 学校法人明治大学 微小熱量測定装置および微小熱量測定方法
US8637436B2 (en) 2006-08-24 2014-01-28 California Institute Of Technology Integrated semiconductor bioarray
JP2009540299A (ja) * 2006-06-05 2009-11-19 カリフォルニア インスティテュート オブ テクノロジー リアルタイムマイクロアレイ
JP4721958B2 (ja) * 2006-06-09 2011-07-13 株式会社日立ソリューションズ ビーズチッププレート
US20080085210A1 (en) * 2006-10-05 2008-04-10 Henry Griesbach Decontamination of filtration media for respiration
US7768640B2 (en) 2007-05-07 2010-08-03 The Board Of Trustees Of The University Of Illinois Fluorescence detection enhancement using photonic crystal extraction
US8617899B2 (en) 2008-02-14 2013-12-31 Palo Alto Research Center Incorporated Enhanced drop mixing using magnetic actuation
US9393566B2 (en) * 2008-06-23 2016-07-19 Canon U.S. Life Sciences, Inc. System and method for temperature referencing for melt curve data collection
EP2851676B1 (en) * 2008-12-18 2016-12-28 Ascensia Diabetes Care Holdings AG Test sensor with grating for determining the temperature of the sensor
US8182430B2 (en) 2009-04-21 2012-05-22 Hot Dot, Inc. Thermocromatic patch for monitoring/detecting body temperature
US8393785B2 (en) 2009-05-14 2013-03-12 Palo Alto Research Center Incorporated Nanocalorimeter based on thermal probes
US20130266977A1 (en) 2010-02-16 2013-10-10 President And Fellows Of Harvard College Methods and systems for detection of microbes
US20120312822A1 (en) 2010-12-13 2012-12-13 Meyer Intellectual Properties Limited Cookware with Thermal Indicator
US20130019374A1 (en) * 2011-01-04 2013-01-24 Schwartz Alan N Gel-based seals and fixation devices and associated systems and methods
JP2012228183A (ja) * 2011-04-22 2012-11-22 Npo Keihanna Bunka Gakujutsu Kyokai 生物活性測定装置および最小生育阻止濃度推定方法
US20130157376A1 (en) 2011-12-20 2013-06-20 Idaho Technology, Inc. Thermal Cycler Calibration Device and Related Methods
CN103017936B (zh) * 2012-12-25 2014-07-09 长春理工大学 热致色变光纤温度传感器及其传感方法
US9994889B2 (en) * 2013-03-15 2018-06-12 Nri R&D Patent Licensing, Llc Advanced microplate, microtiter, and microarray technologies with per-well fluidics, gas exchange, electronic sensors, and imaging for cell culture and other applications
CN103923826B (zh) * 2014-04-30 2016-04-06 上海市肺科医院 一种细菌培养检测管
CN203960216U (zh) * 2014-07-02 2014-11-26 广东美的厨房电器制造有限公司 微波微生物发酵装置
US20170191020A1 (en) 2015-12-30 2017-07-06 Palo Alto Research Center Incorporated Thermochromic sensing devices, systems, and methods
US9963732B2 (en) 2015-12-30 2018-05-08 Palo Alto Research Center Incorporated Thermochromic sensing devices, systems, and methods
US10598554B2 (en) 2015-12-30 2020-03-24 Palo Alto Research Center Incorporated Thermochromic sensing for nanocalorimetry

Also Published As

Publication number Publication date
US20170191020A1 (en) 2017-07-06
CN106929402A (zh) 2017-07-07
JP2017118870A (ja) 2017-07-06
EP3187593B1 (en) 2019-07-24
KR20170080477A (ko) 2017-07-10
US20220259545A1 (en) 2022-08-18
EP3187593A1 (en) 2017-07-05
CN106929402B (zh) 2022-02-25
US11655443B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
JP6863729B2 (ja) サーモクロミックセンシングデバイス、システム、および方法
JP6761751B2 (ja) サーモクロミックセンシングデバイス、システム、および方法
US11747266B2 (en) Systems and methods for bio-inactivation
JP6050546B2 (ja) 培養装置を備えるマイクロプレートリーダー
ES2703694T3 (es) Aparato para la realización de mediciones ópticas en botellas de hemocultivo
US20130288295A1 (en) Method and System for Detection and/or Characterization of a Biological Particle in a Sample
EP1032822A1 (en) Apparatus for reading a plurality of biological indicators
ES2443341T3 (es) Combinación de un dispositivo lector y una incubadora
ES2089009T5 (es) Aparato y metodos para ensayar la susceptibilidad antimicrobiana de microorganismos.
KR20100058514A (ko) 상부 호흡기 질병의 신속한 평가
JPH0670794A (ja) 血液培養バイアル中の微生物を検出するための方法および装置
US20140004558A1 (en) Detection of Microorganisms With a Fluorescence-Based Device
WO2020161364A1 (es) Dispositivo óptico para la detección de emisión de fluorescencia
US11366088B2 (en) System and method for ozone concentration measurement in ice

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6863729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150