JP2018035554A - Design method for structure - Google Patents

Design method for structure Download PDF

Info

Publication number
JP2018035554A
JP2018035554A JP2016168822A JP2016168822A JP2018035554A JP 2018035554 A JP2018035554 A JP 2018035554A JP 2016168822 A JP2016168822 A JP 2016168822A JP 2016168822 A JP2016168822 A JP 2016168822A JP 2018035554 A JP2018035554 A JP 2018035554A
Authority
JP
Japan
Prior art keywords
elastic
stage
retractable
support
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016168822A
Other languages
Japanese (ja)
Other versions
JP6730884B2 (en
Inventor
雄行 市田
Yuko Ichida
雄行 市田
伸高 小原
Nobutaka Obara
伸高 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2016168822A priority Critical patent/JP6730884B2/en
Publication of JP2018035554A publication Critical patent/JP2018035554A/en
Application granted granted Critical
Publication of JP6730884B2 publication Critical patent/JP6730884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a design method for a structure, which enables an analysis closer to an actually measured value.SOLUTION: A design method for a yielding support 2 comprising a yielding member 4 and a support member 3 includes: a first step of analyzing the yielding member 4 as a cable element 5 until distortion of the yielding member 4 reaches a threshold; and a second step of analyzing the yielding member 4 as a solid element 6 larger in initial elastic modulus than the cable element 5 after the distortion of the yielding member 4 reaches the threshold. The elastic modulus of the solid element 6 is equivalent to that of the support member 3.SELECTED DRAWING: Figure 2

Description

本発明は、構造体の設計方法に関する。   The present invention relates to a method for designing a structure.

NATM等の山岳トンネル工法では、掘削により露出した地山面に吹き付けられた吹付けコンクリートや、地山面に沿って組み立てられた鋼製支保工等のトンネル支保工(構造体)により安全性を確保している。
大土被りのトンネルでは、トンネル周辺の地山の変形量が増大し、トンネル支保工に対して大きな応力が発生する場合がある。断層破砕帯や膨張性地山を掘進することにより形成されたトンネル等でも同様である。
トンネル支保工に大きな応力が発生することが予想されるトンネルでは、トンネル支保工の剛性や強度を増加させる場合がある。鋼製支保工のサイズアップ、吹付けコンクリートの強度増強、吹付け厚の増加等によりトンネル支保工の剛性や強度を増加させると、材料費および施工の手間が増加するとともに、トンネルの断面寸法にも影響がおよぶ。
In mountain tunneling methods such as NATM, safety is achieved by tunnel support work (structure) such as shotcrete sprayed on the ground surface exposed by excavation and steel support work assembled along the ground surface. Secured.
In a tunnel covered with a large earth cover, the amount of deformation of the ground around the tunnel increases, and a large stress may be generated on the tunnel support. The same applies to tunnels formed by excavating fault fracture zones and expansive grounds.
In tunnels where large stresses are expected to occur in the tunnel support, the rigidity and strength of the tunnel support may be increased. Increasing the rigidity and strength of the tunnel support by increasing the size of the steel support, increasing the strength of the shotcrete, increasing the spray thickness, etc., increases the material cost and construction effort, and increases the cross-sectional dimensions of the tunnel. Will also be affected.

そのため、特許文献1には、トンネル支保工の一部に形成された隙間に、鋼繊維と中空粒子とを含有する繊維補強セメント系材料からなる可縮部材(弾塑性部材)を介設し、地山の変形をこの可縮部材により吸収するトンネルの安定化方法が開示されている。可縮部材は、吹付けコンクリート等の支保部材に変状を与えない程度の剛性を有し、かつ、一定の荷重強度を維持しながら変形するため、可縮中においてもトンネルの内圧を維持することを可能としている。
可縮部材を含む支保工(以下、単に「可縮支保工」という)が設置されたトンネル変位の数値解析には、例として、Graz工科大学の手法等が知られている。Graz工科大学の手法では、可縮部材をソリッド要素としてモデル化している。
Therefore, in Patent Document 1, a retractable member (elastic-plastic member) made of a fiber-reinforced cement-based material containing steel fibers and hollow particles is interposed in a gap formed in a part of the tunnel support, A method for stabilizing a tunnel that absorbs deformation of a natural ground by this retractable member is disclosed. The retractable member has a rigidity that does not cause deformation to the support member such as shotcrete, and is deformed while maintaining a constant load strength, so the internal pressure of the tunnel is maintained even during contraction. Making it possible.
As an example, the method of Graz University of Technology is known for the numerical analysis of the tunnel displacement in which a supporting work including a retractable member (hereinafter simply referred to as “retractable supporting work”) is installed. In the method of Graz University of Technology, the contractible member is modeled as a solid element.

特開2005−232958号公報JP 2005-232958 A

Graz工科大学の手法によるトンネル変位の数値解析は、可縮部材が限界ひずみに達した後の応力ひずみ関係を表現することができなかった。また、可縮支保工は軸力部材として設計されているのに対し、可縮部材をソリッド要素として解析を行うと、軸差応力によって降伏判定されてしまう。さらに、可縮部材の端面と支保部材(吹付けコンクリート等)との接触面において拘束を受けるため、可縮部材を一軸圧縮強度で降伏させることができなかった。このように、可縮支保工の数値解析について、実測値に近い解析を行う手法は確立されていなかった。また、耐震部材や免震部材等の他の弾塑性部材を有する構造体の数値解析においても、実測値に近い解析を行う手法は確立されていない。なお、「限界ひずみ」とは、可縮部材に許容される最大ひずみ(変形量)である。
本発明は、前記の問題点を解決することを目的とするものであり、より実測値に近い解析を可能とした、構造体の設計方法を提案することを課題とする。
The numerical analysis of the tunnel displacement by the method of Graz University of Technology could not express the stress-strain relationship after the retractable member reached the limit strain. In addition, the retractable support is designed as an axial force member, but if the retractable member is analyzed as a solid element, the yield is determined by the axial stress. Furthermore, since the contact surface between the end surface of the retractable member and the supporting member (such as shot concrete) is restrained, the retractable member cannot be yielded with uniaxial compressive strength. As described above, there has not been established a method for performing an analysis close to the actual measurement value for the numerical analysis of the shrinkable support work. In addition, in numerical analysis of structures having other elastic-plastic members such as seismic members and seismic isolation members, a method for performing analysis close to actual measurement values has not been established. The “limit strain” is the maximum strain (deformation amount) allowed for the retractable member.
An object of the present invention is to solve the above-described problems, and an object of the present invention is to propose a method for designing a structure that enables analysis closer to actual measurement values.

前記課題を解決するために、本発明は、弾塑性部材を有する構造体の設計方法であって、前記弾塑性部材のひずみが閾値に達するまで当該弾塑性部材を弾塑性モデルとして解析を行う第一段階と、前記弾塑性部材のひずみが前記閾値に達した後に、当該弾塑性部材を前記弾塑性モデルの初期弾性係数よりも大きな弾性係数を有する弾塑性モデルまたは弾性モデルとして解析を行う第二段階とを備えていることを特徴としている。
なお、前記第一段階の弾塑性モデルにはケーブル要素を採用し、前記第二段階の弾塑性モデルまたは弾性モデルにはソリッド要素を採用すればよい。前記第一段階で採用するケーブル要素としては、前記弾塑性部材の設置個所に並設された少なくとも2本のケーブル要素を利用すればよい。また、前記第二段階では、前記ソリッド要素の弾性係数が、他の部位の弾性係数と同等とするのが望ましい。さらに、前記弾塑性部材の側面が非接触状態であるものとして解析を行うのが望ましい。
In order to solve the above problems, the present invention provides a method for designing a structure having an elastoplastic member, wherein the elastoplastic member is analyzed as an elastoplastic model until the strain of the elastoplastic member reaches a threshold value. And analyzing the elastic-plastic member as an elastic-plastic model or an elastic model having an elastic modulus larger than an initial elastic modulus of the elastic-plastic model after the strain of the elastic-plastic member reaches the threshold value. And a stage.
Note that a cable element may be employed for the first-stage elastic-plastic model, and a solid element may be employed for the second-stage elastic-plastic model or elastic model. As the cable element employed in the first stage, at least two cable elements arranged in parallel at the installation location of the elastic-plastic member may be used. In the second stage, it is desirable that the elastic coefficient of the solid element is equal to the elastic coefficient of other parts. Furthermore, it is desirable to perform the analysis assuming that the side surface of the elastic-plastic member is in a non-contact state.

かかる構造体の設計方法によれば、第二段階により、弾塑性部材が所定のひずみ(例えば限界ひずみ)に達した後の応力ひずみ関係が表現される。また、第一段階において、弾塑性部材をケーブル要素としてモデル化すると、軸力のみを伝達する構成とし、弾塑性部材の端面が拘束を受けることがなく、弾塑性部材を一軸圧縮強度で降伏させることができる。さらに、第一段階では軸差応力によって降伏判定されることもない。   According to such a structure designing method, the stress-strain relationship after the elastic-plastic member reaches a predetermined strain (for example, a limit strain) is expressed by the second step. In the first stage, when the elastic-plastic member is modeled as a cable element, only the axial force is transmitted, and the end surface of the elastic-plastic member is not restrained and yields the elastic-plastic member with uniaxial compressive strength. be able to. Furthermore, in the first stage, the yield is not determined by the axial differential stress.

本発明の構造体の設計方法によれば、より実測値に近い弾塑性部材を有する構造体の数値解析を行うことが可能となる。   According to the structure designing method of the present invention, it is possible to perform a numerical analysis of a structure having an elastoplastic member that is closer to a measured value.

本発明の実施形態に係るトンネルを示す断面図である。It is sectional drawing which shows the tunnel which concerns on embodiment of this invention. 可縮部材の数値解析モデル図であるIt is a numerical analysis model figure of a contractible member. (a)はケーブル要素の力学モデルを示すグラフ、(b)はソリッド要素の力学モデルを示すグラフである。(A) is a graph which shows the dynamic model of a cable element, (b) is a graph which shows the dynamic model of a solid element. 切羽進行に応じた支保部材の弾性係数を示すグラフである。It is a graph which shows the elastic modulus of the supporting member according to face progress. (a)は実施例の解析値と計測値とを示すグラフ、(b)は比較例の解析値と計測値とを示すグラフである。(A) is a graph which shows the analysis value and measurement value of an Example, (b) is a graph which shows the analysis value and measurement value of a comparative example.

本実施形態では、図1に示すように、NATMにより構築するトンネル1について、可縮支保工(構造体)2の設計方法について説明する。
本実施形態の可縮支保工2は、吹付けコンクリート31、鋼製支保工(図示せず)、ロックボルト32およびインバート吹付け33等からなる支保部材3と、可縮部材(弾塑性部材)4とを備えている。吹付けコンクリート31および鋼製支保工は、アーチ状(馬蹄形状)に形成されていて、左右の下端同士はインバート吹付け33により閉合されている。なお、支保部材3の形状は限定されるものではなく、例えばリング状であってもよい。
支保部材3は、地山の掘削により露出した地山に対して吹付けコンクリート31を吹き付けるとともに、鋼製支保工の建込およびロックボルト32の打設を行うことにより形成する。
In the present embodiment, as shown in FIG. 1, a method for designing a retractable support (structure) 2 for a tunnel 1 constructed by NATM will be described.
The contractible support work 2 of the present embodiment includes a support member 3 composed of shotcrete 31, a steel support (not shown), a lock bolt 32, an invert spray 33, and the like, and a retractable member (elastoplastic member). 4 is provided. The shotcrete 31 and the steel support are formed in an arch shape (horse-shoe shape), and the left and right lower ends are closed by an invert shot 33. In addition, the shape of the supporting member 3 is not limited, For example, a ring shape may be sufficient.
The support member 3 is formed by spraying shot concrete 31 onto a natural ground exposed by excavation of the natural ground, and erection of a steel support and placing a lock bolt 32.

可縮部材4は、図1に示すようにアーチ状に形成された吹付けコンクリート31を区切るように配設されている。本実施形態では、1断面当たりに2つの可縮部材4,4を配置している。なお、可縮部材4の数および配置は限定されるものではない。また、可縮部材4の構成は限定されるものではない。例えば、セメント系部材の硬化体からなる柱状の本体部に補強体を周設したものや、無数の気泡を有した繊維補強コンクリートの硬化体や、多層構造になる鋼管が座屈しながら変形する部材等であってもよい。   The contractible member 4 is disposed so as to divide the shotcrete 31 formed in an arch shape as shown in FIG. In the present embodiment, two retractable members 4 and 4 are arranged per cross section. The number and arrangement of the retractable members 4 are not limited. Further, the configuration of the retractable member 4 is not limited. For example, a member in which a reinforcing body is provided around a columnar main body made of a hardened body of a cement-based member, a hardened body of fiber-reinforced concrete having innumerable bubbles, or a steel pipe that has a multi-layer structure is deformed while buckling. Etc.

本実施形態の可縮支保工の設計方法では、図2に示すように、可縮部材4をケーブル要素5とソリッド要素6でモデル化して解析を行う。ケーブル要素(バー要素)5は、断面積が一定な線状のモデル要素で、曲げ剛性を無視することができる軸力部材である。一方、ソリッド要素6は、中実な体積をもつ四面体乃至六面体の3次元モデル要素である。なお、本実施形態のソリッド要素6は六面体(直方体)である。図示は省略するが、本実施形態では、3次元モデルにて可縮支保工2およびその周辺地山をモデル化している。可縮部材4のひずみが閾値に達するまでの第一段階では、可縮部材4が可縮部材4の設置個所に並設された4本のケーブル要素5,5,…+ソリッド要素6であるものとして解析を行い、可縮部材4のひずみが閾値に達した後の第二段階では、可縮部材4をソリッド要素6として解析を行う。なお、第一段階におけるソリッド要素6は、弾性係数を0とする。また、第二段階のソリッド要素6の弾性係数は、吹付けコンクリート31の弾性係数と同等であるものとして解析を行う。さらに、可縮部材4の側面は、非接触状態であるものとして解析を行う。
ケーブル要素5は、ソリッド要素6の辺(トンネル周方向に沿う辺)に沿って配置されている。ケーブル要素5の端部は、可縮部材に隣接する吹付けコンクリートに対応するソリッド要素の頂点に結合されている。なお、ケーブル要素5の接合方法は限定されるものではないが、本実施形態のケーブル要素5は、吹付けコンクリートにピン接合されているものとする。
In the design method of the retractable support structure of this embodiment, as shown in FIG. 2, the retractable member 4 is modeled by the cable element 5 and the solid element 6 and analyzed. The cable element (bar element) 5 is a linear model element having a constant cross-sectional area, and is an axial force member that can ignore bending rigidity. On the other hand, the solid element 6 is a tetrahedral to hexahedral three-dimensional model element having a solid volume. In addition, the solid element 6 of this embodiment is a hexahedron (cuboid). Although illustration is omitted, in the present embodiment, the contractible support work 2 and surrounding ground are modeled by a three-dimensional model. In the first stage until the strain of the retractable member 4 reaches the threshold value, the retractable member 4 is the four cable elements 5, 5,. In the second stage after the strain of the retractable member 4 reaches the threshold value, the retractable member 4 is analyzed as a solid element 6. The solid element 6 in the first stage has an elastic coefficient of 0. The analysis is performed on the assumption that the elastic coefficient of the solid element 6 in the second stage is equivalent to the elastic coefficient of the shotcrete 31. Further, the side surface of the retractable member 4 is analyzed as being in a non-contact state.
The cable element 5 is disposed along the side of the solid element 6 (side along the tunnel circumferential direction). The end of the cable element 5 is connected to the vertex of the solid element corresponding to the shotcrete adjacent to the retractable member. In addition, although the joining method of the cable element 5 is not limited, the cable element 5 of this embodiment shall be pin-joined to shotcrete.

第一段階では、図3(a)に示すように、可縮部材4が降伏するまで弾性変形し、降伏した後は塑性変形しながらトンネル1の変形を吸収する。すなわち、可縮部材4の降伏後、可縮部材4の限界ひずみに達するまでの間は、支保部材3には可縮部材4の降伏強度相当の応力しか作用しない。その後、可縮部材4の限界の可縮量(限界ひずみ)に達すると、図3(b)に示すように、可縮支保工全体で応力度を受け持つ状態となる。   In the first stage, as shown in FIG. 3A, the deformable member 4 is elastically deformed until yielding, and after yielding, the deformation of the tunnel 1 is absorbed while plastically deforming. That is, only the stress corresponding to the yield strength of the retractable member 4 acts on the support member 3 until the limit strain of the retractable member 4 is reached after the yieldable member 4 yields. Thereafter, when the limitable amount of shrinkage (limit strain) of the retractable member 4 is reached, as shown in FIG.

本実施形態の可縮支保工の設計方法によれば、第二段階により、可縮部材4が限界ひずみに達した後の応力ひずみ関係が表現される。また、第一段階において、可縮部材4をケーブル要素5としてモデル化することで、可縮部材4には軸力のみを伝達する構成となる。そのため、第一段階では、可縮部材4の端面が拘束を受けることがなく、可縮部材4を降伏させることができ、また、第一段階では軸差応力によって降伏判定されることもない。そのため、より実測値に近い解析が可能となる。   According to the design method of the retractable support structure of this embodiment, the stress-strain relationship after the retractable member 4 reaches the limit strain is expressed by the second stage. Further, in the first stage, by modeling the retractable member 4 as the cable element 5, only the axial force is transmitted to the retractable member 4. Therefore, in the first stage, the end face of the retractable member 4 is not constrained, and the retractable member 4 can be yielded. In the first stage, the yield is not determined by the axial differential stress. Therefore, an analysis closer to the actual measurement value is possible.

次に、本実施形態の可縮支保工の設計方法による数値解析結果と、可縮部材が設けられたトンネルの変位計測データとを比較して、可縮支保工の設計方法の信頼性の確認を行った結果を示す。
本数値解析では、図2に示すように、可縮支保工2の背面の地山要素7を細かいメッシュとしてモデル化する。地山要素7のメッシュ幅は、最小で10cmとした。なお、地山要素7のメッシュ幅の大きさは限定されるものではない。
Next, comparing the numerical analysis result by the design method of the retractable support construction of this embodiment and the displacement measurement data of the tunnel provided with the retractable member, confirmation of the reliability of the design method of the retractable support construction The result of having performed is shown.
In this numerical analysis, as shown in FIG. 2, the ground element 7 on the back surface of the retractable support work 2 is modeled as a fine mesh. The mesh width of the natural ground element 7 was set to a minimum of 10 cm. In addition, the magnitude | size of the mesh width of the natural ground element 7 is not limited.

可縮支保工2は、地山要素7の表面に沿って配設した。可縮支保工2も、地山要素7と同様に、メッシュ化する。支保部材3はソリッド要素としてモデル化した。一方、可縮部材4は、ケーブル要素5,5,…とソリッド要素6とが組み合わされた複合モデルとした。また、可縮部材4と可縮部材4の背面の地山との間には、地山によって可縮部材4が拘束されることがないように、ギャップ(空洞)8を設けた。   The contractible support work 2 was disposed along the surface of the natural ground element 7. The contractible support work 2 is also made into a mesh in the same manner as the natural ground element 7. The support member 3 was modeled as a solid element. On the other hand, the retractable member 4 is a composite model in which the cable elements 5, 5,. Further, a gap (cavity) 8 was provided between the retractable member 4 and the ground on the back surface of the retractable member 4 so that the contractible member 4 is not restrained by the ground.

トンネル周方向成分のひずみを解析毎ステップにてモニタリングし、このひずみが可縮部材4の限界ひずみに達した時点で、ソリッド要素6の弾性係数をゼロからEに変更した(図3参照)。この結果、可縮部材4が限界ひずみに達するまでは、ケーブル要素5が主として可縮部材4の力学モデルを再現する。この間、ソリッド要素6の弾性係数はゼロ(解析上は0.001MPa)とする。一方、可縮部材4の限界ひずみに達した後は、可縮部材4が吹付けコンクリートで構成されたものと仮定し、ソリッド要素6の弾性係数を支保部材(吹付けコンクリート)3の弾性係数と同等の値に変化させることで、周辺地山からの荷重が支保部材3に100%伝達されるように再現した。 Monitoring the strain of the tunnel circumferential component in the analysis step by step, at the time this strain reaches the strain limit of Kachijimi member 4 was changed modulus of solid element 6 from zero to E 2 (see FIG. 3) . As a result, the cable element 5 mainly reproduces the dynamic model of the retractable member 4 until the retractable member 4 reaches the limit strain. During this time, the elastic coefficient of the solid element 6 is zero (in terms of analysis, 0.001 MPa). On the other hand, after reaching the limit strain of the retractable member 4, it is assumed that the retractable member 4 is composed of shotcrete, and the elastic coefficient of the solid element 6 is equal to that of the support member (spread concrete) 3. It was reproduced so that the load from the surrounding natural ground was transmitted 100% to the support member 3 by changing the value to the same value.

数値解析では、トンネル上下半が10m先行した状態で、インバート吹付けの施工を行うものとした。初期応力は側圧係数を1.0として、地山の単位体積重量×土被り270mの地圧を与えるものとした。地山物性値を表1に示す。
吹付けコンクリート(支保部材3)は弾性体とするが、図4に示すように、切羽の進行(材齢)に応じて弾性係数を変化させた。可縮部材4(実施例)の物性値を表2に示す。また、比較例として、可縮部材がソリッド要素である場合についても解析(Graz工科大学の手法に基づく解析)を行った。
In the numerical analysis, it was assumed that the invert spraying work was performed with the upper and lower half of the tunnel leading 10 m. The initial stress was a lateral pressure coefficient of 1.0, giving a ground pressure of unit volume weight of the natural ground × 270 m of earth covering. The natural property values are shown in Table 1.
The shotcrete (support member 3) is an elastic body, but as shown in FIG. Table 2 shows the physical property values of the retractable member 4 (Example). Further, as a comparative example, an analysis (analysis based on the method of Graz University of Technology) was also performed for the case where the contractible member was a solid element.

Figure 2018035554
Figure 2018035554

Figure 2018035554
Figure 2018035554

図5(a)に示すように、実施例の測点Z1〜Z3における変位が、計測値に近い結果となった。一方、図5(b)に示すように、比較例の測点Z1〜Z3における変位は、トンネル変形量が計測値よりも小さくなった。これは、可縮部材が、吹付けコンクリート31の端部において拘束されて変形し難いため、結果的にトンネル1の変形を吸収することができないことによるものと推測される。
したがって、本実施形態の構造体の設計方法により施工実績の再現性が高いことを確認することができた。
As shown to Fig.5 (a), the displacement in the measuring points Z1-Z3 of an Example became a result close | similar to a measured value. On the other hand, as shown in FIG.5 (b), as for the displacement in the measuring points Z1-Z3 of a comparative example, the tunnel deformation amount became smaller than the measured value. This is presumably due to the fact that the contractible member is restrained at the end of the shotcrete 31 and is difficult to deform, and as a result, the deformation of the tunnel 1 cannot be absorbed.
Therefore, it was confirmed that the reproducibility of construction results was high by the structure design method of the present embodiment.

以上、本発明の実施形態について説明したが本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
前記実施形態では、3次元モデルで解析を行う場合について説明したが、2次元モデルで行ってもよい。
また、前記実施形態では、3次元モデルにて可縮支保工をモデル化する場合において、4本のケーブル要素を配置するものとしたが、ケーブル要素の本数は限定されるものではない。例えば、2次元モデルにて可縮支保工をモデル化する場合には、2本以上のケーブル要素を配置すればよい。
第一段階のひずみの閾値は、限界ひずみに限定されるものではない。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the above-described constituent elements can be appropriately changed without departing from the spirit of the present invention.
In the above-described embodiment, the case where the analysis is performed using the three-dimensional model has been described. However, the analysis may be performed using the two-dimensional model.
In the above embodiment, when the retractable support is modeled by a three-dimensional model, four cable elements are arranged. However, the number of cable elements is not limited. For example, when modeling a contractible support work with a two-dimensional model, two or more cable elements may be arranged.
The first stage strain threshold is not limited to the critical strain.

1 トンネル
2 可縮支保工(構造体)
3 支保部材
4 可縮部材(弾塑性部材)
5 ケーブル要素
6 ソリッド要素
7 地山要素
8 ギャップ
1 Tunnel 2 Retractable support construction (structure)
3 Support member 4 Retractable member (elasto-plastic member)
5 Cable element 6 Solid element 7 Ground element 8 Gap

Claims (5)

弾塑性部材を有する構造体の設計方法であって、
前記弾塑性部材のひずみが閾値に達するまで当該弾塑性部材を弾塑性モデルとして解析を行う第一段階と、
前記弾塑性部材のひずみが前記閾値に達した後に、当該弾塑性部材を前記弾塑性モデルの初期弾性係数よりも大きな初期弾性係数の弾塑性モデルまたは弾性モデルとして解析を行う第二段階と、を備えていることを特徴とする、構造体の設計方法。
A method for designing a structure having an elastoplastic member,
A first stage of analyzing the elastic-plastic member as an elastic-plastic model until the strain of the elastic-plastic member reaches a threshold;
After the strain of the elastoplastic member reaches the threshold, the second stage of analyzing the elastoplastic member as an elastoplastic model or elastic model having an initial elastic modulus larger than the initial elastic modulus of the elastoplastic model, A method for designing a structure, comprising:
前記第一段階では、前記弾塑性部材をケーブル要素として解析し、
前記第二段階では、前記弾塑性部材をソリッド要素として解析することを特徴とする、請求項1に記載の構造物の設計方法。
In the first stage, the elastic-plastic member is analyzed as a cable element,
The method for designing a structure according to claim 1, wherein in the second stage, the elastic-plastic member is analyzed as a solid element.
前記第一段階では、前記弾塑性部材の設置個所に並設された少なくとも2本のケーブル要素により解析を行うことを特徴とする、請求項2に記載の構造体の設計方法。   3. The structure design method according to claim 2, wherein in the first stage, the analysis is performed by using at least two cable elements arranged in parallel at an installation location of the elastic-plastic member. 前記第二段階では、前記ソリッド要素の弾性係数が、他の部位の弾性係数と同等であることを特徴とする、請求項2または請求項3に記載の構造体の設計方法。   The structure design method according to claim 2 or 3, wherein, in the second stage, the elastic coefficient of the solid element is equal to an elastic coefficient of another part. 前記弾塑性部材の側面が非接触状態であることを特徴とする、請求項1乃至請求項4のいずれか1項に記載の構造体の設計方法。   The method for designing a structure according to any one of claims 1 to 4, wherein a side surface of the elastic-plastic member is in a non-contact state.
JP2016168822A 2016-08-31 2016-08-31 How to design a structure Active JP6730884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016168822A JP6730884B2 (en) 2016-08-31 2016-08-31 How to design a structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016168822A JP6730884B2 (en) 2016-08-31 2016-08-31 How to design a structure

Publications (2)

Publication Number Publication Date
JP2018035554A true JP2018035554A (en) 2018-03-08
JP6730884B2 JP6730884B2 (en) 2020-07-29

Family

ID=61565544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016168822A Active JP6730884B2 (en) 2016-08-31 2016-08-31 How to design a structure

Country Status (1)

Country Link
JP (1) JP6730884B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016028A (en) * 2018-07-23 2020-01-30 大成建設株式会社 Tunnel construction method and tunnel support structure
CN112035937A (en) * 2020-09-07 2020-12-04 河南城建学院 Tunnel construction surrounding rock deformation analysis and informatization construction method
CN112964188A (en) * 2021-02-07 2021-06-15 中国人民解放军军事科学院国防工程研究院工程防护研究所 Method for improving laser automatic measurement precision of tunnel deformation in construction period
JP2021123922A (en) * 2020-02-04 2021-08-30 鹿島建設株式会社 Tunnel support structure and building method for tunnel support structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102628A (en) * 1998-03-30 2000-08-15 Council Of Scientific & Industrial Research Arch useful for withstanding effect of rockburst occurring in underground mines/tunnels
JP2000303797A (en) * 1999-04-19 2000-10-31 Kfc Ltd Timbering joint and timbering structure using the same
JP2005232958A (en) * 2004-02-16 2005-09-02 Kalman Kovari Method and device to stabilize hollow spaces formed by excavation in mines
JP2009114697A (en) * 2007-11-05 2009-05-28 Shimizu Corp Tunnel stability evaluation method, and program therefor
JP2012255321A (en) * 2011-06-10 2012-12-27 Kajima Corp Optimum tunnel support selecting device and optimum tunnel support selecting program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102628A (en) * 1998-03-30 2000-08-15 Council Of Scientific & Industrial Research Arch useful for withstanding effect of rockburst occurring in underground mines/tunnels
JP2000303797A (en) * 1999-04-19 2000-10-31 Kfc Ltd Timbering joint and timbering structure using the same
JP2005232958A (en) * 2004-02-16 2005-09-02 Kalman Kovari Method and device to stabilize hollow spaces formed by excavation in mines
JP2009114697A (en) * 2007-11-05 2009-05-28 Shimizu Corp Tunnel stability evaluation method, and program therefor
JP2012255321A (en) * 2011-06-10 2012-12-27 Kajima Corp Optimum tunnel support selecting device and optimum tunnel support selecting program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
北村 ほか: "鋼製支保工の降伏時における剛性低下を考慮した支保設計事例", 土木学会第67回年次学術講演会, JPN6020012273, September 2012 (2012-09-01), JP, ISSN: 0004290348 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016028A (en) * 2018-07-23 2020-01-30 大成建設株式会社 Tunnel construction method and tunnel support structure
JP7045952B2 (en) 2018-07-23 2022-04-01 大成建設株式会社 Tunnel construction method and tunnel support structure
JP2021123922A (en) * 2020-02-04 2021-08-30 鹿島建設株式会社 Tunnel support structure and building method for tunnel support structure
JP7345409B2 (en) 2020-02-04 2023-09-15 鹿島建設株式会社 How to construct a tunnel support structure
CN112035937A (en) * 2020-09-07 2020-12-04 河南城建学院 Tunnel construction surrounding rock deformation analysis and informatization construction method
CN112035937B (en) * 2020-09-07 2023-12-22 河南城建学院 Tunnel construction surrounding rock deformation analysis and informatization construction method
CN112964188A (en) * 2021-02-07 2021-06-15 中国人民解放军军事科学院国防工程研究院工程防护研究所 Method for improving laser automatic measurement precision of tunnel deformation in construction period
CN112964188B (en) * 2021-02-07 2022-03-25 中国人民解放军军事科学院国防工程研究院工程防护研究所 Method for improving laser automatic measurement precision of tunnel deformation in construction period

Also Published As

Publication number Publication date
JP6730884B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
Xu et al. Shaking table tests on seismic measures of a model mountain tunnel
Chaipanna et al. 3D response analysis of a shield tunnel segmental lining during construction and a parametric study using the ground-spring model
Chen et al. Numerical study on crack problems in segments of shield tunnel using finite element method
Chen et al. Dynamic responses of buried arch structure subjected to subsurface localized impulsive loading: Experimental study
Yan et al. Experimental study on curved steel-concrete-steel sandwich shells under concentrated load by a hemi-spherical head
JP2018035554A (en) Design method for structure
Tiwari et al. Dynamic analysis of tunnel in soil subjected to internal blast loading
Li et al. Behaviour of cast-iron bolted tunnels and their modelling
Deb et al. Enriched finite element procedures for analyzing decoupled bolts installed in rock mass
Deb et al. A new doubly enriched finite element for modelling grouted bolt crossed by rock joint
Wong et al. Mechanical analysis of circular tunnels supported by steel sets embedded in primary linings
Guo et al. Full-scale test on seismic performance of circumferential joint of shield-driven tunnel
Wang et al. 3D modelling of concrete tunnel segmental joints and the development of a new bolt-spring model
Van Mier et al. Numerical dynamic simulations for the prediction of damage and loss of capacity of RC column subjected to contact detonations
Bahrami et al. Response of steel beam-to-column bolted connections to blast loading
Han et al. Complex variable solutions for forces and displacements of circular lined tunnels
Ma et al. Longitudinal connection effect on initial support steel frames in tunnels—Take the traffic tunnels as examples
Özmen et al. Linear dynamic analysis of a masonry arch bridge
Jayasinghe et al. Blast response of reinforced concrete pile using fully coupled computer simulation techniques
Zhou et al. Seismic design and performance analysis of perforated rubber buffer layer in tunnel
Bakhshi et al. Review of international practice on critical aspects of segmental tunnel lining design
He et al. Influences of the strengthening methods on axial and eccentric compressive behaviors of circular concrete-filled double-skin tubular columns
Ismail et al. Response of A 3-D reinforced concrete structure to blast loading
Chakraborty et al. Comparative performance of tunnel linings under blast loading
JP6915254B2 (en) Shaft and shaft earthquake design method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200703

R150 Certificate of patent or registration of utility model

Ref document number: 6730884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150