JP6858605B2 - Support structure and construction method of support structure - Google Patents
Support structure and construction method of support structure Download PDFInfo
- Publication number
- JP6858605B2 JP6858605B2 JP2017054154A JP2017054154A JP6858605B2 JP 6858605 B2 JP6858605 B2 JP 6858605B2 JP 2017054154 A JP2017054154 A JP 2017054154A JP 2017054154 A JP2017054154 A JP 2017054154A JP 6858605 B2 JP6858605 B2 JP 6858605B2
- Authority
- JP
- Japan
- Prior art keywords
- tunnel
- support structure
- steel
- deformable portion
- steel member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 192
- 239000010959 steel Substances 0.000 claims description 192
- 239000004567 concrete Substances 0.000 claims description 21
- 239000011378 shotcrete Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000006835 compression Effects 0.000 description 45
- 238000007906 compression Methods 0.000 description 45
- 238000010586 diagram Methods 0.000 description 19
- 239000011257 shell material Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 238000009412 basement excavation Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000011900 installation process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Images
Landscapes
- Lining And Supports For Tunnels (AREA)
Description
本発明は、トンネルの内空面に配置されて、トンネルの変形による圧力を受ける支保構造および支保構造の構築方法に関するものである。 The present invention relates to a support structure that is arranged on the inner air surface of the tunnel and receives pressure due to deformation of the tunnel, and a method of constructing the support structure.
従来、NATM工法等で山岳トンネルを掘削する際には、トンネル掘削によって露出した地山を支保工により支保して、地山の安定化を図っているが、今後、リニアトンネルなどの高土被り長大トンネルを構築する場合には、高地圧に起因する大変形が予想される。変形が著しい場合には、支保工が耐荷荷重を超えて支保機能を失ったり、変形量が設計断面を侵したりして、縫い返しを余儀なくされる事態も考えられる。 Conventionally, when excavating a mountain tunnel by the NATM method, etc., the ground exposed by the tunnel excavation is supported by a support work to stabilize the ground, but in the future, high soil cover such as a linear tunnel will be covered. When constructing a long tunnel, large deformation due to high ground pressure is expected. If the deformation is significant, it is possible that the support work exceeds the load capacity and loses the support function, or the amount of deformation invades the design cross section, forcing the sewing back.
土圧等による鋼製支保工の脚部の沈下対策として、鋼製支保工に設けたボルト固定部にロックボルトの頭部を固定し、ロックボルトに作用するせん断力によって、鋼製支保工の沈下を防止する方法がある(例えば、特許文献1参照)。 As a measure against subsidence of the legs of the steel support due to earth pressure, etc., the head of the lock bolt is fixed to the bolt fixing part provided in the steel support, and the shearing force acting on the lock bolt is used to prevent the steel support from sinking. There is a method of preventing subsidence (see, for example, Patent Document 1).
また、地山側に、トンネル周方向に配列された複数の鋼製支保工を有する一次側支保工を設置し、一次側支保工よりもトンネル掘削断面の内側に、トンネル周方向に配列された複数の鋼製支保工を有する二次側支保工を設置し、二重の支保工により高剛性で高い地圧に対抗する方法もある(例えば、特許文献2参照)。 In addition, on the ground side, primary side support works with multiple steel support works arranged in the tunnel circumferential direction are installed, and multiple primary side support works arranged in the tunnel peripheral direction inside the tunnel excavation cross section than the primary side support work. There is also a method of installing a secondary side support having a steel support of the above and countering high rigidity and high ground pressure by double support (see, for example, Patent Document 2).
さらに、ある程度の変形を許すと地圧自体が緩和されることを利用し、初期変形を許した後に支保工強度を発現させるような変形追従支保工が提案されている。例えば、欧州では、2枚のU形鋼を合わせ、それを滑らせて可縮製を与える変形追従支保工の使用実績がある。 Further, a deformation-following support that develops the support strength after allowing the initial deformation has been proposed by utilizing the fact that the earth pressure itself is relaxed when the deformation is allowed to some extent. For example, in Europe, there is a track record of using deformation-following support works that combine two U-shaped steels and slide them to give a contractible structure.
二重支保工等の多重支保工によって地圧に対抗する方法は、通常使用している鋼製支保工等を用いて施工するため、特別な準備の必要はない。しかし、支保工を複数回施工する必要があり、手間がかかる。また、高土被りの場合、変形量が少ない時期での地圧が著しいため、多重支保工でも剛性で対抗できない可能性がある。 The method of countering earth pressure by multiple support such as double support does not require special preparation because it is constructed using the steel support that is normally used. However, it is necessary to carry out the support work multiple times, which is troublesome. In addition, in the case of high earth cover, the ground pressure is significant when the amount of deformation is small, so there is a possibility that even multiple support works cannot be countered by rigidity.
変形追従支保工を用いる方法は、高剛性は必要ではなくなるが、変形や強度発現の制御が必要である。欧州で用いられている2枚のU形鋼を滑らせて可縮製を与える変形追従支保工は、スライドの剛性が複数のU形鋼のねじ締め具合に依存するため、変形を制御することが難しく、適切な使用状態とならないと、支保工自体がねじ曲がり座屈する懸念がある。また、構造が複雑で施工が難しいため、国内では殆ど適用事例がない。 The method using the deformation-following support does not require high rigidity, but it does require control of deformation and strength development. Deformation-following support that slides two U-shaped steels used in Europe to give them shrinkage is to control the deformation because the rigidity of the slide depends on the screw tightening of multiple U-shaped steels. It is difficult to use, and if it is not used properly, there is a concern that the support itself will be twisted and buckled. In addition, since the structure is complicated and construction is difficult, there are almost no application cases in Japan.
本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、トンネルの覆工体の一部となる支保構造において、高地圧に起因する内空の大変形に追従することができ、容易に施工可能である支保構造および支保構造の構築方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to follow a large deformation of the inner sky due to high ground pressure in a support structure that is a part of a tunnel lining body. It is to provide a support structure that can be easily constructed and a method for constructing the support structure.
前述した目的を達成するために第1の発明は、トンネルの内空面に配置されて、トンネルの変形による圧力を受ける支保構造であって、トンネル軸方向の所定幅箇所において、少なくとも1つの鋼製部材と、前記鋼製部材に隣接して配置された圧潰する変形性能を有する圧縮変形容易部とがトンネル周方向に連結されて配置されていて、前記圧縮変形容易部の少なくともトンネル内周面側およびトンネル外周面側を覆うガイド部材が設けられ、前記ガイド部材の一端に、前記鋼製部材の端部が挿入されて、前記鋼製部材が前記ガイド部材に対してスライド可能であることを特徴とする支保構造である。 In order to achieve the above-mentioned object, the first invention is a support structure which is arranged on the inner air surface of a tunnel and receives pressure due to deformation of the tunnel, and at least one steel at a predetermined width in the tunnel axial direction. The member and the easily compressible and deformable portion having crushing deformation performance arranged adjacent to the steel member are connected and arranged in the circumferential direction of the tunnel, and at least the inner peripheral surface of the tunnel of the easily compressive and deformable portion is arranged. A guide member is provided to cover the side and the outer peripheral surface side of the tunnel, and the end portion of the steel member is inserted into one end of the guide member so that the steel member can slide with respect to the guide member. It is a characteristic support structure.
トンネル軸方向の所定幅箇所において、少なくとも1つの鋼製部材と圧縮変形容易部とをトンネル周方向に連結して配置したり、少なくとも2つの鋼製部材と鋼製部材同士の間に配置された圧縮変形容易部とをトンネル周方向に連結して配置したりすることにより、地圧が作用した場合に圧縮変形容易部が優先的に圧潰して変形し、鋼製部材と圧縮変形容易部とが一体となって地山の変形に追従する支保構造を、容易に施工することができる。
また、圧縮変形容易部の少なくともトンネル内周面側およびトンネル外周面側を覆うように設けたガイド部材の一端に鋼製部材の端部を挿入し、鋼製部材をガイド部材に対してスライド可能とすることにより、地圧が作用した場合に、圧縮変形容易部と鋼製部材との接続部での座屈を防止することができる。
At a predetermined width in the tunnel axial direction, at least one steel member and the easily deformable part are connected and arranged in the tunnel circumferential direction, or are arranged between at least two steel members and the steel members. By connecting and arranging the easy compressive deformation part in the circumferential direction of the tunnel, the easy compressive deformation part is preferentially crushed and deformed when the ground pressure acts, and the steel member and the easy compressive deformable part are formed. It is possible to easily construct a support structure that follows the deformation of the ground as a unit.
Further, the end of the steel member can be inserted into one end of the guide member provided so as to cover at least the inner peripheral surface side of the tunnel and the outer peripheral surface side of the tunnel of the easily compressible and deformable portion, and the steel member can be slid with respect to the guide member. By doing so, it is possible to prevent buckling at the connection portion between the easily compressive deformation portion and the steel member when the earth pressure acts.
前記ガイド部材の他端が、トンネル底部に固定され、前記支保構造のトンネル周方向の断面が逆U字形であってもよい。 The other end of the front Symbol guide member is fixed to the tunnel bottom, tunnel circumferential direction of the cross section of the支保structures may be reversed U-shape.
ガイド部材の他端をトンネル底部に固定し、支保構造のトンネル周方向の断面を逆U字形にすることにより、地圧が作用した場合に、圧縮変形容易部と鋼製部材との接続部での座屈をさらに効果的に防止することができる。 By fixing the other end of the guide member to the bottom of the tunnel and making the cross section of the support structure in the tunnel circumferential direction inverted U-shaped, the connection part between the easily compressive deformation part and the steel member when earth pressure is applied. Buckling can be prevented more effectively.
圧縮変形容易部の周囲にガイド部材が設けられる場合、前記ガイド部材に、トンネル周方向の長孔が設けられ、前記ガイド部材の一端に挿入された前記鋼製部材に突出部材が設けられ、前記突出部材が前記長孔に挿通されてもよい。 If the guide member is provided around the compressive deformation readily portion, the guide member is provided with a tunnel circumferential direction of the elongated hole, the protrusion member disposed in the steel member inserted into one end of said guide member , The protruding member may be inserted through the elongated hole.
ガイド部材にトンネル周方向の長孔を設け、ガイド部材の一端に挿入された鋼製部材に突出部材を設けて長孔に挿通すれば、鋼製部材のガイド部材に対するスライド範囲を限定し、鋼製部材のガイド部材からの抜け出しを防止できる。 The guide member is provided a tunnel circumferential direction of the elongate hole, if inserted provided projecting member inserted steel member at one end of the guide member in the elongated hole limits the sliding range with respect to the guide member of the steel member , It is possible to prevent the steel member from coming off from the guide member.
前記圧縮変形容易部は、例えば、中空殻を含むコンクリートである。
前記圧縮変形容易部は、体積率で10%以上の気泡を含むコンクリートであってもよい。
The easily compressive and deformable portion is, for example, concrete containing a hollow shell.
The easily compressive and deformable portion may be concrete containing 10% or more of air bubbles in terms of volume fraction.
圧縮変形容易部を、中空殻を含むコンクリートや、体積率で10%以上の気泡を含むコンクリートとすれば、圧縮時に大きな変形が可能で変形収束後も所要の耐荷重性能を有する圧縮変形容易部を得られる。気泡を含むコンクリートの気泡の体積率は好ましくは15%以上であり、更に好ましくは20%以上としてもよい。 If the easily compressive and deformable part is concrete containing a hollow shell or concrete containing 10% or more bubbles in volume fraction, a large amount of deformation is possible during compression and the easily compressive and deformable part has the required load-bearing performance even after the deformation converges. Can be obtained. The volume fraction of the concrete bubbles containing the bubbles is preferably 15% or more, and more preferably 20% or more.
第2の発明は、トンネルの内空面に配置されて、トンネルの変形による圧力を受ける支保構造の構築方法であって、トンネル軸方向に所定の間隔をおいて設けられた所定幅箇所において、少なくとも1つの鋼製部材と、圧潰する変形性能を有する圧縮変形容易部と、前記圧縮変形容易部の少なくともトンネル内周面側およびトンネル外周面側を覆うためのガイド部材を用いて、まず、前記ガイド部材を設け、次に、前記ガイド部材の内部に前記圧縮変形容易部を挿入し、前記ガイド部材の一端に、前記鋼製部材の端部を挿入して、前記鋼製部材を前記ガイド部材に対してスライド可能とすることにより、前記鋼製部材と、前記鋼製部材に隣接して配置された前記圧縮変形容易部とをトンネル周方向に連結して配置し、トンネル軸方向の前記所定幅箇所を除く箇所において、前記圧縮変形容易部に対応する箇所に、前記圧縮変形容易部と同一構造の他の圧縮変形容易部を設け、前記鋼製部材に対応する箇所を吹付けコンクリートで充填することを特徴とする支保構造の構築方法である。 The second invention is a method for constructing a support structure that is arranged on the inner air surface of a tunnel and receives pressure due to deformation of the tunnel, at predetermined width locations provided at predetermined intervals in the tunnel axial direction. First, using at least one steel member, an easily compressive deformable portion having crushing deformation performance, and a guide member for covering at least the inner peripheral surface side of the tunnel and the outer peripheral surface side of the tunnel of the easily compressive deformable portion. A guide member is provided, then the easily compressive and deformable portion is inserted inside the guide member, the end portion of the steel member is inserted into one end of the guide member, and the steel member is inserted into the guide member. by slidable relative to, the the steel member, and disposed adjacent to the steel member and the compressive deformation readily unit arranged to be connected to the tunnel circumferential direction, the predetermined tunnel axis Except for the width portion, another compressive deformable portion having the same structure as the compressive deformable portion is provided at a portion corresponding to the compressive deformable portion, and the portion corresponding to the steel member is filled with sprayed concrete. It is a method of constructing a support structure characterized by doing so.
トンネル軸方向に所定の間隔をおいて設けられた所定幅箇所において、鋼製部材と圧縮変形容易部とをトンネル周方向に連結して配置し、所定幅箇所を除く箇所において、圧縮変形容易部に対応する箇所に同一構造の他の圧縮変形容易部を設け、鋼製部材に対応する箇所を吹付けコンクリートで充填することにより、地圧が作用した場合に圧縮変形容易部が優先的に圧潰して変形し、鋼製部材や吹付コンクリートと圧縮変形容易部とが一体となって地山の変形に追従する支保構造を、容易に施工することができる。また、所定幅箇所と所定幅箇所を除く箇所とが同様の変形追従性を有する支保構造を構築できるため、変形追従性の調整が不要となる。 The steel member and the easily compressive and deformable part are connected and arranged in the circumferential direction of the tunnel at a predetermined width portion provided at a predetermined interval in the tunnel axial direction, and the easily compressive and deformable part is arranged at a portion other than the predetermined width portion. By providing other easily deformable parts with the same structure at the parts corresponding to the above and filling the parts corresponding to the steel members with sprayed concrete, the easily deformable parts are preferentially crushed when the ground pressure acts. It is possible to easily construct a support structure in which the steel member or sprayed concrete and the easily compressive deformable portion are integrated to follow the deformation of the ground. Further, since it is possible to construct a support structure in which the predetermined width portion and the portion other than the predetermined width portion have the same deformation followability, it is not necessary to adjust the deformation followability.
本発明によれば、トンネルの覆工体の一部となる支保構造において、高地圧に起因する内空の大変形に追従することができ、容易に施工可能である支保構造および支保構造の構築方法を提供できる。 According to the present invention, in a support structure that is a part of a tunnel lining body, it is possible to follow a large deformation of the inner sky due to high ground pressure, and it is possible to construct a support structure and a support structure that can be easily constructed. Can provide a method.
以下、図面に基づいて、本発明の第1の実施の形態について詳細に説明する。図1は、トンネルの内空面6に配置された支保構造3のトンネル軸方向の断面図である。図2は、トンネルの内空面6に配置された支保構造3のトンネル周方向の断面図である。図2(a)は、図1に示す矢印A−Aによる断面図であり、圧縮変形容易部11が圧縮されていない状態を示す図である。図2(b)は、圧縮変形容易部11が圧縮された状態を示す図である。
Hereinafter, the first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the
図1、図2(a)に示すように、支保構造3は、地山1に掘削されたトンネルの内空面6に配置される。支保構造3は、トンネル軸方向の所定幅箇所2に配置される支保構造3aと、所定幅箇所2を除く箇所4に配置される圧縮変形容易部11および吹付けコンクリート5とからなる。
As shown in FIGS. 1 and 2 (a), the
図1に示す4ヶ所の支保構造3aのうち、最も右側の支保構造3aでは、矩形鋼管9の一部を省略して図示している。図1、図2(a)に示すように、トンネル軸方向の所定幅箇所2に配置される支保構造3aは、2つ以上の鋼製部材7、矩形鋼管9、圧縮変形容易部11等からなる。鋼製部材7は、トンネルの周方向に所定の間隔をおいて配置される。圧縮変形容易部11は、鋼製部材7に隣接して、鋼製部材7同士の間に配置される。鋼製部材7と圧縮変形容易部11とは、トンネル周方向に連結されて配置される。矩形鋼管9は、圧縮変形容易部11の周囲に設けられるガイド部材である。
Of the four
鋼製部材7は、例えばH型鋼である。圧縮変形容易部11は、変形性能を調整したブロック13である。ブロック13は、例えば、中空ガラス微粒子等の中空殻を含むコンクリート部材や、hiDCon(商品名)と呼ばれるコンクリート部材である。中空殻の殻素材としては、プラスチック等の樹脂であってもよい。
The
トンネル軸方向の所定幅箇所2を除く箇所4では、所定幅箇所2の圧縮変形容易部11に対応する箇所に圧縮変形容易部11が設けられる。また、鋼製部材7に対応する箇所に吹付けコンクリート5が設けられる。所定幅箇所2を除く箇所4の圧縮変形容易部11は、所定幅箇所2の圧縮変形容易部11と同一構造である。所定幅箇所2を除く箇所4の圧縮変形容易部11は、複数のブロック13をトンネル軸方向に並置して形成される。
At the
図3は、図1に示す範囲Bの部分を構築する工程を示す図である。鋼製部材7と圧縮変形容易部11とを接合するには、まず、図3(a)に示す一方の鋼製部材7−nの上端面15に、図3(b)に示すように板材17を設置する。そして、図3(c)に示すように、鋼製部材7−nの上端面15近傍に矩形鋼管9の下端部21をかぶせ、矩形鋼管9の下端部21を鋼製部材7−nに溶接して固定する。
FIG. 3 is a diagram showing a process of constructing the portion of the range B shown in FIG. In order to join the
次に、図3(d)に示すように、矩形鋼管9の内部に圧縮変形容易部11となるブロック13を挿入し、板材17上に配置する。その後、図3(e)に示すように、矩形鋼管9の上端部25に他方の鋼製部材7−(n+1)の端部を挿入する。鋼製部材7−(n+1)の端部には、図示しない板材が設けられる。矩形鋼管9の上端部25は、鋼製部材7−(n+1)に固定されない。鋼製部材7−(n+1)は、矩形鋼管9に対してスライド可能である。
Next, as shown in FIG. 3D, the
図1に示す支保構造3は、トンネルの掘削に伴って、所定幅箇所2に支保構造3aを設置する工程と、所定幅箇所2を除く箇所4に圧縮変形容易部11および吹付けコンクリート5を設置する工程とを繰り返すことにより構築される。所定幅箇所2に支保構造3aを設置する際には、上述した図3(c)以前の加工を予め工場等で行った部材を現地に搬入し、図3(d)に示す以降の施工を現地で行うことが望ましい。
In the
図4は、鋼製部材7と圧縮変形容易部11との接合部付近を示す図である。図4(a)は、圧縮変形容易部11が圧縮されていない状態を示す図である。図4(b)は、圧縮変形容易部11が圧縮された状態を示す図である。図4では、矩形鋼管9の一部の図示を省略している。
FIG. 4 is a diagram showing the vicinity of the joint portion between the
支保構造3aは、地山1から作用する地圧が小さい場合には、図2(a)および図4(a)に示す状態である。支保構造3aは、地山1から大きな地圧が作用すると、図2(b)および図4(b)に示すように、圧縮変形容易部11のブロック13が圧潰して変形する。また、図4(b)に示すように、鋼製部材7−(n+1)の端部が矩形鋼管9に対して矢印Cに示す方向にスライドする。これにより、鋼製部材7と圧縮変形容易部11とが一体となって地山1の変形に追従する。そして、地山1の変形に追従して、図2(b)に示すように支保構造3aのトンネル周方向の外径が小さくなる。
The
また、支保構造3は、地山1から大きな地圧が作用すると、所定幅箇所2の支保構造3aと同様に、所定幅箇所2を除く箇所4においても、圧縮変形容易部11のブロック13が圧潰して変形する。これにより、吹付けコンクリート5と圧縮変形容易部11とが一体となって地山1の変形に追従し、トンネル周方向の外径が小さくなる。支保構造3では、所定幅箇所2と、所定幅箇所2を除く箇所4とが、同様の変形追従性を有する。
Further, in the
このように、第1の実施の形態では、トンネル軸方向の所定幅箇所2に、鋼製部材7と圧縮変形容易部11とがトンネル周方向に連結された支保構造3aを設ける。支保構造3aは、例えば中空殻を含むコンクリート製のブロック13とH型鋼とを用いることにより、容易に施工することができる。支保構造3aは、地山1から地圧が作用した場合に、圧縮変形容易部11が優先的に圧潰して変形することにより、鋼製部材7と圧縮変形容易部11とが一体となって地山1の変形に追従することができる。
As described above, in the first embodiment, the
支保構造3aでは、圧縮変形容易部11の周囲に矩形鋼管9を設け、矩形鋼管9の一端に一方の鋼製部材7−(n+1)の端部を挿入してスライド可能とし、矩形鋼管9の他端を他方の鋼製部材7−nの端部近傍に固定する。これにより、地山1から地圧が作用した場合に、圧縮変形容易部11と鋼製部材7との接続部での座屈を防止することができる。
In the
第1の実施の形態では、トンネル軸方向の所定幅箇所2を除く箇所4において、圧縮変形容易部11に対応する箇所に同一構造の他の圧縮変形容易部11を設け、鋼製部材7に対応する箇所に吹付けコンクリート5を設け、所定幅箇所2に設けた支保構造3aと併せて支保構造3を構成する。これにより、支保構造3では、所定幅箇所2と、所定幅箇所2を除く箇所4とが、同様の変形追従性を有するものとなり、変形追従性の調整が不要となる。
In the first embodiment, in the
また、圧縮変形容易部11のブロック13を中空殻を含むコンクリート部材等とすれば、圧縮時に大きな変形が可能で、変形収束後も所要の耐荷重性能を有する圧縮変形容易部11を得ることができる。
Further, if the
なお、第1の実施の形態では、断面が円形の支保構造3について説明したが、支保構造の断面は円形に限らない。図5は、断面が逆U字形の支保構造43のトンネル周方向の断面図である。図5は、支保構造43のうち、トンネル軸方向の所定幅箇所に配置される支保構造43aを示す図である。図5(a)は、圧縮変形容易部11が圧縮されていない状態を示す図である。図5(b)は、圧縮変形容易部11が圧縮された状態を示す図である。
In the first embodiment, the
図5に示すように、トンネル軸方向の所定幅箇所に配置される支保構造43aは、鋼製部材45、矩形鋼管9、圧縮変形容易部11等からなる。矩形鋼管9、圧縮変形容易部11は、第1の実施の形態で用いたものと同じ部材である。鋼製部材45は、トンネルの周方向に所定の間隔をおいて配置される。圧縮変形容易部11は、鋼製部材45−1と鋼製部材45−2との間に配置される。鋼製部材45−1および鋼製部材45−2と圧縮変形容易部11とは、トンネル周方向に連結されて逆U字形に配置される。
As shown in FIG. 5, the
矩形鋼管9は、圧縮変形容易部11の周囲に設けられるガイド部材であり、下端部21が、トンネル底部47上に設置された鋼製部材45−1の端部に固定される。矩形鋼管9の上端部25は、鋼製部材45−2に固定されない。鋼製部材45−2は、端部が矩形鋼管9の上端部25に挿入され、矩形鋼管9に対してスライド可能である。
The
支保構造43aは、地山41から作用する地圧が小さい場合には、図5(a)に示す状態である。支保構造43aは、地山41から大きな地圧が作用すると、図5(b)に示すように、圧縮変形容易部11のブロック13が圧潰して変形する。また、鋼製部材45−2の端部が矩形鋼管9に対して下方にスライドする。これにより、鋼製部材45と圧縮変形容易部11とが一体となって地山41の変形に追従する。
The
図5に示す支保構造43においても、トンネル軸方向の所定幅箇所を除く箇所では、所定幅箇所の支保構造43aの圧縮変形容易部11に対応する箇所に同一の構造の圧縮変形容易部が設けられ、鋼製部材45に対応する箇所に吹付けコンクリートが設けられる。これにより、支保構造43においても、所定幅箇所と、所定幅箇所を除く箇所とが、同様の変形追従性を有するものとなり、変形追従性の調整が不要となる。
Also in the
次に、第2の実施の形態について説明する。図6は、支保構造53のトンネル周方向の断面図である。図6は、支保構造53のうち、トンネル軸方向の所定幅箇所に配置される支保構造53aを示す図である。図6(a)は、圧縮変形容易部11が圧縮されていない状態を示す図である。図6(b)は、圧縮変形容易部11が圧縮された状態を示す図である。
Next, the second embodiment will be described. FIG. 6 is a cross-sectional view of the
図6に示すように、トンネル軸方向の所定幅箇所に配置される支保構造53aは、1つの鋼製部材55、矩形鋼管9、圧縮変形容易部11等からなる。矩形鋼管9、圧縮変形容易部11は、第1の実施の形態で用いたものと同じ部材である。圧縮変形容易部11は、鋼製部材55の両端部に隣接して配置される。鋼製部材55と圧縮変形容易部11とは、トンネル周方向に連結されて逆U字形に配置される。
As shown in FIG. 6, the
矩形鋼管9は、圧縮変形容易部11の周囲に設けられるガイド部材であり、下端部21がトンネル底部49に固定される。矩形鋼管9の上端部25は、鋼製部材55に固定されない。鋼製部材55は、端部が矩形鋼管9の上端部25に挿入され、矩形鋼管9に対してスライド可能である。
The
支保構造53aは、地山51から作用する地圧が小さい場合には、図6(a)に示す状態である。支保構造53aは、地山51から大きな地圧が作用すると、図6(b)に示すように、圧縮変形容易部11のブロック13が圧潰して変形する。また、鋼製部材55の端部が矩形鋼管9に対して下方にスライドする。これにより、鋼製部材55と圧縮変形容易部11とが一体となって地山51の変形に追従する。
The
図6に示す支保構造53においても、トンネル軸方向の所定幅箇所を除く箇所では、所定幅箇所の支保構造53aの圧縮変形容易部11に対応する箇所に同一の構造の圧縮変形容易部が設けられ、鋼製部材55に対応する箇所に吹付けコンクリートが設けられる。これにより、支保構造53においても、所定幅箇所と、所定幅箇所を除く箇所とが、同様の変形追従性を有するものとなり、変形追従性の調整が不要となる。
Also in the
なお、第1の実施の形態、図5に示す例、第2の実施の形態では、圧縮変形容易部11の周囲に設けた矩形鋼管9の上端部25および矩形鋼管9の上端部25に挿入された鋼製部材の端部に加工を施さない例を示したが、図7に示すように、矩形鋼管9の上端部25付近および矩形鋼管9の上端部25に挿入された鋼製部材の端部付近に係合のための部材を設けてもよい。図7では、第1の実施の形態における矩形鋼管9付近を例として示す。
In the first embodiment, the example shown in FIG. 5, and the second embodiment, the
図7は、長孔19と頭付きスタッド23を設けた例を示す図である。図7(a)は、矩形鋼管9付近の斜視図である。図7(b)は、図7(a)に示す矢印D−Dによる断面図であり、圧縮変形容易部11が圧縮されていない状態を示す図である。図7(c)は、圧縮変形容易部11が圧縮された状態を示す図である。
FIG. 7 is a diagram showing an example in which the
図7に示す例では、圧縮変形容易部11の周囲に設けた矩形鋼管9の上端部25付近に、トンネル周方向の長孔19が設けられる。また、矩形鋼管9の上端部25に挿入された鋼製部材7−(n+1)の端部付近に、突出部材である頭付きスタッド23が設けられる。頭付きスタッド23は、鋼製部材7−(n+1)に固定され、矩形鋼管9の長孔19に挿通される。
In the example shown in FIG. 7, a
図7(b)に示すように、圧縮変形容易部11が圧縮されていない状態では、頭付きスタッド23が長孔19の上部に位置する。図7(c)に示すように、圧縮変形容易部11が圧縮されて鋼製部材7−(n+1)が矩形鋼管9に対してスライドした状態では、頭付きスタッド23が長孔19の下部に位置する。図7に示す例によれば、鋼製部材7の矩形鋼管9に対するスライド範囲を限定し、鋼製部材7の矩形鋼管9からの抜け出しを防止できる。なお、頭付きスタッド23に代えて、頭部を有さないスタッドであってもよい。このようにしても、矩形鋼管9に対して、鋼製部材7が斜めに圧縮させて、鋼製部材7が矩形鋼管9から抜け出すことを防止できる。
As shown in FIG. 7B, the headed
また、第1の実施の形態、図5に示す例、第2の実施の形態では、圧縮変形容易部11の周囲に設けられるガイド部材として矩形鋼管9を用いたが、ガイド部材はこれに限らず、圧縮変形容易部11と鋼製部材7との接合部で圧縮変形容易部が圧潰したときに、一方の鋼製部材7を他方の鋼製部材に沿ってスライドさせることで、挫折を防止できるものであればよい。例えば、ガイド部材の側面と吹付けコンクリート5とを一体化しやすくするために、側面を網状にした鋼製のガイド部材を用いてもよい。
Further, in the first embodiment, the example shown in FIG. 5, and the second embodiment, the
次に、第3の実施の形態について説明する。図8は、トンネルの内空面36に配置された支保構造33のトンネル軸方向の断面図である。図9は、鋼製部材7と圧縮変形容易部11との接合部付近を示す図である。図9(a)は、圧縮変形容易部11が圧縮されていない状態を示す図である。図9(b)は、圧縮変形容易部11が圧縮された状態を示す図である。
Next, a third embodiment will be described. FIG. 8 is a cross-sectional view of the
図8に示すように、支保構造33は、第1の実施の形態の支保構造3とほぼ同様の構成であるが、支保構造3aの替わりに、圧縮変形容易部11の周囲に矩形鋼管9が設けられない支保構造33aが用いられる。
As shown in FIG. 8, the
支保構造33は、地山31に掘削されたトンネルの内空面36に配置される。支保構造33は、トンネル軸方向の所定幅箇所32に配置される支保構造33aと、所定幅箇所32を除く箇所34に配置される圧縮変形容易部11および吹付けコンクリート5とからなる。
The
トンネル軸方向の所定幅箇所32に配置される支保構造33aは、鋼製部材7、圧縮変形容易部11等からなる。鋼製部材7は、トンネルの周方向に所定の間隔をおいて配置される。圧縮変形容易部11は、鋼製部材7に隣接して、鋼製部材7同士の間に配置される。鋼製部材7と圧縮変形容易部11とは、トンネル周方向に連結されて配置される。
The
鋼製部材7は、例えばH型鋼である。圧縮変形容易部11は、変形性能を調整したブロック13である。ブロック13は、例えば、中空ガラス微粒子等の中空殻を含むコンクリート部材や、hiDCon(商品名)と呼ばれるコンクリート部材である。中空殻の殻素材としては、プラスチック等の樹脂であってもよい。
The
トンネル軸方向の所定幅箇所32を除く箇所34では、所定幅箇所32の圧縮変形容易部11に対応する箇所に圧縮変形容易部11が設けられる。また、鋼製部材7に対応する箇所に吹付けコンクリート5が設けられる。所定幅箇所32を除く箇所34の圧縮変形容易部11は、所定幅箇所32の圧縮変形容易部11と同一構造である。所定幅箇所32を除く箇所34の圧縮変形容易部11は、複数のブロック13をトンネル軸方向に並置して形成される。
At the
鋼製部材7と圧縮変形容易部11とを接合するには、まず、一方の鋼製部材7の上端面に図示しない板材を設置する。そして、圧縮変形容易部11となるブロック13を図示しない板材上に配置する。その後、圧縮変形容易部11となるブロック13上に他方の鋼製部材7を配置する。他方の鋼製部材7の端部にも、図示しない板材が設けられる。鋼製部材7の端部に板材を設ける加工は、現場搬入前に行うことが望ましい。
In order to join the
図8に示す支保構造33は、トンネルの掘削に伴って、所定幅箇所32に支保構造33aを設置する工程と、所定幅箇所32を除く箇所34に圧縮変形容易部11および吹付けコンクリート5を設置する工程とを繰り返すことにより構築される。
The
支保構造33aは、地山31から作用する地圧が小さい場合には、図9(a)に示す状態である。支保構造33aは、地山31から大きな地圧が作用すると、図9(b)に示すように、圧縮変形容易部11のブロック13が圧潰して変形する。これにより、鋼製部材7と圧縮変形容易部11とが一体となって地山31の変形に追従する。そして、地山31の変形に追従して、支保構造33aのトンネル周方向の外径が小さくなる。
The
また、支保構造33は、地山31から大きな地圧が作用すると、所定幅箇所32の支保構造33aと同様に、所定幅箇所32を除く箇所34においても、圧縮変形容易部11のブロック13が圧潰して変形する。これにより、吹付けコンクリート5と圧縮変形容易部11とが一体となって地山31の変形に追従し、トンネル周方向の外径が小さくなる。支保構造33では、所定幅箇所32と、所定幅箇所32を除く箇所34とが、同様の変形追従性を有する。
Further, in the
このように、第3の実施の形態では、トンネル軸方向の所定幅箇所32に、鋼製部材7と圧縮変形容易部11とがトンネル周方向に連結された支保構造33aを設ける。支保構造33aは、例えば中空殻を含むコンクリート製のブロック13とH型鋼とを用いることにより、容易に施工することができる。支保構造33aは、地山31から地圧が作用した場合に、圧縮変形容易部11が優先的に圧潰して変形することにより、鋼製部材7と圧縮変形容易部11とが一体となって地山31の変形に追従することができる。
As described above, in the third embodiment, the
第3の実施の形態では、トンネル軸方向の所定幅箇所32を除く箇所34において、圧縮変形容易部11に対応する箇所に同一構造の他の圧縮変形容易部11を設け、鋼製部材7に対応する箇所に吹付けコンクリート5を設け、所定幅箇所32に設けた支保構造33aと併せて支保構造33を構成する。これにより、支保構造33では、所定幅箇所32と、所定幅箇所32を除く箇所34とが同様の変形追従性を有するものとなり、変形追従性の調整が不要となる。
In the third embodiment, at the
また、圧縮変形容易部11のブロック13を中空殻を含むコンクリート部材等とすれば、圧縮時に大きな変形が可能で、変形収束後も所要の耐荷重性能を有する圧縮変形容易部11を得ることができる。
Further, if the
なお、第1、第2、第3の実施の形態や図5に示す例では、中空殻を含むコンクリート部材等のブロック13を用いて圧縮変形容易部11を形成したが、体積率で10%以上の気泡を含むコンクリート部材をブロックとして用いてもよい。気泡を含むコンクリートの気泡の体積率は好ましくは15%以上であり、更に好ましくは20%以上としてもよい。また、鋼製板材を含むコンクリート部材をブロックとして用いてもよい。
In addition, in the first, second, and third embodiments and the example shown in FIG. 5, the compression deformation
図10は、第3の実施の形態において鋼製板材27を含むブロック13aを用いた例を示す図である。図10(a)は、圧縮変形容易部11aが圧縮されていない状態を示す図である。図10(b)は、圧縮変形容易部11aが圧縮された状態を示す図である。
FIG. 10 is a diagram showing an example in which the
図10に示すブロック13aは、中空殻を含むコンクリート部材や、体積率で10%以上の気泡を含むコンクリート部材に、所定の間隔で鋼製板材27を設けたものである。鋼製板材27は、鋼製部材7の軸方向と直交する方向に配置される。
The
ブロック13aを用いた支保構造は、地山から大きな地圧が作用すると、図10(b)に示すように、圧縮変形容易部11aのブロック13aが圧潰して変形する。このとき、鋼製板材27を設けることにより、圧縮変形容易部11aのブロック13aの、ブロック外周方向への膨れを防止できる。
In the support structure using the
第3の実施の形態では、支保構造33aを、複数の鋼製部材7および圧縮変形容易部11で構成したが、第2の実施の形態と同様に、支保構造を単数の鋼製部材および圧縮変形容易部で構成してもよい。また、支保構造の断面形状は円形に限らない。
In the third embodiment, the
第1の実施の形態、図5に示す例、第2の実施の形態では、ガイド部材として、鋼製部材のスライド方向となる2面を除いた、4面を覆う矩形鋼管9を用いたが、ガイド部材の構成はこれに限らない。鋼製部材7の側面の2面には吹付けコンクリートが設置されているので、鋼製部材7の内外面の2面、すなわち圧縮変形容易部11のトンネル内周面側およびトンネル外周面側を鋼製の板材で覆うことでガイド部材としてもよい。ガイド部材は鋼製部材7をガイドするための所定の強度が必要である。例えば、ガイド部材は鋼からなる。
In the first embodiment, the example shown in FIG. 5, and the second embodiment, a
以上、添付図を参照しながら、本発明の実施形態を説明したが、本発明の技術的範囲は、前述した実施形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the technical scope of the present invention does not depend on the above-described embodiments. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical ideas described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
1、31、41、51………地山
2、32………所定幅箇所
3、3a、33、33a、43、43a、53、53a………支保構造
4、34………所定幅箇所を除く箇所
5………吹付けコンクリート
6、36………内空面
7、7−n、7−(n+1)、45、45−1、45−2、55………鋼製部材
9………矩形鋼管
11………圧縮変形容易部
13、13a………ブロック
15………上端面
17………板材
19………長孔
21………下端部
23………頭付きスタッド
25………上端部
27………鋼製板材
1, 31, 41, 51 ………
Claims (6)
トンネル軸方向の所定幅箇所において、少なくとも1つの鋼製部材と、前記鋼製部材に隣接して配置された圧潰する変形性能を有する圧縮変形容易部とがトンネル周方向に連結されて配置されていて、
前記圧縮変形容易部の少なくともトンネル内周面側およびトンネル外周面側を覆うガイド部材が設けられ、
前記ガイド部材の一端に、前記鋼製部材の端部が挿入されて、前記鋼製部材が前記ガイド部材に対してスライド可能であることを特徴とする支保構造。 It is a support structure that is placed on the inner air surface of the tunnel and receives pressure due to the deformation of the tunnel.
At a predetermined width in the tunnel axial direction, at least one steel member and a compressively deformable portion having crushing deformation performance arranged adjacent to the steel member are connected and arranged in the tunnel circumferential direction. hand,
A guide member is provided to cover at least the inner peripheral surface side of the tunnel and the outer peripheral surface side of the tunnel of the easily compressive and deformable portion.
A support structure characterized in that an end portion of the steel member is inserted into one end of the guide member, and the steel member is slidable with respect to the guide member.
前記支保構造のトンネル周方向の断面が逆U字形であることを特徴とする請求項1記載の支保構造。 The other end of the front Symbol guide member is fixed to the tunnel bottom,
支保structure of claim 1 Symbol placement tunnel circumferential direction of the cross section of the支保structure characterized an inverted U-shape der Rukoto.
前記ガイド部材の一端に挿入された前記鋼製部材に突出部材が設けられ、
前記突出部材が前記長孔に挿通されることを特徴とする請求項1または請求項2記載の支保構造。 The guide member is provided with a tunnel circumferential direction of the elongated hole,
Protruding member provided on the steel member inserted into one end of said guide member,
The support structure according to claim 1 or 2, wherein the protruding member is inserted into the elongated hole.
トンネル軸方向に所定の間隔をおいて設けられた所定幅箇所において、少なくとも1つの鋼製部材と、圧潰する変形性能を有する圧縮変形容易部と、前記圧縮変形容易部の少なくともトンネル内周面側およびトンネル外周面側を覆うためのガイド部材を用いて、まず、前記ガイド部材を設け、次に、前記ガイド部材の内部に前記圧縮変形容易部を挿入し、前記ガイド部材の一端に、前記鋼製部材の端部を挿入して、前記鋼製部材を前記ガイド部材に対してスライド可能とすることにより、前記鋼製部材と、前記鋼製部材に隣接して配置された前記圧縮変形容易部とをトンネル周方向に連結して配置し、
トンネル軸方向の前記所定幅箇所を除く箇所において、前記圧縮変形容易部に対応する箇所に、前記圧縮変形容易部と同一構造の他の圧縮変形容易部を設け、前記鋼製部材に対応する箇所を吹付けコンクリートで充填することを特徴とする支保構造の構築方法。 It is a method of constructing a support structure that is placed on the inner air surface of the tunnel and receives pressure due to the deformation of the tunnel.
At least one steel member, a compressively deformable portion having crushing deformation performance, and at least the inner peripheral surface side of the tunnel of the easily compressively deformable portion at predetermined width locations provided at predetermined intervals in the tunnel axial direction. Using the guide member for covering the outer peripheral surface side of the tunnel, first, the guide member is provided, then the compressively deformable portion is inserted inside the guide member, and the steel is placed at one end of the guide member. by inserting the end of the manufacturing member, by slidable relative to the guide member said steel member, wherein the steel member, wherein disposed adjacent to the steel member compressive deformation readily unit And are connected and arranged in the circumferential direction of the tunnel,
A portion corresponding to the steel member by providing another compressible deformable portion having the same structure as the compressive deformable portion at a portion corresponding to the compressive deformable portion in a portion other than the predetermined width portion in the tunnel axial direction. A method of constructing a support structure characterized by filling with sprayed concrete.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017054154A JP6858605B2 (en) | 2017-03-21 | 2017-03-21 | Support structure and construction method of support structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017054154A JP6858605B2 (en) | 2017-03-21 | 2017-03-21 | Support structure and construction method of support structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018155048A JP2018155048A (en) | 2018-10-04 |
JP6858605B2 true JP6858605B2 (en) | 2021-04-14 |
Family
ID=63717848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017054154A Active JP6858605B2 (en) | 2017-03-21 | 2017-03-21 | Support structure and construction method of support structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6858605B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110130923B (en) * | 2019-04-03 | 2021-05-07 | 中船第九设计研究院工程有限公司 | A shaped steel supporting bow member structure for tunnel |
SG11202111283XA (en) * | 2019-04-26 | 2021-11-29 | Kajima Corp | Construction method of tunnel supporting structure |
JP7267889B2 (en) * | 2019-09-24 | 2023-05-02 | 鹿島建設株式会社 | Construction method of tunnel support structure |
JP7345409B2 (en) * | 2020-02-04 | 2023-09-15 | 鹿島建設株式会社 | How to construct a tunnel support structure |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5414410Y2 (en) * | 1973-10-19 | 1979-06-14 | ||
JPS5626080Y2 (en) * | 1978-12-05 | 1981-06-19 | ||
GB2078822A (en) * | 1980-05-13 | 1982-01-13 | Atlow Mining Dev Consult | Yieldable stilts |
GB2084215B (en) * | 1980-09-16 | 1984-02-01 | Cirtemetric Ltd | Yieldable stilt |
ZA982634B (en) * | 1998-03-30 | 1998-12-30 | Council Scient Ind Res | An arch useful for withstanding effect of rockburst occuring in underground mines/tunnels |
JP2000303797A (en) * | 1999-04-19 | 2000-10-31 | Kfc Ltd | Timbering joint and timbering structure using the same |
ATE380925T1 (en) * | 2004-02-16 | 2007-12-15 | Kalman Kovari | METHOD AND DEVICE FOR STABILIZING A CAVITY EMERGED DURING UNDERGROUND MINING |
JP2016118040A (en) * | 2014-12-19 | 2016-06-30 | 大成建設株式会社 | Tunnel support structure and steel supporting |
-
2017
- 2017-03-21 JP JP2017054154A patent/JP6858605B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018155048A (en) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6858605B2 (en) | Support structure and construction method of support structure | |
JP2007321490A (en) | Tunnel excavation method | |
JP2009114643A (en) | Connecting structure of underground structure | |
JP2008223427A (en) | Concrete-filled steel segment | |
JP2008231799A (en) | Base isolation structure | |
JP2017186801A (en) | Lock bolt | |
JP5777435B2 (en) | Reinforcement method for foundations for small buildings | |
JP4253795B2 (en) | Synthetic wall structure | |
KR101781058B1 (en) | Soil retaining wall and construction method thereof | |
JP2018053465A (en) | Flexible joint structure of concrete box body | |
JP2008002154A (en) | Segment unit | |
KR101553865B1 (en) | Composite phc pile with concrete filling plate and structure therewith | |
JP2007277830A (en) | Core material, continuous underground wall, soil cement wall, continuous underground wall pile, soil cement wall pile, cast-in-place concrete pile, underground structure, and foundation structure of building | |
JP6296963B2 (en) | Natural ground reinforcement method and structure | |
KR101363483B1 (en) | High performance composite anchor | |
JP6220602B2 (en) | Ground anchor and ground anchor method | |
KR102119948B1 (en) | Connector assembly and pile wall structure | |
JP6474118B2 (en) | Seismic reinforcement structure and method for reinforced concrete | |
JP5551943B2 (en) | Foundation structure using ground improvement body | |
JP4466419B2 (en) | Soil cement column wall | |
KR200392177Y1 (en) | Ground anchor of removal wire | |
JP4485415B2 (en) | Connection structure, shield tunnel and shield tunnel construction method | |
JP4452066B2 (en) | Pile head joint structure | |
KR101732133B1 (en) | Reinforcement structure for pile and construction method of reinforcement structure for pile using the same | |
KR101363487B1 (en) | High performance composite nail |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210309 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210324 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6858605 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |