JP6857820B1 - Particle material, its manufacturing method, and filler material - Google Patents

Particle material, its manufacturing method, and filler material Download PDF

Info

Publication number
JP6857820B1
JP6857820B1 JP2019229768A JP2019229768A JP6857820B1 JP 6857820 B1 JP6857820 B1 JP 6857820B1 JP 2019229768 A JP2019229768 A JP 2019229768A JP 2019229768 A JP2019229768 A JP 2019229768A JP 6857820 B1 JP6857820 B1 JP 6857820B1
Authority
JP
Japan
Prior art keywords
particle
particle material
metal
insulating film
test sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019229768A
Other languages
Japanese (ja)
Other versions
JP2021098871A (en
Inventor
展歩 中村
展歩 中村
義徳 大川内
義徳 大川内
諒也 大川
諒也 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2019229768A priority Critical patent/JP6857820B1/en
Application granted granted Critical
Publication of JP6857820B1 publication Critical patent/JP6857820B1/en
Publication of JP2021098871A publication Critical patent/JP2021098871A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】高い熱伝導性を示す材料からなる粒子材料の製造方法を提供すること。【解決手段】金属から構成される粒子材料の表面に絶縁皮膜を形成することで短絡のおそれを低減した粒子材料が提供できる。金属から構成される粒子材料の製造を不活性雰囲気下で行い、この段階での酸化皮膜の形成を避けることで球形度が高い金属から構成される粒子材料を得た後、酸化雰囲気下で加熱することで球形度を保ったまま酸化皮膜の形成ができることを発見し本発明を完成した。【選択図】図3PROBLEM TO BE SOLVED: To provide a method for producing a particle material made of a material exhibiting high thermal conductivity. SOLUTION: By forming an insulating film on the surface of a particle material made of metal, it is possible to provide a particle material with a reduced risk of short circuit. A particle material composed of a metal is produced in an inert atmosphere, and by avoiding the formation of an oxide film at this stage, a particle material composed of a metal having a high degree of sphere is obtained, and then heated in an oxidizing atmosphere. The present invention was completed by discovering that an oxide film can be formed while maintaining the sphericality. [Selection diagram] Fig. 3

Description

本発明は、粒子材料及びその製造方法、並びにフィラー材料に関し、特に熱伝導特性に優れた粒子材料及びその製造方法、並びにフィラー材料に関する。 The present invention relates to a particle material and a method for producing the same, and a filler material, and more particularly to a particle material having excellent thermal conductivity and a method for producing the same, and a filler material.

半導体素子の微細化の進展に従い多大な熱の生成が問題になっている。生成した熱は半導体素子から速やかに外部に伝達されることが要求されている。そのために高い熱伝導性をもつ熱伝導物質(TIM)が望まれている。 With the progress of miniaturization of semiconductor devices, a large amount of heat generation has become a problem. The generated heat is required to be quickly transferred to the outside from the semiconductor element. Therefore, a heat conductive substance (TIM) having high heat conductivity is desired.

従来のTIMは、シリコーン樹脂などの樹脂材料中にアルミナなどからなる粒子材料を分散させた樹脂組成物が汎用されている(例えば、特許文献1参照)。 As a conventional TIM, a resin composition in which a particle material made of alumina or the like is dispersed in a resin material such as a silicone resin is widely used (see, for example, Patent Document 1).

特開2017−190267号公報Japanese Unexamined Patent Publication No. 2017-190267

ところで、半導体の実装高密度化の進行は今後も継続することが予測されており、それに伴う発熱量の増大は避けられない状況である。熱伝導性が高い材料としてはアルミナ(30W/mK程度)の他、窒化ホウ素(60W/mK程度)が知られているが、更に高い熱伝導性をもつ粒子材料が求められている。 By the way, it is predicted that the increasing density of semiconductor mounting will continue in the future, and it is inevitable that the amount of heat generated will increase accordingly. Alumina (about 30 W / mK) and boron nitride (about 60 W / mK) are known as materials having high thermal conductivity, but a particle material having even higher thermal conductivity is required.

本発明は上記実情に鑑み完成したものであり、アルミナや窒化ホウ素よりも高い熱伝導性を示す材料からなる粒子材料、及びその製造方法、並びにフィラー材料を提供することを解決すべき課題とする。 The present invention has been completed in view of the above circumstances, and it is an object to be solved to provide a particle material made of a material exhibiting higher thermal conductivity than alumina or boron nitride, a method for producing the same, and a filler material. ..

上記課題を解決する目的で本発明者らは鋭意検討を行った結果、粒子材料を構成する材料としてアルミニウムなどの金属を採用することを検討した。アルミニウムなどの金属は金属酸化物よりも熱伝導性に優れることが多い。 As a result of diligent studies for the purpose of solving the above problems, the present inventors have considered adopting a metal such as aluminum as a material constituting the particle material. Metals such as aluminum often have better thermal conductivity than metal oxides.

しかしながら、アルミニウムなどの金属は電気伝導性にも優れているため、そのまま熱伝達物質に採用すると、短絡のおそれがある。 However, since metals such as aluminum are also excellent in electrical conductivity, if they are used as they are as heat transfer substances, there is a risk of short circuit.

そのため、金属から構成される粒子材料の表面に絶縁皮膜を形成することで短絡のおそれを低減することを試みた。絶縁皮膜としては金属酸化物からなる皮膜が例示できる。金属から構成される粒子材料を製造する際に溶融させた後にアトマイズ法により粒子化する方法があるが、空気中の酸素と反応して金属酸化物からなる酸化皮膜が形成されるがその酸化皮膜の形成により表面に皺が形成されて球形度が低下することを発見した。球形度が高いと粒子材料の充填率を高くでき熱伝導性を向上することができる。 Therefore, we tried to reduce the risk of short circuit by forming an insulating film on the surface of the particle material composed of metal. An example of the insulating film is a film made of a metal oxide. When producing a particle material composed of metal, there is a method of melting it and then atomizing it into particles. An oxide film made of metal oxide is formed by reacting with oxygen in the air. It was discovered that wrinkles were formed on the surface due to the formation of the particles, and the degree of sphericity was reduced. When the sphericity is high, the filling rate of the particle material can be increased and the thermal conductivity can be improved.

そこで本発明者らは金属から構成される粒子材料の製造を不活性雰囲気下で行い、この段階での酸化皮膜の形成を避けることで球形度が高い金属から構成される粒子材料を得た後、酸化雰囲気下で加熱することで球形度を保ったまま酸化皮膜の形成ができることを発見し本発明を完成した。 Therefore, the present inventors carry out the production of the particle material composed of metal in an inert atmosphere, and after obtaining the particle material composed of metal having a high degree of sphere by avoiding the formation of an oxide film at this stage. The present invention was completed by discovering that an oxide film can be formed while maintaining the sphericality by heating in an oxidizing atmosphere.

すなわち、上記課題を解決する本発明の粒子材料の製造方法は、Al、Cu及びSiのうちの少なくとも1種以上を50質量%以上含有する金属材料を溶融した溶融材料を不活性雰囲気下にてアトマイズ法によって粒子化して原料粒子材料を製造する粒子化工程と、前記原料粒子材料を酸化雰囲気下で600℃以上800℃未満で加熱して表面に厚みが20nm以上の酸化皮膜を形成する酸化皮膜形成工程と、を有する。 That is, in the method for producing a particle material of the present invention that solves the above problems, a molten material obtained by melting a metal material containing at least one of Al, Cu, and Si in an amount of 50% by mass or more is subjected to an inert atmosphere. A particle-forming step of atomizing the raw material into particles by an atomizing method to produce a raw material, and an oxide film in which the raw material is heated at 600 ° C. or higher and lower than 800 ° C. to form an oxide film having a thickness of 20 nm or more on the surface. It has a forming process.

このような製造方法を採用することにより球形度が高い本発明の粒子材料を得ることに成功した。すなわち、上記課題を解決する本発明の粒子材料は、Al、Cu及びSiのうちの少なくとも1種以上を50質量%以上含有する金属材料から構成されるコア部と、金属酸化物から構成され前記コア部を被覆する絶縁皮膜と、を有し、体積平均粒径が10μm以上80μm以下、球形度が0.9以上の粒子材料である。絶縁皮膜の厚みは、20nm以上であるか、又は、1つの粒子に直流10Vを印加した時に絶縁性を保持できる厚みである。 By adopting such a manufacturing method, we have succeeded in obtaining the particle material of the present invention having a high degree of sphericity. That is, the particle material of the present invention that solves the above problems is composed of a core portion composed of a metal material containing at least one of Al, Cu, and Si in an amount of 50% by mass or more, and a metal oxide. It is a particle material having an insulating film covering a core portion, having a volume average particle diameter of 10 μm or more and 80 μm or less, and a sphericity of 0.9 or more. The thickness of the insulating film is 20 nm or more, or is a thickness capable of maintaining the insulating property when a direct current of 10 V is applied to one particle.

そして、本発明の粒子材料の製造方法における粒子化工程では球形度が高い金属からなる原料粒子材料を製造することができるため、そのような球形度が高い材料の表面に絶縁物から構成される皮膜を形成することで熱伝導性に優れ、且つ絶縁性にも優れた粒子材料及びその粒子材料からなるフィラー材料を得ることができた。 Then, in the particle formation step in the method for producing a particle material of the present invention, a raw material particle material made of a metal having a high degree of sphere can be produced, and therefore, an insulator is formed on the surface of the material having a high degree of sphere. By forming the film, it was possible to obtain a particle material having excellent thermal conductivity and excellent insulating properties, and a filler material made of the particle material.

上記構成をもつ本発明の粒子材料は、表面に絶縁皮膜が形成されているため、半導体回路上に直接接触するように配置しても高い絶縁性を保つことができる。また、絶縁皮膜が形成されているにもかかわらず球形度が高いため充填性に優れ個々の粒子間の接触も確保できるため高い熱伝導性を示すことができる。粒子材料は、金属から構成されるコア部をもつため高い熱伝導性を発揮できる。この粒子材料はフィラー材料として好適に採用できる。 Since the particle material of the present invention having the above structure has an insulating film formed on its surface, high insulating properties can be maintained even if it is arranged so as to be in direct contact with the semiconductor circuit. Further, despite the formation of the insulating film, the sphericity is high, so that the filling property is excellent and the contact between individual particles can be ensured, so that high thermal conductivity can be exhibited. Since the particle material has a core portion made of metal, it can exhibit high thermal conductivity. This particle material can be suitably used as a filler material.

試験試料1−0のSEM写真である。It is an SEM photograph of a test sample 1-0. 試験試料3−0のSEM写真である。It is an SEM photograph of a test sample 3-0. 試験試料1−10〜1−240及び試験試料2−10〜2−240のSEM写真である。It is an SEM photograph of a test sample 1-10-12-240 and a test sample 2-10-2-240. 試験試料1−0〜1−240及び試験試料2−0〜2−240の酸素含有量を示すグラフである。It is a graph which shows the oxygen content of the test sample 1-0 to 1-240 and the test sample 2-0-2-240. 試験試料1−0の深さ方向でのAlの状態をXPSで測定した結果である。This is the result of measuring the state of Al in the depth direction of the test sample 1-0 by XPS. 試験試料1−30の深さ方向でのAlの状態をXPSで測定した結果である。This is the result of measuring the state of Al in the depth direction of the test sample 1-30 by XPS. 試験試料1−0のTEM像である。It is a TEM image of a test sample 1-0. 図6(a)と同視野でのEDX像である。It is an EDX image in the same field of view as FIG. 6A. 試験試料1−30のTEM像である。It is a TEM image of the test sample 1-30. 図7(a)と同視野でのEDX像である。It is an EDX image in the same field of view as FIG. 7A. 試験試料1−30のTEM像である。It is a TEM image of the test sample 1-30. 試験試料1−0及び2−0の混合比による動粘度の変化の関係を表すグラフである。It is a graph which shows the relationship of the change of the kinematic viscosity by the mixing ratio of test samples 1-0 and 2-0. 試験試料1−0:試験試料2−0の3:7混合物の充填率と熱伝導率の値との関係を示すグラフである。Test sample 1-0: It is a graph which shows the relationship between the filling rate of the 3: 7 mixture of test sample 2-0, and the value of thermal conductivity.

本発明の粒子材料及びその製造方法、並びにフィラー材料について実施形態に基づき以下詳細に説明を行う。本実施形態の粒子材料は、高い熱伝導性をもつことから何らかのフィラー材料(本実施形態のフィラー材料)として媒体中に分散させてTIMとして利用することができる。特に絶縁性に優れたTIMが提供できる。媒体としては液状、固体状の何れでも良く、オイル、樹脂材料、樹脂材料の前駆体(モノマーなど)が例示できる。樹脂材料やその前駆体としてはエポキシ樹脂、シリコーン樹脂などが例示できる。また、これらの媒体中にフィラー材料として分散させることができる。なお、フィラー材料として用いる場合には本実施形態の粒子材料を単独で用いることができるのはもちろん、他の材料から構成される第2粒子材料を混合しても良い。第2粒子材料としてはアルミナ、シリカなどのセラミックスなどの絶縁物から構成することができる。 The particle material of the present invention, a method for producing the same, and a filler material will be described in detail below based on the embodiments. Since the particle material of the present embodiment has high thermal conductivity, it can be dispersed in a medium as some kind of filler material (filler material of the present embodiment) and used as a TIM. In particular, a TIM having excellent insulating properties can be provided. The medium may be either liquid or solid, and examples thereof include oil, resin materials, and precursors (monomers, etc.) of resin materials. Examples of the resin material and its precursor include epoxy resin and silicone resin. In addition, it can be dispersed as a filler material in these media. When used as a filler material, the particle material of the present embodiment can be used alone, or a second particle material composed of other materials may be mixed. The second particle material can be composed of an insulating material such as ceramics such as alumina and silica.

(粒子材料)
本実施形態の粒子材料は、コア部と絶縁皮膜とを有する。本実施形態の粒子材料は、体積平均粒径が10μm〜80μmである。体積平均粒径の下限値としては、15μm、20μm、25μm程度であることが好ましく、上限値としては65μm、70μm、75μm程度であることが好ましい。これらの下限値及び上限値は任意に組み合わせ可能である。更に、粒径の異なる2種以上を混合したものであっても良い。粒径が大きい粒子間で形成された隙間に粒径が小さい粒子が挿入されることで全体としての充填率が向上する。
(Particle material)
The particle material of the present embodiment has a core portion and an insulating film. The particle material of the present embodiment has a volume average particle diameter of 10 μm to 80 μm. The lower limit of the volume average particle diameter is preferably about 15 μm, 20 μm, and 25 μm, and the upper limit is preferably about 65 μm, 70 μm, and 75 μm. These lower limit values and upper limit values can be freely combined. Further, it may be a mixture of two or more kinds having different particle diameters. By inserting the particles having a small particle size into the gaps formed between the particles having a large particle size, the filling rate as a whole is improved.

また、D10が15μm以上、D90が95μm以下であることで粒子材料を構成する各粒子の粒度分布が均一に近くなる。特にD10の下限値としては、20μm、25μmを採用することができ、D90の上限値としては65μm、70μm、75μm、80μm、85μmを採用することができる。これらの下限値及び上限値は任意に組み合わせ可能である。更に、D90/D10が4.5以下であることが好ましく、3.5以下であることがより好ましい。 Further, when D10 is 15 μm or more and D90 is 95 μm or less, the particle size distribution of each particle constituting the particle material becomes close to uniform. In particular, 20 μm and 25 μm can be adopted as the lower limit values of D10, and 65 μm, 70 μm, 75 μm, 80 μm and 85 μm can be adopted as the upper limit values of D90. These lower limit values and upper limit values can be freely combined. Further, D90 / D10 is preferably 4.5 or less, and more preferably 3.5 or less.

本実施形態の粒子材料は球形度が0.9以上で有り、0.95以上であることが好ましく、0.99以上であることが更に好ましい。球形度はSEMで写真を撮り、その観察される粒子の面積と周囲長から、(球形度)={4π×(面積)÷(周囲長)}で算出される値として算出する。1に近づくほど真球に近い。具体的には画像処理装置(スペクトリス株式会社:FPIA−3000)を用いて100個の粒子について測定した平均値を採用する。 The particle material of the present embodiment has a sphericity of 0.9 or more, preferably 0.95 or more, and more preferably 0.99 or more. The sphericity is calculated as a value calculated by (sphericity) = {4π × (area) ÷ (perimeter) 2 } from the area and perimeter of the observed particles taken by taking a picture with SEM. The closer it is to 1, the closer it is to a true sphere. Specifically, the average value measured for 100 particles using an image processing device (Spectris Co., Ltd .: FPIA-3000) is adopted.

コア部は、Al、Cu及びSiのうちの少なくとも1種以上を50質量%以上含有する金属材料から構成される。金属材料はAl、Cu及びSiのうちの1つの元素単独で構成される単体金属でも、これらのうちの2つ以上からなる合金であっても良い。また、Al、Cu及びSiの他にも他の元素を含有していても全体として金属としての性質をもつものであれば採用することができる。 The core portion is composed of a metal material containing at least one of Al, Cu and Si in an amount of 50% by mass or more. The metal material may be a single metal composed of one element of Al, Cu and Si alone, or an alloy composed of two or more of these elements. Further, even if it contains other elements other than Al, Cu and Si, it can be adopted as long as it has metal properties as a whole.

コア部の形状は特に限定しないが、球形であることが好ましい。特に球形度が0.9以上であることが好ましく、0.95以上、0.99以上であることが更に好ましい。コア部の粒径は特に限定しないが、10μm〜80μmであることが好ましい。特に粒径の下限値としては、15μm、20μm、25μmが採用でき、上限値としては、65μm、70μm、75μmが採用できる。下限値及び上限値は任意に組み合わせ可能である。 The shape of the core portion is not particularly limited, but it is preferably spherical. In particular, the sphericity is preferably 0.9 or more, and more preferably 0.95 or more and 0.99 or more. The particle size of the core portion is not particularly limited, but is preferably 10 μm to 80 μm. In particular, as the lower limit of the particle size, 15 μm, 20 μm, and 25 μm can be adopted, and as the upper limit, 65 μm, 70 μm, and 75 μm can be adopted. The lower limit value and the upper limit value can be freely combined.

絶縁皮膜は、コア部の周囲を被覆する膜である。絶縁皮膜は金属酸化物から構成される。絶縁皮膜は、コア部の表面を隙間無く覆っていることが好ましい。絶縁皮膜の厚みは、(1)20nm以上であるか、又は(2)1つの粒子に直流10Vを印加した時に絶縁性を保持できる厚みである。(1)及び(2)の条件は同時に満たしても良い。絶縁皮膜の厚みは30nm以上であることが好ましく、50nm以上であることがより好ましい。絶縁皮膜とコア部とは密着していることが好ましい。密着しているかどうかは粒子材料の断面を観察したときに絶縁皮膜とコア部との間の隙間が5nm以下であることを意味し、特に隙間無く隣接することが好ましい。 The insulating film is a film that covers the periphery of the core portion. The insulating film is composed of metal oxides. The insulating film preferably covers the surface of the core portion without gaps. The thickness of the insulating film is (1) 20 nm or more, or (2) a thickness capable of maintaining the insulating property when a direct current of 10 V is applied to one particle. The conditions (1) and (2) may be satisfied at the same time. The thickness of the insulating film is preferably 30 nm or more, more preferably 50 nm or more. It is preferable that the insulating film and the core portion are in close contact with each other. Whether or not they are in close contact means that the gap between the insulating film and the core portion is 5 nm or less when observing the cross section of the particle material, and it is particularly preferable that the particles are adjacent to each other without any gap.

(1)絶縁皮膜の厚みが20nm以上
絶縁皮膜の厚みの測定は、粒子材料の表面をArレーザーにて10nm/分の速度で削りながら、XPSにて構成元素を分析することで行った。具体的には、絶縁皮膜を構成する金属酸化物中の金属元素とコア部を構成する金属元素のそれぞれを定量し、その量が逆転する深さを絶縁皮膜の厚みとした。Arレーザーで削る速度は絶縁皮膜を形成する材料にてキャリブレーションする。
(1) Thickness of the insulating film is 20 nm or more The thickness of the insulating film was measured by analyzing the constituent elements with XPS while scraping the surface of the particle material with an Ar laser at a speed of 10 nm / min. Specifically, each of the metal element in the metal oxide constituting the insulating film and the metal element constituting the core portion was quantified, and the depth at which the amounts were reversed was defined as the thickness of the insulating film. The speed of scraping with an Ar laser is calibrated with the material that forms the insulating film.

例えばアルミニウムからなるコア部の表面にアルミナからなる絶縁皮膜が形成されている場合には、XPS測定における、金属状態のAlに由来するピーク強度と、アルミナのAlに由来するピーク強度からそれぞれのAlの相対量を算出して、金属状態のAlがアルミナのAlよりも相対的に多くなったときの深さ(Arレーザーで削った深さ)を絶縁皮膜の厚みとした。Alにおいては、金属状態のAlのピーク強度と酸化物状態のAlのピーク強度がそのままそれぞれの状態のAlの相対量に対応するものと考えてピーク強度が逆転する深さを酸化皮膜の厚みとした。 For example, when an insulating film made of alumina is formed on the surface of the core part made of aluminum, the peak intensities derived from Al in a metallic state and the peak intensities derived from Al of alumina in XPS measurement indicate the respective Als. The relative amount of Al was calculated, and the depth when the amount of Al in the metallic state was relatively larger than that of Al in the alumina (depth cut by the Ar laser) was taken as the thickness of the insulating film. In Al, the depth at which the peak intensity of Al in the metallic state and the peak intensity of Al in the oxide state are considered to correspond to the relative amounts of Al in each state as they are, and the depth at which the peak intensity is reversed is defined as the thickness of the oxide film. did.

金属酸化物はコア部を構成する金属元素の酸化物であることができ、その場合の組成比はコア部の組成比とは同一であっても異なっていてもどちらでも良い。また、コア部に含まれない元素を含んでいても良い。 The metal oxide can be an oxide of a metal element constituting the core portion, and the composition ratio in that case may be the same as or different from the composition ratio of the core portion. Further, it may contain an element that is not contained in the core portion.

(2)絶縁皮膜の厚みが1つの粒子に直流10Vを印加した時に絶縁性を保持できる厚み
絶縁性の保持の判定は、粒子材料に対して直接10Vの電圧を印加したときに流れる電流を測定したときに、流れる電流が小数点以下一桁で四捨五入したときに0mAであるときに絶縁性を保持できていると判断した。
(2) Thickness of the insulating film Thickness that can maintain the insulating property when DC 10V is applied to one particle To determine the holding of the insulating property, the current that flows when a voltage of 10 V is directly applied to the particle material is measured. At that time, it was judged that the insulating property could be maintained when the flowing current was 0 mA when rounded to the nearest digit.

具体的な測定装置の例としては、マニピュレーターに接続した先端径1.5μmのタングステン製針1組にて粒子材料の1つに顕微鏡下で挟み、直流電圧電流発生装置R6144(株式会社エーディーシー)にて0Vから10Vまで徐々に電圧を上昇させながら流れる電流の値を観察した。その結果、流れる電流が0mAであるときに絶縁性を保持できていると判断した。 As an example of a specific measuring device, a set of tungsten needles with a tip diameter of 1.5 μm connected to a manipulator is sandwiched between one of the particle materials under a microscope, and a DC voltage current generator R6144 (ADC Co., Ltd.) The value of the flowing current was observed while gradually increasing the voltage from 0 V to 10 V. As a result, it was determined that the insulating property could be maintained when the flowing current was 0 mA.

絶縁性が保持できる電圧は、絶縁皮膜が厚いほど相対的に高くなる。また、絶縁皮膜の材料により絶縁性が保持できる電圧は変化する。従って、粒子材料の絶縁性の保持が充分で無い場合には、絶縁皮膜を更に厚くするか、絶縁皮膜の材料を絶縁性が高い材料に変更することで実現できる。 The voltage at which the insulating property can be maintained becomes relatively higher as the insulating film is thicker. In addition, the voltage that can maintain the insulating property changes depending on the material of the insulating film. Therefore, when the insulating property of the particle material is not sufficiently maintained, it can be realized by making the insulating film thicker or changing the material of the insulating film to a material having high insulating property.

本実施形態の粒子材料は、シランカップリング剤、シラン化合物、オルガノシラザン類などの表面処理剤を反応させて形成される表面処理層を有することができる。シラン化合物としては、アルキル基、フェニル基、アミノ基、フェニルアミノ基、エポキシ基、アクリル基、メタクリル基、ビニル基、イソシアネート基、スチリル基などの有機官能基がSi原子と直接接続されるか又はスペーサを介して接続され、SiH構造を有する化合物や、ヘキサメチルジシラザンなどが例示される。粒子材料の表面に形成される表面処理層の厚みは特に限定されず、例えば、粒子材料の表面に存在するOH基などの反応性基と全て結合出来る程度の量を100%とした場合に、30%、50%、75%、100%、150%、200%程度の量を例示することができる。 The particle material of the present embodiment can have a surface treatment layer formed by reacting a surface treatment agent such as a silane coupling agent, a silane compound, or organosilazanes. As the silane compound, an organic functional group such as an alkyl group, a phenyl group, an amino group, a phenylamino group, an epoxy group, an acrylic group, a methacryl group, a vinyl group, an isocyanate group or a styryl group is directly connected to the Si atom. Examples thereof include compounds connected via spacers and having a SiH structure, hexamethyldisilazane, and the like. The thickness of the surface treatment layer formed on the surface of the particle material is not particularly limited, and for example, when the amount capable of binding to all reactive groups such as OH groups existing on the surface of the particle material is 100%. An amount of about 30%, 50%, 75%, 100%, 150%, 200% can be exemplified.

(フィラー材料)
本実施形態のフィラー材料は、本実施形態の粒子材料を含む。フィラー材料は、TIM、半導体の封止材、アンダーフィル材などに用いることができる。フィラー材料は、粒子材料のままの状態、樹脂材料中に分散した樹脂組成物の状態、溶媒などに分散したスラリ組成物の状態などの形態を採ることができる。フィラー材料には、本実施形態の粒子材料の他の粒子を含有させることができる。例えばアルミナやシリカの粒子である。他の粒子の含有量は、フィラー材料全体の質量を基準として、10%〜90%程度の含有量とすることができる。含有量としては20%、30%、40%、50%、60%、70%、80%などを挙げることができ、これらの含有量を下限値又は上限値として任意の範囲を設定することができる。
(Filler material)
The filler material of the present embodiment includes the particle material of the present embodiment. The filler material can be used for TIM, semiconductor encapsulant, underfill material and the like. The filler material can take a form such as a state of the particle material as it is, a state of the resin composition dispersed in the resin material, a state of the slurry composition dispersed in a solvent or the like. The filler material can contain other particles of the particle material of the present embodiment. For example, alumina and silica particles. The content of the other particles can be about 10% to 90% based on the total mass of the filler material. Examples of the content include 20%, 30%, 40%, 50%, 60%, 70%, 80%, etc., and an arbitrary range can be set with these contents as the lower limit value or the upper limit value. it can.

(粒子材料の製造方法)
本実施形態の粒子材料の製造方法は、上述の本実施形態の粒子材料を製造できる方法のうちの1つである。本製造方法は、金属材料から粒子材料を製造する方法であり、粒子化工程と酸化皮膜形成工程とを有する。金属材料はコア部を構成する金属元素を含有する材料である。特にAl、Cu及びSiのうちの少なくとも1種以上を50質量%以上含有する材料である。
(Manufacturing method of particle material)
The method for producing the particle material of the present embodiment is one of the methods capable of producing the particle material of the present embodiment described above. This manufacturing method is a method of manufacturing a particle material from a metal material, and includes a particle formation step and an oxide film forming step. The metal material is a material containing a metal element constituting the core portion. In particular, it is a material containing at least one of Al, Cu and Si in an amount of 50% by mass or more.

粒子化工程は、金属材料を溶融した溶融材料を不活性雰囲気下で行うアトマイズ法にて粒子化して原料粒子材料を製造する工程である。不活性雰囲気下にて粒子化を行うことで得られる原料粒子材料は球形度が高い粒子を得ることができる。なお、本明細書において不活性雰囲気とは得られる原料粒子材料に形成される酸化皮膜の割合が空気以下になる雰囲気である。例えば、窒素ガス、アルゴンなどの不活性ガスを主成分とするガスからなる雰囲気である。不活性雰囲気にするのは、溶融材料を固化して原料粒子材料を製造するまでの工程であり、金属材料を溶融させて溶融材料にする工程や、溶融材料が固化して球形度が高い原料粒子材料になった後は不活性雰囲気下でなくても構わない。 The particle-forming step is a step of producing a raw material particle material by atomizing a molten material obtained by melting a metal material into particles by an atomizing method performed in an inert atmosphere. The raw material particle material obtained by performing particle formation in an inert atmosphere can obtain particles having a high degree of sphericity. In the present specification, the inert atmosphere is an atmosphere in which the proportion of the oxide film formed on the obtained raw material particle material is less than or equal to that of air. For example, the atmosphere is composed of a gas containing an inert gas such as nitrogen gas or argon as a main component. Creating an inert atmosphere is the process from solidifying the molten material to producing the raw material particle material, the process of melting the metal material to make the molten material, and the process of solidifying the molten material to produce a raw material with a high degree of sphere. After becoming a particle material, it does not have to be in an inert atmosphere.

アトマイズ法は特に限定しないが、溶融材料を急冷することで粒子化する方法である。金属材料を溶融材料にするには、限定されない加熱方法により行う方法や、アトマイズ法としてプラズマアトマイズ法を採用し、アトマイズ法と一環として溶融材料の製造も行う方法を採用することもできる。急冷の方法としては、回転する金属ディスクの表面に接触させる方法、窒素ガスなどの不活性ガスを吹き付ける方法、水などの液体を吹き付ける方法が例示できる。特に回転する金属ディスクの表面に接触させる方法が望ましい。金属ディスクの大きさ、質量、材質、回転速度などを変化させることで得られる原料粒子材料の粒度分布を制御できる。例えば、金属ディスクの回転数を増加させることにより溶融材料に加わるせん断力が大きくなって得られる原料粒子材料の粒径を小さくすることができる。 The atomizing method is not particularly limited, but is a method of atomizing a molten material by quenching it. In order to convert the metal material into a molten material, a method of heating without limitation, a method of adopting a plasma atomizing method as an atomizing method, and a method of producing a molten material as a part of the atomizing method can also be adopted. Examples of the quenching method include a method of contacting the surface of a rotating metal disk, a method of spraying an inert gas such as nitrogen gas, and a method of spraying a liquid such as water. In particular, a method of contacting the surface of a rotating metal disc is desirable. The particle size distribution of the raw material particle material obtained by changing the size, mass, material, rotation speed, etc. of the metal disk can be controlled. For example, by increasing the rotation speed of the metal disk, the shearing force applied to the molten material is increased, and the particle size of the raw material particle material obtained can be reduced.

粒子化工程にて得られた原料粒子材料の球形度がそのまま製造される粒子材料の球形度に影響を与えるため、原料粒子材料は球形度が高いことが望ましい。例えば原料粒子材料の球形度は、0.9以上であることが好ましく、0.95以上、0.99以上であることが更に好ましい。 Since the sphericity of the raw material particle material obtained in the particle formation step affects the sphericity of the produced particle material as it is, it is desirable that the raw particle material has a high sphericity. For example, the sphericity of the raw material particle material is preferably 0.9 or more, and more preferably 0.95 or more and 0.99 or more.

酸化皮膜形成工程は、原料粒子材料を酸化雰囲気下で600℃以上800℃未満で加熱する工程である。酸化雰囲気は、酸素ガス、空気などの酸素を含むガス中であったり、加熱により酸素を放出する物質の共存下にて行うものであったりできる。温度がこの範囲の下限以上であると速やかに原料粒子材料の表面を酸化させて酸化皮膜が形成でき、この範囲の上限以下であると原料粒子材料の変形が抑制できる。 The oxide film forming step is a step of heating the raw material particle material at 600 ° C. or higher and lower than 800 ° C. in an oxidizing atmosphere. The oxidizing atmosphere may be in a gas containing oxygen such as oxygen gas or air, or may be performed in the coexistence of a substance that releases oxygen by heating. When the temperature is not less than the lower limit of this range, the surface of the raw material particle material can be quickly oxidized to form an oxide film, and when it is not more than the upper limit of this range, the deformation of the raw material particle material can be suppressed.

加熱時間は、表面に厚みが20nm以上の酸化皮膜を形成するまで行う。例えばアルミニウムから構成される原料粒子材料から酸化皮膜としてのアルミナを形成する場合には、空気雰囲気下で1分から480分程度加熱することで目的の厚みを持つ酸化皮膜を形成できる場合があった。加熱温度との関係で適正な加熱時間は変化する。加熱温度が低いと加熱時間は相対的に長い方が好ましくなり、加熱温度が高いと加熱時間は相対的に短い方法が好ましくなる。加熱時間の上限としては300分、240分、180分、120分、60分、30分、20分などが挙げられ、加熱時間の下限としては3分、4分、5分、10分、15分、20分、30分などが挙げられる。加熱方法としては特に限定しない。例えば、ローラーハースキルン、プッシャーキルン、ロータリーキルンなどのキルンにより加熱を行うことができる。 The heating time is continued until an oxide film having a thickness of 20 nm or more is formed on the surface. For example, in the case of forming alumina as an oxide film from a raw material particle material composed of aluminum, it may be possible to form an oxide film having a desired thickness by heating for about 1 to 480 minutes in an air atmosphere. The appropriate heating time changes in relation to the heating temperature. When the heating temperature is low, it is preferable that the heating time is relatively long, and when the heating temperature is high, a method in which the heating time is relatively short is preferable. The upper limit of the heating time is 300 minutes, 240 minutes, 180 minutes, 120 minutes, 60 minutes, 30 minutes, 20 minutes, etc., and the lower limit of the heating time is 3 minutes, 4 minutes, 5 minutes, 10 minutes, 15 minutes. Minutes, 20 minutes, 30 minutes and the like can be mentioned. The heating method is not particularly limited. For example, heating can be performed by a kiln such as a roller kiln, a pusher kiln, or a rotary kiln.

酸化皮膜形成工程の前に原料粒子材料の表面に原料粒子材料を構成する元素以外の元素を付着させることで、原料粒子材料を構成する元素以外の元素を含む酸化皮膜の形成ができる。例えば、原料粒子材料を構成する以外の金属元素を含む溶液中に原料粒子材料を浸漬した後に乾燥させたり、スパッタリングや蒸着によって、異なる種類の元素を表面に含むようにしたりできる。 By adhering an element other than the element constituting the raw material particle material to the surface of the raw material particle material before the oxide film forming step, an oxide film containing an element other than the element constituting the raw material particle material can be formed. For example, the raw material particle material can be immersed in a solution containing a metal element other than the raw material particle material and then dried, or the surface can be made to contain different kinds of elements by sputtering or thin film deposition.

表面処理層の形成は、前述したような表面処理剤を粒子材料の表面に接触させることで行う。粒子材料の表面に接触する方法としては、表面処理剤をそのまま、又は適正な溶媒中に溶解させて接触することができる。そのまま接触させる場合には液状又は気体状にして接触することができる。接触後又は接触しながら適正な温度で加熱することことで反応を促進することができる。適正な温度としては、80℃、100℃、150℃、200℃、250℃等が例示できる。 The surface treatment layer is formed by bringing the surface treatment agent as described above into contact with the surface of the particle material. As a method of contacting the surface of the particle material, the surface treatment agent can be used as it is or dissolved in an appropriate solvent and contacted. When contacting as it is, it can be contacted in the form of liquid or gas. The reaction can be promoted by heating at an appropriate temperature after or while contacting. Examples of appropriate temperatures include 80 ° C., 100 ° C., 150 ° C., 200 ° C., 250 ° C. and the like.

・原料粒子材料の調製(粒子化工程)
(試験1)
99.7%Alからなる金属材料を750℃に加熱して溶融させた溶融材料を不活性雰囲気下(窒素雰囲気)ディスクアトマイザーにて処理して原料粒子材料を得た。得られた原料粒子材料は球形度が0.99、体積平均粒径が35.0μm、比表面積が0.11m/g、真比重が2.71g/cmであった。原料粒子材料3.5gを35mLの純水中に25℃、0.5時間浸漬する抽出条件にて抽出した抽出液の電気伝導度が1.3μS/cm、pHが6.2であった。本試験の粒子材料(試験試料1−0)のSEM写真を図1に示す。
・ Preparation of raw material particles (particulation process)
(Test 1)
A metal material composed of 99.7% Al was heated to 750 ° C. and melted, and the molten material was treated with a disk atomizer in an inert atmosphere (nitrogen atmosphere) to obtain a raw material particle material. The obtained raw material particles had a sphericity of 0.99, a volume average particle size of 35.0 μm, a specific surface area of 0.11 m 2 / g, and a true specific gravity of 2.71 g / cm 3 . The electrical conductivity of the extract extracted under the extraction conditions of immersing 3.5 g of the raw material particle material in 35 mL of pure water at 25 ° C. for 0.5 hour was 1.3 μS / cm and the pH was 6.2. The SEM photograph of the particle material (test sample 1-0) of this test is shown in FIG.

(試験2)
ディスクアトマイザーに用いる金属ディスクの回転数を試験1よりも低くすることで体積平均粒径が50μmの原料粒子材料を得た。この原料粒子材料(試験試料2−0)は、球形度が0.98、比表面積が0.08m/g、真比重が2.70g/cmであった。試験例1と同じ抽出条件にて抽出した抽出液の電気伝導度が1.2μS/cm、pHが6.0であった。
(Test 2)
By lowering the rotation speed of the metal disc used in the disc atomizer to be lower than that in Test 1, a raw material having a volume average particle diameter of 50 μm was obtained. This raw material (test sample 2-0) had a sphericity of 0.98, a specific surface area of 0.08 m 2 / g, and a true specific gravity of 2.70 g / cm 3 . The electrical conductivity of the extract extracted under the same extraction conditions as in Test Example 1 was 1.2 μS / cm and the pH was 6.0.

(試験3)
大気雰囲気にて処理を行った以外は試験1と同条件にて処理を行って得られた粒子材料を分析した結果、得られた原料粒子材料は球形度が0.70以下、平均粒径が25μm、比表面積が0.6m/g、真比重が2.72g/cmであった。原料粒子材料3.5gを35mLの純水中に25℃、0.5時間浸漬する抽出条件にて抽出した抽出液の電気伝導度が5μS/cm、pHが6.5であった。本試験の粒子材料(試験試料3−0)のSEM写真を図2に示す。
(Test 3)
As a result of analyzing the particle material obtained by performing the treatment under the same conditions as in Test 1 except that the treatment was performed in the air atmosphere, the obtained raw material particle material had a sphericity of 0.70 or less and an average particle size of 0.70 or less. It was 25 μm, had a specific surface area of 0.6 m 2 / g, and had a true specific gravity of 2.72 g / cm 3. The electrical conductivity of the extract extracted under the extraction conditions of immersing 3.5 g of the raw material particle material in 35 mL of pure water at 25 ° C. for 0.5 hour was 5 μS / cm and the pH was 6.5. The SEM photograph of the particle material (test sample 3-0) of this test is shown in FIG.

試験1及び3の試料を比較すると、図1に示す試験試料1−0では不活性雰囲気下で加熱を行うことで溶融して球状になった金属がそのまま高い球形度を保ったままで固化しているのに対して図2に示す試験試料3−0では大気雰囲気下で加熱を行ったことで球形度が低い粒子を形成していることが分かった。なお、試験試料3−0では表面に酸化皮膜が僅かに形成されているだけで殆ど金属状態を保っていることが分かった。 Comparing the samples of Tests 1 and 3, in Test Sample 1-0 shown in FIG. 1, the metal that was melted and became spherical by heating in an inert atmosphere solidified while maintaining a high sphericity as it was. On the other hand, in the test sample 3-0 shown in FIG. 2, it was found that particles having a low sphericity were formed by heating in an air atmosphere. It was found that in the test sample 3-0, only a slight oxide film was formed on the surface, and the metal state was almost maintained.

・酸化皮膜形成工程
試験試料1−0及び試験試料2−0のそれぞれについて大気雰囲気下、Alの融点660.3℃以下の温度である加熱温度650℃で加熱した。加熱後の各試験試料はハイフンの後に加熱時間(分)を合わせて記す。その結果、球形度は、試験試料1−10(試験試料1−0を650℃で10分間加熱。以下同様に記載)が0.99、試験試料1−30が0.98、試験試料1−240が0.95であり、試験試料2−10が0.98、試験試料2−30が0.97、試験試料2−240が0.95であった。更にそれぞれの加熱後のSEM写真をまとめて図3に示す。図3中の上段左から試験試料1−10、1−30、1−240であり、下段左から試験試料2−10、2−30、2−240である。
-Oxide film forming step Each of the test sample 1-0 and the test sample 2-0 was heated at a heating temperature of 650 ° C., which is a temperature of Al melting point 660.3 ° C. or lower, under an atmospheric atmosphere. For each test sample after heating, the heating time (minutes) is added after the hyphen. As a result, the sphericity was 0.99 for test sample 1-10 (test sample 1-0 was heated at 650 ° C. for 10 minutes; the same applies hereinafter), 0.98 for test sample 1-30, and test sample 1- 240 was 0.95, test sample 2-10 was 0.98, test sample 2-30 was 0.97, and test sample 2-240 was 0.95. Further, SEM photographs after each heating are collectively shown in FIG. Test samples 1-10, 1-30, 1-240 are shown from the upper left in FIG. 3, and test samples 2-10, 2-30, 2-240 are shown from the lower left.

球形度の測定結果及び図より明らかなように、650℃の加熱条件では、10分間から4時間(240分間)と加熱時間が長くなるにつれて多少いびつな形状にはなるもののいずれの加熱時間についても高い球形度が保たれていることが分かった。 As is clear from the measurement results of sphericity and the figure, under the heating condition of 650 ° C., the shape becomes slightly distorted as the heating time increases from 10 minutes to 4 hours (240 minutes), but for any heating time. It was found that a high degree of sphericity was maintained.

(酸化皮膜の形成量の評価)
・含有する酸素量の測定
試験試料1−0〜1−240及び試験試料2−0〜2−240について表面の酸化皮膜の量を測定した。表面の酸化皮膜の量は含有する酸素量から推定した。含有する酸素量の測定は、各試験試料をヘリウム雰囲気下、黒鉛坩堝中で2000℃以上で加熱して各試験試料中に含まれる酸素を坩堝由来の炭素と反応させて二酸化炭素とし、その二酸化炭素の量を赤外吸収法で定量した。結果を表1及び図4に示す。
(Evaluation of the amount of oxide film formed)
-Measurement of the amount of oxygen contained The amount of oxide film on the surface of test samples 1-0 to 1-240 and test samples 2-0 to 2-240 was measured. The amount of oxide film on the surface was estimated from the amount of oxygen contained. To measure the amount of oxygen contained, each test sample is heated at 2000 ° C or higher in a graphite crucible in a helium atmosphere, and the oxygen contained in each test sample is reacted with carbon derived from the crucible to obtain carbon dioxide, and the carbon dioxide thereof is obtained. The amount of carbon was quantified by the infrared absorption method. The results are shown in Table 1 and FIG.

・XPSによる酸化皮膜の厚みの測定
そして各試験試料について、前述の実施形態に記した方法にて酸化皮膜の厚みを測定した。結果を表1及び図5に示す。例えば酸化皮膜形成工程前の試験試料1−0については、図5(a)に示すように、金属状態のAlのピーク強度と酸化物状態のAlのピーク強度が逆転する深さは10nmであり、酸化皮膜形成工程後の試験試料1−30については、図5(b)に示すように、金属状態のAlのピーク強度と酸化物状態のAlのピーク強度が逆転する深さは30nmであった。
-Measurement of oxide film thickness by XPS Then, for each test sample, the oxide film thickness was measured by the method described in the above-described embodiment. The results are shown in Table 1 and FIG. For example, for the test sample 1-0 before the oxide film forming step, as shown in FIG. 5A, the depth at which the peak intensity of Al in the metallic state and the peak intensity of Al in the oxide state are reversed is 10 nm. As shown in FIG. 5B, for the test sample 1-30 after the oxide film forming step, the depth at which the peak intensity of Al in the metallic state and the peak intensity of Al in the oxide state are reversed is 30 nm. It was.

・TEM−EDXによる酸化皮膜の厚みの測定
試験試料1−0及び試験試料1−30についてTEM−EDXにより断面を観察した。各試験試料について常法によりオスミウムコートを行った後、アルミニウム蒸着、タングステン蒸着を行った。その後、収束イオンビーム加工(Gaイオン)により粒子の断面を露出させた。その後、TEMにより観察し、更にEDXにてAl、O、W、及びOsの各元素の存在量をマッピングした。結果を図6(試験試料1−0)、図7(試験試料1−30)に示す。図6(a)及び図7(a)はTEM像であり、下から粒子材料のコア部を構成するAl、酸化皮膜、オスミウムコート、アルミニウム蒸着層、タングステン蒸着層の順に積層している様子が観察できる。図6(b)及び図7(b)は、同視野でのEDX解析像であり、各元素の存在量が多いほど明るく表示される。
-Measurement of oxide film thickness by TEM-EDX The cross sections of test sample 1-0 and test sample 1-30 were observed by TEM-EDX. After osmium coating was performed on each test sample by a conventional method, aluminum vapor deposition and tungsten vapor deposition were performed. Then, the cross section of the particle was exposed by focused ion beam processing (Ga ion). Then, it was observed by TEM, and the abundance of each element of Al, O, W, and Os was further mapped by EDX. The results are shown in FIG. 6 (test sample 1-0) and FIG. 7 (test sample 1-30). 6 (a) and 7 (a) are TEM images showing that Al, an oxide film, an osmium coat, an aluminum vapor deposition layer, and a tungsten vapor deposition layer, which form the core portion of the particle material, are laminated in this order from the bottom. Can be observed. 6 (b) and 7 (b) are EDX analysis images in the same field of view, and are displayed brighter as the abundance of each element increases.

図6及び7から明らかなように、酸化皮膜形成工程を行う前には粒子材料の表面には酸素が6nm程度の厚みで存在することがわかり、酸化皮膜の厚みも6nm程度であり、酸化皮膜形成工程を行った後には粒子材料の表面には酸素が30〜50nm程度(平均すると40nm程度)の厚みで存在することから酸化皮膜の厚みも30〜50nm程度であることが分かった。また、図8に示すようにTEMによる酸化皮膜を拡大して観察した結果から酸化皮膜は粒子表面を隙間無く覆っており、粒子材料の表面に金属Alは露出していないことが明らかになった。 As is clear from FIGS. 6 and 7, it was found that oxygen was present on the surface of the particle material with a thickness of about 6 nm before the oxide film forming step was performed, and the thickness of the oxide film was also about 6 nm. After the forming step, oxygen was present on the surface of the particle material with a thickness of about 30 to 50 nm (about 40 nm on average), and thus it was found that the thickness of the oxide film was also about 30 to 50 nm. Further, as shown in FIG. 8, as a result of magnifying and observing the oxide film formed by TEM, it was clarified that the oxide film covered the particle surface without gaps and that the metal Al was not exposed on the surface of the particle material. ..

Figure 0006857820
Figure 0006857820

図4より明らかなように、加熱時間が長くなるにつれて含有する酸素量も増加することが分かった。特に比表面積が相対的に大きい試験試料1−0〜試験試料1−240は、比表面積の小さい試験試料2−0〜試験試料2−240よりも含有する酸素量が多いことが分かった。 As is clear from FIG. 4, it was found that the amount of oxygen contained also increased as the heating time became longer. In particular, it was found that the test sample 1-0 to the test sample 1-240 having a relatively large specific surface area contained a larger amount of oxygen than the test sample 2-0 to the test sample 2-240 having a small specific surface area.

ここで、酸化皮膜の厚みについてXPSで測定した値と、TEM−EDXにより測定し
た値は概ね同じであった。そして、測定した酸化皮膜の厚みと酸素量とがほぼ相関していることがわかった。以上の結果から、酸素量を測定すれば酸化皮膜の厚みも推定できることが示唆された。なお、本実験条件では酸化皮膜の厚みは粒子材料の径よりも十分に小さい値であるため、酸化皮膜の厚みに比例して酸素含有量が増加していることが推測できる。
Here, the value measured by XPS and the value measured by TEM-EDX for the thickness of the oxide film were substantially the same. Then, it was found that the measured thickness of the oxide film and the amount of oxygen were almost correlated. From the above results, it was suggested that the thickness of the oxide film can be estimated by measuring the amount of oxygen. Since the thickness of the oxide film is sufficiently smaller than the diameter of the particle material under the present experimental conditions, it can be inferred that the oxygen content increases in proportion to the thickness of the oxide film.

(樹脂組成物の作成と熱伝導率の評価)
・予備試験:試験試料1−0及び試験試料2−0の配合比の検討
試験試料1−0及び試験試料2−0が併せて60体積%になるようにシリコーン樹脂(信越化学工業、KF−96−500CS)中に分散させた。その場合の試験試料1−0及び試験試料2−0の総和を基準とした試験試料1−0の含有割合が、10質量%〜100質量%の範囲で調節したときの粘度を測定した。動粘度の測定は、レオメータ(TAインストルメント、ARES−G2)にて行った。測定条件は、ずり速度0.1(1/s)と1.0(1/s)の2条件で行った。結果を図9に示す。図9より明らかなように、試験試料1−0が30質量%であるときに一番低い粘度の値を示した。そこで以下の試験について試験試料1−0が30質量%になるようにした。
(Preparation of resin composition and evaluation of thermal conductivity)
-Preliminary test: Examination of the compounding ratio of test sample 1-0 and test sample 2-0 Silicone resin (Shin-Etsu Chemical Co., Ltd., KF-) so that test sample 1-0 and test sample 2-0 together account for 60% by volume. It was dispersed in 96-500CS). In that case, the viscosity when the content ratio of the test sample 1-0 based on the sum of the test sample 1-0 and the test sample 2-0 was adjusted in the range of 10% by mass to 100% by mass was measured. The kinematic viscosity was measured with a rheometer (TA instrument, ARES-G2). The measurement conditions were two conditions, a shear rate of 0.1 (1 / s) and 1.0 (1 / s). The results are shown in FIG. As is clear from FIG. 9, the lowest viscosity value was shown when the test sample 1-0 was 30% by mass. Therefore, for the following tests, the test sample 1-0 was adjusted to 30% by mass.

・熱伝導率の測定
試験試料1−0を30質量部と、試験試料2−0を70質量部とをフィラー材料として、樹脂材料としてのシリコーン樹脂(信越化学工業、KF−96−500CS)中に分散させた樹脂組成物に対して熱伝導率の測定を行った。熱伝導率の測定は加熱圧粉により直径20mm、厚み8mmの円板を作成し、ホットディスク法にて行った。
-Measurement of thermal conductivity 30 parts by mass of test sample 1-0 and 70 parts by mass of test sample 2-0 are used as filler materials in a silicone resin (Shinetsu Chemical Industry, KF-96-500CS) as a resin material. The thermal conductivity was measured for the resin composition dispersed in. The thermal conductivity was measured by a hot disk method in which a disk having a diameter of 20 mm and a thickness of 8 mm was prepared by heating powder.

フィラー材料の含有量は全体の体積を基準として、60、65、70、75体積%で検討を行った。なお、体積平均粒径45μmのアルミナ粒子を30重量部と、体積平均粒径55μmのアルミナ粒子を70重量部とをフィラー材料として、上記シリコーン樹脂に73体積%で充填したときの熱伝導率の測定も行った。結果を表2及び図11に示す。 The content of the filler material was examined at 60, 65, 70, and 75% by volume based on the total volume. 30 parts by weight of alumina particles having a volume average particle diameter of 45 μm and 70 parts by weight of alumina particles having a volume average particle diameter of 55 μm are used as filler materials, and the thermal conductivity when the silicone resin is filled with 73% by volume. Measurements were also made. The results are shown in Table 2 and FIG.

Figure 0006857820
Figure 0006857820

図11及び表2より明らかなように、フィラー材料の充填率が高くなるにつれて熱伝導率の値も大きくなった。なお、アルミナからなる粒子材料を充填した場合の結果から、アルミナよりも充填率が低くても(60,65,70体積%)高い熱伝導率を示すことが分かった。 As is clear from FIGS. 11 and 2, the value of thermal conductivity increased as the filling rate of the filler material increased. From the results when the particle material made of alumina was filled, it was found that even if the filling rate was lower than that of alumina (60, 65, 70% by volume), the thermal conductivity was high.

次に、試験試料1−10〜試験試料1−240と、試験試料2−10〜試験試料2−240とを全体の質量を基準として、試験試料1−10〜試験試料1−240が30質量%になるようにした混合物を上述のシリコーン樹脂中に、全体の質量を基準として60,65,70体積%で充填して調製した樹脂組成物について熱伝導率の測定を同様に行った。結果を上述の表2に合わせて示す。 Next, based on the total mass of the test sample 1-10 to the test sample 1-240 and the test sample 2-10 to the test sample 2-240, the test sample 1-10 to the test sample 1-240 are 30 masses. The thermal conductivity of the resin composition prepared by filling the above-mentioned silicone resin with the mixture adjusted to% by 60, 65, 70% by volume based on the total mass was similarly measured. The results are shown in Table 2 above.

表2から明らかなように、酸化皮膜の厚みが厚くなると熱伝導率の値は低くなるが、それでもアルミナからなる粒子材料を充填した樹脂組成物よりは熱伝導率の値が高いことが分かった。 As is clear from Table 2, it was found that the value of thermal conductivity decreases as the thickness of the oxide film increases, but the value of thermal conductivity is still higher than that of the resin composition filled with the particle material made of alumina. ..

(粒子材料の絶縁性の評価)
試験試料1−0〜1−240及び試験試料2−0〜試験試料1−240について絶縁性を評価した。絶縁性の評価は、前述の実施形態にて説明した方法にて行った。その結果、試験試料1−10〜1−240及び試験試料2−10〜2−240について十分な絶縁性を示すことが分かった。
(Evaluation of insulation of particle materials)
The insulation properties of test samples 1-0 to 1-240 and test samples 2-0 to 1-240 were evaluated. The evaluation of the insulating property was carried out by the method described in the above-described embodiment. As a result, it was found that the test samples 1-10 to 1-240 and the test samples 2-10 to 2240 exhibited sufficient insulating properties.

Claims (9)

Alを50質量%以上含有する金属材料から構成されるコア部と、
アルミナのみから構成され前記コア部を隙間無く被覆する厚みが20nm以上の絶縁皮膜と、
前記絶縁皮膜の表面に形成された、シランカップリング剤、シラン化合物、及びオルガノシラザン類から選択される1以上の化合物である表面処理剤を反応させて形成される表面処理層と、
を有し、
体積平均粒径が10μm以上80μm以下、
球形度が0.9以上
一次粒子にまで分散している粒子材料。
A core part made of a metal material containing 50% by mass or more of Al, and
An insulating film composed of only alumina and having a thickness of 20 nm or more that covers the core portion without gaps,
A surface treatment layer formed by reacting a surface treatment agent, which is one or more compounds selected from a silane coupling agent, a silane compound, and organosilazanes, formed on the surface of the insulating film.
Have,
Volume average particle size is 10 μm or more and 80 μm or less,
Sphericity is 0.9 or more ,
A particle material that is dispersed into primary particles.
Al、Cu及びSiのうちの少なくとも1種以上を50質量%以上含有する金属材料から構成されるコア部と、
前記コア部を構成する金属の金属酸化物のみから構成され前記コア部を隙間無く被覆する絶縁皮膜と、
前記絶縁皮膜の表面に形成された、シランカップリング剤、シラン化合物、及びオルガノシラザン類から選択される1以上の化合物である表面処理剤を反応させて形成される表面処理層と、
を有し、
前記絶縁皮膜の厚みは1つの粒子に直流10Vを印加した時に絶縁性を保持できる厚みであり、
体積平均粒径が10μm以上80μm以下、
球形度が0.9以上
一次粒子にまで分散している粒子材料。
A core portion made of a metal material containing at least one of Al, Cu and Si in an amount of 50% by mass or more, and a core portion.
An insulating film composed of only the metal oxide of the metal constituting the core portion and covering the core portion without gaps,
A surface treatment layer formed by reacting a surface treatment agent, which is one or more compounds selected from a silane coupling agent, a silane compound, and organosilazanes, formed on the surface of the insulating film.
Have,
The thickness of the insulating film is such that the insulating property can be maintained when a direct current of 10 V is applied to one particle.
Volume average particle size is 10 μm or more and 80 μm or less,
Sphericity is 0.9 or more ,
A particle material that is dispersed into primary particles.
D10が25μm以上、D90が65μm以下である請求項1又は2に記載の粒子材料。 The particle material according to claim 1 or 2, wherein D10 is 25 μm or more and D90 is 65 μm or less. D90/D10が4.5以下である請求項1〜3の何れか1項に記載の粒子材料。 The particle material according to any one of claims 1 to 3, wherein D90 / D10 is 4.5 or less. Al、Cu及びSiのうちの少なくとも1種以上を50質量%以上含有する金属材料を溶融した溶融材料を不活性雰囲気下にてアトマイズ法によって粒子化して球形度が0.9以上の原料粒子材料を製造する粒子化工程と、
前記原料粒子材料を酸化雰囲気下で600℃以上800℃未満且つ前記原料粒子材料が変形しない温度で加熱して表面に厚みが20nm以上の酸化皮膜を形成する酸化皮膜形成工程と、
を有する粒子材料の製造方法。
A raw material particle material having a sphericality of 0.9 or more by atomizing a molten material obtained by melting a metal material containing at least one of Al, Cu and Si in an amount of 50% by mass or more by an atomizing method in an inert atmosphere. And the particleization process to manufacture
An oxide film forming step of heating the raw material particle material in an oxidizing atmosphere at 600 ° C. or higher and lower than 800 ° C. and at a temperature at which the raw material particle material is not deformed to form an oxide film having a thickness of 20 nm or more on the surface.
A method for producing a particle material having.
前記アトマイズ法は、回転する金属ディスクの表面に前記溶融材料を供給する工程である請求項5に記載の粒子材料の製造方法。 The method for producing a particle material according to claim 5, wherein the atomizing method is a step of supplying the molten material to the surface of a rotating metal disk. 請求項1〜4の何れか1項に記載の粒子材料を含有するフィラー材料。 A filler material containing the particle material according to any one of claims 1 to 4. 請求項7に記載のフィラー材料と、
前記フィラー材料を粒子状のまま分散する樹脂材料と、
を有する熱伝達物質。
The filler material according to claim 7 and
A resin material that disperses the filler material in the form of particles and
A heat transfer substance that has.
前記フィラー材料は、更にアルミナからなる粒子材料を有する請求項8に記載の熱伝達物質。
The heat transfer substance according to claim 8, wherein the filler material further comprises a particle material made of alumina.
JP2019229768A 2019-12-19 2019-12-19 Particle material, its manufacturing method, and filler material Active JP6857820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019229768A JP6857820B1 (en) 2019-12-19 2019-12-19 Particle material, its manufacturing method, and filler material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019229768A JP6857820B1 (en) 2019-12-19 2019-12-19 Particle material, its manufacturing method, and filler material

Publications (2)

Publication Number Publication Date
JP6857820B1 true JP6857820B1 (en) 2021-04-14
JP2021098871A JP2021098871A (en) 2021-07-01

Family

ID=75378009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019229768A Active JP6857820B1 (en) 2019-12-19 2019-12-19 Particle material, its manufacturing method, and filler material

Country Status (1)

Country Link
JP (1) JP6857820B1 (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198404A (en) * 1988-02-03 1989-08-10 Toyo Alum Kk Inorganic sintering body and its manufacture
JP2589554B2 (en) * 1988-09-29 1997-03-12 健 増本 Manufacturing method of metal powder
JP2874089B2 (en) * 1994-04-13 1999-03-24 信越化学工業株式会社 Resin composition for semiconductor encapsulation and semiconductor device
JP3290127B2 (en) * 1998-01-27 2002-06-10 松下電工株式会社 Heat conductive silicone rubber composition and heat dissipation sheet comprising the heat conductive silicone rubber composition
JP2002220602A (en) * 2001-01-29 2002-08-09 Sumitomo Electric Ind Ltd Spherical metal powder and production method of the same
JP3872714B2 (en) * 2002-04-22 2007-01-24 有限会社コーキ・エンジニアリング Method for producing molding composition for powder sintering, composition produced by the method, sintering method thereof, and powder sintered member thereof
JP4155457B2 (en) * 2003-03-25 2008-09-24 Tdk株式会社 Method for producing composite particles and method for producing composite dielectric material
JP2008163373A (en) * 2006-12-27 2008-07-17 Digital Powder Systems Inc Method for manufacturing microball of active metal, and microball
JP2008274083A (en) * 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2011190512A (en) * 2010-03-16 2011-09-29 Nippon Shokubai Co Ltd Aluminum particle coated with metal oxide having organic group
JP5646936B2 (en) * 2010-09-29 2014-12-24 東洋アルミニウム株式会社 Conductive aluminum filler, conductive paste composition containing the same, and conductive film formed using the conductive paste composition
JP2013122003A (en) * 2011-12-09 2013-06-20 Sato Research Co Ltd Heat conductive filler and manufacturing method thereof
JP2014156634A (en) * 2013-02-15 2014-08-28 Toyota Motor Corp Powder for cold spray, production method thereof, and film deposition method of copper-based film by use thereof
JP6670635B2 (en) * 2016-02-29 2020-03-25 昭和電工株式会社 Aluminum alloy atomized powder for extruded material, method for producing aluminum alloy atomized powder for extruded material, method for producing extruded material, method for producing forged product
EP3366390B1 (en) * 2016-12-26 2020-07-08 Technology Research Association for Future Additive Manufacturing Metal laminated shaped article, aluminum-based powder for metal lamination shaping, and method for manufacturing same
JP7123525B2 (en) * 2017-03-23 2022-08-23 東洋アルミニウム株式会社 Heat-dissipating filler, heat-dissipating resin composition containing the same, and method for producing heat-dissipating filler
US11260451B2 (en) * 2017-09-29 2022-03-01 Jx Nippon Mining & Metals Corporation Metal powder for metal additive manufacturing and molded object produced using said metal powder
JP7119380B2 (en) * 2018-01-18 2022-08-17 三菱マテリアル株式会社 Copper powder and its manufacturing method
JP7339645B2 (en) * 2018-05-21 2023-09-06 国立大学法人北海道大学 Latent heat storage material, method for producing latent heat storage material, and heat exchange material

Also Published As

Publication number Publication date
JP2021098871A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP2022023164A (en) Metal powder atomization manufacturing processes
JP4963393B2 (en) Low temperature firing type silver paste
JP7143223B2 (en) Copper powder, method for manufacturing stereolithographic object using the same, and stereolithographic object using copper
KR100877115B1 (en) Copper powder for electroconductive paste excellent in resistance to oxidation and method for preparation thereof
JP2008266755A (en) Manufacturing method of transition metal nanoparticle
CN110114174A (en) Copper powder and its manufacturing method
Guo et al. Low-temperature oxidation resistance of the silica-coated MoSi2 powders prepared by sol-gel preoxidation method
TW202323193A (en) Silica for electronic materials and method for producing same
JP6857820B1 (en) Particle material, its manufacturing method, and filler material
Wang et al. The effect of Sb2O3 on the properties of micro‐arc oxidation coatings on magnesium alloys
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
TW202140407A (en) Silicon nitride powder, and method for producing silicon nitride sintered body
JP6561220B1 (en) Particulate material and heat conductive material
JP2013151399A (en) Glass-ceramic composite material
Ashby et al. Thermal diffusivity of SPS pressed silicon powders and the potential for using bottom–up silicon quantum dots as a starting material
JP2004084069A5 (en)
JP4483389B2 (en) Method for producing glass particles
EP4400556A1 (en) Latent heat storage particle, heat exchange material and method for manufacturing latent heat storage particle
Shyu et al. Effect of particle size on the sintering of Li 2 O-Al 2 O 3-4SiO 2-borosilicate glass composites
JP2006104511A (en) Platinum powder and its production method
JP2010024358A (en) Lubricant composition for sliding surface, and instrument for snow surface sliding
JP2651826B2 (en) Heat- and moisture-resistant electrical insulation material
Yan et al. Preparation and characterization of amorphous hydrogenated carbon films containing Au nanoparticles from heat-treatment of polymer precursors
Malmqvist et al. Boron nitride coated ceramic crucible with a hole in the bottom—a new device replacing expensive crucibles for the preparation of fusion bead samples for X-ray fluorescence analysis
JP2004315237A (en) Single-crystal magnesium borate nanotube and its preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6857820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250