JP2015108585A - Structural member evaluation method - Google Patents

Structural member evaluation method Download PDF

Info

Publication number
JP2015108585A
JP2015108585A JP2013252187A JP2013252187A JP2015108585A JP 2015108585 A JP2015108585 A JP 2015108585A JP 2013252187 A JP2013252187 A JP 2013252187A JP 2013252187 A JP2013252187 A JP 2013252187A JP 2015108585 A JP2015108585 A JP 2015108585A
Authority
JP
Japan
Prior art keywords
evaluation
structural member
force
attached
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013252187A
Other languages
Japanese (ja)
Inventor
泰則 伊藤
Yasunori Ito
泰則 伊藤
奨 湯浅
Susumu Yuasa
奨 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013252187A priority Critical patent/JP2015108585A/en
Publication of JP2015108585A publication Critical patent/JP2015108585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure member evaluation method capable of correctly reproducing flexure moment and axial force acting on an actual structural member, and evaluating correct intensity without deformation and frictional force due to input.SOLUTION: A strength arm 2 having a strength point offset to an axial line of an evaluation member 1 is attached to one or both ends of the evaluation member 1. In a state that the strength point is supported by a support point 3 such as a rolling bearing, test force such as tension or compression is applied to the strength point, thereby axial force of tension or compression is acted on the evaluation member 1 with flexure moment, simultaneously.

Description

本発明は、曲げと引張り/圧縮力を受ける構造部材の強度の評価方法に関するものである。   The present invention relates to a method for evaluating the strength of a structural member that receives bending and tensile / compressive forces.

例えば自動車には、衝突性能と燃費性能とを両立させるために、高強度で軽量な車体構造が求められている。このためにはその構造部材の軽量化を図るとともに、構造部材の強度を正しく評価し、最適な構造を設計する必要がある。最適な構造の設計には、衝突時等に実際の自動車に働く曲げモーメントや、引張り/圧縮の軸力を正確に再現できる構造部材の評価方法が求められる。   For example, automobiles are required to have a high-strength and lightweight vehicle body structure in order to achieve both collision performance and fuel consumption performance. For this purpose, it is necessary to reduce the weight of the structural member, to correctly evaluate the strength of the structural member, and to design an optimal structure. Optimal structural design requires a structural member evaluation method that can accurately reproduce the bending moment acting on an actual automobile in a collision or the like, and the axial force of tension / compression.

構造部材の強度の評価方法としては、特許文献1に記載されているような曲げ試験法が一般的である。この方法は図1に示すように、支持点間に試験片を載せて加圧する方法である。これにより図1にBMD(曲げモーメント図)として示す通りの曲げモーメントを発生させることができる。   As a method for evaluating the strength of the structural member, a bending test method as described in Patent Document 1 is common. As shown in FIG. 1, this method is a method in which a test piece is placed between support points and pressed. Thereby, a bending moment as shown as BMD (bending moment diagram) in FIG. 1 can be generated.

しかしこの方法では、試験片に曲げモーメントを発生させることはできるが、引張りや圧縮の軸力を同時に発生させることはできない。また、加圧力が大きくなると支持点や加圧点が変形することが多く、実際の自動車部品の入力状態を再現することは困難であった。さらに、この方法では試験中に支持点や加圧点に滑り動作が生じ、摩擦力による精度低下を免れることができない等、多くの問題があった。   However, this method can generate a bending moment in the test piece, but cannot simultaneously generate tensile and compressive axial forces. Further, when the applied pressure is increased, the support point and the pressurizing point are often deformed, and it is difficult to reproduce the actual input state of the automobile part. Furthermore, this method has a number of problems such that a sliding motion occurs at the support point and the pressurizing point during the test, and accuracy deterioration due to frictional force cannot be avoided.

機械工学便覧第6版(日本機械学会編)、第6編第13章、材料試験、50頁Mechanical Engineering Handbook, 6th edition (edited by the Japan Society of Mechanical Engineers), 6th chapter, 13th chapter, material test, page 50

従って本発明の目的は上記した従来の問題点を解決し、実際の構造部材に作用する曲げモーメントと軸力を正確に再現させることができ、入力点及び支持点の変形や摩擦の影響のない正確な強度評価が可能な構造部材の評価方法を提供することである。   Therefore, the object of the present invention is to solve the above-mentioned conventional problems, and to accurately reproduce the bending moment and axial force acting on the actual structural member, without the influence of deformation and friction of the input point and the support point. An object of the present invention is to provide a method for evaluating a structural member capable of accurate strength evaluation.

上記の課題を解決するためになされた本発明の構造部材の評価方法は、評価しようとする構造部材である評価部材の端部に、評価部材の軸線に対してオフセットした着力点を持つ着力アームを取付け、着力点を支持点で支持した状態で着力点に引張りまたは圧縮の試験力を加え、評価部材に曲げモーメントと軸力を同時に作用させることを特徴とするものである。   The structural member evaluation method of the present invention made in order to solve the above-described problems is a force arm having a force point offset with respect to the axis of the evaluation member at the end of the evaluation member which is the structural member to be evaluated. , And a tensile or compressive test force is applied to the applied point while the applied point is supported by the supporting point, and a bending moment and an axial force are simultaneously applied to the evaluation member.

着力アームは、評価部材の一方の端部にのみ取付けることも、両端に取付けることもできる。着力アームを評価部材の両端に取付ける場合、同一方向にオフセットさせて取付けることも、反対方向にオフセットさせて取付けることもできる。また着力アームを、評価部材の軸線を含む平面内で非平行にオフセットさせて取付けることも、評価部材の軸線を含む平面から外れる方向にオフセットさせて取付けることもできる。尚、支持点には転がり軸受を用いることもできる。   The force arm can be attached only to one end of the evaluation member or to both ends. When attaching the attachment arm to both ends of the evaluation member, the attachment arm can be attached with an offset in the same direction or with an offset in the opposite direction. Further, the attachment arm can be attached by being offset non-parallel in a plane including the axis of the evaluation member, or can be attached by being offset in a direction away from the plane including the axis of the evaluation member. In addition, a rolling bearing can also be used for a support point.

本発明の構造部材の評価方法は、評価部材の端部にその軸線に対してオフセットした着力点を持つ着力アームを取付け、着力点に引張りまたは圧縮の試験力を加えることにより、評価部材に曲げモーメントと軸力を同時に作用させることができる。また従来のように評価部位への直接的な入力がないため、入力による変形がない。しかも着力点を転がり軸受などの支持点で支持した状態で試験力を加えるため、摩擦の影響を排除し、精度よく構造部材の強度評価を行うことができる。構造部材としては自動車の骨格を構成する部材が代表的なものであるが、その他一般の構造部材にも適用可能なことはいうまでもない。   In the structural member evaluation method according to the present invention, an evaluation arm is attached to an end of the evaluation member with an application point offset with respect to its axis, and a tensile or compression test force is applied to the application point to bend the evaluation member. Moment and axial force can be applied simultaneously. Further, since there is no direct input to the evaluation part as in the prior art, there is no deformation due to input. In addition, since the test force is applied in a state where the applied force point is supported by a support point such as a rolling bearing, the influence of friction can be eliminated, and the strength of the structural member can be accurately evaluated. As a structural member, a member constituting a skeleton of an automobile is typical, but it goes without saying that the structural member can be applied to other general structural members.

なお、着力アームの長さや取付け方を変更することにより、評価部材に対して様々な曲げモーメントを作用させることができる。また、2つの着力アームを評価部材の軸線を含む平面から外れる方向にオフセットさせて取付けることにより、曲げと同時に捩じりモーメントを作用させることも可能である。   It should be noted that various bending moments can be applied to the evaluation member by changing the length and attachment method of the force arm. In addition, it is possible to apply a torsional moment simultaneously with bending by attaching the two force-applying arms so as to be offset in a direction away from the plane including the axis of the evaluation member.

従来の曲げ試験法を示す説明図である。It is explanatory drawing which shows the conventional bending test method. 本発明の第1の実施形態を示す説明図と曲げモーメント図である。It is explanatory drawing and the bending moment figure which show the 1st Embodiment of this invention. 本発明の第2の実施形態を示す説明図と曲げモーメント図である。It is explanatory drawing and the bending moment figure which show the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す説明図と曲げモーメント図である。It is explanatory drawing and bending moment figure which show the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す斜視図である。It is a perspective view which shows the 4th Embodiment of this invention. 本発明の第4の実施形態における断面位置の説明図である。It is explanatory drawing of the cross-sectional position in the 4th Embodiment of this invention. 各断面位置における軸力のグラフである。It is a graph of the axial force in each cross-sectional position. 各断面位置におけるX‐モーメントのグラフである。It is a graph of X-moment in each cross-sectional position. 実施例の斜視図である。It is a perspective view of an Example. 実施例におけるタイプ1の説明図である。It is explanatory drawing of the type 1 in an Example. 実施例におけるタイプ2とタイプ3の説明図である。It is explanatory drawing of the type 2 and type 3 in an Example. 実施例における断面位置の説明図である。It is explanatory drawing of the cross-sectional position in an Example. 実施例におけるX、Y、Zの各軸周りのモーメントを示すグラフである。It is a graph which shows the moment around each axis of X, Y, and Z in an example. 捩じりを伴うケースにおけるX、Y、Zの各軸周りのモーメントを示すグラフである。It is a graph which shows the moment around each axis of X, Y, and Z in a case with twisting. タイプ1、2、3におけるX、Y、Zの各軸周りのモーメントを示すグラフである。4 is a graph showing moments about X, Y, and Z axes in types 1, 2, and 3.

以下に本発明の実施形態を示す。
図2は本発明の第1の実施形態を示すもので、1は評価部材であって、その両端に着力アーム2が取り付けられている。評価部材1は評価しようとする構造部材そのものであっても、評価しようとする構造部材の評価したい部位を切り出したものであっても、あるいは評価しようとする構造部材のモデルであってもよい。本発明によれば構造部材の全体を評価することができるのはいうまでもないが、予め構造部材の弱点が把握されている場合には構造部材の全体を用いず、弱点部分と同一の断面形状を有するモデルを評価部材として強度を評価することも可能である。
Embodiments of the present invention will be described below.
FIG. 2 shows a first embodiment of the present invention, in which 1 is an evaluation member, and an arm 2 is attached to both ends thereof. The evaluation member 1 may be the structural member itself to be evaluated, may be a part of the structural member to be evaluated which is to be evaluated, or may be a model of the structural member to be evaluated. Needless to say, according to the present invention, the entire structural member can be evaluated, but if the weak points of the structural member are known in advance, the entire structural member is not used and the same cross section as the weak point portion is used. It is also possible to evaluate the strength using a model having a shape as an evaluation member.

着力アーム2は評価部材1の端部に溶接やリベット等によって、がたつきのないように強固に取り付けられる。着力アーム2は試験力によって大きく変形しない強度と剛性を備えたものであることが望ましい。この第1の実施形態では、2つの着力アーム2を評価部材1の両端に、同一平面内で同一方向にオフセットさせて取付けた。着力アーム2の先端には支持点3が設けられており、この支持点3の位置を着力点とし、引張り力Fを加えた。なおこの実施形態では軸力を引張り力Fとしたが、圧縮力としても差し支えない。   The attachment arm 2 is firmly attached to the end of the evaluation member 1 by welding, rivets or the like so as not to rattle. It is desirable that the arm 2 has strength and rigidity that does not greatly deform due to the test force. In the first embodiment, the two force applying arms 2 are attached to both ends of the evaluation member 1 while being offset in the same direction within the same plane. A support point 3 is provided at the tip of the force arm 2, and the tensile force F is applied with the position of the support point 3 as the force point. In this embodiment, the axial force is the tensile force F, but it may be a compressive force.

2つの着力アーム2の長さをそれぞれL1,L2とすると、評価部材1には図示のBMDに示す通りの曲げモーメントが発生する。なお、評価部材1の左端の曲げモーメントはM1=F×L1、評価部材2の右端の曲げモーメントはM2=F×L2である。また評価部材1の全長にわたり、Fの軸力が作用する。   Assuming that the lengths of the two force applying arms 2 are L1 and L2, respectively, a bending moment as shown in the illustrated BMD is generated in the evaluation member 1. The bending moment at the left end of the evaluation member 1 is M1 = F × L1, and the bending moment at the right end of the evaluation member 2 is M2 = F × L2. Further, the axial force F acts over the entire length of the evaluation member 1.

このようにして、着力アーム2の長さと軸力Fを変えることにより、評価部材1に曲げモーメントと軸力を自由に作用させることができるので、実際の構造部材に作用する曲げモーメントと軸力を正確に再現させることが可能である。また試験力である軸力は支持点3の部分に入力され、評価部材1には直接入力されることがないため、従来のように評価部材1の入力点に変形が生じることがない。また着力アーム2は支持点である3に摩擦抵抗が非常に少ない治具として、例えば転がり軸受を採用すれば、摩擦力の影響を実用上無視することができるので好ましい。よって精度のよい強度評価が可能となる。   Since the bending moment and the axial force can be freely applied to the evaluation member 1 by changing the length of the force applying arm 2 and the axial force F in this way, the bending moment and the axial force that are applied to the actual structural member. Can be accurately reproduced. Further, since the axial force as the test force is input to the support point 3 and is not directly input to the evaluation member 1, the input point of the evaluation member 1 is not deformed as in the prior art. In addition, it is preferable to use a rolling bearing, for example, as a jig having a very small frictional resistance at the supporting point 3 because the influence of the frictional force can be ignored in practice. Therefore, accurate strength evaluation can be performed.

図3は本発明の第2の実施形態を示す図である。この実施形態では、評価部材1の一方の端部のみに着力アーム2が取り付けられ、評価部材1の他方の端部には支持点3として転がり軸受が直接取り付けられている。この実施形態では、図3のBMDに示すような曲げモーメントを評価部材1に作用させることができる。   FIG. 3 is a diagram showing a second embodiment of the present invention. In this embodiment, the attaching arm 2 is attached to only one end portion of the evaluation member 1, and a rolling bearing is directly attached to the other end portion of the evaluation member 1 as a support point 3. In this embodiment, a bending moment as shown by BMD in FIG. 3 can be applied to the evaluation member 1.

図4は本発明の第3の実施形態を示す図である。この実施形態では、2つの着力アーム2,2を、評価部材1の両端に反対方向にオフセットさせて取付けた。この実施形態では、図4のBMDに示すように途中でゼロとなり、その両側で符号の反転する曲げモーメントを発生させることができる。   FIG. 4 is a diagram showing a third embodiment of the present invention. In this embodiment, the two force applying arms 2 and 2 are attached to both ends of the evaluation member 1 while being offset in opposite directions. In this embodiment, as shown in the BMD of FIG. 4, it is possible to generate a bending moment that becomes zero in the middle and reverses the sign on both sides thereof.

図5から図8は本発明の第4の実施形態を示す図である。この実施形態の評価部材1は自動車のセンターピラーであり、図6のようにその天井側の端部を回転自在に支持し、床面側の端部に着力アーム2を取付けた。この着力アーム2はリブ付きの鋼板であり、2枚のリブの間に支持点3として転がり軸受を配置した。この構造は図3の実施形態に対応する。   5 to 8 are diagrams showing a fourth embodiment of the present invention. The evaluation member 1 of this embodiment is a center pillar of an automobile. As shown in FIG. 6, the end on the ceiling side is rotatably supported, and the arm 2 is attached to the end on the floor surface side. This force arm 2 is a steel plate with ribs, and a rolling bearing is disposed as a support point 3 between the two ribs. This structure corresponds to the embodiment of FIG.

第4の実施形態では図6のZ方向に軸力を加え、図6中に48から53の番号を付けた各断面位置における軸力と曲げモーメントを実測し、表7と表8に示した。なおこれらの表中には、フルビークル試験における実測値も記入した。本発明方法におけるデータはフルビークル試験におけるデータとほぼ一致しており、本発明方法においてフルビークル試験と同様の強度評価ができることが確認された。   In the fourth embodiment, an axial force is applied in the Z direction in FIG. 6 and the axial force and bending moment at each cross-sectional position numbered 48 to 53 in FIG. 6 are measured, and are shown in Table 7 and Table 8. . In these tables, the actual measurement values in the full vehicle test are also entered. The data in the method of the present invention almost coincided with the data in the full vehicle test, and it was confirmed that the strength evaluation similar to the full vehicle test can be performed in the method of the present invention.

次に、図9に示すような簡単な円筒形状の部材を評価部材1とし、その両端にプレート4を介して様々な方向に着力アーム2を取付け、その先端の支持点3(転がり軸受)の位置に軸力Fを加え、着力アーム2の取り付け方による発生モーメントの違いを確認した。   Next, a simple cylindrical member as shown in FIG. 9 is used as the evaluation member 1, and the attachment arm 2 is attached to the both ends of the evaluation member 1 in various directions via the plates 4. An axial force F was applied to the position, and the difference in the generated moments depending on how the attachment arm 2 was attached was confirmed.

この実施例では、図10に示すように2つの着力アーム2の長さや方向を変えて実験を行なった。ケース1−1とケース1−2は、2つの着力アーム2の長さは等しいが、評価部材の軸線を含む平面内で非平行にオフセットさせて取付けたものである。またケース1−3と1−4は、2つの着力アーム2の長さを変えたものである。ケース1−5は、評価部材の軸線を含む平面内で平行にオフセットさせたものである。さらにケース2−1とケース2−3は、2つの着力アーム2を、評価部材の軸線を含む平面から外れる方向にオフセットさせたものである。   In this embodiment, as shown in FIG. 10, the experiment was performed by changing the length and direction of the two force applying arms 2. The case 1-1 and the case 1-2 are attached by offsetting them in a non-parallel manner within a plane including the axis of the evaluation member, although the lengths of the two force applying arms 2 are equal. Cases 1-3 and 1-4 are obtained by changing the lengths of the two force applying arms 2. Case 1-5 is offset in parallel within a plane including the axis of the evaluation member. Further, the case 2-1 and the case 2-3 are obtained by offsetting the two force applying arms 2 in a direction away from the plane including the axis of the evaluation member.

さらに図11に示すタイプ2は、図10の片側の着力アーム2をなくしたもの、図11に示すタイプ3は、着力アーム2の長さはタイプ1と同じであるが、一方を反対方向にオフセットさせたものである。   Further, the type 2 shown in FIG. 11 is obtained by eliminating the one side arm 2 of FIG. 10, and the type 3 shown in FIG. 11 is the same as the type 1 in the length of the arm 2 but one side is placed in the opposite direction. It is offset.

図12に評価部材1の各断面位置を示し、各断面位置におけるX、Y、Zの各軸周りのモーメントをケース別に測定した結果を、図13のグラフに示した。図13に示されたケースは全て着力アームを評価部材の軸線を含む同一の平面内でオフセットさせたものであるから、捩じりは発生しておらず、Y‐モーメントとZ−モーメントは当然ながらゼロである。X−モーメントは、片側の着力アームを短くしたケース1−3とケース1−4は、当然ながら右側に向かって低下している。しかしその他のケースはデータが重複しており、着力アームの取付方向による差異はなかった。   FIG. 12 shows the cross-sectional positions of the evaluation member 1, and the graph of FIG. 13 shows the results of measuring the moments around the X, Y, and Z axes at each cross-sectional position for each case. Since all the cases shown in FIG. 13 are obtained by offsetting the applied arm in the same plane including the axis of the evaluation member, no torsion has occurred, and the Y-moment and the Z-moment are naturally However, it is zero. The X-moment decreases naturally toward the right side in the case 1-3 and the case 1-4 in which the one side arm is shortened. However, in other cases, the data was duplicated, and there was no difference depending on the mounting direction of the force arm.

図14は、標準的なタイプ1と、捩じりが発生するケース2−1及びケース2−3について、X、Y、Zの各軸周りのモーメントを測定した結果を示すグラフである。ケース2−1及びケース2−3は、捩じりの発生に伴って、X−モーメントとZ−モーメントが変化している。   FIG. 14 is a graph showing the results of measuring the moments about the X, Y, and Z axes for the standard type 1 and the cases 2-1 and 2-3 in which torsion occurs. In the case 2-1 and the case 2-3, the X-moment and the Z-moment change as the torsion occurs.

図15は、同様にタイプ1、タイプ2、タイプ3についての測定結果を示すグラフである。その内容は実施形態1,2,3において説明した通りであり、本発明方法において、評価部材に理論通りのモーメントが発生していることが確認された。   FIG. 15 is a graph showing the measurement results for Type 1, Type 2, and Type 3 in the same manner. The contents are as described in the first, second, and third embodiments, and in the method of the present invention, it was confirmed that a theoretical moment was generated in the evaluation member.

1 評価部材
2 着力アーム
3 支持点
4 プレート
1 Evaluation Member 2 Force Arm 3 Supporting Point 4 Plate

Claims (7)

評価しようとする構造部材である評価部材の端部に、評価部材の軸線に対してオフセットした着力点を持つ着力アームを取付け、着力点を支持点で支持した状態で着力点に引張りまたは圧縮の試験力を加え、評価部材に曲げモーメントと軸力を同時に作用させることを特徴とする構造部材の評価方法。   An attachment arm having an application point offset from the axis of the evaluation member is attached to the end of the evaluation member, which is the structural member to be evaluated, and the application point is pulled or compressed to the application point while the application point is supported by the support point. A method for evaluating a structural member, wherein a test force is applied and a bending moment and an axial force are simultaneously applied to the evaluation member. 着力アームを、評価部材の一方の端部にのみ取付けることを特徴とする請求項1記載の構造部材の評価方法。   The structural member evaluation method according to claim 1, wherein the attachment arm is attached only to one end of the evaluation member. 着力アームを、評価部材の両端に同一方向にオフセットさせて取付けることを特徴とする請求項1記載の構造部材の評価方法。   The structural member evaluation method according to claim 1, wherein the attachment arm is attached to both ends of the evaluation member while being offset in the same direction. 着力アームを、評価部材の両端に反対方向にオフセットさせて取付けることを特徴とする請求項1記載の構造部材の評価方法。   2. The structural member evaluation method according to claim 1, wherein the attachment arm is attached to both ends of the evaluation member while being offset in opposite directions. 着力アームを、評価部材の軸線を含む平面内で非平行にオフセットさせて取付けることを特徴とする請求項3または4に記載の構造部材の評価方法。   The structural member evaluation method according to claim 3 or 4, wherein the attachment arm is attached by being offset non-parallelly in a plane including the axis of the evaluation member. 着力アームを、評価部材の軸線を含む平面から外れる方向にオフセットさせて取付けることを特徴とする請求項3または4に記載の構造部材の評価方法。   The structural member evaluation method according to claim 3 or 4, wherein the attachment arm is attached while being offset in a direction deviating from a plane including the axis of the evaluation member. 支持点に転がり軸受を用いることを特徴とする請求項1乃至6のいずれか1項記載の構造部材の評価方法。   7. The structural member evaluation method according to claim 1, wherein a rolling bearing is used as the support point.
JP2013252187A 2013-12-05 2013-12-05 Structural member evaluation method Pending JP2015108585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252187A JP2015108585A (en) 2013-12-05 2013-12-05 Structural member evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252187A JP2015108585A (en) 2013-12-05 2013-12-05 Structural member evaluation method

Publications (1)

Publication Number Publication Date
JP2015108585A true JP2015108585A (en) 2015-06-11

Family

ID=53439030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252187A Pending JP2015108585A (en) 2013-12-05 2013-12-05 Structural member evaluation method

Country Status (1)

Country Link
JP (1) JP2015108585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133837A (en) * 2016-01-25 2017-08-03 新日鐵住金株式会社 Evaluation method for structural members, and evaluation member used for practicing the same
JP2018194445A (en) * 2017-05-18 2018-12-06 新日鐵住金株式会社 Evaluation method for automobile structural members
WO2020262723A1 (en) * 2019-06-25 2020-12-30 공주대학교 산학협력단 Device for evaluating torsional structural performance of girder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196635A (en) * 1977-12-23 1980-04-08 Carl Schenck Ag Test apparatus for the simultaneous loading of a test sample with longitudinal forces and with torque
JPS5582030A (en) * 1978-11-28 1980-06-20 Sumitomo Rubber Ind Ltd Bending test unit for large diameter flexible rubber tube
JPH06317509A (en) * 1993-05-10 1994-11-15 Kobe Steel Ltd Strength evaluation testing device of test piece
JPH0933414A (en) * 1995-07-21 1997-02-07 Nippon Steel Corp Special fulcrum jig for compression test
JP2000304039A (en) * 1999-04-22 2000-10-31 Hiihaisuto Seiko Kk Spherical bearing
JP2002502026A (en) * 1998-02-03 2002-01-22 エムティエス・システムズ・コーポレーション Material testing device with independent load generation mechanism
JP2014106026A (en) * 2012-11-26 2014-06-09 Central Research Institute Of Electric Power Industry Flexure twisting combined load test method and jig for the same
JP2015021859A (en) * 2013-07-19 2015-02-02 株式会社Ihi Test jig for exerting bending and axial force

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196635A (en) * 1977-12-23 1980-04-08 Carl Schenck Ag Test apparatus for the simultaneous loading of a test sample with longitudinal forces and with torque
JPS5582030A (en) * 1978-11-28 1980-06-20 Sumitomo Rubber Ind Ltd Bending test unit for large diameter flexible rubber tube
JPH06317509A (en) * 1993-05-10 1994-11-15 Kobe Steel Ltd Strength evaluation testing device of test piece
JPH0933414A (en) * 1995-07-21 1997-02-07 Nippon Steel Corp Special fulcrum jig for compression test
JP2002502026A (en) * 1998-02-03 2002-01-22 エムティエス・システムズ・コーポレーション Material testing device with independent load generation mechanism
JP2000304039A (en) * 1999-04-22 2000-10-31 Hiihaisuto Seiko Kk Spherical bearing
JP2014106026A (en) * 2012-11-26 2014-06-09 Central Research Institute Of Electric Power Industry Flexure twisting combined load test method and jig for the same
JP2015021859A (en) * 2013-07-19 2015-02-02 株式会社Ihi Test jig for exerting bending and axial force

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133837A (en) * 2016-01-25 2017-08-03 新日鐵住金株式会社 Evaluation method for structural members, and evaluation member used for practicing the same
JP2018194445A (en) * 2017-05-18 2018-12-06 新日鐵住金株式会社 Evaluation method for automobile structural members
WO2020262723A1 (en) * 2019-06-25 2020-12-30 공주대학교 산학협력단 Device for evaluating torsional structural performance of girder
US12013315B2 (en) 2019-06-25 2024-06-18 Kongju National University Industry-University Cooperation Foundation Device for evaluating torsional structural performance of girder

Similar Documents

Publication Publication Date Title
Rasmussen et al. Numerical modelling of stainless steel plates in compression
Wood et al. A model to describe the high rate performance of self-piercing riveted joints in sheet aluminium
CN105760691B (en) The method for calculating the internal force and deformation of Various Complex load action lower member or structure
JP6070862B2 (en) TEST BODY SUPPORT, STRUCTURAL MEMBER Crash Test Device and Crash Test Method Using the Support
JP6772679B2 (en) Fatigue test equipment and fatigue test method
JP2015108585A (en) Structural member evaluation method
JP2018080923A (en) Biaxial compression and tension testing jig and biaxial compression and tension testing method
JP6855921B2 (en) Evaluation method for 3-point bending of evaluation members
JP2004132739A (en) Shear testing device of curved panel
JPH0339627B2 (en)
KR101205132B1 (en) A fixing jig device for measuring buckling strength of center pillar reinforcement in vehicles
JP2016161300A (en) Test device
JP2014228290A (en) Biaxial tensile testing method
Savaidis et al. FE simulation of vehicle leaf spring behavior under driving manoeuvres
JP2020085710A (en) Compression bending tester and compression bending test method
CN204008309U (en) A kind of tension and compression-torsion combined loading test machine
CN109131933B (en) Device is applyed to fuselage bulkhead frame load
JP6597339B2 (en) Evaluation method for structural member and evaluation member used therefor
CN104245247B (en) Bender element and correlation technique for tandem elastic actuator
Kim et al. A lower upper-bound solution for shear spinning of cones
CN103926085B (en) A kind of H type crossbeam frame flex reverses mechanic property test method and device
JP7364907B2 (en) Structural hysteresis measurement method and structural hysteresis measurement device
Frohn et al. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)
CN102455175B (en) Self-adaptive dynamic displacement measuring device and application thereof to body-in-white static stiffness test
CN105808846A (en) Interference fit quantitative calculation method based on spring model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180213