JP6853497B2 - Hydroponic cultivation system - Google Patents

Hydroponic cultivation system Download PDF

Info

Publication number
JP6853497B2
JP6853497B2 JP2016207840A JP2016207840A JP6853497B2 JP 6853497 B2 JP6853497 B2 JP 6853497B2 JP 2016207840 A JP2016207840 A JP 2016207840A JP 2016207840 A JP2016207840 A JP 2016207840A JP 6853497 B2 JP6853497 B2 JP 6853497B2
Authority
JP
Japan
Prior art keywords
concentration
tank
culture
nutrient
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016207840A
Other languages
Japanese (ja)
Other versions
JP2018068125A (en
Inventor
達也 手塚
達也 手塚
多田 誠人
誠人 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2016207840A priority Critical patent/JP6853497B2/en
Publication of JP2018068125A publication Critical patent/JP2018068125A/en
Application granted granted Critical
Publication of JP6853497B2 publication Critical patent/JP6853497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydroponics (AREA)

Description

本発明は、栽培棚に培養液を供給して作物を栽培する養液栽培システムに関する。 The present invention relates to a hydroponic cultivation system in which a culture solution is supplied to a cultivation shelf to cultivate crops.

先行特許文献1に示す栽培施設では、養液タンク内で水と養分を混ぜて作る培養液を作物の栽培棚に供給し、作物を栽培する。このとき、栽培棚の排水口から排出される培養液は、作物が吸収しなかった養分を含んでいるので、回収タンクで回収し、培養液中の養分濃度を一定に保つために、養液タンクの水量が減ると回収タンクから養液タンクに培養液を戻し、水で薄めたり養分を追加して循環させて用いることができるので、水や養分の使用量が抑えられ、栽培作業に要するコストを抑えることができる。 In the cultivation facility shown in Prior Patent Document 1, a culture solution prepared by mixing water and nutrients in a nutrient solution tank is supplied to a crop cultivation shelf to cultivate the crop. At this time, since the culture solution discharged from the drainage port of the cultivation shelf contains nutrients that the crop did not absorb, the nutrient solution is collected in a recovery tank to keep the nutrient concentration in the culture solution constant. When the amount of water in the tank decreases, the culture solution can be returned from the recovery tank to the nutrient solution tank, diluted with water, or added with nutrients and circulated for use. The cost can be suppressed.

特開2011−19438号公報Japanese Unexamined Patent Publication No. 2011-19438

しかしながら、作物が吸収消費する量は養分毎に異なる上に、養液タンク内の濃度センサによる養液濃度の検出では、混合養分の成分別濃度を把握できないので適正濃度範囲内の個別調整ができず、溶液の循環を繰り返すうちに、作物の生育に必要な養分が少なくなるとともに、作物にあまり吸収されない成分の濃度が高くなることがあり、養分不足により作物の生育が遅くなったり、品質が低下する問題が生じ、また、養分によっては、濃度が高くなり過ぎると作物の吸水や成長を阻害するものがあり、生育不良や品質の低下がより発生しやすくなる。
その一方で、特定の成分濃度を検出するには、各成分に対応するセンサを設ける必要があり、各種センサを設けることに伴って制御装置が複雑化すると共に、栽培施設の全体の部品数が増加するので、栽培コストが増大する問題がある。
However, the amount absorbed and consumed by crops differs for each nutrient, and the concentration of the nutrient solution in the nutrient solution tank cannot be detected by the concentration sensor, so the concentration of the mixed nutrients for each component cannot be grasped, so individual adjustment within the appropriate concentration range is possible. However, as the solution is repeatedly circulated, the nutrients required for the growth of the crop may decrease, and the concentration of components that are not well absorbed by the crop may increase. There is a problem of deterioration, and depending on the nutrient, if the concentration becomes too high, the water absorption and growth of the crop may be hindered, and poor growth and deterioration of quality are more likely to occur.
On the other hand, in order to detect a specific component concentration, it is necessary to provide sensors corresponding to each component, and as a result of providing various sensors, the control device becomes complicated and the total number of parts in the cultivation facility increases. Since it increases, there is a problem that the cultivation cost increases.

本発明の目的は、
栽培棚に供給する培養液について、簡易なセンサ構成によって適正な養分配合を可能とする養液栽培システムを提供することにある。
An object of the present invention is
An object of the present invention is to provide a nutrient solution cultivation system that enables an appropriate nutrient blending with a simple sensor configuration for a culture solution supplied to a cultivation shelf.

請求項1に係る発明は、養分濃度センサ(2s)を備えて水と養分とによる培養液(A)を所定の基準濃度に調整可能な調整タンク(2)と、この調整タンク(2)から前記培養液(A)を受けて栽培作物(P)に供給する栽培棚(3)と、この栽培棚(3)の培養排液(B)を回収する回収タンク(4)とを備えて前記調整タンク(2)で再利用可能に培養液を循環する養液栽培システムにおいて、前記栽培作物(P)の生育阻害成分であって養分として検知される第一特定成分と反応する識別試薬を溶液中に供給する試薬供給装置(T)と、前記識別試薬の反応結果に基づいて前記第一特定成分の濃度を検出する第一特定濃度検出センサ(S1)と、この第一特定濃度検出センサ(S1)の検出濃度が所定値以上の場合に作動する報知部材(R)とを備えることを特徴とする。 The invention according to claim 1 is from an adjustment tank (2) provided with a nutrient concentration sensor (2s) and capable of adjusting the culture solution (A) containing water and nutrients to a predetermined reference concentration, and from the adjustment tank (2). The cultivation shelf (3) that receives the culture solution (A) and supplies it to the cultivated crop (P), and a recovery tank (4) that collects the culture effluent (B) of the cultivation shelf (3) are provided. In a nutrient solution cultivation system that circulates the culture solution reusably in the adjustment tank (2), a solution of an identification reagent that reacts with the first specific component that is a growth inhibitory component of the cultivated crop (P) and is detected as nutrients. A reagent supply device (T) supplied therein, a first specific concentration detection sensor (S1) that detects the concentration of the first specific component based on the reaction result of the identification reagent, and the first specific concentration detection sensor (S1). It is characterized by including a notification member (R) that operates when the detected concentration of S1) is equal to or higher than a predetermined value.

さらに、前記回収タンク(4)から前記培養排液(B)を受け、また、廃棄経路に至る排出弁(V2)を備えるサンプリングタンク(5)と、機器制御装置(C)とを設け、前記試薬供給装置(T)と前記第一特定濃度検出センサ(S1)とを前記サンプリングタンク(5)に配置し、このサンプリングタンク(5)に一定期間ごとに前記培養排液(B)を受けて前記試薬供給装置(T)と前記第一特定濃度検出センサ(S1)とを作動させた後に前記廃棄経路に排出制御することを特徴とする。 Further, a sampling tank (5) provided with a drain valve (V2) for receiving the culture drainage (B) from the recovery tank (4) and reaching a disposal route, and an equipment control device (C) are provided. The reagent supply device (T) and the first specific concentration detection sensor (S1) are arranged in the sampling tank (5), and the culture drainage (B) is received in the sampling tank (5) at regular intervals. It is characterized in that after operating the reagent supply device (T) and the first specific concentration detection sensor (S1), discharge control is performed in the disposal route.

請求項に係る発明は、請求項1に記載の構成において、
前記調整タンク(2)に給水制御可能な給水装置(2b)と、前記回収タンク(4)の培養排液(B)中の養分を検出する第二養分濃度センサ(4s)とを設け、この第二養分濃度センサ(4s)の検出値と対応して定めた基準濃度に前記給水装置(2b)の給水量を調節して前記回収タンク(4)の培養排液(B)を再利用することを特徴とする。
The invention according to claim 2 has the configuration according to claim 1.
The adjusting tank (2) is provided with a water supply device (2b) capable of controlling water supply and a second nutrient concentration sensor (4s) for detecting nutrients in the culture drainage (B) of the recovery tank (4). The water supply amount of the water supply device (2b) is adjusted to the reference concentration determined in correspondence with the detection value of the second nutrient concentration sensor (4s), and the culture drainage (B) of the recovery tank (4) is reused. It is characterized by that.

請求項1に係る発明は、電気伝導センサ等の簡易な養分濃度センサ(2s)に基づいて調整タンク(2)において栽培作物(P)の生育に必要な養分と水とを調整することができ、この培養液を栽培棚(3)、回収タンク(4)の順に循環することによって作物栽培が継続され、この間において、試薬供給装置(T)と第一特定濃度検出センサ(S1)とにより、硫酸マグネシウム等の培養液中の生育阻害成分の生成量を硝酸カルシウム等の識別試薬による反応物を介して高精度で把握することができ、蓄積によって生育阻害成分が許容限度を超えた場合の報知部材(R)の作動に基づいて培養液の適正化処理を行うことにより、栽培作物(P)の生育に必要な養分が不足した状態で培養液が循環し続けることを防止できるので、高機能センサを要することなく、生育不良や作物の品質の低下が防止される。 According to the invention of claim 1, the nutrients and water required for the growth of the cultivated crop (P) can be adjusted in the adjusting tank (2) based on a simple nutrient concentration sensor (2s) such as an electric conduction sensor. Crop cultivation is continued by circulating this culture solution in the order of the cultivation shelf (3) and the recovery tank (4), and during this period, the reagent supply device (T) and the first specific concentration detection sensor (S1) are used. The amount of growth-inhibiting component produced in the culture medium such as magnesium sulfate can be grasped with high accuracy via a reactant using an identification reagent such as calcium nitrate, and notification when the growth-inhibiting component exceeds the permissible limit due to accumulation can be obtained. By optimizing the culture solution based on the operation of the member (R), it is possible to prevent the culture solution from continuing to circulate in a state where the nutrients necessary for the growth of the cultivated crop (P) are insufficient, so that it is highly functional. Poor growth and deterioration of crop quality are prevented without the need for sensors.

加えて、一定期間ごとにサンプリングタンク(5)に抽出した培養排液(B)に識別試薬を投入して反応結果について濃度検出を行い、その後に培養排液(B)を廃棄経路に排出することにより、試薬や反応物が培養液の循環経路に混入することを防止できるので、作物の生育に悪影響を与えることが防止される。 In addition , the identification reagent is added to the culture effluent (B) extracted into the sampling tank (5) at regular intervals to detect the concentration of the reaction result, and then the culture effluent (B) is discharged to the disposal route. As a result, it is possible to prevent reagents and reactants from being mixed into the circulation pathway of the culture solution, and thus it is possible to prevent adverse effects on the growth of the crop.

請求項に係る発明は、請求項1に係る発明の効果に加え、回収タンク(4)内の培養液の養分濃度に応じて調整タンク(2)内の培養液の養分濃度を調整することにより、回収タンク(4)の培養排液を混ぜることで作物の生育に適した養分濃度にすることができるので、養分過多による生育不良や品質の低下が防止される。 In the invention according to claim 2 , in addition to the effect of the invention according to claim 1, the nutrient concentration of the culture solution in the adjusting tank (2) is adjusted according to the nutrient concentration of the culture solution in the recovery tank (4). As a result, the nutrient concentration suitable for the growth of the crop can be obtained by mixing the culture effluent of the recovery tank (4), so that poor growth and deterioration of quality due to excessive nutrients can be prevented.

養液栽培システムのシステム系統図(a)と要部構成図(b)System system diagram (a) and main part configuration diagram (b) of the nutrient solution cultivation system サンプリングタンクの別の構成図Another block diagram of the sampling tank ナトリウムイオン計による養液栽培システムのシステム系統図System system diagram of nutrient solution cultivation system by sodium ion meter 回収培養液濃度による給液調整例の要部構成Main part configuration of liquid supply adjustment example according to the collected culture solution concentration 天窓の開度調節機構Skylight opening adjustment mechanism 遮光カーテンの日射量対応の制御例Control example for the amount of solar radiation of blackout curtains 温室構成側面図と降雨時の風速対応最大開度の制御例Greenhouse configuration side view and control example of maximum opening for wind speed during rainfall

上記技術思想に基づいて具体的に構成された実施の形態について以下に図面を参照しつつ説明する。
養液栽培システム1は、図1(a)のシステム系統図に示すように、培養液の水と養分を調整する調整タンク2と、この調整タンク2から培養液Aを受けて栽培作物Pに供給する栽培棚3と、この栽培棚3から使用済み培養液Bを回収する回収タンク4と、さらに再利用可能な培養液Cを調整タンク2に循環可能に連結構成される。
An embodiment specifically configured based on the above technical idea will be described below with reference to the drawings.
As shown in the system system diagram of FIG. 1A, the nutrient solution cultivation system 1 receives the adjustment tank 2 for adjusting the water and nutrients of the culture solution, and the culture solution A from the adjustment tank 2 to the cultivated crop P. The cultivation shelf 3 to be supplied, the recovery tank 4 for collecting the used culture solution B from the cultivation shelf 3, and the reusable culture solution C are circulatedly connected to the adjustment tank 2.

詳細には、調整タンク2は、養分濃度センサ2sを備えて所定濃度に培養液Åを調整するべく、水と養分とをそれぞれ調節可能に構成する。培養液Aは、簡易な電気伝導センサによって検出される電気伝導率を示すEC値に基づいて、水と養分を供給することにより、栽培作物Pに必要な成分調整精度を確保することができる。 Specifically, the adjustment tank 2 is provided with the nutrient concentration sensor 2s, and is configured to be able to adjust water and nutrients, respectively, in order to adjust the culture solution Å to a predetermined concentration. The culture solution A can secure the component adjustment accuracy required for the cultivated crop P by supplying water and nutrients based on the EC value indicating the electrical conductivity detected by the simple electrical conductivity sensor.

回収タンク4は、排出弁V2の開閉制御によって培養排液Bを廃棄経路に排出可能に構成し、長期の培養液循環によってリサイクル利用が限界になった場合の報知装置Rのアラーム作動に基づいて培養排液Bを排出することによって養分の適正管理を可能とする。 The recovery tank 4 is configured so that the culture drainage B can be discharged to the disposal route by controlling the opening / closing of the discharge valve V2, and is based on the alarm operation of the notification device R when the recycling use becomes the limit due to the long-term circulation of the culture liquid. Proper management of nutrients is possible by discharging the culture drainage B.

一般に養液栽培では、栽培作物Pは、生育のために培養液中から養分を吸収するが、培養液中の養分は基本的に不足が生じないように調整タンク2で追加している。栽培作物Pが吸収する養分は、生育時期(茎葉部が成長する段階、開花する時期、実をつける時期など)や、場所の環境(気温、湿度、日射量など)によって変動するので、養分の一部が栽培作物Pに吸収される量が減ると、培養液中の一部の養分の濃度が高まる。これにより、培養液は、EC値は高いが栽培作物Pが必要とする養分が不足した状態になり、リサイクル利用の限界を迎えることになる。 Generally, in hydroponic cultivation, the cultivated crop P absorbs nutrients from the culture solution for growth, but the nutrients in the culture solution are basically added in the adjusting tank 2 so as not to cause a shortage. The nutrients absorbed by the cultivated crop P vary depending on the growing season (the stage when the foliage grows, the time when it blooms, the time when it bears fruit, etc.) and the environment of the place (temperature, humidity, amount of solar radiation, etc.). When the amount of a part absorbed by the cultivated crop P decreases, the concentration of a part of nutrients in the culture solution increases. As a result, the culture solution has a high EC value but lacks the nutrients required by the cultivated crop P, and reaches the limit of recycling.

しかしながら、上記のリサイクル限界を迎えた培養液と、必要な養分が含まれる培養液の違いを判断するには、特定の養分の濃度を検出するセンサ、あるいは検出機器が必要になる。こうした機器は、養液栽培システムに組み込まれていないことが多く、また高価であるので、従来は作業者が養液を少量抽出して検査機関に送り、検査結果によりリサイクル可能か否かを把握していた。検査機関に送ってから検査結果が出るまでに時間を要するので、その間にリサイクル限界を迎えると、栽培作物Pが養分不足で生育不良を起こす問題があった。こうした検査を行なわず、培養液を定期的に入れ替える方法もあるが、交換時期によっては十分リサイクル可能な培養液を廃棄することになり、コストの増大を招く問題がある。一方、交換時期によってはリサイクル限界に到達したまま培養液を使い続ける時期が生じるので、栽培作物Pが養分不足で生育不良を起こす問題がある。 However, in order to determine the difference between the culture solution that has reached the above recycling limit and the culture solution that contains the necessary nutrients, a sensor or a detection device that detects the concentration of a specific nutrient is required. Since such equipment is often not incorporated in a nutrient solution cultivation system and is expensive, conventionally, a worker extracts a small amount of nutrient solution and sends it to an inspection institution to grasp whether or not it can be recycled based on the inspection result. Was. Since it takes time from sending to the inspection organization to obtaining the inspection result, if the recycling limit is reached during that time, there is a problem that the cultivated crop P causes poor growth due to lack of nutrients. There is a method in which the culture solution is replaced regularly without performing such an inspection, but there is a problem that the culture solution that can be sufficiently recycled is discarded depending on the replacement time, which causes an increase in cost. On the other hand, depending on the replacement time, the culture solution may continue to be used while reaching the recycling limit, so that there is a problem that the cultivated crop P causes poor growth due to lack of nutrients.

(サンプリングタンク)
報知装置Rのアラーム作動のために、図1(b)のサンプリングタンク構成図に示すように、アクリル等の透明容器によってサンプリングタンク5を形成し、試薬供給装置Tと透過光センサによる第一特定濃度検出センサS1を設け、回収タンク4に付帯して構成する。
(Sampling tank)
For the alarm operation of the notification device R, as shown in the sampling tank configuration diagram of FIG. 1 (b), the sampling tank 5 is formed of a transparent container such as acrylic, and the first identification is performed by the reagent supply device T and the transmitted light sensor. A concentration detection sensor S1 is provided and attached to the recovery tank 4.

試薬供給装置Tは、養分濃度センサ2sの誤検知要因となる硫酸マグネシウム等の培養液中の生育阻害成分である第一特定成分と反応する硝酸カルシウム等の識別試薬を回収タンク4から取込んだ培養排液に添加し、硫酸イオンとの反応析出物である硫酸カルシウムを透過光によって検出する第一特定濃度検出センサS1を備え、排出弁V2によって反応液を排出可能に構成する。 The reagent supply device T took in an identification reagent such as calcium nitrate that reacts with the first specific component which is a growth inhibitory component in the culture solution such as magnesium sulfate which is a false detection factor of the nutrient concentration sensor 2s from the recovery tank 4. The first specific concentration detection sensor S1 which is added to the culture effluent and detects calcium sulfate which is a reaction precipitate with sulfate ions by transmitted light is provided, and the reaction liquor can be discharged by the discharge valve V2.

上記構成のサンプリングタンク5により、硫酸マグネシウム等の培養液中の生育阻害成分の生成量を、専門的な高度の分析処理を要することなく、硝酸カルシウム等の識別試薬による反応物による濁りを介して高精度で把握することができ、生育阻害成分の許容限度を超えた場合の報知部材Rのアラーム作動時に、培養排液Bを廃棄して供給するべき培養液Aの交換等の適正化操作を行うことにより、作物の生育に必要な養分が不足した状態で培養液が循環し続けることを防止できるので、高機能センサを要することなく、生育不良や作物の品質の低下が防止される。 With the sampling tank 5 having the above configuration, the amount of growth-inhibiting component produced in the culture solution such as magnesium sulfate is turbid by the reactant by the identification reagent such as calcium nitrate without requiring a high-level specialized analysis process. It can be grasped with high accuracy, and when the alarm of the notification member R is activated when the permissible limit of the growth-inhibiting component is exceeded, the culture effluent B should be discarded and the culture broth A to be supplied should be replaced. By doing so, it is possible to prevent the culture solution from continuing to circulate in a state where the nutrients necessary for growing the crop are insufficient, so that poor growth and deterioration of the quality of the crop can be prevented without requiring a high-performance sensor.

(目盛式サンプリングタンク)
また、図2のサンプリングタンクの別の構成図に示すように、サンプリングタンク5に目盛5aを設けることにより、透過光センサS1によることなく、反応析出物の沈殿量に基づいて生育阻害成分の蓄積量を的確に把握して対応することができる。
(Scale type sampling tank)
Further, as shown in another configuration diagram of the sampling tank of FIG. 2, by providing the sampling tank 5 with a scale 5a, the growth-inhibiting component is accumulated based on the amount of precipitation of the reaction precipitate without using the transmitted light sensor S1. It is possible to accurately grasp the amount and respond.

(ナトリウムイオン対応)
また、培養排液Bのリサイクルよって培養液に蓄積される栽培作物Pの吸収阻害成分であるナトリウムイオンが過大になった場合のアラーム作動のために、図3に示すように、ナトリウムイオン計による特定濃度検出による養液栽培システム11を構成する。
(Sodium ion compatible)
Further, as shown in FIG. 3, a sodium ion meter is used to activate an alarm when the sodium ion, which is an absorption-inhibiting component of the cultivated crop P accumulated in the culture broth, becomes excessive due to the recycling of the culture effluent B. A nutrient solution cultivation system 11 by detecting a specific concentration is configured.

養液栽培システム11は、培養液中で栽培作物Pの吸収阻害要因となる硫酸ナトリウム、塩化ナトリウム等の第二特定成分の濃度を検出するナトリウムイオン計による第二特定濃度検出センサS2を回収タンク4に設け、その検出濃度が所定値以上の場合に報知部材Rがアラーム作動するように構成することにより、原水Wに含まれるナトリウムイオンが長期使用で蓄積限度(例えば、ナトリウムイオンがリットル中100mg)を超えると収量低下を生じることから、培養液廃棄により、吸水阻害、生育時の蛋白質合成阻害を防止して生育の健全化を図ることができる。 The nutrient solution cultivation system 11 collects the second specific concentration detection sensor S2 by a sodium ion meter that detects the concentration of the second specific component such as sodium sulfate and sodium chloride, which are factors that inhibit the absorption of the cultivated crop P in the culture solution. By providing in No. 4 and configuring the notification member R to activate an alarm when the detected concentration is equal to or higher than a predetermined value, sodium ions contained in the raw water W can be accumulated in a long-term use (for example, 100 mg of sodium ions in a liter). ), Since the yield decreases, it is possible to prevent water absorption inhibition and protein synthesis inhibition during growth and to improve the growth by discarding the culture solution.

また、ナトリウムイオン計を硫酸イオン計とすることにより、硫酸イオンの過剰蓄積に対処することができる。このように、簡易な電気伝導率センサによるEC値による養分濃度を成分別に検出して養液管理が可能となる。 Further, by using the sodium ion meter as a sulfate ion meter, it is possible to deal with the excessive accumulation of sulfate ions. In this way, it is possible to manage the nutrient solution by detecting the nutrient concentration based on the EC value by a simple electric conductivity sensor for each component.

(回収液基準)
次に、回収タンク4に回収した培養排液Bに基づいて給液調整する循環システムについて説明する。
回収培養液濃度による給液調整例12の要部構成を図4に示すように、回収タンク4に第二養分濃度センサ4sを設けて検出したドレインEC値の基準超過に応じて調整タンク2の基準のEC値を低減し、栽培棚3に送る培養液の給液量を増加することにより、安定した給液管理が可能となる。
(Recovery liquid standard)
Next, a circulation system for adjusting the supply of liquid based on the culture drainage B collected in the recovery tank 4 will be described.
As shown in FIG. 4, the configuration of the main part of the liquid supply adjustment example 12 based on the collected culture solution concentration is provided in the recovery tank 4 with the second nutrient concentration sensor 4s, and the adjustment tank 2 is adjusted according to the excess of the standard of the drain EC value detected. By reducing the standard EC value and increasing the amount of the culture solution to be sent to the cultivation shelf 3, stable solution management becomes possible.

詳細には、調整タンク2に給水する給水装置2bと、回収タンク4の第二養分濃度センサ4sとを設け、この第二養分濃度センサ4sの検出値と対応して調整タンク2の養分濃度センサ2sによる養分濃度基準を変更し、この基準濃度になるように給水装置2bの給水量を調節する。 Specifically, a water supply device 2b for supplying water to the adjusting tank 2 and a second nutrient concentration sensor 4s of the recovery tank 4 are provided, and the nutrient concentration sensor of the adjusting tank 2 corresponds to the detected value of the second nutrient concentration sensor 4s. The nutrient concentration standard according to 2s is changed, and the water supply amount of the water supply device 2b is adjusted so as to reach this standard concentration.

このように、回収タンク4内の培養液の養分濃度に対応して調整タンク2内の培養液の養分濃度を調整することにより、回収タンク4から調整タンク2に培養液を移動させて混ぜることで作物の生育に適した養分濃度にすることができるので、養分過多による生育不良や品質の低下が防止される。 In this way, by adjusting the nutrient concentration of the culture solution in the adjustment tank 2 according to the nutrient concentration of the culture solution in the recovery tank 4, the culture solution is moved from the recovery tank 4 to the adjustment tank 2 and mixed. Since the nutrient concentration can be adjusted to be suitable for the growth of crops, poor growth and deterioration of quality due to excessive nutrients can be prevented.

すなわち、第二養分濃度センサ4sの検出する養分濃度が高いほど、養分が作物に吸収されずに戻ってくることから、調整タンク2に水を足してタンク内の培養液の養分濃度を下げておき、回収タンク4内の培養液を調整タンク2に戻すことで、培養液中の養分濃度を基準値に近付けることができる。 That is, the higher the nutrient concentration detected by the second nutrient concentration sensor 4s, the more nutrients are returned without being absorbed by the crop. Therefore, water is added to the adjusting tank 2 to lower the nutrient concentration of the culture solution in the tank. By returning the culture solution in the recovery tank 4 to the adjustment tank 2, the nutrient concentration in the culture solution can be brought close to the reference value.

たとえば、調整タンク2の基準EC値を2.5に設定する。このとき、回収タンク4内の養液のドレインEC値が3.5未満であるときは、回収タンク4から調整タンク2に送られる養液に標準量の原水を供給して混和させれば、溶液中の養分が植物の生育に適した濃度となるので、基準EC値及び原水の供給量は変化させない。 For example, the reference EC value of the adjustment tank 2 is set to 2.5. At this time, when the drain EC value of the nutrient solution in the recovery tank 4 is less than 3.5, a standard amount of raw water can be supplied to the nutrient solution sent from the recovery tank 4 to the adjustment tank 2 and mixed. Since the nutrients in the solution have a concentration suitable for plant growth, the reference EC value and the amount of raw water supplied are not changed.

しかしながら、ドレインEC値が3.5以上4.0未満であるときは、回収タンク4内の養液に溶け込んでいる養分が多いので、基準EC値が2.5になるように原水を投入すると、養分の濃度が高くなる。この養液を栽培作物に供給すると、養分過多による生育不良や品質の低下が発生し得る。これを防止するには、基準EC値を2.0程度まで下げて、原水をより多く供給させ、養液中の養分の濃度が一定値を超えないようにする。このときの原水の供給量は、標準量に比べておおよそ5%増加させる。 However, when the drain EC value is 3.5 or more and less than 4.0, there is a large amount of nutrients dissolved in the nutrient solution in the recovery tank 4, so if raw water is added so that the reference EC value becomes 2.5. , The concentration of nutrients increases. When this nutrient solution is supplied to cultivated crops, poor growth and deterioration of quality may occur due to excessive nutrients. To prevent this, the standard EC value is lowered to about 2.0 to supply more raw water so that the concentration of nutrients in the nutrient solution does not exceed a certain value. The amount of raw water supplied at this time is increased by about 5% as compared with the standard amount.

また、ドレインEC値が4.0以上4.5未満であるときは、基準EC値を1.7〜1.8程度まで下げ、さらに原水の供給量を増加させる。このときの原水の供給量は、標準量に比べておおよそ10%増加させる。 When the drain EC value is 4.0 or more and less than 4.5, the reference EC value is lowered to about 1.7 to 1.8, and the supply amount of raw water is further increased. The amount of raw water supplied at this time is increased by about 10% as compared with the standard amount.

また、ドレインEC値が4.5以上であるときは、基準EC値を1.5程度まで下げ、さらに原水の供給量を増加させる。このときの原水の供給量は、標準量に比べておおよそ20%増加させる。 When the drain EC value is 4.5 or more, the reference EC value is lowered to about 1.5, and the supply amount of raw water is further increased. The amount of raw water supplied at this time is increased by about 20% as compared with the standard amount.

なお、上記の基準EC値、ドレインEC値、及び原水の供給量は、あくまで参考値であり、養液に使用する養分や養液を供給する作物、及び作物の生育段階に合わせて、増減値は変更されるものとする。
また、ドレインEC値が3.5を大きく下回った時は、養液中の養分が不足する可能性があるので、原水に加えて養分を調整タンク2に供給する構成としてもよい。
The above standard EC value, drain EC value, and raw water supply amount are reference values only, and are values that increase or decrease according to the nutrients used for the nutrient solution, the crops that supply the nutrient solution, and the growth stage of the crops. Shall be changed.
Further, when the drain EC value is significantly lower than 3.5, the nutrients in the nutrient solution may be insufficient. Therefore, the nutrients may be supplied to the adjusting tank 2 in addition to the raw water.

一方、ドレインEC値が4.5を大きく上回ったとき(例えば、5.5以上)は、原水の供給量が膨大になり、調整タンク2の容量を上回りかねないので、調整タンク2に供給する前に、養液の一部を回収タンク4から廃棄する構成としてもよい。また、このように養液中の養分が過度に高くなるときは、養液中の養分が作物に吸収されていない等の問題が生じている可能性があるので、報知装置Rを作動させる、またはメール等を送信する等の方法で濃度の異常を作業者に報知すると、作物の生育に適さない養液の供給が防止される。 On the other hand, when the drain EC value greatly exceeds 4.5 (for example, 5.5 or more), the amount of raw water supplied becomes enormous and may exceed the capacity of the adjusting tank 2, so that it is supplied to the adjusting tank 2. Before, a part of the nutrient solution may be discarded from the recovery tank 4. In addition, when the nutrients in the nutrient solution become excessively high in this way, there is a possibility that the nutrients in the nutrient solution are not absorbed by the crops, so the notification device R is activated. Alternatively, if the worker is notified of the abnormal concentration by a method such as sending an e-mail or the like, the supply of nutrient solution unsuitable for growing the crop is prevented.

(天窓開閉制御)
次に、栽培設備の天窓21の開度調節機構を図5に示すように、開閉ロッド21aをラックアンドピニオン機構22を介して電動進退制御する天窓21の開度は、開度計や駆動モータにポジションメータを備えない場合について、モータの通電時間に基づいて算出され、この算出開度は、風の負荷等の影響による開度変化を受けて誤差を含み、その累積によって誤差が拡大することから、一定時間毎に天窓21を全閉(モータ付属のリミットスイッチで停止)する制御を加える。
(Skylight opening / closing control)
Next, as shown in FIG. 5, the opening degree adjusting mechanism of the skylight 21 of the cultivation equipment is such that the opening degree of the skylight 21 for electrically advancing / retreating the opening / closing rod 21a via the rack and pinion mechanism 22 is determined by an opening meter or a drive motor. When the position meter is not provided in, it is calculated based on the energizing time of the motor, and this calculated opening includes an error due to the change in opening due to the influence of wind load, etc., and the error increases due to the accumulation. Therefore, a control is added to fully close the skylight 21 (stop with the limit switch attached to the motor) at regular intervals.

天窓21を開くとき、ポジションメータ無しで所定の開度とする方法について説明する。天窓21が全閉から全開になるまでに駆動モータが60秒作動するものを例とすると、天窓21を10%開放するときは、駆動モータが約6秒間作動したところで停止させる。なお、実際は駆動モータの駆動開始から天窓21の開放に十分な回転数に到達するまでに若干のタイムラグがあるので、駆動モータの回転数が規定回転数に到達するまでにかかった時間を駆動モータの作動時間に追加するものとしてもよい。 A method of setting a predetermined opening degree without a position meter when opening the skylight 21 will be described. Taking an example in which the drive motor operates for 60 seconds from the time when the skylight 21 is fully closed to the time when the skylight 21 is fully opened, when the skylight 21 is opened 10%, it is stopped when the drive motor operates for about 6 seconds. In reality, there is a slight time lag between the start of driving the drive motor and the arrival of a sufficient rotation speed for opening the top window 21, so the time required for the rotation speed of the drive motor to reach the specified rotation speed is used as the drive motor. It may be added to the operating time of.

この全閉制御により、大きな誤差を有する状況においても、全閉状態を数分間維持することにより、全閉状態を開度0%として誤差をリセットすることができるので、外部条件の影響を最小限に抑えることができ、低コストで高精度の開閉制御が可能となる。
また、モータの動作回数が正逆転を合わせて所定回数(例:50回)に達したときに天窓21を全閉することによっても、前記制御と同様に、誤差の累積を抑えることができ、高精度の開閉制御が可能となる。
With this fully closed control, even in a situation with a large error, by maintaining the fully closed state for several minutes, the error can be reset with the fully closed state as the opening degree of 0%, so the influence of external conditions is minimized. It is possible to control the opening and closing with high accuracy at low cost.
Further, by fully closing the skylight 21 when the number of times of operation of the motor reaches a predetermined number of times (example: 50 times) including forward and reverse rotation, the accumulation of errors can be suppressed as in the above control. High-precision opening and closing control is possible.

(遮光カーテン開閉制御)
次に、栽培設備上部を覆う遮光カーテンの開閉制御について、室内湿度の低下に応じて遮光カーテンを閉じることで遮光率を増加するように湿度対応制御を行う。
例えば、湿度60%未満で遮光カーテン制御をオンとして遮光開度60%、また、50%、40%の湿度低下と対応して遮光開度を70%、80%に増加して湿度対応制御することにより、低湿度による作物の蒸散過多(萎れ)を抑制して作物の生理障害の低減が可能となる。
(Light-shielding curtain opening / closing control)
Next, regarding the opening / closing control of the light-shielding curtain covering the upper part of the cultivation facility, the humidity response control is performed so as to increase the light-shielding rate by closing the light-shielding curtain according to the decrease in indoor humidity.
For example, when the humidity is less than 60%, the light-shielding curtain control is turned on, and the light-shielding opening is increased to 70% and 80% in response to a humidity decrease of 60% and 50% and 40% to control the humidity. This makes it possible to suppress excessive transpiration (withering) of crops due to low humidity and reduce physiological disorders of crops.

また、室温の上昇に応じて遮光カーテンを閉じて遮光率を増加する。
例えば、室温が28℃超で遮光カーテン制御をオンとして遮光開度60%、また、30℃で遮光開度を70%、35℃超で80%として室温対応制御することにより、室温上昇による作物の蒸散過多(萎れ)を抑制して作物の生理障害の低減が可能となる。
In addition, the light-shielding curtain is closed to increase the light-shielding rate as the room temperature rises.
For example, when the room temperature is over 28 ° C, the light-shielding curtain control is turned on and the light-shielding opening is 60%, and when the room temperature is over 35 ° C, the light-shielding opening is 70% and 80% when the room temperature is over 35 ° C. It is possible to suppress excessive transpiration (withering) of crops and reduce physiological disorders of crops.

また、日射量対応制御については、日中の日射量の最大と最小およびその継続時間を計測し、その最大と最小の値および時間により、遮光カーテンの遮光状態を維持するように制御し、図6の遮光カーテンの日射量対応の制御例に示すように、日射量の上下が大きい日の遮光カーテン開閉変化を抑えて安定的に制御することにより、作物体の温度の急変化、蒸散量過多・過少を抑制することができる。 Regarding the control for the amount of solar radiation, the maximum and minimum amount of solar radiation during the day and its duration are measured, and the maximum and minimum values and time are used to control the light-shielding curtain so as to maintain the light-shielding state. As shown in the control example corresponding to the amount of solar radiation of the light-shielding curtain of No. 6, by suppressing the change in opening and closing of the light-shielding curtain on a day when the amount of solar radiation is large, the temperature of the crop body suddenly changes and the amount of evapotranspiration is excessive.・ It is possible to suppress undershooting.

なお、日中の日射量の最大、最小、及びこれらの継続時間については、季節や当日の天気によって大幅に変動するので、各季節の数日分のデータから得るものとする。同じ施設で過去に同様の栽培作物Pを栽培したのであれば、過去のデータを基準とする。複数年分のデータがあれば、実際に栽培をする時期に近い環境のデータを用いると、より効果的な遮光カーテンの開閉制御が可能になる。 The maximum and minimum amount of solar radiation during the day and their duration vary greatly depending on the season and the weather of the day, so it shall be obtained from the data for several days in each season. If the same cultivated crop P was cultivated in the same facility in the past, the past data is used as a reference. If there are data for multiple years, it is possible to control the opening and closing of the blackout curtain more effectively by using the data of the environment close to the time of actual cultivation.

遮光カーテンは、日射量が多いと閉じて栽培作物Pの過剰な光合成を防止すると共に、日射量が少ないと開いて栽培作物Pの光合成を促すものである。このため、まず、遮光カーテンを開閉する基準となる日射量を決める必要がある。例えば、この開閉基準値を600Wとする。現在の日射量が開閉基準値を超えているとき、即ち600W以上であるときは、日射量が多過ぎると判断して遮光カーテンを閉じる。一方、日射量が開閉基準値未満であるとき、即ち600Wを下回ったときは、遮光カーテン越しでは光合成に必要な日射量を得られないと判断して遮光カーテンを開放する。これにより、少なくとも日中において、栽培作物Pの栽培に適した日射量を確保することができる。 The blackout curtain closes when the amount of solar radiation is large to prevent excessive photosynthesis of the cultivated crop P, and opens when the amount of solar radiation is small to promote the photosynthesis of the cultivated crop P. Therefore, first, it is necessary to determine the amount of solar radiation that serves as a reference for opening and closing the blackout curtain. For example, this opening / closing reference value is set to 600 W. When the current amount of solar radiation exceeds the opening / closing reference value, that is, when it is 600 W or more, it is judged that the amount of solar radiation is too large and the blackout curtain is closed. On the other hand, when the amount of solar radiation is less than the opening / closing reference value, that is, when it is less than 600 W, it is determined that the amount of solar radiation required for photosynthesis cannot be obtained through the light-shielding curtain, and the light-shielding curtain is opened. As a result, it is possible to secure an amount of solar radiation suitable for cultivation of the cultivated crop P at least during the daytime.

しかしながら、雲が全天を覆っておらず、短時間で日射を遮ったり通したりする天候においては、日射量が短時間、例えば10分程度の間隔で開閉基準値を超えたり下回ったりを繰り返すことになる。栽培設備に設ける遮光カーテンは相応に長く、全開から全閉、または全閉から全開にするには、数分、設備の大きさによっては十数分を要するので、日射量が短時間で変化するたびに開閉していると、日射量が多くなるときに遮光カーテンが開くことになり、設備内の気温が過度に上昇したり、栽培作物Pが過度に光合成をして蒸散過多が発生したりして、生育不良を起こすことがある。逆に、日射量が少なくなったときに遮光カーテンが閉められ、十分な日光が設備内に取り込めず、光合成が十分にできず、やはり生育不良を起こすことがある。 However, in the weather where clouds do not cover the whole sky and the solar radiation is blocked or passed through in a short time, the amount of solar radiation repeatedly exceeds or falls below the opening / closing standard value for a short time, for example, at intervals of about 10 minutes. become. The blackout curtains installed in the cultivation equipment are reasonably long, and it takes several minutes from fully open to fully closed, or from fully closed to fully open, and depending on the size of the equipment, it takes more than ten minutes, so the amount of solar radiation changes in a short time. If it is opened and closed every time, the blackout curtain will open when the amount of solar radiation increases, the temperature inside the equipment will rise excessively, or the cultivated crop P will photosynthesize excessively, causing excessive transpiration. As a result, it may cause poor growth. On the contrary, when the amount of solar radiation is low, the blackout curtain is closed, sufficient sunlight cannot be taken into the equipment, photosynthesis cannot be sufficiently performed, and growth failure may occur.

これを防止すべく、図6に示すとおり、遮光カーテンを閉めた状態で、日射量が所定時間(例:15分)内に開閉基準値を超えたり下回ったりを繰り返すときは、日射量が600Wを下回っても遮光カーテンを開放しない構成とする。 In order to prevent this, as shown in FIG. 6, when the amount of solar radiation repeatedly exceeds or falls below the opening / closing reference value within a predetermined time (example: 15 minutes) with the blackout curtain closed, the amount of solar radiation is 600 W. The blackout curtain will not be opened even if it falls below.

これにより、短時間のうちに日射量が600Wを再度超えても、遮光カーテンは閉まった状態であるので、強い日光が設備内に入り込むことを防止でき、気温の上昇や過度の光合成による蒸散過多の発生が防止され、栽培作物Pの生育が安定する。 As a result, even if the amount of solar radiation exceeds 600 W again in a short time, the blackout curtain is in a closed state, so that strong sunlight can be prevented from entering the equipment, and excessive evaporation due to temperature rise or excessive photosynthesis can be prevented. Is prevented and the growth of the cultivated crop P is stable.

また、遮光カーテンを開けた状態で、日射量が所定時間(例:15分)内に開閉基準値を超えたり下回ったりを繰り返すときは、日射量が600Wを上回っても遮光カーテンを閉じない構成とする。 In addition, when the amount of solar radiation repeatedly exceeds or falls below the opening / closing reference value within a predetermined time (example: 15 minutes) with the blackout curtain open, the blackout curtain is not closed even if the amount of solar radiation exceeds 600 W. And.

これにより、短時間のうちに日射量が600Wを再度下回っても、遮光カーテンは開いた状態であるので、日光を設備内に取り込むことができるので、光合成不足による生育不良の発生が防止され、栽培作物Pの生育が安定する。 As a result, even if the amount of solar radiation falls below 600 W again in a short period of time, the blackout curtain is in the open state, so that sunlight can be taken into the equipment, and the occurrence of poor growth due to insufficient photosynthesis can be prevented. The growth of cultivated crop P is stable.

(天窓開閉制御/雨天対応)
降雨時は、図7の温室構成の側面図と降雨時の風速対応最大開度の制御例に示すように、風上側と風下側の天窓SL1,SL2別に、風速計WV1,WV2による風速に対応して最大開度を設定することにより、無風であれば天窓を少し大きく開け、風速上昇に伴って雨の吹き込みを抑えるように天窓開度を小さくすることにより、降雨時における天窓開度を最大限に確保して温室内の温湿度の変動を小さくすることができる。
(Skylight opening / closing control / rainy weather)
When it rains, as shown in the side view of the greenhouse configuration in Fig. 7 and the control example of the maximum opening for wind speed during rainfall, the wind speeds are supported by the anemometers WV1 and WV2 separately for the windward and leeward sky windows SL1 and SL2. By setting the maximum opening, the sky window opens a little wider if there is no wind, and the sky window opening is reduced so as to suppress the inflow of rain as the wind speed rises, thereby maximizing the sky window opening during rainfall. It is possible to secure the limit and reduce the fluctuation of temperature and humidity in the greenhouse.

設備内に雨が入り込むと、栽培作物Pに計画外の水が供給されるので、水分過多による根枯れなどの生育障害が発生するおそれがある。また、野外から入り込む雨水は殺菌されていないので、大量に設備内に入り込むと栽培作物Pが菌類やウィルスに汚染され、生育障害を起こしたり、枯れてしまうおそれがある。栽培設備は基本的に閉鎖環境であるので、一旦菌やウィルスに汚染されると設備内全体に蔓延する可能性が高い。また、設備内に雨水が溜まると蒸発し、設備内の湿度を上昇させるが、日照時に設備内が高温化しやすくなり、栽培作物Pが萎れるなどの障害が発生するおそれがある。さらに、強風が吹き込むと、栽培作物Pの姿勢が生育や栽培途中の作業(不要な葉や実の除去、生育状況の測定など)に適さない姿勢になり、作業能率の低下や収穫物の品質の低下が発生するおそれや、花や果実が吹き飛ばされてしまうがある。 When rain enters the equipment, unplanned water is supplied to the cultivated crop P, which may cause growth disorders such as root rot due to excessive water content. In addition, since rainwater entering from the field is not sterilized, if a large amount of rainwater enters the facility, the cultivated crop P may be contaminated with fungi and viruses, causing growth failure or withering. Since the cultivation facility is basically a closed environment, once it is contaminated with bacteria or viruses, it is highly likely that it will spread throughout the facility. In addition, when rainwater collects in the equipment, it evaporates and raises the humidity in the equipment, but the temperature inside the equipment tends to rise during sunshine, which may cause problems such as wilting of cultivated crops P. Furthermore, when a strong wind blows, the posture of the cultivated crop P becomes unsuitable for work during growth or cultivation (removal of unnecessary leaves and fruits, measurement of growth status, etc.), resulting in a decrease in work efficiency and quality of the harvested product. There is a risk that the number of flowers and fruits will be blown away.

一方、天窓を完全に閉めてしまうと、栽培作物Pの生育により生じる熱や水蒸気により、設備内の温度や湿度が上昇しやすくなる。これにより、栽培作物Pの生育が阻害され、生育不良や収穫物の品質低下が生じる問題がある。エアコン等を用いれば、温度及び湿度を適正に管理できるが、余分に配電設備が必要になると共に、電力消費等が増大する問題がある。 On the other hand, if the skylight is completely closed, the temperature and humidity in the equipment are likely to rise due to the heat and water vapor generated by the growth of the cultivated crop P. As a result, the growth of the cultivated crop P is inhibited, and there is a problem that poor growth and deterioration of the quality of the harvested product occur. If an air conditioner or the like is used, the temperature and humidity can be controlled appropriately, but there is a problem that extra power distribution equipment is required and power consumption and the like increase.

これを防止すべく、上記のとおり風速に合わせて天窓の最大開度を変更することにより、設備内への雨水の浸入量を抑制しつつ、外気の取り込みを可能とすることができる。 In order to prevent this, by changing the maximum opening degree of the skylight according to the wind speed as described above, it is possible to take in outside air while suppressing the amount of rainwater infiltrating into the equipment.

風速に合わせた天窓の開度の一例として、風上側の風力が2km/s未満で、風下側の風力が3km/s未満であるときは、雨に晒されやすい風上側の天窓の最大開度は、全開時の5%までとし、雨に晒されにくい風下側の天窓の最大開度は、全開時の15まで%とする。なお、ここに示す最大開度は一例であり、また、1時間当たりの雨量が1mm程度の弱い雨を想定している。1時間当たりの雨量がより多いときは、最大開度は上記の数字未満になるよう、自動的に制御されるものとしてもよい。 As an example of the opening of the skylight according to the wind speed, when the windward windward is less than 2 km / s and the windward windward is less than 3 km / s, the maximum opening of the skylight on the windward side, which is easily exposed to rain. Is up to 5% when fully open, and the maximum opening of the leeward skylight, which is not easily exposed to rain, is up to 15% when fully open. The maximum opening degree shown here is an example, and it is assumed that the amount of rainfall per hour is about 1 mm. When the amount of rainfall per hour is higher, the maximum opening may be automatically controlled so as to be less than the above number.

また、風上側の風力が2km/s以上4km/s未満で、風下側の風力が3km/s以上6km/s未満であるときは、風上側の天窓の最大開度は、全開時の3%までとし、風下側の天窓の最大開度は、全開時の10%までとする。 When the wind force on the leeward side is 2 km / s or more and less than 4 km / s and the wind force on the leeward side is 3 km / s or more and less than 6 km / s, the maximum opening of the windward window on the leeward side is 3% when fully opened. The maximum opening of the leeward window is up to 10% of the time when it is fully opened.

また、風上側の風力が4km/s以上6km/s未満で、風下側の風力が6km/s以上8km/s未満であるときは、風上側の天窓は多少なりとも開いていると風圧により隙間から雨水が入り込むおそれが高いので全閉とし、風下側の天窓の最大開度は、全開時の5%までとする。 When the windward windward is 4 km / s or more and less than 6 km / s and the windward windward is 6 km / s or more and less than 8 km / s, if the windward windward window is open to some extent, there will be a gap due to wind pressure. Since there is a high possibility that rainwater will enter from the wind, it should be fully closed, and the maximum opening of the leeward sky window should be up to 5% of the maximum opening.

そして、風上側の風力が6km/s以上で、風下側の風力が8km/s以上であるときは、強風により栽培作物Pの姿勢が乱れたり、花や果実が吹き飛ばされる可能性があるので、風上側、風下側のいずれの天窓も全閉とし、風の流入を防止する。
上記により、設備内への雨水や強風の進入を防止しつつ、設備内の温度や湿度が上昇することを抑えられる。
When the windward windward is 6 km / s or more and the windward windward is 8 km / s or more, the strong wind may disturb the posture of the cultivated crop P or blow off flowers and fruits. Both the leeward and leeward sky windows are fully closed to prevent the inflow of wind.
As a result, it is possible to prevent the temperature and humidity inside the equipment from rising while preventing rainwater and strong winds from entering the equipment.

(構成の要点)
上述の構成の養液栽培システムの構成の要点をまとめると、次のとおりである。
第一に、調整タンク2、栽培棚3、回収タンク4による培養液循環式作物栽培システムにおいて、栽培作物Pの生育阻害成分であって養分として検知される第一特定成分と反応する識別試薬を溶液中に供給する試薬供給装置Tと、識別試薬の反応結果に基づいて第一特定成分の濃度を検出する第一特定濃度検出センサS1と、この第一特定濃度検出センサS1の検出濃度が所定値以上の場合に作動する報知部材Rとを設けて作物栽培システムを構成することにより、電気伝導センサ等の簡易な養分濃度センサ2sに基づいて調整タンク2において栽培作物Pの生育に必要な養分と水とを調整することができ、この培養液を栽培棚3、回収タンク4の順に循環することによって作物栽培が継続され、この間において、試薬供給装置Tと第一特定濃度検出センサS1とにより、硫酸マグネシウム等の培養液中の生育阻害成分の生成量を硝酸カルシウム等の識別試薬による反応物を介して高精度で把握することができ、蓄積によって生育阻害成分が許容限度を超えた場合の報知部材Rの作動に基づいて培養液の適正化処理を行うことにより、栽培作物Pの生育に必要な養分が不足した状態で培養液が循環し続けることを防止できるので、高機能センサを要することなく、生育不良や作物の品質の低下が防止される。
(Summary of configuration)
The main points of the configuration of the hydroponic cultivation system having the above configuration are as follows.
First, in the culture solution circulation type crop cultivation system using the adjustment tank 2, the cultivation shelf 3, and the recovery tank 4, an identification reagent that reacts with the first specific component that is a growth inhibitory component of the cultivated crop P and is detected as a nutrient is used. The reagent supply device T supplied into the solution, the first specific concentration detection sensor S1 that detects the concentration of the first specific component based on the reaction result of the identification reagent, and the detection concentration of the first specific concentration detection sensor S1 are predetermined. By providing a notification member R that operates when the value is equal to or higher than the value to form a crop cultivation system, the nutrients required for the growth of the cultivated crop P in the adjustment tank 2 based on a simple nutrient concentration sensor 2s such as an electric conduction sensor. And water can be adjusted, and by circulating this culture solution in the order of the cultivation shelf 3 and the recovery tank 4, crop cultivation is continued, and during this period, the reagent supply device T and the first specific concentration detection sensor S1 , The amount of growth-inhibiting component produced in the culture medium such as magnesium sulfate can be grasped with high accuracy via a reactant using an identification reagent such as calcium nitrate, and when the growth-inhibiting component exceeds the permissible limit due to accumulation. By optimizing the culture solution based on the operation of the notification member R, it is possible to prevent the culture solution from continuing to circulate in a state where the nutrients necessary for the growth of the cultivated crop P are insufficient, so that a high-performance sensor is required. Without this, poor growth and deterioration of crop quality are prevented.

第二に、回収タンク4から培養排液Bを受け、また、廃棄経路に至る排出弁V2を備えるサンプリングタンク5と、機器制御装置Cとを設け、試薬供給装置Tと第一特定濃度検出センサS1とをサンプリングタンク5に配置し、このサンプリングタンク5に一定期間ごとに培養排液Bを受けて試薬供給装置Tと第一特定濃度検出センサS1とを作動させた後に廃棄経路に排出制御するように構成することにより、一定期間ごとにサンプリングタンク5に抽出した培養排液Bに識別試薬を投入して反応結果について濃度検出を行い、その後に培養排液Bを廃棄経路に排出することにより、試薬や反応物が培養液の循環経路に混入することを防止できるので、作物の生育に悪影響を与えることが防止される。 Secondly, a sampling tank 5 provided with a drain valve V2 that receives the culture drainage B from the recovery tank 4 and reaches the disposal route, an equipment control device C, a reagent supply device T, and a first specific concentration detection sensor are provided. S1 is arranged in the sampling tank 5, and the sample tank 5 receives the culture drainage B at regular intervals to operate the reagent supply device T and the first specific concentration detection sensor S1 and then discharge control to the disposal route. By constructing as such, the identification reagent is put into the culture effluent B extracted into the sampling tank 5 at regular intervals to detect the concentration of the reaction result, and then the culture effluent B is discharged to the disposal route. Since reagents and reactants can be prevented from being mixed into the circulation pathway of the culture solution, it is possible to prevent adverse effects on the growth of the crop.

第三に、培養液循環式作物栽培システムにおいて、回収タンク4内で栽培作物Pの吸収阻害要因となる第二特定成分の濃度を検出する第二特定濃度検出センサS2と、この第二特定濃度検出センサS2の検出濃度が所定値以上の場合に作動する報知部材Rとを設けて構成することにより、電気伝導センサ等の簡易な養分濃度センサ2sによって調整タンク2において栽培作物Pの生育に必要な養分と水とを調整することができ、この培養液を栽培棚3、回収タンク4の順に循環することによって作物栽培が継続され、この間において、第二特定濃度検出センサS2により、硫酸ナトリウム等の培養液の吸収阻害成分の生成量を高精度で把握することができ、吸収阻害成分の許容限度を超えた場合の報知部材Rの作動時に、培養液の適正化処理を行うことにより、栽培作物Pの生育に必要な養分が不足した状態で培養液が循環し続けることを防止できるので、高機能センサを要することなく、生育不良や作物の品質の低下が防止される。 Third, in the culture solution circulation type crop cultivation system, the second specific concentration detection sensor S2 that detects the concentration of the second specific component that becomes an absorption inhibitory factor of the cultivated crop P in the recovery tank 4, and the second specific concentration. By providing a notification member R that operates when the detection concentration of the detection sensor S2 is equal to or higher than a predetermined value, it is necessary for the growth of the cultivated crop P in the adjustment tank 2 by a simple nutrient concentration sensor 2s such as an electric conduction sensor. Crop cultivation can be continued by circulating this culture solution in the order of cultivation shelf 3 and recovery tank 4, and during this period, the second specific concentration detection sensor S2 can be used to obtain sodium sulfate, etc. It is possible to grasp the amount of absorption-inhibiting component produced in the culture solution with high accuracy, and when the notification member R operates when the permissible limit of the absorption-inhibiting component is exceeded, the culture solution is optimized for cultivation. Since it is possible to prevent the culture solution from continuing to circulate in a state where the nutrients necessary for the growth of the crop P are insufficient, poor growth and deterioration of the quality of the crop can be prevented without requiring a high-performance sensor.

第四に、回収タンク4の排出口を開閉制御可能な排出弁V2と、この排出弁V2から排出液を受ける廃棄経路と、第一特定濃度検出センサS1または第二特定濃度検出センサS2の一方または両方が所定値以上の濃度を検出した場合に、排出弁V2を排出制御する制御装置Cとを設けることにより、培養液中の第一特定成分または第二特定成分の一方または両方が所定濃度以上になると培養液を回収タンク4から溶液を排出して、循環に適さない培養液を使用し続けることを防止できるので、生育不良や作物の品質の低下が防止され、また、所定期間循環した古い培養液を自動的に排出することにより、作業者が培養液の交換作業を行う必要がなくなるので、作業者の労力が軽減されると共に、システム運用の省力化が図られる。 Fourth, one of a discharge valve V2 capable of opening and closing the discharge port of the recovery tank 4, a disposal route for receiving the discharge liquid from the discharge valve V2, and a first specific concentration detection sensor S1 or a second specific concentration detection sensor S2. Alternatively, by providing a control device C that controls discharge of the discharge valve V2 when both detect a concentration of a predetermined value or higher, one or both of the first specific component or the second specific component in the culture solution has a predetermined concentration. In the above case, the culture solution can be discharged from the recovery tank 4 to prevent the culture solution unsuitable for circulation from being used continuously, so that poor growth and deterioration of the quality of the crop can be prevented, and the culture solution is circulated for a predetermined period. By automatically discharging the old culture solution, it is not necessary for the worker to replace the culture solution, so that the labor of the worker can be reduced and the system operation can be saved.

第五に、調整タンク2に給水制御可能な給水装置2bと、回収タンク4の培養排液B中の養分を検出する第二養分濃度センサ4sとを設け、この第二養分濃度センサ4sの検出値と対応して定めた基準濃度に給水装置2bの給水量を調節して回収タンク4の培養排液Bを再利用する構成により、回収タンク4内の培養液の養分濃度に応じて調整タンク2内の培養液の養分濃度を調整し、回収タンク4の培養排液を混ぜることで作物の生育に適した養分濃度にすることができるので、養分過多による生育不良や品質の低下が防止される。 Fifth, the adjusting tank 2 is provided with a water supply device 2b capable of controlling water supply and a second nutrient concentration sensor 4s for detecting nutrients in the culture drainage B of the recovery tank 4, and the detection of the second nutrient concentration sensor 4s. By adjusting the water supply amount of the water supply device 2b to the reference concentration determined in correspondence with the value and reusing the culture drainage B of the recovery tank 4, the adjustment tank is adjusted according to the nutrient concentration of the culture solution in the recovery tank 4. By adjusting the nutrient concentration of the culture solution in 2 and mixing the culture drainage of the recovery tank 4, the nutrient concentration suitable for the growth of the crop can be obtained, so that poor growth and deterioration of quality due to excessive nutrients can be prevented. To.

2 調整タンク
2b 給水装置
2s 養分濃度センサ
3 栽培棚
4 回収タンク
4s 第二養分濃度センサ
5 サンプリングタンク
A 培養液
B 培養排液
C 機器制御装置
P 栽培作物
R 報知部材
S1 第一特定濃度検出センサ
S2 第二特定濃度検出センサ
T 試薬供給装置
V2 排出弁
2 Adjustment tank 2b Water supply device 2s Nutrient concentration sensor 3 Cultivation shelf 4 Recovery tank 4s Second nutrient concentration sensor 5 Sampling tank A Culture solution B Culture drainage C Equipment control device P Cultivated crop R Notification member S1 First specific concentration detection sensor S2 Second specific concentration detection sensor T reagent supply device V2 discharge valve

Claims (2)

養分濃度センサ(2s)を備えて水と養分とによる培養液(A)を所定の基準濃度に調整可能な調整タンク(2)と、この調整タンク(2)から前記培養液(A)を受けて栽培作物(P)に供給する栽培棚(3)と、この栽培棚(3)の培養排液(B)を回収する回収タンク(4)とを備えて前記調整タンク(2)で再利用可能に培養液を循環する養液栽培システムにおいて、
前記栽培作物(P)の生育阻害成分であって養分として検知される第一特定成分と反応する識別試薬を溶液中に供給する試薬供給装置(T)と、前記識別試薬の反応結果に基づいて前記第一特定成分の濃度を検出する第一特定濃度検出センサ(S1)と、この第一特定濃度検出センサ(S1)の検出濃度が所定値以上の場合に作動する報知部材(R)とを備え、
前記回収タンク(4)から前記培養排液(B)を受け、また、廃棄経路に至る排出弁(V2)を備えるサンプリングタンク(5)と、機器制御装置(C)とを設け、前記試薬供給装置(T)と前記第一特定濃度検出センサ(S1)とを前記サンプリングタンク(5)に配置し、このサンプリングタンク(5)に一定期間ごとに前記培養排液(B)を受けて前記試薬供給装置(T)と前記第一特定濃度検出センサ(S1)とを作動させた後に前記廃棄経路に排出制御することを特徴とする養液栽培システム。
An adjustment tank (2) equipped with a nutrient concentration sensor (2s) and capable of adjusting the culture solution (A) containing water and nutrients to a predetermined reference concentration, and the culture solution (A) received from the adjustment tank (2). A cultivation shelf (3) for supplying the cultivated crop (P) and a recovery tank (4) for collecting the culture effluent (B) of the cultivation shelf (3) are provided and reused in the adjustment tank (2). In a nutrient solution cultivation system that circulates the culture solution as much as possible,
Based on the reagent supply device (T) that supplies the identification reagent that reacts with the first specific component detected as nutrient, which is a growth inhibitory component of the cultivated crop (P), into the solution, and the reaction result of the identification reagent. The first specific concentration detection sensor (S1) that detects the concentration of the first specific component and the notification member (R) that operates when the detection concentration of the first specific concentration detection sensor (S1) is equal to or higher than a predetermined value. Prepare,
A sampling tank (5) provided with a drain valve (V2) that receives the culture drainage (B) from the recovery tank (4) and reaches a disposal route, and an equipment control device (C) are provided to supply the reagent. The apparatus (T) and the first specific concentration detection sensor (S1) are arranged in the sampling tank (5), and the culture effluent (B) is received in the sampling tank (5) at regular intervals to receive the reagent. hydroponic system that is characterized in that discharge control in the waste path after actuation of the supply device (T) and the first specific concentration detecting sensor (S1).
前記調整タンク(2)に給水制御可能な給水装置(2b)と、前記回収タンク(4)の培養排液(B)中の養分を検出する第二養分濃度センサ(4s)とを設け、この第二養分濃度センサ(4s)の検出値と対応して定めた基準濃度に前記給水装置(2b)の給水量を調節して前記回収タンク(4)の培養排液(B)を再利用することを特徴とする請求項1に記載の養液栽培システム。 The adjusting tank (2) is provided with a water supply device (2b) capable of controlling water supply and a second nutrient concentration sensor (4s) for detecting nutrients in the culture drainage (B) of the recovery tank (4). The water supply amount of the water supply device (2b) is adjusted to the reference concentration determined in correspondence with the detection value of the second nutrient concentration sensor (4s), and the culture drainage (B) of the recovery tank (4) is reused. The hydroponic cultivation system according to claim 1, wherein the hydroponic cultivation system is characterized.
JP2016207840A 2016-10-24 2016-10-24 Hydroponic cultivation system Active JP6853497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016207840A JP6853497B2 (en) 2016-10-24 2016-10-24 Hydroponic cultivation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016207840A JP6853497B2 (en) 2016-10-24 2016-10-24 Hydroponic cultivation system

Publications (2)

Publication Number Publication Date
JP2018068125A JP2018068125A (en) 2018-05-10
JP6853497B2 true JP6853497B2 (en) 2021-03-31

Family

ID=62111344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016207840A Active JP6853497B2 (en) 2016-10-24 2016-10-24 Hydroponic cultivation system

Country Status (1)

Country Link
JP (1) JP6853497B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306209B2 (en) * 2019-10-11 2023-07-11 ウシオ電機株式会社 Measuring device, measuring method and in-facility hydroponic cultivation device
CN112889658A (en) * 2021-01-12 2021-06-04 昆明学院 Golden camellia cultivation device and cultivation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121894B2 (en) * 1974-06-11 1976-07-06
JPH02308731A (en) * 1989-05-22 1990-12-21 Toshiba Corp Nutritive solution culture device
JP2596831B2 (en) * 1989-06-14 1997-04-02 ヤンマーディーゼル株式会社 Nutrient control system for hydroponics
JPH0440835A (en) * 1990-06-07 1992-02-12 Toshiba Corp Nutriculture system
JP3367294B2 (en) * 1995-08-29 2003-01-14 井関農機株式会社 Hydroponic cultivation method
JP2003164880A (en) * 2001-11-30 2003-06-10 Sanyo Electric Co Ltd Water treatment method, water treatment plant and hydroponic system using the same
JP2006045088A (en) * 2004-08-02 2006-02-16 Idemitsu Kosan Co Ltd Removing agent of plant growth-inhibiting substance, and removing method for plant growth-inhibiting substance in culture solution
JP2011078332A (en) * 2009-10-05 2011-04-21 Nippon Rensui Co Ltd Device for collecting discharged culture solution, method for collecting discharged culture solution and hydroponic device
JP2016106579A (en) * 2014-12-08 2016-06-20 トヨタ自動車株式会社 Nutrient liquid cultivation apparatus

Also Published As

Publication number Publication date
JP2018068125A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
KR101953620B1 (en) Multiplex controller for recycle supplying systems of nutrient solution of cultivation under structure
Stanghellini Environmental control of greenhouse crop transpiration
JP6350726B2 (en) Mobile work vehicle
JP7157940B2 (en) Management control device and management control method for plant cultivation facility
JP6460161B2 (en) Mobile vehicle for cultivation facilities
JP6306384B2 (en) Method for controlling irrigation supply in plant cultivation and controller thereof
JP6853497B2 (en) Hydroponic cultivation system
CN115334874B (en) Temperature control method, temperature control device, temperature control program, and temperature control system
CN117331392B (en) Environment management system for intelligent greenhouse
JP2019017396A (en) Harvesting system of fruit
JP6045480B2 (en) Watering method and apparatus in hydroponics
JP6657777B2 (en) Cultivation facility
Zhou et al. Multi-objective environment chamber system for studying plant responses to climate change
JP6439294B2 (en) Cultivation facility
KR102609912B1 (en) Integrated Control System for Nutriculture
JP6428752B2 (en) Cultivation facility
JP6737130B2 (en) Plant cultivation equipment
CN105242726A (en) Intelligent greenhouse monitoring system and method
JP2016010374A5 (en)
JP6435664B2 (en) Nutrient solution supply device
JP6056779B2 (en) Cultivation facility
KR102493230B1 (en) System for supplying nutrient solution
JP6897522B2 (en) Plant cultivation equipment
CN115968692B (en) Greenhouse structure with automatic sun shading function and control method thereof
JP2019017395A (en) Cultivation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210223

R150 Certificate of patent or registration of utility model

Ref document number: 6853497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150