JP6855921B2 - Evaluation method for 3-point bending of evaluation members - Google Patents

Evaluation method for 3-point bending of evaluation members Download PDF

Info

Publication number
JP6855921B2
JP6855921B2 JP2017098712A JP2017098712A JP6855921B2 JP 6855921 B2 JP6855921 B2 JP 6855921B2 JP 2017098712 A JP2017098712 A JP 2017098712A JP 2017098712 A JP2017098712 A JP 2017098712A JP 6855921 B2 JP6855921 B2 JP 6855921B2
Authority
JP
Japan
Prior art keywords
evaluation
tensile load
indenter
evaluation member
point bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017098712A
Other languages
Japanese (ja)
Other versions
JP2018194446A (en
Inventor
淳一郎 鈴木
淳一郎 鈴木
泰則 伊藤
泰則 伊藤
光 湯沢
光 湯沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017098712A priority Critical patent/JP6855921B2/en
Publication of JP2018194446A publication Critical patent/JP2018194446A/en
Application granted granted Critical
Publication of JP6855921B2 publication Critical patent/JP6855921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、評価部材の3点曲げ評価方法に関するものである。 The present invention relates to a three-point bending evaluation method for an evaluation member.

従来から、自動車の衝突性能と燃費性能を両立するため高強度で軽量な車体構造が求められており、車体構造部品の高張力化、薄板化の検討が継続的に行われている。例えば、側面衝突時の乗員室変形抑止部品であるドアインパクトビームでは、本部品の高張力化、薄板化検討を評価するためにはフルビークルを使った衝突評価が理想であるが、工数やコストの面でデメリットが多く、容易ではない。そこで、特許文献1に記載されているように、評価部材を用いて、曲げモーメントや引張り荷重などを再現する方法が提案されている。また別の方法として、評価部品のみを使った単純な3点曲げ評価の方法もある。 Conventionally, a high-strength and lightweight vehicle body structure has been required in order to achieve both collision performance and fuel efficiency of an automobile, and studies on increasing the tension and thinning of the vehicle body structural parts are being continuously conducted. For example, for a door impact beam, which is a component that suppresses deformation of the passenger compartment during a side collision, collision evaluation using a full vehicle is ideal for evaluating the consideration of increasing tension and thinning of this component, but man-hours and costs There are many disadvantages in terms of, and it is not easy. Therefore, as described in Patent Document 1, a method of reproducing a bending moment, a tensile load, or the like by using an evaluation member has been proposed. As another method, there is also a simple three-point bending evaluation method using only evaluation parts.

特開2015−108585号公報Japanese Unexamined Patent Publication No. 2015-108585

しかしながら、従来の3点曲げ評価方法では、拘束部位の摩擦影響がある。また、接合されている周辺部品から受ける影響も考慮されないため、適用評価としては改良の余地がある。 However, in the conventional three-point bending evaluation method, there is a frictional effect on the restraint portion. In addition, since the influence of the peripheral parts to be joined is not taken into consideration, there is room for improvement in the application evaluation.

本発明は、このような経緯でなされた発明であり、本発明の課題は、フルビークル衝突試験時に評価部材単品に相当する部品に対して生じる環境を模擬し、衝突時に受ける曲げ及び引張り荷重の影響を評価部材において精度良く再現できる引張り3点曲げ評価方法を提供することである。 The present invention is an invention made in such a background, and an object of the present invention is to simulate an environment generated for a part corresponding to a single evaluation member during a full vehicle collision test, and to handle bending and tensile loads received at the time of collision. It is an object of the present invention to provide a tensile three-point bending evaluation method capable of accurately reproducing the influence in the evaluation member.

上記課題を解決するため次の手段を採用する。すなわち、評価部材の3点曲げ評価方法であって、評価部材の両端に与えられる引張り荷重を圧子のストロークに合わせて制御することを特徴とする評価部材の3点曲げ評価方法である。 The following means will be adopted to solve the above problems. That is, it is a three-point bending evaluation method of the evaluation member, which is characterized in that the tensile load applied to both ends of the evaluation member is controlled according to the stroke of the indenter.

また、予めシミュレーションにより圧子のストロークと引張り荷重の関係を求めておき、求められた結果を基に、評価部材に引張り荷重をかけるアクチュエータを制御する構成とすることが好ましい。 Further, it is preferable that the relationship between the indenter stroke and the tensile load is obtained in advance by simulation, and the actuator that applies the tensile load to the evaluation member is controlled based on the obtained result.

本発明を用いると、フルビークル衝突試験時に評価部材単品に相当する部品に対して生じる環境を模擬し、衝突時に受ける曲げ及び引張り荷重の影響を評価部材において精度良く再現できる引張り3点曲げ評価方法を提供することができる。 According to the present invention, a tensile three-point bending evaluation method capable of simulating the environment generated for a part corresponding to a single evaluation member during a full vehicle collision test and accurately reproducing the effects of bending and tensile load on the evaluation member during a collision. Can be provided.

評価治具に固定された評価部材を変形させる前の状態と、圧子の移動により変形させた後の状態の双方を表した図である。It is a figure showing both the state before deforming the evaluation member fixed to the evaluation jig, and the state after deforming by the movement of an indenter. 評価部材を変形させている時の力の加わり方を表した概略図である。It is the schematic which showed how the force is applied when the evaluation member is deformed. ポールが車両の側面に衝突した状態を表す図である。It is a figure which shows the state which the pole collided with the side surface of a vehicle. ポールとの衝突によるドアインパクトビームの変形の様子を表した図である。It is the figure which showed the state of the deformation of a door impact beam by a collision with a pole. 図4で表した事象におけるドア周りの変形の様子を表した図である。It is a figure which showed the state of the deformation around a door in the event shown by FIG. 図5で示した部材の変形を模擬して評価部材を屈曲させた様子を表した図であIt is a figure showing a state in which the evaluation member was bent by simulating the deformation of the member shown in FIG. る。To. 圧子のストローク量とアクチュエータに掛けられる荷重との関係を表した図でIn the figure showing the relationship between the stroke amount of the indenter and the load applied to the actuator. ある。is there. 圧子のストローク量と圧子に掛けられる荷重との関係を表した図である。It is a figure which showed the relationship between the stroke amount of an indenter and the load applied to an indenter.

以下では、発明の実施形態について説明する。本実施形態における評価方法では、評価部材1は3点曲げがなされる。この際、評価部材1の両端に与えられる引張り荷重を圧子33のストロークに合わせて制御する。このため、フルビークル衝突試験時に評価部材1単品に相当する部品に対して生じる環境を模擬し、衝突時に受ける曲げ及び引張り荷重の影響を評価部材1において精度良く再現できる引張り3点曲げ評価方法を提供することができる。 Hereinafter, embodiments of the invention will be described. In the evaluation method in the present embodiment, the evaluation member 1 is bent at three points. At this time, the tensile load applied to both ends of the evaluation member 1 is controlled according to the stroke of the indenter 33. For this reason, a tensile three-point bending evaluation method that can accurately reproduce the effects of bending and tensile load on the evaluation member 1 during a full vehicle collision test by simulating the environment that occurs for a part corresponding to the evaluation member 1 alone. Can be provided.

図1に示すように、本実施形態においては、評価部材1を評価することを可能とする為に評価治具を使用する。本実施形態の評価治具には評価部材1と接続される取付けアーム31が二つ備えられている。これらの取付けアーム31は評価部材1の両端側に各々が配置されている。また、取付けアーム31は支持台35に固定された軸に対して回動可能に接続されている。より具体的には、この軸に対して回動可能な軸受34を取り付けることで、取付けアーム31を回動可能としている。したがって、評価部材1が圧子33より押圧力を受けた場合、取付けアーム31は回動し得る。また、軸受34を設けたことにより、取付けアーム31が回動時に受ける摩擦力が抑制される。なお、取付けアーム31は変形軌跡を模擬するために用いられている。 As shown in FIG. 1, in the present embodiment, an evaluation jig is used to enable the evaluation member 1 to be evaluated. The evaluation jig of the present embodiment is provided with two mounting arms 31 connected to the evaluation member 1. Each of these mounting arms 31 is arranged on both end sides of the evaluation member 1. Further, the mounting arm 31 is rotatably connected to a shaft fixed to the support base 35. More specifically, by attaching a rotatable bearing 34 to this shaft, the attachment arm 31 can be rotated. Therefore, when the evaluation member 1 receives a pressing force from the indenter 33, the mounting arm 31 can rotate. Further, by providing the bearing 34, the frictional force that the mounting arm 31 receives when rotating is suppressed. The mounting arm 31 is used to simulate the deformation locus.

本実施形態では、評価部材1が取付けアーム31を回動させようとする力に抗するように、引張り荷重が掛けられる。この引張り荷重を生じさせるため、取付けアーム31にはテンションチェーン36が接続されており、このテンションチェーン36にはアクチュエータ32が接続されている。このアクチュエータ32を調整することで、引張り荷重を調整することができる。なお、本実施形態の取付けアーム31は、一方側に評価部材1が接続されており、他方側には評価部材1に引張り荷重を伝えるテンションチェーン36が接続されている。 In the present embodiment, a tensile load is applied so that the evaluation member 1 resists the force for rotating the mounting arm 31. A tension chain 36 is connected to the mounting arm 31 in order to generate this tensile load, and an actuator 32 is connected to the tension chain 36. By adjusting the actuator 32, the tensile load can be adjusted. The mounting arm 31 of the present embodiment has an evaluation member 1 connected to one side, and a tension chain 36 that transmits a tensile load to the evaluation member 1 is connected to the other side.

図1及び図2に示されることから理解されるように、評価部材1に対して圧子33で圧縮力F1を加える場合、取付けアーム31の外側に位置するアクチュエータ32は、テンションチェーン36及び取付けアーム31を介して、評価部材1に対して引張り荷重F2をかける。この際、アクチュエータ32は適切な引張り荷重をもたらすように制御される。より具体的には、CAE(computer aided engineering)などを利用することにより、予めシミュレーションにより圧子33のストロークと引張り荷重の関係を求め、その結果を基に、アクチュエータ32であるエアシリンダを制御する。この際、CAEを基に評価部材1に掛かる引張り荷重を圧子33のストロークに合わせて制御することで、フルビークルでの衝突評価を行うのと同様な環境下での単体破壊評価が可能となる。 As can be seen from FIGS. 1 and 2, when the compressive force F1 is applied to the evaluation member 1 by the indenter 33, the actuator 32 located outside the mounting arm 31 is the tension chain 36 and the mounting arm. A tensile load F2 is applied to the evaluation member 1 via 31. At this time, the actuator 32 is controlled to provide an appropriate tensile load. More specifically, by using CAE (computer aided engineering) or the like, the relationship between the stroke of the indenter 33 and the tensile load is obtained in advance by simulation, and the air cylinder which is the actuator 32 is controlled based on the result. At this time, by controlling the tensile load applied to the evaluation member 1 based on the CAE according to the stroke of the indenter 33, it is possible to evaluate the single unit fracture in the same environment as the collision evaluation in a full vehicle. ..

ここで、実車試験との関係を説明する。実車試験では、車両の側面にポールが衝突したことを想定した試験を行った。その結果、図3に示すように、車両は変形した。また、車両の側部にはエネルギー吸収部材として機能するドアインパクトビームが配置されているが、このドアインパクトビームは、ポールとの衝突により図4及び図5に示すように変形した。このドアインパクトビームは、ポールからの圧縮曲げ荷重と、ドアインナーからの引張り荷重の双方を受けながら変形した。本発明では、このドアインナーからの力に相当する引張り荷重をアクチュエータ32によって再現させることができる。 Here, the relationship with the actual vehicle test will be described. In the actual vehicle test, a test was conducted assuming that the pole collided with the side surface of the vehicle. As a result, as shown in FIG. 3, the vehicle was deformed. A door impact beam that functions as an energy absorbing member is arranged on the side of the vehicle, and the door impact beam is deformed as shown in FIGS. 4 and 5 due to a collision with a pole. This door impact beam was deformed while receiving both a compressive bending load from the pole and a tensile load from the door inner. In the present invention, the tensile load corresponding to the force from the door inner can be reproduced by the actuator 32.

本発明の評価治具では、例えばシミュレーションから「車両進入量」と「ドアインナーからの引張り荷重」との関係を得ることにより、評価部材1を変形させる「圧子33のストローク」と「アクチュエータ32がもたらす荷重」を図に示すように設定すればよいことが分かる。そこで、図に示すような挙動となるように圧子33の進入量にあわせてアクチュエータ32を制御することで、両荷重のタイミングが合わさることになり、フルビークルでの衝突と同様な環境下での単体破壊評価が可能となる。 In the evaluation jig of the present invention, for example, the "stroke of the indenter 33" and the "actuator 32" that deform the evaluation member 1 by obtaining the relationship between the "vehicle approach amount" and the "tensile load from the door inner" from the simulation. the load "results it can be seen that may be set as shown in FIG. Therefore, by controlling the actuator 32 according to the approach amount of the indenter 33 so as to behave as shown in FIG. 7 , the timings of both loads are matched, and the environment is similar to that of a collision in a full vehicle. It is possible to evaluate the destruction of a single unit.

本発明の評価方法を用いて、ドアインパクトビームの変形と同様の事象を再現した際の評価部材1の変化を図に示す。実車試験の結果と、本発明の試験方法を用いた際の圧子33のストロークと圧子33からもたらされる荷重との関係を表すグラフを図8に示すが、本発明の実験方法を用いれば、実車試験と同様な結果をもたらすことができることが分かる。 FIG. 6 shows a change in the evaluation member 1 when the same phenomenon as the deformation of the door impact beam is reproduced by using the evaluation method of the present invention. FIG. 8 shows a graph showing the relationship between the result of the actual vehicle test and the stroke of the indenter 33 and the load provided by the indenter 33 when the test method of the present invention is used. It can be seen that it can produce results similar to the test.

このように本発明によれば、評価部材1単品に対してフルビークル衝突試験と同様の環境を設定し、かつ取付け部の摩擦の影響を受けない破壊評価が可能となり、衝突時に評価部材1が受ける曲げ及び引張り荷重の影響を精度良く再現できる。 As described above, according to the present invention, it is possible to set an environment similar to that of a full vehicle collision test for a single evaluation member 1 and perform fracture evaluation without being affected by the friction of the mounting portion, so that the evaluation member 1 can be evaluated at the time of collision. The effects of bending and tensile loads can be accurately reproduced.

本発明は、以上の実施形態には限定されることは無く、本発明の趣旨を逸脱しない範囲で適応可能なことは勿論のことである。 The present invention is not limited to the above embodiments, and it goes without saying that the present invention can be applied without departing from the spirit of the present invention.

Claims (1)

評価部材の3点曲げ評価方法であって、評価部材の両端に与えられる引張り荷重を圧子のストロークに合わせて制御するために予めシミュレーションにより圧子のストロークと引張り荷重の関係を求めておき、求められた結果を基に、評価部材に引張り荷重をかけるアクチュエータを制御することを特徴とする評価部材の3点曲げ評価方法。 This is a three-point bending evaluation method for the evaluation member. In order to control the tensile load applied to both ends of the evaluation member according to the stroke of the indenter, the relationship between the stroke of the indenter and the tensile load is obtained by simulation in advance. A three-point bending evaluation method for an evaluation member, which comprises controlling an actuator that applies a tensile load to the evaluation member based on the results.
JP2017098712A 2017-05-18 2017-05-18 Evaluation method for 3-point bending of evaluation members Active JP6855921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017098712A JP6855921B2 (en) 2017-05-18 2017-05-18 Evaluation method for 3-point bending of evaluation members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098712A JP6855921B2 (en) 2017-05-18 2017-05-18 Evaluation method for 3-point bending of evaluation members

Publications (2)

Publication Number Publication Date
JP2018194446A JP2018194446A (en) 2018-12-06
JP6855921B2 true JP6855921B2 (en) 2021-04-07

Family

ID=64570353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098712A Active JP6855921B2 (en) 2017-05-18 2017-05-18 Evaluation method for 3-point bending of evaluation members

Country Status (1)

Country Link
JP (1) JP6855921B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765122B (en) * 2019-01-07 2021-12-14 南昌申宝汽车部件有限公司 Automobile part bending resistance testing fixture and use method thereof
CN109765121B (en) * 2019-01-07 2021-11-05 合肥龙精灵信息技术有限公司 Bending resistance testing mechanism and method for automobile pipe parts
CN110220802A (en) * 2019-06-12 2019-09-10 奇瑞汽车股份有限公司 A kind of automobile side crash key components and parts beam test device and test method
JP7401767B2 (en) 2020-03-23 2023-12-20 日本製鉄株式会社 Substructure test method
KR102282208B1 (en) * 2020-12-23 2021-07-27 (주)엠테스 Floating offshore wind power dynamic cable bending stiffness test facility
KR102656783B1 (en) 2023-05-12 2024-04-16 크라이오에이치앤아이(주) Apparatus for cryogenic test specimens

Also Published As

Publication number Publication date
JP2018194446A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6855921B2 (en) Evaluation method for 3-point bending of evaluation members
JP4902027B2 (en) Method for evaluating collision performance of automobile members and member collision testing machine used therefor
WO2014087710A1 (en) Test device
JP6341044B2 (en) Support jig at the upper end of the center pillar for side impact tests of the center pillar
JP6729778B1 (en) Side collision test apparatus for center pillar of automobile and method for determining test condition in side collision test of center pillar using the side collision test apparatus
CN112740002B (en) Collision performance evaluation test method and device for automobile body part
WO2014091775A1 (en) Vehicle pedal device
Wang et al. Effects of restitution coefficient and material characteristics on dynamic response of planar multi-body systems with revolute clearance joint
JP6160466B2 (en) Front side member frontal collision performance evaluation method
JP2015108585A (en) Structural member evaluation method
JP2020085710A (en) Compression bending tester and compression bending test method
JP4548250B2 (en) Vehicle stand test device and rotation control pad for vehicle stand test device
JP6032962B2 (en) Vehicle crash simulation test equipment
JP6837722B2 (en) Member collision test equipment
JP2021124361A (en) Test body support tool
WO2022153562A1 (en) Manufacturing device, control method, and control program
JP7252524B1 (en) Design method for collision performance evaluation test equipment for automobile body parts, collision performance evaluation test equipment for automobile body parts, and collision performance evaluation test method for automobile body parts
WO2022153561A1 (en) Drive system, control method, and control program
CN106523718A (en) Exhaust adjusting valve structure
EP4280430A1 (en) Drive system, control method, and control program
JP2003195740A (en) Dummy joint structure for collision experiment
Betz et al. Development and validation of a safety architecture of a wheeled mobile driving simulator
JP2023101604A (en) Center pillar single body side collision testing method, support jig used therefor, information processing device and program
JP2005299915A (en) Vibration damping device
Cheni et al. Application and development challenges of dynamic damper in cabin booming noise elimination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R151 Written notification of patent or utility model registration

Ref document number: 6855921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151