JP7345409B2 - How to construct a tunnel support structure - Google Patents

How to construct a tunnel support structure Download PDF

Info

Publication number
JP7345409B2
JP7345409B2 JP2020017247A JP2020017247A JP7345409B2 JP 7345409 B2 JP7345409 B2 JP 7345409B2 JP 2020017247 A JP2020017247 A JP 2020017247A JP 2020017247 A JP2020017247 A JP 2020017247A JP 7345409 B2 JP7345409 B2 JP 7345409B2
Authority
JP
Japan
Prior art keywords
tunnel
steel
compressively
deformation
deformable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020017247A
Other languages
Japanese (ja)
Other versions
JP2021123922A (en
Inventor
義宜 北村
悠 小泉
浩次 村上
健介 伊達
泰宏 横田
直樹 曽我部
衞 宇津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2020017247A priority Critical patent/JP7345409B2/en
Publication of JP2021123922A publication Critical patent/JP2021123922A/en
Application granted granted Critical
Publication of JP7345409B2 publication Critical patent/JP7345409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

本発明は、トンネルを支保する構造を構築する方法に関する。 The present invention relates to a method of constructing a supporting structure for a tunnel.

NATM(New Austrian Tunneling Method)工法等で山岳トンネルを構築する際には、トンネル掘削坑の坑壁を鋼製部材及び吹付けコンクリートにより支持してトンネルの安定化を図る。地山には、トンネル掘削坑を縮小するように坑壁が変位するのに伴って地圧が低下する特性が有り、特許文献1には、トンネル掘削坑の坑壁の変位を許容し地圧を低下させた状態でトンネル掘削坑の坑壁を支持可能な支保構造が開示されている。 When constructing a mountain tunnel using the NATM (New Austrian Tunneling Method) method, etc., the tunnel walls are supported with steel members and shotcrete to stabilize the tunnel. The ground has a characteristic that the ground pressure decreases as the shaft wall of the tunnel excavation is displaced so as to reduce the size of the tunnel. Disclosed is a support structure capable of supporting the wall of a tunnel excavation shaft in a state where the support structure is lowered.

特許文献1に開示された支保構造では、圧縮変形容易部が鋼製部材及び吹付けコンクリートにトンネル周方向に隣接して設けられる。圧縮変形容易部は、中空ガラス微粒子等の中空殻又は体積率で10%以上の気泡を含むコンクリート部材である。支保構造に地圧が作用すると、圧縮変形容易部が潰れるように変形し、トンネル掘削坑の坑壁が鋼製部材及び吹付けコンクリートと共に変位して地圧が低下する。圧縮変形容易部の変形が収束した後には、圧縮変形容易部は、所要の耐荷重性能を発揮し、地圧が低下した状態でトンネル掘削坑の坑壁を鋼製部材及び吹付けコンクリートと協働して支持する。 In the support structure disclosed in Patent Document 1, the easily compressible deformable portion is provided adjacent to the steel member and the shotcrete in the circumferential direction of the tunnel. The easily compressible deformable part is a hollow shell such as hollow glass particles or a concrete member containing air bubbles with a volume ratio of 10% or more. When earth pressure acts on the support structure, the easily compressible deformable part deforms so as to collapse, and the wall of the tunnel excavation is displaced along with the steel members and shotcrete, causing the earth pressure to decrease. After the deformation of the compressively deformable part has subsided, the compressively deformable part exhibits the required load-bearing performance, and the wall of the tunnel excavation can be constructed in cooperation with steel members and shotcrete under reduced ground pressure. Work and support.

特開2018-155048号公報JP 2018-155048 Publication

特許文献1に開示された支保構造では、圧縮変形容易部の中空殻又は気泡が潰れ圧縮変形容易部の変形が自然に収束するまでトンネル掘削坑の内壁が変位する。そのため、トンネル掘削坑の坑壁が必要以上に変位し、トンネルの断面が設計断面よりも小さくなるおそれがある。この場合、構築済みの支保構造を撤去してトンネル掘削坑の内壁を掘削し再度支保構造を構築するいわゆる縫返しが必要になり、トンネルを効率よく構築することができない。 In the support structure disclosed in Patent Document 1, the inner wall of the tunnel excavation shaft is displaced until the hollow shell or bubble in the easily compressible deformable part collapses and the deformation of the easily compressible deformable part naturally converges. Therefore, the wall of the tunnel excavation shaft may be displaced more than necessary, and the cross section of the tunnel may become smaller than the designed cross section. In this case, it is necessary to remove the constructed support structure, excavate the inner wall of the tunnel excavation shaft, and re-build the support structure, which makes it impossible to construct the tunnel efficiently.

本発明は、トンネルを効率よく構築することを目的とする。 The present invention aims to efficiently construct tunnels.

本発明は、トンネル支保構造の構築方法であって、トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う鋼製部材の間に設けられたコンクリート構造体と、鋼製部材よりも圧縮変形が容易な圧縮変形容易部材と、を備え、構築方法は、鋼製部材を設置済みの鋼製部材からトンネル軸方向に所定の間隔でトンネル掘削坑壁に沿って設けると共に、圧縮変形容易部材を鋼製部材にトンネル周方向に隣接して設ける鋼製部材設置工程と、トンネル軸方向に隣り合う鋼製部材の間にコンクリート構造体を設けるコンクリート構造体設置工程と、圧縮変形容易部材の変形過程において、圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、圧縮変形容易部材は、当該圧縮変形容易部材が圧縮変形するに伴って狭くなる間隙を有し、そして当該間隙の存在ゆえに圧縮変形容易部材の剛性が鋼製部材及びコンクリート構造体よりも低く、変形抑止工程では、圧縮変形容易部材の間隙にセメント系硬化材料を充填することにより圧縮変形容易部材の変形を抑止する。
また、本発明は、トンネル支保構造の構築方法であって、トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う鋼製部材の間に設けられたコンクリート構造体と、鋼製部材よりも圧縮変形が容易な圧縮変形容易部材と、を備え、構築方法は、鋼製部材を設置済みの鋼製部材からトンネル軸方向に所定の間隔でトンネル掘削坑壁に沿って設けると共に、圧縮変形容易部材を鋼製部材にトンネル周方向に隣接して設ける鋼製部材設置工程と、トンネル軸方向に隣り合う鋼製部材の間にコンクリート構造体を設けるコンクリート構造体設置工程と、圧縮変形容易部材の変形過程において、圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、鋼製部材設置工程では、鋼製部材をトンネル周方向に所定の間隔で複数設け、圧縮変形容易部材をトンネル周方向に隣り合う鋼製部材の間に設け、変形抑止工程では、鋼材を、トンネル周方向に圧縮変形容易部材を跨いで配置すると共に鋼製部材に連結することにより、圧縮変形容易部材の変形を抑止する。
また、本発明は、トンネル支保構造の構築方法であって、トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う鋼製部材の間に設けられたコンクリート構造体と、鋼製部材よりも圧縮変形が容易な圧縮変形容易部材と、を備え、構築方法は、鋼製部材を設置済みの鋼製部材からトンネル軸方向に所定の間隔でトンネル掘削坑壁に沿って設けると共に、圧縮変形容易部材を鋼製部材にトンネル周方向に隣接して設ける鋼製部材設置工程と、トンネル軸方向に隣り合う鋼製部材の間にコンクリート構造体を設けるコンクリート構造体設置工程と、圧縮変形容易部材の変形過程において、圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、コンクリート構造体設置工程後、トンネル掘削坑を掘進し、その後、変形抑止工程を行なう。
The present invention is a method for constructing a tunnel support structure, and the tunnel support structure includes a plurality of steel members provided along a tunnel excavation wall at predetermined intervals in the tunnel axial direction, and adjacent steel members. The construction method includes a concrete structure provided between the concrete structure and an easily compressible deformable member that can be compressively deformed more easily than steel members. A steel member installation process in which compressive deformable members are installed along the tunnel excavation wall at intervals of A concrete structure installation step for providing a structure; and a deformation suppression step for suppressing deformation of the easily compressible member during the deformation process of the easily compressible member. It has a gap that narrows as it deforms, and because of the presence of this gap, the stiffness of the easily compressible deformable member is lower than that of steel members and concrete structures.In the deformation suppression process, cement-based By filling the hardening material, deformation of the compressively deformable member is suppressed.
The present invention also provides a method for constructing a tunnel support structure, which includes a plurality of steel members provided at predetermined intervals in the tunnel axis direction along a tunnel excavation wall, and adjacent steel members. It is equipped with a concrete structure installed between the steel members and a member that is easily compressible and deformable than steel members, and the construction method is to move the steel members from the already installed steel members in the tunnel axis A steel member installation process in which compressive deformable members are provided along the tunnel excavation wall at predetermined intervals and adjacent to the steel members in the circumferential direction of the tunnel, and between steel members adjacent in the tunnel axial direction. A concrete structure installation step in which a concrete structure is installed in the steel member, and a deformation suppression step in which deformation of the easily compressible member is suppressed during the deformation process of the easily compressible member. A plurality of easily compressible deformable members are provided at predetermined intervals in the tunnel circumferential direction, and a compressively deformable member is provided between adjacent steel members in the tunnel circumferential direction, and in the deformation suppression process, steel members are placed across the compressively deformable members in the tunnel circumferential direction. At the same time, by connecting it to the steel member, deformation of the easily compressible deformable member is suppressed.
The present invention also provides a method for constructing a tunnel support structure, which includes a plurality of steel members provided at predetermined intervals in the tunnel axis direction along a tunnel excavation wall, and adjacent steel members. It is equipped with a concrete structure installed between the steel members and a member that is easily compressible and deformable than steel members, and the construction method is to move the steel members from the already installed steel members in the tunnel axis A steel member installation process in which compressive deformable members are provided along the tunnel excavation wall at predetermined intervals and adjacent to the steel members in the circumferential direction of the tunnel, and between steel members adjacent in the tunnel axial direction. A concrete structure installation process in which a concrete structure is installed in the concrete structure, and a deformation suppression process in which deformation of the easily compressible deformable member is suppressed during the deformation process of the easily compressible deformable member, and after the concrete structure installation process, the tunnel excavation shaft is After excavation, a deformation prevention process is performed.

また、本発明は、トンネル支保構造の構築方法であって、トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う鋼製部材の間に設けられたコンクリート構造体と、コンクリート構造体よりも圧縮変形が容易な圧縮変形容易部材と、を備え、構築方法は、鋼製部材を設置済みの鋼製部材からトンネル軸方向に所定の間隔でトンネル掘削坑壁に沿って設ける鋼製部材設置工程と、トンネル軸方向に隣り合う鋼製部材の間にコンクリート構造体を設けると共に、圧縮変形容易部材をコンクリート構造体にトンネル周方向に隣接して設けるコンクリート構造体設置工程と、圧縮変形容易部材の変形過程において、圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、圧縮変形容易部材は、当該圧縮変形容易部材が圧縮変形するに伴って狭くなる間隙を有し、そして当該間隙の存在ゆえに圧縮変形容易部材の剛性が鋼製部材及びコンクリート構造体よりも低く、変形抑止工程では、圧縮変形容易部材の間隙にセメント系硬化材料を充填することにより圧縮変形容易部材の変形を抑止する。
また、本発明は、トンネル支保構造の構築方法であって、トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う鋼製部材の間に設けられたコンクリート構造体と、コンクリート構造体よりも圧縮変形が容易な圧縮変形容易部材と、を備え、構築方法は、鋼製部材を設置済みの鋼製部材からトンネル軸方向に所定の間隔でトンネル掘削坑壁に沿って設ける鋼製部材設置工程と、トンネル軸方向に隣り合う鋼製部材の間にコンクリート構造体を設けると共に、圧縮変形容易部材をコンクリート構造体にトンネル周方向に隣接して設けるコンクリート構造体設置工程と、圧縮変形容易部材の変形過程において、圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、コンクリート構造体設置工程では、コンクリート構造体をトンネル周方向に所定の間隔で複数設け、圧縮変形容易部材をトンネル周方向に隣り合うコンクリート構造体の間に設け、変形抑止工程では、鋼材を、トンネル周方向に圧縮変形容易部材を跨いで配置すると共にコンクリート構造体に連結することにより、圧縮変形容易部材の変形を抑止する。
また、本発明は、トンネル支保構造の構築方法であって、トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う鋼製部材の間に設けられたコンクリート構造体と、コンクリート構造体よりも圧縮変形が容易な圧縮変形容易部材と、を備え、構築方法は、鋼製部材を設置済みの鋼製部材からトンネル軸方向に所定の間隔でトンネル掘削坑壁に沿って設ける鋼製部材設置工程と、トンネル軸方向に隣り合う鋼製部材の間にコンクリート構造体を設けると共に、圧縮変形容易部材をコンクリート構造体にトンネル周方向に隣接して設けるコンクリート構造体設置工程と、圧縮変形容易部材の変形過程において、圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、コンクリート構造体設置工程後、トンネル掘削坑を掘進し、その後、変形抑止工程を行なう。
The present invention also provides a method for constructing a tunnel support structure, which includes a plurality of steel members provided at predetermined intervals in the tunnel axis direction along a tunnel excavation wall, and adjacent steel members. It is equipped with a concrete structure installed between steel members, and members that are easily compressible and deformable than the concrete structure, and the construction method is as follows: The steel members are installed along the walls of the tunnel excavation at predetermined intervals, the concrete structure is provided between adjacent steel members in the tunnel axis direction, and the easily compressible deformable members are attached to the concrete structure around the tunnel periphery. A concrete structure installation step that is provided adjacent to the direction of the compressive deformable member; and a deformation suppressing step that suppresses deformation of the easily compressible deformable member during the deformation process of the easily compressible deformable member. has a gap that narrows as it is compressively deformed, and because of the existence of this gap, the rigidity of the easily compressible deformable member is lower than that of steel members and concrete structures. By filling the cement-based hardening material, deformation of the easily compressible deformable member is suppressed.
The present invention also provides a method for constructing a tunnel support structure, which includes a plurality of steel members provided at predetermined intervals in the tunnel axis direction along a tunnel excavation wall, and adjacent steel members. It is equipped with a concrete structure installed between steel members, and members that are easily compressible and deformable than the concrete structure, and the construction method is as follows: The steel members are installed along the walls of the tunnel excavation at predetermined intervals, the concrete structure is provided between adjacent steel members in the tunnel axis direction, and the easily compressible deformable members are attached to the concrete structure around the tunnel periphery. The concrete structure installation step includes a concrete structure installation step that is provided adjacent to the direction, and a deformation suppression step that suppresses deformation of the easily compressible deformable member during the deformation process of the easily compressible deformable member. A plurality of members are provided at predetermined intervals in the circumferential direction of the tunnel, and a member that is easily deformed by compression is provided between adjacent concrete structures in the circumferential direction of the tunnel, and in the deformation suppression process, steel materials are placed across the members that are easily deformed by compression in the circumferential direction of the tunnel. At the same time, by connecting it to the concrete structure, deformation of the compressively deformable member is suppressed.
The present invention also provides a method for constructing a tunnel support structure, which includes a plurality of steel members provided at predetermined intervals in the tunnel axis direction along a tunnel excavation wall, and adjacent steel members. It is equipped with a concrete structure installed between steel members, and members that are easily compressible and deformable than the concrete structure, and the construction method is as follows: The steel members are installed along the walls of the tunnel excavation at predetermined intervals, the concrete structure is provided between adjacent steel members in the tunnel axis direction, and the easily compressible deformable members are attached to the concrete structure around the tunnel periphery. A concrete structure installation process is provided adjacent to the direction of the concrete structure, and a deformation suppressing process for suppressing deformation of the easily compressible deformable member during the deformation process of the easily compressible deformable member, and after the concrete structure installation process, the tunnel excavation shaft is After excavation, a deformation prevention process is performed.

本発明によれば、トンネルを効率よく構築することができる。 According to the present invention, a tunnel can be efficiently constructed.

本発明の実施形態に係るトンネル支保構造の断面図であり、図2のI-I線に沿う断面を示す。3 is a cross-sectional view of a tunnel support structure according to an embodiment of the present invention, showing a cross section taken along line II in FIG. 2. FIG. 本発明の実施形態に係るトンネル支保構造の断面図であり、(a)は、図1のIIA-IIA線に沿う断面を示し、(b)は、図1のIIB-IIB線に沿う断面を示す。2 is a sectional view of a tunnel support structure according to an embodiment of the present invention, in which (a) shows a cross section taken along line IIA-IIA in FIG. 1, and (b) shows a cross section taken along line IIB-IIB in FIG. 1. show. 地山の地圧特性を説明するための図である。FIG. 3 is a diagram for explaining the ground pressure characteristics of the ground. (a)は、圧縮変形が生じる前の圧縮変形容易部材を模式的に示す断面図であり、(b)は、圧縮変形過程にある圧縮変形容易部材を模式的に示す断面図であり、(c)は、圧縮変形が収束した状態の圧縮変形容易部材を模式的に示す断面図であり、(d)は、圧縮変形容易部材の強度特性を示す図である。(a) is a sectional view schematically showing the easily compressible deformable member before compressive deformation occurs, and (b) is a sectional view schematically showing the easily compressible deformable member in the process of compressive deformation; c) is a cross-sectional view schematically showing the easily compressible deformable member in a state where the compressive deformation has converged, and (d) is a diagram showing the strength characteristics of the easily compressible deformable member. (a)は、圧縮変形容易部材の変形例の正面図であり、(b)は、圧縮変形容易部材の更に別の変形例の正面図である。(a) is a front view of a modified example of the easily compressible deformable member, and (b) is a front view of yet another modified example of the easily compressible deformable member. (a)は、図1に示すVIA部の拡大図であり、(b)は、変形過程において圧縮変形容易部材の変形が抑止された鋼製支保工の強度特性を示す図である。(a) is an enlarged view of the VIA section shown in FIG. 1, and (b) is a diagram showing the strength characteristics of the steel shoring in which deformation of the compressively deformable member is suppressed during the deformation process. 本発明における実施形態に係るトンネル支保構造の構築方法を説明するための図である。FIG. 2 is a diagram for explaining a method for constructing a tunnel support structure according to an embodiment of the present invention. トンネル掘削坑壁の変位、鋼製支保工の変形、地山の圧力及び鋼製支保工における応力を説明するための図である。FIG. 3 is a diagram for explaining displacement of a tunnel excavation wall, deformation of a steel shoring, pressure of the ground, and stress in the steel shoring. 本発明における実施形態の第1変形例に係るトンネル支保構造の断面図である。It is a sectional view of the tunnel support structure concerning the 1st modification of the embodiment in the present invention. 本発明における実施形態の第2変形例に係るトンネル支保構造の断面図である。It is a sectional view of the tunnel support structure concerning the 2nd modification of the embodiment in the present invention. 本発明における実施形態の第3変形例に係るトンネル支保構造の断面図である。It is a sectional view of the tunnel support structure concerning the 3rd modification of the embodiment in the present invention.

以下、図面を参照して、本発明の実施形態に係るトンネル支保構造100及びトンネル支保構造100の構築方法について説明する。 Hereinafter, a tunnel support structure 100 and a method for constructing the tunnel support structure 100 according to an embodiment of the present invention will be described with reference to the drawings.

トンネル支保構造100は、NATM工法を用いたトンネル掘進工事において構築される。NATM工法では、発破工程、ズリ出し工程、及び支保構造構築工程を所定距離(例えば1~3m)毎に繰り返すことにより、トンネルTを軸方向に構築していく。支保構造構築工程では、図1及び図2に示すように、トンネル支保構造100をトンネル掘削坑内に構築してトンネル掘削坑壁(以下、単に「坑壁」とも称する)Wを支持することにより、トンネルTの安定化を図る。 The tunnel support structure 100 is constructed during tunnel excavation work using the NATM construction method. In the NATM construction method, the tunnel T is constructed in the axial direction by repeating the blasting process, shedding process, and support structure construction process every predetermined distance (for example, 1 to 3 m). In the support structure construction process, as shown in FIGS. 1 and 2, a tunnel support structure 100 is constructed in the tunnel excavation to support the tunnel excavation wall (hereinafter also simply referred to as "pit wall") W. Stabilize Tunnel T.

以下において、トンネルTの中心軸に沿う方向を「トンネル軸方向」と称し、トンネルTの中心軸周りの方向を「トンネル周方向」と称し、トンネルTの中心軸を中心とする放射方向を「トンネル径方向」と称する。 Hereinafter, the direction along the central axis of the tunnel T will be referred to as the "tunnel axial direction", the direction around the central axis of the tunnel T will be referred to as the "tunnel circumferential direction", and the radial direction centered on the central axis of the tunnel T will be referred to as "the tunnel axial direction". tunnel radial direction.

地山には、トンネル掘削坑が縮小する方向に坑壁Wが変位するのに伴って地圧が低下する特性がある。図3(a)及び(b)を参照して、地山の地圧特性について説明する。図3(a)は、地点Aまで掘削が完了した地山の断面図である。図3(a)では、トンネル支保構造100の図示が省略されている。図3(b)は、地点Aにおける地山の圧力特性を示す図である。横軸は、地点Aにおける坑壁Wの変位ΔWを表し、縦軸は、地点Aにおける地圧Pを表している。 The ground has a characteristic that the ground pressure decreases as the tunnel wall W is displaced in the direction in which the tunnel excavation shaft shrinks. The ground pressure characteristics of the ground will be explained with reference to FIGS. 3(a) and 3(b). FIG. 3(a) is a cross-sectional view of the rock where excavation has been completed up to point A. In FIG. 3(a), illustration of the tunnel support structure 100 is omitted. FIG. 3(b) is a diagram showing the pressure characteristics of the ground at point A. The horizontal axis represents the displacement ΔW of the mine wall W at point A, and the vertical axis represents the ground pressure P at point A.

地山の掘削が地点Aまで完了した時点では、地点Aにおける坑壁Wの変位ΔWはほとんどなく、地点Aにおける地圧Pは、掘削されていない状態での地圧と略等しいP1である。地点Aにおける坑壁Wの変位ΔWは、トンネル掘削坑の掘進に伴い、誘発されて大きくなる。具体的には、地山の掘削が地点Bまで完了すると、地点Aにおける坑壁Wの変位ΔWは、地山の掘削が地点Aまで完了した時点と比較して大きくなる。このとき、地点Aにおける地圧Pは、坑壁Wの変位に伴い、P1よりも小さいP2まで低下する。 When the excavation of the earth is completed up to point A, there is almost no displacement ΔW of the mine wall W at point A, and the ground pressure P at point A is P1, which is approximately equal to the ground pressure in the unexcavated state. The displacement ΔW of the tunnel wall W at point A is induced and increases as the tunnel excavation progresses. Specifically, when the excavation of the earth is completed to point B, the displacement ΔW of the mine wall W at point A becomes larger than when the excavation of the earth is completed to point A. At this time, the ground pressure P at point A decreases to P2, which is smaller than P1, with the displacement of the mine wall W.

トンネル掘削坑を更に掘進し地山の掘削が地点Cまで完了すると、地点Aにおける坑壁Wの変位ΔWは、地山の掘削が地点Bまで完了した時点と比較して大きくなる。このとき、地点Aにおける地圧Pは、坑壁Wの変位に伴い、P2よりも小さいP3まで低下する。同様に、地山の掘削が地点Dまで完了すると、地点Aにおける坑壁Wの変位ΔWは、地山の掘削が地点Cまで完了した時点と比較して大きくなる。このとき、地点Aにおける地圧Pは、P3よりも小さいP4まで低下する。 When the tunnel excavation shaft is further excavated and the excavation of the ground is completed to point C, the displacement ΔW of the tunnel wall W at point A becomes larger compared to the time when the excavation of the ground is completed to point B. At this time, the ground pressure P at point A decreases to P3, which is smaller than P2, with the displacement of the mine wall W. Similarly, when the excavation of the earth is completed to point D, the displacement ΔW of the mine wall W at point A becomes larger than when the excavation of the earth is completed to point C. At this time, the ground pressure P at point A decreases to P4, which is smaller than P3.

このように、坑壁Wは、トンネル掘削坑の掘進に伴って変位し、地山の地圧Pは、坑壁Wの変位に伴って低下する。 In this way, the tunnel wall W is displaced as the tunnel excavation shaft progresses, and the ground pressure P of the ground decreases as the tunnel wall W is displaced.

トンネル支保構造100は、地山のこの特性を利用して坑壁Wを支持する。具体的には、トンネル支保構造100は、以下に示す構成により、坑壁Wの変位をある程度許容し地圧を低下させた状態で坑壁Wを支持する。したがって、地圧を低下させずに坑壁Wを支持する場合と比較して、トンネル支保構造100が受ける荷重を小さくすることができ、トンネルTの安定性を向上させることができる。 The tunnel support structure 100 supports the tunnel wall W by utilizing this characteristic of the earth. Specifically, the tunnel support structure 100 has the configuration shown below to support the shaft wall W while allowing displacement of the shaft wall W to some extent and reducing ground pressure. Therefore, compared to the case where the tunnel wall W is supported without reducing the ground pressure, the load that the tunnel support structure 100 receives can be reduced, and the stability of the tunnel T can be improved.

図1及び図2に示すように、トンネル支保構造100は、坑壁Wに沿って、トンネル軸方向に互いに所定の間隔で設けられる複数の鋼製部材10と、坑壁Wに沿って、トンネル軸方向に隣り合う鋼製部材10の間に設けられるコンクリート構造体20と、鋼製部材10及びコンクリート構造体20よりも圧縮変形が容易な圧縮変形容易部材30と、を備えている。 As shown in FIGS. 1 and 2, the tunnel support structure 100 includes a plurality of steel members 10 provided along the tunnel wall W at predetermined intervals in the tunnel axial direction, and It includes a concrete structure 20 provided between steel members 10 adjacent in the axial direction, and an easily compressible deformable member 30 that is easier to compress and deform than the steel members 10 and the concrete structure 20.

鋼製部材10は、例えばH形鋼であり、トンネル周方向に延在する。鋼製部材10は、トンネル周方向に所定の間隔で複数設けられており、トンネル周方向に隣り合う鋼製部材10の間に圧縮変形容易部材30が設けられている。また、鋼製部材10は、トンネル周方向に設けられ、その一部に圧縮変形容易部材30が介在するように設けられている。つまり、圧縮変形容易部材30は隣り合う鋼製部材10の間に隣接して設けられている。 The steel member 10 is, for example, an H-shaped steel, and extends in the circumferential direction of the tunnel. A plurality of steel members 10 are provided at predetermined intervals in the circumferential direction of the tunnel, and an easily compressible deformable member 30 is provided between adjacent steel members 10 in the circumferential direction of the tunnel. Further, the steel member 10 is provided in the circumferential direction of the tunnel, with the easily compressible deformable member 30 interposed in a part thereof. In other words, the easily compressible deformable member 30 is provided adjacently between adjacent steel members 10 .

コンクリート構造体20は、坑壁Wにコンクリート材料を吹付けることによって形成される吹付けコンクリートである。コンクリート材料は、セメント系硬化材料を用いることができ、例えば、水中不分離性コンクリート、高流動コンクリート又はモルタルである。 The concrete structure 20 is shotcrete formed by spraying concrete material onto the pit wall W. The concrete material may be a cementitious hardening material, such as submersible concrete, high fluidity concrete or mortar.

コンクリート構造体20は、鋼製部材10と同様に、トンネル周方向に所定の間隔で複数設けられている。トンネル周方向に隣り合うコンクリート構造体20の間に圧縮変形容易部材30が設けられている。また、コンクリート構造体20は、トンネル周方向に設けられ、その一部に圧縮変形容易部材30が介在するように設けられる。つまり、圧縮変形容易部材30はコンクリート構造体20に隣接して設けられる。なお、圧縮変形容易部材30はトンネル軸方向に複数並べられている。 Similar to the steel member 10, a plurality of concrete structures 20 are provided at predetermined intervals in the circumferential direction of the tunnel. Compressively deformable members 30 are provided between concrete structures 20 adjacent to each other in the tunnel circumferential direction. Moreover, the concrete structure 20 is provided in the circumferential direction of the tunnel, and the compressive deformation easily-deformable member 30 is provided in a part thereof. That is, the compressible deformable member 30 is provided adjacent to the concrete structure 20. Note that a plurality of compressible deformable members 30 are arranged in the tunnel axial direction.

ここで、図4を参照して、圧縮変形容易部材30の構造及び強度特性について説明する。 Here, with reference to FIG. 4, the structure and strength characteristics of the compressively deformable member 30 will be described.

図4(a)~(c)は、圧縮変形容易部材30を模式的に示す断面図である。図4(a)は、圧縮変形が生じる前の状態を示し、図4(b)は、圧縮変形過程にある状態を示し、図4(c)は、圧縮変形が収束した状態を示す。 FIGS. 4(a) to 4(c) are cross-sectional views schematically showing the compressively deformable member 30. FIG. 4(a) shows a state before compressive deformation occurs, FIG. 4(b) shows a state in the compressive deformation process, and FIG. 4(c) shows a state after compressive deformation has converged.

図4(a)~(c)に示すように、圧縮変形容易部材30は、いわゆるジャッキであり、シリンダケース31と、ピストン32と、ロッド33と、受け板34と、を有している。シリンダケース31、ピストン32、ロッド33及び受け板34は、鋼材により形成されている。 As shown in FIGS. 4(a) to 4(c), the compression-deformable member 30 is a so-called jack, and includes a cylinder case 31, a piston 32, a rod 33, and a receiving plate . The cylinder case 31, the piston 32, the rod 33, and the receiving plate 34 are made of steel.

ピストン32は、シリンダケース31に摺動自在に収容されており、シリンダケース31の内部を一対の流体室35a,35bに区画している。ロッド33は、一端がピストン32に連結されており、シリンダケース31から延出している。ロッド33の他端に受け板34が連結されている。ピストン32が流体室35aを収縮する方向に摺動すると、ロッド33がシリンダケース31に進入し、圧縮変形容易部材30は圧縮される。圧縮変形が生じる前の状態(図4(a))、及び圧縮変形過程にある状態(図4(b))では、シリンダケース31と受け板34との間に間隙が形成されている。 The piston 32 is slidably housed in the cylinder case 31, and divides the inside of the cylinder case 31 into a pair of fluid chambers 35a and 35b. The rod 33 has one end connected to the piston 32 and extends from the cylinder case 31. A receiving plate 34 is connected to the other end of the rod 33. When the piston 32 slides in the direction to contract the fluid chamber 35a, the rod 33 enters the cylinder case 31, and the easily compressible deformable member 30 is compressed. A gap is formed between the cylinder case 31 and the receiving plate 34 in the state before compressive deformation (FIG. 4(a)) and in the state in the compressive deformation process (FIG. 4(b)).

圧縮変形容易部材30は、圧縮変形容易部材30の圧縮方向がトンネル周方向と略一致するように、トンネル周方向に隣り合う鋼製部材10の間又はトンネル周方向に隣り合うコンクリート構造体20の間に配置される。そのため、地山の地圧は、圧縮変形容易部材30を圧縮する方向(図4(b)に示す白抜き矢印の方向)に作用する。 The compression-deformable member 30 is arranged between adjacent steel members 10 in the tunnel circumferential direction or between concrete structures 20 adjacent in the tunnel circumferential direction so that the compression direction of the compression-deformable member 30 substantially coincides with the tunnel circumferential direction. placed between. Therefore, the ground pressure of the ground acts in a direction that compresses the compression-deformable member 30 (in the direction of the white arrow shown in FIG. 4(b)).

シリンダケース31には、流体室35aに通じるポート36aと、流体室35bに通じるポート36bと、が形成される。ポート36a,36bは、制御弁(不図示)を介してアキュムレータ(不図示)に接続されている。制御弁及びアキュムレータは、圧縮変形容易部材30が圧縮方向に所定の荷重を受けたときに流体室35aから流体を排出すると共に流体室35bに流体を供給して流体室35a及び流体室35bの圧力を略一定に保つように動作する。流体は、例えば空気である。図4(d)を参照して、圧縮変形容易部材30の強度特性を詳述する。 A port 36a communicating with the fluid chamber 35a and a port 36b communicating with the fluid chamber 35b are formed in the cylinder case 31. Ports 36a and 36b are connected to an accumulator (not shown) via a control valve (not shown). The control valve and the accumulator discharge fluid from the fluid chamber 35a and supply fluid to the fluid chamber 35b when the compression-deformable member 30 receives a predetermined load in the compression direction, thereby reducing the pressure in the fluid chamber 35a and the fluid chamber 35b. It operates to keep it approximately constant. The fluid is, for example, air. The strength characteristics of the compressively deformable member 30 will be described in detail with reference to FIG. 4(d).

図4(d)は、図4(b)に示す白抜き矢印の方向に荷重を加えたときの圧縮変形容易部材30の強度特性を示す図である。横軸は、シリンダケース31に対する受け板34の変位ΔM(圧縮変形容易部材30の変形量)を表し、縦軸は、圧縮変形容易部材30に加えられる荷重Lを表している。図4(d)では、鋼製部材10の強度特性を併記している。コンクリート構造体20の強度特性は、鋼製部材10の強度特性と略同じであるため、その図示を省略する。 FIG. 4(d) is a diagram showing the strength characteristics of the compressively deformable member 30 when a load is applied in the direction of the white arrow shown in FIG. 4(b). The horizontal axis represents the displacement ΔM (deformation amount of the easily compressible deformable member 30) of the receiving plate 34 with respect to the cylinder case 31, and the vertical axis represents the load L applied to the easily compressible deformable member 30. In FIG. 4(d), the strength characteristics of the steel member 10 are also shown. The strength characteristics of the concrete structure 20 are substantially the same as the strength characteristics of the steel member 10, so illustration thereof is omitted.

図4(d)において、ΔM1は0(零)よりも大きく、ΔM2はΔM1よりも大きい(0<ΔM1<ΔM2)。また、L1は0(零)よりも大きく、L2はL1よりも大きい(0<L1<L2)。L2は、鋼製部材10及びコンクリート構造体20の耐荷重に相当する。 In FIG. 4(d), ΔM1 is larger than 0 (zero), and ΔM2 is larger than ΔM1 (0<ΔM1<ΔM2). Further, L1 is larger than 0 (zero), and L2 is larger than L1 (0<L1<L2). L2 corresponds to the load capacity of the steel member 10 and the concrete structure 20.

図4(d)に示すように、ΔM1未満の範囲では、圧縮変形容易部材30における荷重Lは変位ΔMの増加に伴ってL1まで増加する。これは、図4(a)に示すように、流体室35a及び流体室35bに対して流体が流入出せず、流体室35a内の流体の圧縮によりピストン32、ロッド33及び受け板34の変位を許容している状態である。 As shown in FIG. 4(d), in a range less than ΔM1, the load L on the compressively deformable member 30 increases to L1 as the displacement ΔM increases. This is because, as shown in FIG. 4(a), fluid cannot flow into or out of the fluid chambers 35a and 35b, and the piston 32, rod 33, and receiving plate 34 are displaced due to compression of the fluid in the fluid chambers 35a. This is a permissible state.

ΔM1以上ΔM2以下の範囲では、圧縮変形容易部材30における荷重Lは、変位ΔMが増加してもL1である。これは、流体室35a及び流体室35bの圧力を略一定に保つように流体室35aから流体を排出すると共に流体室35bに流体を供給することにより、ピストン32、ロッド33及び受け板34の変位を許容している状態である。変位ΔMがΔM2に達した状態は、図4(c)に示すように流体室35aの容積が最小になり圧縮変形容易部材30の圧縮変形が自然に収束した状態に相当する。 In the range from ΔM1 to ΔM2, the load L on the compressively deformable member 30 remains L1 even if the displacement ΔM increases. This is achieved by discharging fluid from the fluid chamber 35a and supplying fluid to the fluid chamber 35b so as to keep the pressures in the fluid chambers 35a and 35b substantially constant, thereby changing the displacement of the piston 32, rod 33, and receiving plate 34. It is in a state where it is allowed. The state in which the displacement ΔM reaches ΔM2 corresponds to a state in which the volume of the fluid chamber 35a becomes the minimum and the compressive deformation of the easily compressible deformable member 30 converges naturally, as shown in FIG. 4(c).

ΔM2を超える範囲では、圧縮変形容易部材30における荷重Lは変位ΔMの増加に伴ってL1まで増加する。これは、シリンダケース31及びロッド33が圧縮変形して受け板34が変位している状態である。 In a range exceeding ΔM2, the load L on the compressively deformable member 30 increases to L1 as the displacement ΔM increases. This is a state in which the cylinder case 31 and the rod 33 are compressively deformed and the receiving plate 34 is displaced.

このように、圧縮変形容易部材30は、圧縮変形過程にある状態では、シリンダケース31と受け板34との間に間隙が形成されており、鋼製部材10及びコンクリート構造体20と比較して単位断面当たりの剛性が小さい。そのため、圧縮変形容易部材30は、鋼製部材10及びコンクリート構造体20よりも圧縮変形が容易である。 In this way, in the compressively deformable member 30, a gap is formed between the cylinder case 31 and the receiving plate 34 during the compressively deforming process, and compared to the steel member 10 and the concrete structure 20, Rigidity per unit cross section is small. Therefore, the compressively deformable member 30 is easier to compressively deform than the steel member 10 and the concrete structure 20.

圧縮変形容易部材30は、図4(a)に示すジャッキに限られない。図5(a)及び(b)に示される部材を圧縮変形容易部材30として用いてもよい。 The compression-deformable member 30 is not limited to the jack shown in FIG. 4(a). The members shown in FIGS. 5(a) and 5(b) may be used as the compressively deformable member 30.

図5(a)に示す例では、圧縮変形容易部材30は、間隔を空けて互いに略平行に配置される一対の受け板131と、一対の受け板131の間に配置される筒状部132と、を有している。筒状部132は、中心軸が一対の受け板131に沿うように配置されている。筒状部132の外周には、筒状部132の中心軸に沿って複数の棒状部133が設けられており、筒状部132は、棒状部133を介して受け板131に連結されている。筒状部132によって一対の受け板131の間に間隙が形成されており、筒状部132が塑性変形して潰れることにより、圧縮変形容易部材30は鋼製部材10及びコンクリート構造体20よりも容易に圧縮変形する。 In the example shown in FIG. 5(a), the compression deformation easily member 30 includes a pair of receiving plates 131 that are arranged substantially parallel to each other with an interval, and a cylindrical portion 132 that is arranged between the pair of receiving plates 131. It has . The cylindrical portion 132 is arranged such that its central axis runs along the pair of receiving plates 131 . A plurality of rod portions 133 are provided on the outer periphery of the cylindrical portion 132 along the central axis of the cylindrical portion 132, and the cylindrical portion 132 is connected to the receiving plate 131 via the rod portions 133. . A gap is formed between the pair of receiving plates 131 by the cylindrical portion 132 , and as the cylindrical portion 132 plastically deforms and collapses, the compressively deformable member 30 is more easily compressed than the steel member 10 and the concrete structure 20 . Easily compressed and deformed.

図5(b)に示す例では、圧縮変形容易部材30は、間隔を空けて互いに略平行に配置される一対の受け板231と、一対の受け板231に渡って設けられる一対の支持板232と、を有している。一対の支持板232によって一対の受け板231の間に間隙が形成されており、一対の支持板232が塑性変形して潰れることにより、圧縮変形容易部材30は鋼製部材10及びコンクリート構造体20よりも容易に圧縮変形する。 In the example shown in FIG. 5(b), the compressible deformation easily member 30 includes a pair of receiving plates 231 arranged approximately parallel to each other with an interval, and a pair of supporting plates 232 provided across the pair of receiving plates 231. It has . A gap is formed between the pair of support plates 231 by the pair of support plates 232, and when the pair of support plates 232 are plastically deformed and crushed, the easily compressible deformable member 30 is attached to the steel member 10 and the concrete structure 23. It compresses and deforms more easily.

図5(a)及び(b)に示す圧縮変形容易部材30の強度特性も、図4(d)に示される強度特性となる。 The strength characteristics of the compressively deformable member 30 shown in FIGS. 5(a) and 5(b) also have the strength characteristics shown in FIG. 4(d).

圧縮変形容易部材30の変形が自然に収束するまで坑壁Wの変位を許容した場合、坑壁Wが必要以上に変位し、トンネルTの断面が設計断面よりも小さくなるおそれがある。トンネルTの断面が設計断面よりも小さくなった場合、いわゆる縫返しが必要になり、トンネルTを効率よく構築することができない。 If the displacement of the tunnel wall W is allowed until the deformation of the compressively deformable member 30 naturally converges, the tunnel wall W may be displaced more than necessary, and the cross section of the tunnel T may become smaller than the designed cross section. If the cross section of the tunnel T becomes smaller than the designed cross section, so-called backstitching becomes necessary, and the tunnel T cannot be constructed efficiently.

トンネル支保構造100は、図6(a)に示すように、圧縮変形容易部材30の変形過程において圧縮変形容易部材30の変形を抑止する変形抑止部40を備えている。そのため、圧縮変形容易部材30は、変形が抑止された時点で所定の剛性を発揮し、鋼製部材10又はコンクリート構造体20と協働して坑壁Wを支持する。したがって、圧縮変形容易部材30の変形が自然に収束するまで坑壁Wを変位させる場合と比較して、坑壁Wの変位を小さくすることができる。これにより、いわゆる縫返しを減らすことができ、トンネルTを効率よく構築することができる。 As shown in FIG. 6(a), the tunnel support structure 100 includes a deformation suppressing portion 40 that suppresses deformation of the easily compressible deformable member 30 during the deformation process of the easily compressible deformable member 30. Therefore, the compressively deformable member 30 exhibits a predetermined rigidity when deformation is suppressed, and supports the mine wall W in cooperation with the steel member 10 or the concrete structure 20. Therefore, the displacement of the shaft wall W can be reduced compared to the case where the shaft wall W is displaced until the deformation of the compressively deformable member 30 naturally converges. Thereby, so-called backstitching can be reduced, and the tunnel T can be constructed efficiently.

以下において、トンネル周方向に所定の間隔で複数設けられた鋼製部材10と、トンネル周方向に隣り合う鋼製部材10の間に設けられた圧縮変形容易部材30と、によって構成される構造体を「鋼製支保工」とも称する。また、トンネル周方向に所定の間隔で複数設けられたコンクリート構造体20と、トンネル周方向に隣り合うコンクリート構造体20の間に設けられた圧縮変形容易部材30と、によって構成される構造体を「コンクリート支保工」とも称する。変形抑止部40によって圧縮変形容易部材30の変形が抑止された構造体も、「鋼製支保工」、「コンクリート支保工」と称する。 In the following, a structure constituted by a plurality of steel members 10 provided at predetermined intervals in the circumferential direction of a tunnel, and easily compressible deformable members 30 provided between adjacent steel members 10 in the circumferential direction of the tunnel. Also called "steel shoring". Further, a structure constituted by a plurality of concrete structures 20 provided at predetermined intervals in the circumferential direction of the tunnel, and easily compressible deformation members 30 provided between the concrete structures 20 adjacent to each other in the circumferential direction of the tunnel. Also called "concrete shoring". Structures in which the deformation of the easily compressible deformable member 30 is suppressed by the deformation suppressing portion 40 are also referred to as "steel shoring" and "concrete shoring."

変形抑止部40による効果を、図6(b)を参照してより詳細に説明する。図6(b)は、変形過程において圧縮変形容易部材30の変形が抑止された鋼製支保工の強度特性を示す図である。図6(b)では、地山の地圧特性の一例を併記している。コンクリート支保工の強度特性は、鋼製支保工の強度特性と略同じであるため、その図示を省略する。 The effect of the deformation suppressing section 40 will be explained in more detail with reference to FIG. 6(b). FIG. 6(b) is a diagram showing the strength characteristics of a steel shoring structure in which deformation of the compressively deformable member 30 is suppressed during the deformation process. In FIG. 6(b), an example of the ground pressure characteristics of the ground is also shown. The strength characteristics of concrete shoring are approximately the same as those of steel shoring, so illustration thereof is omitted.

図6(b)に示すように、圧縮変形容易部材30の変形を変形過程において抑止しない場合(破線で示す場合)には、坑壁Wは、鋼製支保工における応力と地圧Pとが釣り合うΔW1まで変位する。圧縮変形容易部材30の変形を変形過程において抑止する場合(実線で示す場合)には、坑壁Wは、鋼製支保工における応力と地圧Pとが釣り合うΔW2まで変位する。ΔW2は、ΔW1よりも小さくなる。したがって、坑壁Wの変位を、ΔW1とΔW2との差の分、小さくすることができる。 As shown in FIG. 6(b), if the deformation of the compressively deformable member 30 is not suppressed during the deformation process (indicated by the broken line), the pit wall W will be affected by the stress in the steel shoring and the ground pressure P. It is displaced until it reaches balance ΔW1. When the deformation of the compressively deformable member 30 is suppressed during the deformation process (as shown by the solid line), the pit wall W is displaced to ΔW2 where the stress in the steel shoring and the ground pressure P are balanced. ΔW2 becomes smaller than ΔW1. Therefore, the displacement of the pit wall W can be reduced by the difference between ΔW1 and ΔW2.

変形抑止部40は、圧縮変形容易部材30のシリンダケース31と受け板34との間に充填され固化したコンクリート材料である。コンクリート材料としては、コンクリート構造体20と同様に、セメント系硬化材料を用いることができ、具体的には、水中不分離性コンクリート、高流動コンクリート、又はモルタルを用いることができる。変形抑止部40として、コンクリート材料に代えてエポキシ樹脂を用いてもよい。 The deformation suppressing portion 40 is a concrete material that is filled between the cylinder case 31 and the receiving plate 34 of the easily compressible deformable member 30 and solidified. As the concrete material, similarly to the concrete structure 20, a cement-based hardening material can be used, and specifically, underwater inseparable concrete, high fluidity concrete, or mortar can be used. As the deformation suppressing portion 40, epoxy resin may be used instead of concrete material.

次に、トンネル支保構造100の構築方法について、図7及び図8を参照して説明する。図7(a)及び(b)は、地点Aまで掘削が完了した状態を示している。図7(c)は、地点Aから更に地山を掘削した状態を示している。 Next, a method for constructing the tunnel support structure 100 will be described with reference to FIGS. 7 and 8. FIGS. 7(a) and 7(b) show a state in which excavation has been completed up to point A. FIG. 7(c) shows a state in which the ground has been further excavated from point A.

トンネル支保構造100の構築方法では、まず、図7(a)に示すように、鋼製部材10を設置済みの鋼製部材10からトンネル軸方向に所定の間隔でトンネル掘削坑内に設ける(鋼製部材設置工程)。鋼製部材設置工程は、地山を掘削してトンネル掘削坑を所定の長さ(例えば、1~3m)掘進した後に行われ、鋼製部材10は、切羽近傍に設けられる。鋼製部材設置工程では、鋼製部材10をトンネル周方向に所定の間隔で複数設けると共に、圧縮変形容易部材30をトンネル周方向に隣り合う鋼製部材10の間に設ける。 In the method for constructing the tunnel support structure 100, first, as shown in FIG. component installation process). The steel member installation step is performed after excavating the ground and digging a tunnel a predetermined length (for example, 1 to 3 m), and the steel member 10 is installed near the face. In the steel member installation process, a plurality of steel members 10 are provided at predetermined intervals in the circumferential direction of the tunnel, and the easily compressible deformable members 30 are provided between adjacent steel members 10 in the circumferential direction of the tunnel.

次に、図7(b)に示すように、トンネル軸方向に隣り合う鋼製部材10の間にコンクリート材料を吹付け固化させることにより、コンクリート構造体20をトンネル掘削坑内に設ける(コンクリート構造体設置工程)。コンクリート構造体設置工程では、コンクリート構造体20をトンネル周方向に所定の間隔で複数設けると共に、圧縮変形容易部材30をトンネル周方向に隣り合うコンクリート構造体20の間に設ける。 Next, as shown in FIG. 7(b), a concrete structure 20 is installed in the tunnel excavation by spraying and hardening concrete material between the steel members 10 adjacent in the tunnel axis direction (concrete structure installation process). In the concrete structure installation process, a plurality of concrete structures 20 are provided at predetermined intervals in the tunnel circumferential direction, and compressive deformation easily members 30 are provided between adjacent concrete structures 20 in the tunnel circumferential direction.

コンクリート構造体設置工程では、コンクリート材料を吹付けた後に圧縮変形容易部材30をコンクリート構造体20に隣接して設けてもよいし、圧縮変形容易部材30をトンネル掘削坑内に設けた後にコンクリート材料を吹付けてもよい。圧縮変形容易部材30をトンネル掘削坑内に設けた後にコンクリート材料を吹付ける場合には、圧縮変形容易部材30にコンクリート材料が吹付けられないように圧縮変形容易部材30をシートなどで養生をしておくことが好ましい。 In the concrete structure installation process, the easily compressible deformable member 30 may be installed adjacent to the concrete structure 20 after spraying the concrete material, or the easily compressible deformable member 30 may be installed in the tunnel excavation and then the concrete material is installed. May be sprayed. When spraying concrete material after the easily compressible deformable member 30 is installed in a tunnel excavation, the easily compressible deformable member 30 is cured with a sheet or the like so that the concrete material is not sprayed onto the easily compressible deformable member 30. It is preferable to leave it there.

図8(a)は、地点Aにおける地山の圧力特性及び鋼製支保工の強度特性を示す図である。図7(a)及び(b)に示す状態では、地山は地点Aまでの掘削されているので、坑壁Wの変位ΔWはほとんどなく、地点Aにおける地圧Pは、掘削されていない状態での地圧と略等しいP1である。坑壁Wの変位ΔWはほとんどないため、鋼製支保工の変形もほとんど生じない。 FIG. 8(a) is a diagram showing the pressure characteristics of the ground at point A and the strength characteristics of the steel shoring. In the states shown in FIGS. 7(a) and (b), the ground has been excavated up to point A, so there is almost no displacement ΔW of the mine wall W, and the ground pressure P at point A is the same as in the state where it is not excavated. P1 is approximately equal to the ground pressure at . Since there is almost no displacement ΔW of the pit wall W, almost no deformation of the steel shoring occurs.

次に、図7(c)に示すように、トンネル掘削坑を掘進する。トンネル掘削坑の掘進に伴い、坑壁Wの変位が誘発されて大きくなる。坑壁Wの変位に伴い、鋼製支保工が変形する。 Next, as shown in FIG. 7(c), a tunnel is dug. As the tunnel excavation progresses, displacement of the tunnel wall W is induced and increases. With the displacement of the pit wall W, the steel shoring is deformed.

具体的には、図8(a)に示すように、地点B(図3参照)までの掘削が完了した時点では、坑壁Wの変位ΔWはΔW3となる。鋼製支保工は、坑壁Wの変位により、ΔW3だけ変形する。トンネル掘削坑を更に掘進して地点C(図3参照)までの掘削が完了した時点では、坑壁Wの変位ΔWは、ΔW3よりも大きいΔW4となる。鋼製支保工は、坑壁Wの変位により、ΔW4だけ変形する。 Specifically, as shown in FIG. 8(a), when excavation to point B (see FIG. 3) is completed, the displacement ΔW of the mine wall W becomes ΔW3. The steel shoring is deformed by ΔW3 due to the displacement of the pit wall W. When the tunnel excavation shaft is further excavated to a point C (see FIG. 3), the displacement ΔW of the tunnel wall W becomes ΔW4, which is larger than ΔW3. The steel shoring is deformed by ΔW4 due to the displacement of the pit wall W.

その後、圧縮変形容易部材30の変形過程において、圧縮変形容易部材30の変形を抑止する(変形抑止工程)。具体的には、圧縮変形容易部材30の間隙にコンクリート材料を吹付けて変形抑止部40を形成する。 Thereafter, in the deformation process of the compressively deformable member 30, the deformation of the compressively deformable member 30 is suppressed (deformation inhibiting step). Specifically, the deformation suppressing portion 40 is formed by spraying concrete material into the gap between the easily compressible deformable member 30.

変形抑止工程は、鋼製部材10及びコンクリート構造体20の剛性で坑壁Wの変位を停止できるまで地圧が低下した後に行われることが好ましい。例えば、地点C(図3参照)までの掘削が完了した時点で地点Aにおける鋼製部材10の剛性で坑壁Wの変位を停止できると判断した場合には、その時点以降に変形抑止工程を行なう。これにより、鋼製支保工の強度特性は、図8(b)に示される強度特性となる。 It is preferable that the deformation suppression step is performed after the ground pressure has decreased until the displacement of the mine wall W can be stopped by the rigidity of the steel member 10 and the concrete structure 20. For example, if it is determined that the displacement of the pit wall W can be stopped due to the rigidity of the steel member 10 at point A when excavation to point C (see Fig. 3) is completed, the deformation suppression step is carried out after that point. Let's do it. As a result, the strength characteristics of the steel shoring become the strength characteristics shown in FIG. 8(b).

変形抑止工程後、トンネル掘削坑を更に掘進すると、鋼製支保工における応力と地圧Pとが釣り合う。そのため、坑壁Wの変位が停止する。したがって、圧縮変形容易部材30の変形が自然に収束するまで坑壁Wを変位させる場合と比較して、坑壁Wの変位を小さくすることができる。これにより、いわゆる縫返しを減らすことができ、トンネルTを効率よく構築することができる。 After the deformation suppression process, when the tunnel excavation shaft is further excavated, the stress in the steel support and the ground pressure P are balanced. Therefore, the displacement of the pit wall W stops. Therefore, the displacement of the shaft wall W can be reduced compared to the case where the shaft wall W is displaced until the deformation of the compressively deformable member 30 naturally converges. Thereby, so-called backstitching can be reduced, and the tunnel T can be constructed efficiently.

鋼製部材設置工程、コンクリート構造体設置工程及び変形抑止工程を繰り返し行なうことにより、トンネルTの全長に渡ってトンネル支保構造100が構築される。 The tunnel support structure 100 is constructed over the entire length of the tunnel T by repeatedly performing the steel member installation process, the concrete structure installation process, and the deformation suppression process.

以上の実施形態によれば、以下に示す作用効果を奏する。 According to the above embodiment, the following effects are achieved.

トンネル支保構造100及びその構築方法では、圧縮変形容易部材30の変形過程において圧縮変形容易部材30の変形を抑止する。そのため、圧縮変形容易部材30は、変形が抑止された時点で所定の剛性を発揮し、鋼製部材10及びコンクリート構造体20と協働して坑壁Wを支持する。したがって、坑壁Wが必要以上に変位するのを防止することができ、トンネルTの断面が設計断面よりも小さくなるのを防止することができる。これにより、いわゆる縫返しを減らすことができ、トンネルTを効率よく構築することができる。 In the tunnel support structure 100 and its construction method, deformation of the easily compressible deformable member 30 is suppressed during the deformation process of the easily compressible deformable member 30. Therefore, the compressively deformable member 30 exhibits a predetermined rigidity when deformation is suppressed, and supports the pit wall W in cooperation with the steel member 10 and the concrete structure 20. Therefore, it is possible to prevent the tunnel wall W from being displaced more than necessary, and it is possible to prevent the cross section of the tunnel T from becoming smaller than the designed cross section. Thereby, so-called backstitching can be reduced, and the tunnel T can be constructed efficiently.

また、変形抑止工程では、圧縮変形容易部材30の間隙にセメント系硬化材料を充填することにより、圧縮変形容易部材30の変形を抑止する。そのため、変形抑止部40は、圧縮変形容易部材30の間隙に形成される。したがって、変形抑止部40を圧縮変形容易部材30からトンネル径方向内側に突出させることなく坑壁Wの変位を停止することができ、トンネルTの断面が設計断面よりも小さくなるのを防止することができる。 Further, in the deformation suppression step, the deformation of the easily compressible deformable member 30 is suppressed by filling the gap between the easily compressible deformable member 30 with a cement-based hardening material. Therefore, the deformation suppressing portion 40 is formed in the gap between the compressible deformable member 30. Therefore, the displacement of the tunnel wall W can be stopped without causing the deformation suppressing part 40 to protrude inward in the radial direction of the tunnel from the compressible deformable member 30, and the cross section of the tunnel T can be prevented from becoming smaller than the designed cross section. I can do it.

また、コンクリート構造体設置工程後、トンネル掘削坑を掘進し、その後、変形抑止工程を行なう。トンネル掘削坑の掘進に伴って坑壁Wが変位すると共に圧縮変形容易部材30が圧縮変形する。したがって、坑壁Wを変位させて地山の地圧を低下させることができ、トンネルTの安定性を向上させることができる。また、トンネル掘削坑の掘進中に圧縮変形容易部材30の変形を進行させることができ、トンネルTの構築に要する時間を短縮することができる。 Further, after the concrete structure installation process, a tunnel is excavated, and then a deformation suppression process is performed. As the tunnel excavation shaft progresses, the tunnel wall W is displaced and the compressively deformable member 30 is compressively deformed. Therefore, the ground pressure of the ground can be reduced by displacing the tunnel wall W, and the stability of the tunnel T can be improved. Moreover, the deformation of the compressible deformable member 30 can proceed during excavation of the tunnel excavation, and the time required to construct the tunnel T can be shortened.

以上、トンネル支保構造100及びその構築方法について説明したが、次のような変形例も本発明の範囲内である。また、変形例に示す構成と上記の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。 Although the tunnel support structure 100 and its construction method have been described above, the following modifications are also within the scope of the present invention. It is also possible to combine the configuration shown in the modified example with the configuration described in the above embodiment, or to combine the configurations described in the following different modified examples.

<第1変形例>
図9は、本実施形態の第1変形例に係るトンネル支保構造101の断面図であり、図9(a)及び(b)は、それぞれ、図2(a)及び(b)に対応する。
<First modification example>
FIG. 9 is a sectional view of a tunnel support structure 101 according to a first modification of the present embodiment, and FIGS. 9(a) and 9(b) correspond to FIGS. 2(a) and (b), respectively.

図2に示すトンネル支保構造100では、変形抑止部40は、圧縮変形容易部材30の間隙に充填されている。トンネル支保構造101では、図9に示すように、変形抑止部40は、トンネル周方向に圧縮変形容易部材30を跨いで配置されている。変形抑止部40は、例えば鋼材である。変形抑止部40は、トンネル周方向に隣り合う鋼製部材10、及びトンネル周方向に隣り合うコンクリート構造体20に例えばボルト又は溶接により連結されている。 In the tunnel support structure 100 shown in FIG. 2, the deformation suppressing portion 40 is filled in the gap between the compressible and deformable members 30. In the tunnel support structure 101, as shown in FIG. 9, the deformation suppressing portion 40 is disposed straddling the compression deformable member 30 in the tunnel circumferential direction. The deformation suppressing portion 40 is made of steel, for example. The deformation suppressing portion 40 is connected to the steel members 10 adjacent to each other in the circumferential direction of the tunnel and the concrete structures 20 adjacent to each other in the circumferential direction of the tunnel, for example, by bolts or welding.

トンネル支保構造101の構築方法では、変形抑止工程において、図9(a)に示すように、変形抑止部40を、トンネル周方向に圧縮変形容易部材30を跨いで配置すると共にトンネル周方向に隣り合う鋼製部材10に連結する。また、図9(b)に示すように、変形抑止部40を、トンネル周方向に圧縮変形容易部材30を跨いで配置すると共にトンネル周方向に隣り合うコンクリート構造体20に連結する。 In the method for constructing the tunnel support structure 101, in the deformation prevention step, as shown in FIG. It is connected to a matching steel member 10. Further, as shown in FIG. 9(b), the deformation suppressing part 40 is disposed across the compressible deformable member 30 in the circumferential direction of the tunnel, and is connected to the concrete structure 20 adjacent in the circumferential direction of the tunnel.

トンネル支保構造101及びその構築方法では、トンネル支保構造100及びその構築方法と同様に、坑壁Wが必要以上に変位するのを防止することができ、トンネルTの断面が設計断面よりも小さくなるのを防止することができる。これにより、トンネルTを効率よく構築することができる。 The tunnel support structure 101 and its construction method, like the tunnel support structure 100 and its construction method, can prevent the tunnel wall W from displacing more than necessary, and the cross section of the tunnel T becomes smaller than the designed cross section. can be prevented. Thereby, the tunnel T can be constructed efficiently.

また、トンネル支保構造101及びその構築方法では、変形抑止部40は、圧縮変形容易部材30を跨いで配置されるため、圧縮変形容易部材30の形状に関わらず、圧縮変形容易部材30の変形を抑止することができる。したがって、中実に形成されたプレキャストブロックを圧縮変形容易部材30として用いることができる。プレキャストブロックとしては、例えば硬質ウレタン樹脂にガラス繊維を配合したブロックを用いることができる。なお、プレキャストブロックは、トンネル周方向に圧縮されて変形(縮小)する一方で、ポアソン比に応じてトンネル径方向に膨張する。変形抑止部40をプレキャストブロックに接するように設置する場合、変形抑止部40は、プレキャストブロックの膨張を抑制する働きをなす。このとき、トンネル周方向におけるプレキャストブロックの圧縮剛性は高まる。この効果によって、変形抑止部40による変形抑止の効果は更に高められる。 In addition, in the tunnel support structure 101 and its construction method, the deformation suppressing portion 40 is disposed straddling the compressively deformable member 30, so that the deformation of the compressively deformable member 30 is prevented regardless of the shape of the compressively deformable member 30. It can be suppressed. Therefore, a solid precast block can be used as the compressible and deformable member 30. As the precast block, for example, a block made of hard urethane resin mixed with glass fiber can be used. Note that while the precast block is compressed and deformed (shrinks) in the circumferential direction of the tunnel, it expands in the radial direction of the tunnel according to Poisson's ratio. When the deformation suppressing part 40 is installed so as to be in contact with the precast block, the deformation suppressing part 40 functions to suppress expansion of the precast block. At this time, the compression rigidity of the precast block in the circumferential direction of the tunnel increases. This effect further enhances the deformation prevention effect of the deformation prevention section 40.

<第2変形例>
図10は、本実施形態の第2変形例に係るトンネル支保構造102の断面図であり、図2(a)に対応して示す。
<Second modification example>
FIG. 10 is a sectional view of a tunnel support structure 102 according to a second modification of the present embodiment, and is shown corresponding to FIG. 2(a).

図10に示すように、トンネル支保構造102は、鋼製部材10、コンクリート構造体20及び圧縮変形容易部材30をトンネル径方向内側から支持する内側支保部50を備えている。内側支保部50は、例えば、吹付けコンクリートである。 As shown in FIG. 10, the tunnel support structure 102 includes an inner support section 50 that supports the steel member 10, the concrete structure 20, and the compressively deformable member 30 from the inside in the tunnel radial direction. The inner support portion 50 is, for example, shotcrete.

内側支保部50は、変形抑止工程後に、鋼製部材10、コンクリート構造体20及び圧縮変形容易部材30のトンネル径方向内側に設けられる。そのため、内側支保部50の設置後に圧縮変形容易部材30が圧縮変形するのを防止することができ、内側支保部50における応力が局所的に増大するのを防止することができる。したがって、トンネルTの安定性を更に向上させることができる。 The inner support portion 50 is provided inside the steel member 10, the concrete structure 20, and the compressively deformable member 30 in the tunnel radial direction after the deformation suppression step. Therefore, it is possible to prevent the easily compressible deformation member 30 from being compressed and deformed after the inner support portion 50 is installed, and it is possible to prevent stress in the inner support portion 50 from increasing locally. Therefore, the stability of the tunnel T can be further improved.

<第3変形例>
図11は、本実施形態の第3変形例に係るトンネル支保構造103の断面図であり、図2(b)に対応して示す。
<Third modification example>
FIG. 11 is a sectional view of a tunnel support structure 103 according to a third modification of the present embodiment, and is shown corresponding to FIG. 2(b).

図2に示すトンネル支保構造100では、複数のコンクリート構造体20がトンネル周方向に間隔を空けて設けられており圧縮変形容易部材30がトンネル周方向に隣り合うコンクリート構造体20の間に設けられている。トンネル支保構造103では、図11に示すように、圧縮変形容易部材30はコンクリート構造体20とトンネル掘削坑の底面BTとの間に設けられていてもよい。つまり、圧縮変形容易部材30は、コンクリート構造体20にトンネル周方向に隣接して設けられていればよい。 In the tunnel support structure 100 shown in FIG. 2, a plurality of concrete structures 20 are provided at intervals in the circumferential direction of the tunnel, and a member 30 that is easily compressed and deformed is provided between the concrete structures 20 adjacent to each other in the circumferential direction of the tunnel. ing. In the tunnel support structure 103, as shown in FIG. 11, the compressively deformable member 30 may be provided between the concrete structure 20 and the bottom surface BT of the tunnel excavation shaft. In other words, the compressible deformable member 30 may be provided adjacent to the concrete structure 20 in the circumferential direction of the tunnel.

図示を省略するが、圧縮変形容易部材30は鋼製部材10とトンネル掘削坑の底面BTとの間に設けられていてもよい。つまり、圧縮変形容易部材30は、鋼製部材10にトンネル周方向に隣接して設けられていればよい。 Although not shown in the drawings, the compression-deformable member 30 may be provided between the steel member 10 and the bottom surface BT of the tunnel excavation shaft. In other words, the easily compressible deformable member 30 may be provided adjacent to the steel member 10 in the tunnel circumferential direction.

<第4変形例>
トンネル周方向に隣り合う鋼製部材10の間に配置される圧縮変形容易部材30と、トンネル周方向に隣り合うコンクリート構造体20の間に配置される圧縮変形容易部材30と、は一体化されていてもよい。つまり、1つの圧縮変形容易部材が鋼製部材10とコンクリート構造体20とにトンネル周方向に隣接して設けられていてもよい。
<Fourth variation>
The easily compressible deformable member 30 disposed between the steel members 10 adjacent in the circumferential direction of the tunnel and the easily compressible deformable member 30 disposed between the concrete structures 20 adjacent in the circumferential direction of the tunnel are integrated. You can leave it there. In other words, one compressively deformable member may be provided adjacent to the steel member 10 and the concrete structure 20 in the tunnel circumferential direction.

<第5変形例>
トンネル支保構造100は、鋼製部材10に隣接する圧縮変形容易部材30と、コンクリート構造体20に隣接する圧縮変形容易部材30と、の両方を備えているが、本発明はこの形態に限られない。具体的には、本発明は、鋼製部材10に隣接する圧縮変形容易部材30のみを備える形態であってもよい。この場合には、鋼製部材設置工程においてのみ、圧縮変形容易部材30をトンネル掘削坑内に設ければよい。また、本発明は、コンクリート構造体20に隣接する圧縮変形容易部材30のみを備える形態であってもよい。この場合には、コンクリート構造体設置工程においてのみ、圧縮変形容易部材30をトンネル掘削坑内に設ければよい。
<Fifth modification example>
Although the tunnel support structure 100 includes both an easily compressible deformable member 30 adjacent to the steel member 10 and an easily compressible deformable member 30 adjacent to the concrete structure 20, the present invention is limited to this form. do not have. Specifically, the present invention may include only the easily compressible deformable member 30 adjacent to the steel member 10. In this case, the compressible deformable member 30 may be provided in the tunnel excavation only in the steel member installation process. Further, the present invention may be configured to include only the easily compressible deformable member 30 adjacent to the concrete structure 20. In this case, the compression-deformable member 30 may be provided inside the tunnel excavation only in the concrete structure installation process.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments. do not have.

100,101,102,103・・・トンネル支保構造
10・・・鋼製部材
20・・・コンクリート構造体
30・・・圧縮変形容易部材
32・・・筒状部
40・・・変形抑止部
50・・・内側支保部
T・・・トンネル
W・・・トンネル掘削坑内壁
100, 101, 102, 103... Tunnel support structure 10... Steel member 20... Concrete structure 30... Compressively deformable member 32... Cylindrical part 40... Deformation suppressing part 50 ...Inner support T...Tunnel W...Inner wall of tunnel excavation

Claims (8)

トンネル支保構造の構築方法であって、
前記トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う前記鋼製部材の間に設けられたコンクリート構造体と、前記鋼製部材よりも圧縮変形が容易な圧縮変形容易部材と、を備え、
前記構築方法は、
前記鋼製部材を設置済みの前記鋼製部材から前記トンネル軸方向に所定の間隔で前記トンネル掘削坑壁に沿って設けると共に、前記圧縮変形容易部材を前記鋼製部材にトンネル周方向に隣接して設ける鋼製部材設置工程と、
前記トンネル軸方向に隣り合う前記鋼製部材の間に前記コンクリート構造体を設けるコンクリート構造体設置工程と、
前記圧縮変形容易部材の変形過程において、前記圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、
前記圧縮変形容易部材は、当該圧縮変形容易部材が圧縮変形するに伴って狭くなる間隙を有し、そして当該間隙の存在ゆえに前記圧縮変形容易部材の剛性が前記鋼製部材及び前記コンクリート構造体よりも低く、
前記変形抑止工程では、前記圧縮変形容易部材の前記間隙にセメント系硬化材料を充填することにより前記圧縮変形容易部材の変形を抑止する、
トンネル支保構造の構築方法。
A method for constructing a tunnel support structure, the method comprising:
The tunnel support structure includes a plurality of steel members provided at predetermined intervals in the tunnel axial direction along the wall of the tunnel excavation, a concrete structure provided between the adjacent steel members, and the An easily compressible deformable member that can be compressively deformed more easily than a steel member,
The construction method includes:
The steel member is provided along the tunnel excavation wall at a predetermined interval from the already installed steel member in the tunnel axial direction, and the compressively deformable member is adjacent to the steel member in the tunnel circumferential direction. A steel member installation process,
a concrete structure installation step of providing the concrete structure between the steel members adjacent in the tunnel axial direction;
a deformation inhibiting step of suppressing deformation of the compressively deformable member in the deformation process of the compressively deformably easily deformable member;
The compressively deformable member has a gap that becomes narrower as the compressively deformable member is compressively deformed, and because of the existence of the gap, the stiffness of the compressively deformable member is higher than that of the steel member and the concrete structure. is also low,
In the deformation inhibiting step, deformation of the compressively deformable member is suppressed by filling the gap of the compressively deformable member with a cement-based hardening material.
How to construct a tunnel support structure.
トンネル支保構造の構築方法であって、
前記トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う前記鋼製部材の間に設けられたコンクリート構造体と、前記鋼製部材よりも圧縮変形が容易な圧縮変形容易部材と、を備え、
前記構築方法は、
前記鋼製部材を設置済みの前記鋼製部材から前記トンネル軸方向に所定の間隔で前記トンネル掘削坑壁に沿って設けると共に、前記圧縮変形容易部材を前記鋼製部材にトンネル周方向に隣接して設ける鋼製部材設置工程と、
前記トンネル軸方向に隣り合う前記鋼製部材の間に前記コンクリート構造体を設けるコンクリート構造体設置工程と、
前記圧縮変形容易部材の変形過程において、前記圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、
前記鋼製部材設置工程では、前記鋼製部材を前記トンネル周方向に所定の間隔で複数設け、前記圧縮変形容易部材を前記トンネル周方向に隣り合う前記鋼製部材の間に設け、
前記変形抑止工程では、鋼材を、前記トンネル周方向に前記圧縮変形容易部材を跨いで配置すると共に前記鋼製部材に連結することにより、前記圧縮変形容易部材の変形を抑止する、
トンネル支保構造の構築方法。
A method for constructing a tunnel support structure, the method comprising:
The tunnel support structure includes a plurality of steel members provided at predetermined intervals in the tunnel axial direction along the wall of the tunnel excavation, a concrete structure provided between the adjacent steel members, and the An easily compressible deformable member that can be compressively deformed more easily than a steel member,
The construction method includes:
The steel member is provided along the tunnel excavation wall at a predetermined interval from the already installed steel member in the tunnel axial direction, and the compressively deformable member is adjacent to the steel member in the tunnel circumferential direction. A steel member installation process,
a concrete structure installation step of providing the concrete structure between the steel members adjacent in the tunnel axial direction;
a deformation inhibiting step of suppressing deformation of the compressively deformable member in the deformation process of the compressively deformably easily deformable member;
In the steel member installation step, a plurality of the steel members are provided at predetermined intervals in the circumferential direction of the tunnel, and the easily compressible deformable member is provided between the steel members adjacent in the circumferential direction of the tunnel,
In the deformation suppressing step, a steel material is disposed across the compressively deformable member in the circumferential direction of the tunnel and is connected to the steel member, thereby suppressing deformation of the compressively deformable member.
How to construct a tunnel support structure.
トンネル支保構造の構築方法であって、
前記トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う前記鋼製部材の間に設けられたコンクリート構造体と、前記鋼製部材よりも圧縮変形が容易な圧縮変形容易部材と、を備え、
前記構築方法は、
前記鋼製部材を設置済みの前記鋼製部材から前記トンネル軸方向に所定の間隔で前記トンネル掘削坑壁に沿って設けると共に、前記圧縮変形容易部材を前記鋼製部材にトンネル周方向に隣接して設ける鋼製部材設置工程と、
前記トンネル軸方向に隣り合う前記鋼製部材の間に前記コンクリート構造体を設けるコンクリート構造体設置工程と、
前記圧縮変形容易部材の変形過程において、前記圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、
前記コンクリート構造体設置工程後、トンネル掘削坑を掘進し、その後、前記変形抑止工程を行なう、
トンネル支保構造の構築方法。
A method for constructing a tunnel support structure, the method comprising:
The tunnel support structure includes a plurality of steel members provided at predetermined intervals in the tunnel axial direction along the wall of the tunnel excavation, a concrete structure provided between the adjacent steel members, and the An easily compressible deformable member that can be compressively deformed more easily than a steel member,
The construction method includes:
The steel member is provided along the tunnel excavation wall at a predetermined interval from the already installed steel member in the tunnel axial direction, and the compressively deformable member is adjacent to the steel member in the tunnel circumferential direction. A steel member installation process,
a concrete structure installation step of providing the concrete structure between the steel members adjacent in the tunnel axial direction;
a deformation inhibiting step of suppressing deformation of the compressively deformable member in the deformation process of the compressively deformably easily deformable member;
After the concrete structure installation step, a tunnel is excavated, and then the deformation suppression step is performed.
How to construct a tunnel support structure.
トンネル支保構造の構築方法であって、
前記トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う前記鋼製部材の間に設けられたコンクリート構造体と、前記コンクリート構造体よりも圧縮変形が容易な圧縮変形容易部材と、を備え、
前記構築方法は、
前記鋼製部材を設置済みの前記鋼製部材から前記トンネル軸方向に所定の間隔で前記トンネル掘削坑壁に沿って設ける鋼製部材設置工程と、
前記トンネル軸方向に隣り合う前記鋼製部材の間に前記コンクリート構造体を設けると共に、前記圧縮変形容易部材を前記コンクリート構造体にトンネル周方向に隣接して設けるコンクリート構造体設置工程と、
前記圧縮変形容易部材の変形過程において、前記圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、
前記圧縮変形容易部材は、当該圧縮変形容易部材が圧縮変形するに伴って狭くなる間隙を有し、そして当該間隙の存在ゆえに前記圧縮変形容易部材の剛性が前記鋼製部材及び前記コンクリート構造体よりも低く、
前記変形抑止工程では、前記圧縮変形容易部材の前記間隙にセメント系硬化材料を充填することにより前記圧縮変形容易部材の変形を抑止する、
トンネル支保構造の構築方法。
A method for constructing a tunnel support structure, the method comprising:
The tunnel support structure includes a plurality of steel members provided at predetermined intervals in the tunnel axial direction along the wall of the tunnel excavation, a concrete structure provided between the adjacent steel members, and the Compressively deformable members that are easier to compressively deform than concrete structures,
The construction method includes:
a steel member installation step of installing the steel member along the tunnel excavation shaft wall at a predetermined interval in the tunnel axial direction from the already installed steel member;
a concrete structure installation step in which the concrete structure is provided between the steel members adjacent in the tunnel axial direction, and the compressively deformable member is provided adjacent to the concrete structure in the tunnel circumferential direction;
a deformation inhibiting step of suppressing deformation of the compressively deformable member in the deformation process of the compressively deformably easily deformable member;
The compressively deformable member has a gap that becomes narrower as the compressively deformable member is compressively deformed, and because of the existence of the gap, the stiffness of the compressively deformable member is higher than that of the steel member and the concrete structure. is also low,
In the deformation inhibiting step, deformation of the compressively deformable member is suppressed by filling the gap of the compressively deformable member with a cement-based hardening material.
How to construct a tunnel support structure.
トンネル支保構造の構築方法であって、
前記トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う前記鋼製部材の間に設けられたコンクリート構造体と、前記コンクリート構造体よりも圧縮変形が容易な圧縮変形容易部材と、を備え、
前記構築方法は、
前記鋼製部材を設置済みの前記鋼製部材から前記トンネル軸方向に所定の間隔で前記トンネル掘削坑壁に沿って設ける鋼製部材設置工程と、
前記トンネル軸方向に隣り合う前記鋼製部材の間に前記コンクリート構造体を設けると共に、前記圧縮変形容易部材を前記コンクリート構造体にトンネル周方向に隣接して設けるコンクリート構造体設置工程と、
前記圧縮変形容易部材の変形過程において、前記圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、
前記コンクリート構造体設置工程では、前記コンクリート構造体を前記トンネル周方向に所定の間隔で複数設け、前記圧縮変形容易部材を前記トンネル周方向に隣り合う前記コンクリート構造体の間に設け、
前記変形抑止工程では、鋼材を、前記トンネル周方向に前記圧縮変形容易部材を跨いで配置すると共に前記コンクリート構造体に連結することにより、前記圧縮変形容易部材の変形を抑止する、
トンネル支保構造の構築方法。
A method for constructing a tunnel support structure, the method comprising:
The tunnel support structure includes a plurality of steel members provided at predetermined intervals in the tunnel axial direction along the wall of the tunnel excavation, a concrete structure provided between the adjacent steel members, and the Compressively deformable members that are easier to compressively deform than concrete structures,
The construction method includes:
a steel member installation step of installing the steel member along the tunnel excavation shaft wall at a predetermined interval in the tunnel axial direction from the already installed steel member;
a concrete structure installation step in which the concrete structure is provided between the steel members adjacent in the tunnel axial direction, and the compressively deformable member is provided adjacent to the concrete structure in the tunnel circumferential direction;
a deformation inhibiting step of suppressing deformation of the compressively deformable member in the deformation process of the compressively deformably easily deformable member;
In the concrete structure installation step, a plurality of the concrete structures are provided at predetermined intervals in the tunnel circumferential direction, and the compressive deformation easy member is provided between the concrete structures adjacent in the tunnel circumferential direction,
In the deformation suppressing step, a steel material is placed across the compressively deformable member in the circumferential direction of the tunnel and is connected to the concrete structure, thereby suppressing deformation of the compressively deformable member.
How to construct a tunnel support structure.
トンネル支保構造の構築方法であって、
前記トンネル支保構造は、トンネル掘削坑壁に沿って、トンネル軸方向に所定の間隔で設けられた複数の鋼製部材と、隣り合う前記鋼製部材の間に設けられたコンクリート構造体と、前記コンクリート構造体よりも圧縮変形が容易な圧縮変形容易部材と、を備え、
前記構築方法は、
前記鋼製部材を設置済みの前記鋼製部材から前記トンネル軸方向に所定の間隔で前記トンネル掘削坑壁に沿って設ける鋼製部材設置工程と、
前記トンネル軸方向に隣り合う前記鋼製部材の間に前記コンクリート構造体を設けると共に、前記圧縮変形容易部材を前記コンクリート構造体にトンネル周方向に隣接して設けるコンクリート構造体設置工程と、
前記圧縮変形容易部材の変形過程において、前記圧縮変形容易部材の変形を抑止する変形抑止工程と、を備え、
前記コンクリート構造体設置工程後、トンネル掘削坑を掘進し、その後、前記変形抑止工程を行なう、
トンネル支保構造の構築方法。
A method for constructing a tunnel support structure, the method comprising:
The tunnel support structure includes a plurality of steel members provided at predetermined intervals in the tunnel axial direction along the wall of the tunnel excavation, a concrete structure provided between the adjacent steel members, and the Compressively deformable members that are easier to compressively deform than concrete structures,
The construction method includes:
a steel member installation step of installing the steel member along the tunnel excavation shaft wall at a predetermined interval in the tunnel axial direction from the already installed steel member;
a concrete structure installation step in which the concrete structure is provided between the steel members adjacent in the tunnel axial direction, and the compressively deformable member is provided adjacent to the concrete structure in the tunnel circumferential direction;
a deformation inhibiting step of suppressing deformation of the compressively deformable member in the deformation process of the compressively deformably easily deformable member;
After the concrete structure installation step, a tunnel is excavated, and then the deformation suppression step is performed.
How to construct a tunnel support structure.
前記コンクリート構造体設置工程後、トンネル掘削坑を掘進し、その後、前記変形抑止工程を行なう、
請求項1、2、4、5のいずれか1項に記載のトンネル支保構造の構築方法。
After the concrete structure installation step, a tunnel is excavated, and then the deformation suppression step is performed.
The method for constructing a tunnel support structure according to any one of claims 1, 2, 4, and 5.
前記変形抑止工程後に、前記鋼製部材、前記コンクリート構造体及び前記圧縮変形容易部材のトンネル径方向内側に前記トンネル掘削坑壁を支持する内側支保部を設ける、
請求項1から7のいずれか1項に記載のトンネル支保構造の構築方法。
After the deformation suppressing step, an inner supporting portion for supporting the tunnel excavation shaft wall is provided inside the steel member, the concrete structure, and the compressively deformable member in the tunnel radial direction.
A method for constructing a tunnel support structure according to any one of claims 1 to 7.
JP2020017247A 2020-02-04 2020-02-04 How to construct a tunnel support structure Active JP7345409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020017247A JP7345409B2 (en) 2020-02-04 2020-02-04 How to construct a tunnel support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020017247A JP7345409B2 (en) 2020-02-04 2020-02-04 How to construct a tunnel support structure

Publications (2)

Publication Number Publication Date
JP2021123922A JP2021123922A (en) 2021-08-30
JP7345409B2 true JP7345409B2 (en) 2023-09-15

Family

ID=77458448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020017247A Active JP7345409B2 (en) 2020-02-04 2020-02-04 How to construct a tunnel support structure

Country Status (1)

Country Link
JP (1) JP7345409B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303797A (en) 1999-04-19 2000-10-31 Kfc Ltd Timbering joint and timbering structure using the same
JP2005232958A (en) 2004-02-16 2005-09-02 Kalman Kovari Method and device to stabilize hollow spaces formed by excavation in mines
JP2018003361A (en) 2016-06-29 2018-01-11 大成建設株式会社 Yielding member
JP2018035554A (en) 2016-08-31 2018-03-08 大成建設株式会社 Design method for structure
JP2018040147A (en) 2016-09-07 2018-03-15 大成建設株式会社 Flexible member and tunnel
JP2018155048A (en) 2017-03-21 2018-10-04 鹿島建設株式会社 Support structure and method for constructing support structure
JP6584738B1 (en) 2019-04-26 2019-10-02 鹿島建設株式会社 How to build a tunnel support
JP2020016028A (en) 2018-07-23 2020-01-30 大成建設株式会社 Tunnel construction method and tunnel support structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414410Y2 (en) * 1973-10-19 1979-06-14
JPS5581195U (en) * 1978-11-27 1980-06-04
JPS5626080Y2 (en) * 1978-12-05 1981-06-19
GB2078822A (en) * 1980-05-13 1982-01-13 Atlow Mining Dev Consult Yieldable stilts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303797A (en) 1999-04-19 2000-10-31 Kfc Ltd Timbering joint and timbering structure using the same
JP2005232958A (en) 2004-02-16 2005-09-02 Kalman Kovari Method and device to stabilize hollow spaces formed by excavation in mines
JP2018003361A (en) 2016-06-29 2018-01-11 大成建設株式会社 Yielding member
JP2018035554A (en) 2016-08-31 2018-03-08 大成建設株式会社 Design method for structure
JP2018040147A (en) 2016-09-07 2018-03-15 大成建設株式会社 Flexible member and tunnel
JP2018155048A (en) 2017-03-21 2018-10-04 鹿島建設株式会社 Support structure and method for constructing support structure
JP2020016028A (en) 2018-07-23 2020-01-30 大成建設株式会社 Tunnel construction method and tunnel support structure
JP6584738B1 (en) 2019-04-26 2019-10-02 鹿島建設株式会社 How to build a tunnel support

Also Published As

Publication number Publication date
JP2021123922A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
EP3382143B1 (en) Tunnel construction method using pre-support and post-support and apparatus suitable for same
US10746022B2 (en) Helical segmental lining
CN209975536U (en) Civil construction foundation ditch support device that prevents collapsing
KR100915099B1 (en) Structure for supporting retaining wall of earth with arch material and method constructing the arch structure
JP6730883B2 (en) Design method of flexible support
KR20180019322A (en) Integral bridge structure and construction method thereof
CN104328789A (en) Overhanging type support changing construction method for reinforced concrete horizontal inner support
KR102079692B1 (en) Rigid connection structure for bottom end of pillar and concrete pile
JP7345409B2 (en) How to construct a tunnel support structure
JP4705497B2 (en) Reinforcement method of pile foundation of existing building
CN112943327A (en) Underground chamber active controllable yielding support system and method for stratum support
CN115370376B (en) Construction method suitable for collapse treatment of large-span expansion tunnel
KR101041264B1 (en) Displacement control tunnelling reinforcing structure using pressurizing support
JP7085464B2 (en) How to build a retaining wall structure in the reverse striking method
KR100941437B1 (en) 2 arch tunnel construction method for upper girder void proofing and efficient construction
RU2123091C1 (en) Foundation for metal column, method of foundation construction and alignment
CN214499079U (en) Damping structure for roadway assembled supporting system
CN211523179U (en) Subway station faces integration envelope forever
CN113073993A (en) Damping structure for roadway assembled supporting system
CN108149674B (en) Diaphragm wall template and diaphragm wall construction method
JPH07119548B2 (en) Reinforcement structure of eyeglass type tunnel
KR20070001576A (en) Method of high grouting and that of packer
JP5177492B2 (en) Temporary structures that can be removed and methods for removing temporary structures
JP2007169898A (en) Pile foundation structure for restraining unequal settlement and its construction method
CN109577343B (en) External-bracing type foundation pit supporting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230905

R150 Certificate of patent or registration of utility model

Ref document number: 7345409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150