JP6897522B2 - Plant cultivation equipment - Google Patents

Plant cultivation equipment Download PDF

Info

Publication number
JP6897522B2
JP6897522B2 JP2017228092A JP2017228092A JP6897522B2 JP 6897522 B2 JP6897522 B2 JP 6897522B2 JP 2017228092 A JP2017228092 A JP 2017228092A JP 2017228092 A JP2017228092 A JP 2017228092A JP 6897522 B2 JP6897522 B2 JP 6897522B2
Authority
JP
Japan
Prior art keywords
nutrient solution
humidity
plant
covering body
transpiration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017228092A
Other languages
Japanese (ja)
Other versions
JP2019097395A (en
Inventor
多田 誠人
誠人 多田
次郎 中田
次郎 中田
達也 手塚
達也 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2017228092A priority Critical patent/JP6897522B2/en
Publication of JP2019097395A publication Critical patent/JP2019097395A/en
Application granted granted Critical
Publication of JP6897522B2 publication Critical patent/JP6897522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydroponics (AREA)

Description

本発明は、養液で植物を栽培するハウス型の植物栽培設備に関する。 The present invention relates to a house-type plant cultivation facility for cultivating plants with a nutrient solution.

特許文献1には、植物の栽培地における温度、湿度、CO2濃度および日照量のうち、少なくとも1つを測定する生育条件測定装置と、植物の緑葉を測定対象物としてその測定対象物の光に対する分光特性を測定する分光測定装置と、生育条件測定装置による測定結果と分光測定装置の測定結果とを集中管理し、これら各測定結果を関連付けて植物に対する最適な潅水量を算出する集中管理装置とを備える生育管理システムが記載されている。 Patent Document 1 describes a growth condition measuring device that measures at least one of temperature, humidity, CO2 concentration, and the amount of sunshine in a plant cultivated area, and a green leaf of the plant as a measuring object with respect to the light of the measuring object. A spectroscopic measuring device that measures spectral characteristics, a centralized management device that centrally manages the measurement results of the growth condition measuring device and the measurement results of the spectroscopic measuring device, and associates these measurement results to calculate the optimum irrigation amount for plants. A growth management system is described.

特許文献2には、ハウス内のCO2濃度に基づく灌水制御が記載されている。 Patent Document 2 describes irrigation control based on the CO2 concentration in the house.

特許文献3には、日射量を検出するセンサと潅水装置を作動する手段をコントローラに接続し、コントローラにて前記センサからの値を積算して演算し、積算日射量が設定値以上になった時に潅水装置を起動する技術が開示されている。 In Patent Document 3, a sensor for detecting the amount of solar radiation and a means for operating the irrigation device are connected to the controller, and the controller integrates and calculates the value from the sensor, and the integrated amount of solar radiation exceeds the set value. Techniques for activating irrigation equipment from time to time are disclosed.

特開2012−187074号公報Japanese Unexamined Patent Publication No. 2012-187074 特開2016−154448号公報Japanese Unexamined Patent Publication No. 2016-154448 特開平6−189639号公報Japanese Unexamined Patent Publication No. 6-189639

特許文献1においては、「測定した湿度(実線部)が、その月の過去の湿度の変動(点線部)から規定した許容範囲から一定期間連続で逸脱したら(実線部の○印)、果実の生育具合を測定するよう警告を促してもよい。」との記載があるが、湿度に基づく具体的な制御については記載されていない。 In Patent Document 1, "when the measured humidity (solid line part) deviates continuously for a certain period from the allowable range specified from the past humidity fluctuation (dotted line part) of the month (○ mark in the solid line part), the fruit A warning may be urged to measure the growth condition. "However, there is no description about specific control based on humidity.

特許文献2においては、CO2の濃度を検出するには、センサを植物に接近させる必要があり、センサの配置が難しい。 In Patent Document 2, in order to detect the concentration of CO2, it is necessary to bring the sensor close to the plant, and it is difficult to arrange the sensor.

特許文献3においては、日射量を検出するセンサは高価になる。 In Patent Document 3, the sensor for detecting the amount of solar radiation becomes expensive.

本発明は、適切な養液の供給を行うことができる植物栽培設備を提供することを課題とする。 An object of the present invention is to provide a plant cultivation facility capable of supplying an appropriate nutrient solution.

かかる課題を解決するために、
請求項1記載の発明は、
ハウス(H)内に培地(2)に養液を供給して植物を栽培する植物栽培設備において、
ハウス(H)内の湿度を測定する湿度センサ(22)を設け、
湿度センサ(22)で測定した単位時間当たりの湿度の変化から蒸散量を演算する蒸散量演算手段を設け、
蒸散量演算手段から養液を供給する養液供給手段の駆動のタイミングを決定する養液供給決定手段を設け、
植物(K)の周囲を軟性の樹脂製の覆い体(20)で覆い、覆い体(20)の上部を開閉装置(21)で開閉可能とし、覆い体(20)の内部には湿度センサ(22)を設け、覆い体(20)を閉状態で単位時間における湿度の変化を測定し、設定以上の湿度の上昇を測定すると、混合タンク(4)内の養液の供給を開始し、次いで、覆い体(20)を開閉装置(21)で開状態として覆い体(20)内部の湿気を排出し、該開状態にしてから設定時間経過後に開閉装置(21)で覆い体(20)を閉状態として覆い体(20)内の湿度を測定することを複数回繰り返すものであって、
夜間に湿度センサ(22)で複数回測定してその平均湿度を測定し、平均湿度が高くなるほど、養液供給手段による供給開始の時刻を遅くする制御を行うことを特徴とする植物栽培設備とする。
To solve this problem
The invention according to claim 1
In a plant cultivation facility for cultivating plants by supplying a nutrient solution to the medium (2 ) in the house (H).
A humidity sensor (22) for measuring the humidity inside the house (H) is provided.
A transpiration amount calculation means for calculating the transpiration amount from the change in humidity per unit time measured by the humidity sensor (22) is provided.
Provided is provided with a nutrient solution supply determining means for determining the drive timing of the nutrient solution supply means for supplying the nutrient solution from the transpiration amount calculation means.
The circumference of the plant (K) is covered with a soft resin covering body (20), the upper part of the covering body (20) can be opened and closed by an opening / closing device (21), and a humidity sensor (20) is inside the covering body (20). 22) is provided, the change in humidity in a unit time is measured with the covering body (20) closed, and when the increase in humidity above the set value is measured, the supply of the nutrient solution in the mixing tank (4) is started, and then the supply of the nutrient solution is started. The cover body (20) is opened by the opening / closing device (21) to discharge the moisture inside the covering body (20), and after a lapse of a set time has passed since the covering body (20) was opened, the covering body (20) is opened by the opening / closing device (21). The measurement of the humidity inside the covering body (20) in the closed state is repeated a plurality of times.
A plant cultivation facility characterized in that the humidity sensor (22) is used to measure the average humidity a plurality of times at night, and the higher the average humidity is, the later the supply start time is controlled by the nutrient solution supply means. To do.

請求項2記載の発明は、
植物の大きさを撮像する撮像手段を設け、
該撮像手段で撮像された植物の大きさから、当該植物の蒸散能力を演算する蒸散能力演算手段を設け、
蒸散量演算手段で演算された蒸散量と、蒸散能力を比較して養液供給手段の駆動のタイミングを決定することを特徴とする請求項1記載の植物栽培設備とする。
The invention according to claim 2
Provided an imaging means to image the size of the plant,
A transpiration capacity calculation means for calculating the transpiration capacity of the plant from the size of the plant imaged by the imaging means is provided.
The plant cultivation facility according to claim 1, wherein the timing of driving the nutrient solution supply means is determined by comparing the transpiration amount calculated by the transpiration amount calculation means with the transpiration capacity.

これにより、植物の生長に応じた養液の供給ができる As a result, the nutrient solution can be supplied according to the growth of the plant .

本発明により、適切な養液の供給を行うことができる植物栽培設備を提供することができる。
また、夜間の湿度が高い場合には、植物Kの果実jが結露し易く、そのような状態で養液の供給を行うと果実jが割れる等の不具合が出やすくなる。そのため、養液の供給の開始時刻を遅らせることでこれを防止することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a plant cultivation facility capable of supplying an appropriate nutrient solution.
Further, when the humidity at night is high, the fruit j of the plant K is liable to condense, and if the nutrient solution is supplied in such a state, the fruit j is liable to crack. Therefore, this can be prevented by delaying the start time of the supply of the nutrient solution.

植物栽培設備のシステムを示す図Diagram showing the system of plant cultivation equipment ハウス内を説明する図Diagram explaining the inside of the house 制御ブロック図Control block diagram 植物の蒸散を演算するための状態を示す図Diagram showing the state for calculating the transpiration of plants 植物の蒸散を演算するための状態を示す図Diagram showing the state for calculating the transpiration of plants 湿度に対応して養液の供給開始時刻を変更することを示す図The figure which shows that the supply start time of a nutrient solution is changed according to the humidity. 室温に対応して養液の供給量を補正することを示す図The figure which shows that the supply amount of a nutrient solution is corrected corresponding to room temperature. 湿度に対応して養液の供給量を補正することを示す図The figure which shows that the supply amount of a nutrient solution is corrected according to the humidity. 日射量に対応して養液の供給量を補正することを示す図The figure which shows that the supply amount of nutrient solution is corrected according to the amount of solar radiation.

本発明の実施の形態の植物栽培設備について、以下説明する。 The plant cultivation equipment of the embodiment of the present invention will be described below.

ハウスH内に複数の栽培用のベッド1を複数状並列して備える。 A plurality of beds 1 for cultivation are provided in parallel in the house H.

各ベッド1にはそれぞれ植物Kを植える培地2と、養液を培地2に供給する養液供給管7と、培地2から漏下する養液の排液を受けて排出する排液案内体8を備える。植物Kはワイヤー29で吊り下げられる誘引紐30に沿って生長する構成である。 Each bed 1 has a medium 2 for planting plant K, a nutrient solution supply pipe 7 for supplying the nutrient solution to the medium 2, and a drainage guide 8 for receiving and discharging the drainage of the nutrient solution leaking from the medium 2. To be equipped with. Plant K has a structure in which it grows along an attracting string 30 suspended by a wire 29.

次に養液を培地2に供給する構成と培地2からの排液を処理する構成について説明する。 Next, a configuration for supplying the nutrient solution to the medium 2 and a configuration for treating the drainage from the medium 2 will be described.

複数の肥料原液タンク3内の肥料原液を混合タンク4に肥料原液供給ポンプ5で供給されて混合されて養液となる。混合タンク4から養液を養液供給ポンプ6で各ベッド1の養液供給管7に供給され、養液供給管7から培地2に供給される。培地2から漏下した養液は、排液として排液案内体8を経てベッド1から排出される。 The fertilizer stock solution in the plurality of fertilizer stock solution tanks 3 is supplied to the mixing tank 4 by the fertilizer stock solution supply pump 5 and mixed to form a nutrient solution. The nutrient solution is supplied from the mixing tank 4 to the nutrient solution supply pipe 7 of each bed 1 by the nutrient solution supply pump 6, and is supplied to the medium 2 from the nutrient solution supply pipe 7. The nutrient solution leaked from the medium 2 is discharged from the bed 1 as a drainage solution through the drainage guide body 8.

次に原水を電解装置9で電解して生成する電解酸性水と電解水素水の利用について説明する。原水タンク10内に収容する原水を電解装置9で電解して酸性の電解酸性水とアルカリ性の電解水素水を生成し、電解酸性水タンク11と電解水素水タンク12にそれぞれ収容する。電解酸性水と電解水素水はそれぞれポンプで混合タンク4に供給されて肥料原液と混合して養液となる。その際、電解酸性水と電解水素水それぞれの供給量を適宜調節して養液のペーハ(pH)を調整する。 Next, the use of electrolyzed acidic water and electrolyzed hydrogen water generated by electrolyzing raw water with the electrolyzer 9 will be described. The raw water contained in the raw water tank 10 is electrolyzed by the electrolyzer 9 to generate acidic electrolytic acidic water and alkaline electrolytic hydrogen water, which are then stored in the electrolytic acidic water tank 11 and the electrolytic hydrogen water tank 12, respectively. The electrolyzed acidic water and the electrolyzed hydrogen water are each supplied to the mixing tank 4 by a pump and mixed with the fertilizer stock solution to form a nutrient solution. At that time, the pH of the nutrient solution is adjusted by appropriately adjusting the supply amounts of the electrolyzed acidic water and the electrolyzed hydrogen water.

従来、養液のpH調整は酸性の場合には硝酸を利用し、アルカリ性の場合には苛性カリを使用していたが、いずれも劇物であり、取扱いに注意を要していた。本実施の形態で電解水を利用することで、安全性の向上を図ると共に、コストを下げることができる。 Conventionally, nitric acid was used to adjust the pH of the nutrient solution when it was acidic, and caustic potash was used when it was alkaline, but both are deleterious substances and care must be taken when handling them. By using electrolyzed water in this embodiment, safety can be improved and costs can be reduced.

また、原水として井戸水や水道水を利用する場合には、電解酸性水でpHを調整し、原水として雨水(酸性水)を利用するときには、電解水素水でpHを調節することでpHを良好に調整した養液を生成することができる。 When using well water or tap water as raw water, adjust the pH with electrolytic acidic water, and when using rainwater (acidic water) as raw water, adjust the pH with electrolytic hydrogen water to improve the pH. A prepared nutrient solution can be produced.

また、電解酸性水を混合タンク4又は排液案内体8への供給を切り換える電解酸性水切換弁13を設け、電解酸性水を定期的に排液案内体8に供給可能に構成することで、排液案内体8に付着するアオコ等の不純物を除去したり、病原菌を殺菌することがすることができる。電解酸性水を排液案内体8に供給するタイミングは、栽培開始前で養液を供給していないときに電解酸性水を供給しても良いし、養液を供給しながら電解酸性水を供給しても良い。 Further, by providing an electrolytic acid water switching valve 13 for switching the supply of the electrolytic acidic water to the mixing tank 4 or the drainage guide body 8, the electrolytic acidic water can be periodically supplied to the drainage guide body 8. Impurities such as blue-green algae adhering to the drainage guide 8 can be removed, and pathogenic bacteria can be sterilized. As for the timing of supplying the electrolytic acid water to the drainage guide 8, the electrolytic acidic water may be supplied when the nutrient solution is not supplied before the start of cultivation, or the electrolytic acid water is supplied while supplying the nutrient solution. You may.

また、電解水素水を混合タンク4又は薬液タンク14への供給を切り換える電解水素水切換弁15を設け、電解水素水を薬液タンク14に収容可能とする。薬液タンク14には液体の農薬を収容するか、電解水素水を収容する場合がある。薬液タンク14から薬液ポンプでベッド1の上方に設ける噴霧装置16に薬液又は電解水素水を供給して植物に噴霧して殺菌することができる。薬液は主として害虫の除去用であり、電解水素水は主として細菌の殺菌として用いる。すなわち、薬液タンク14から噴霧装置16に供給するルートを利用して薬液又は電解水素水の双方を供給可能にしたものである。 Further, an electrolytic hydrogen water switching valve 15 for switching the supply of the electrolytic hydrogen water to the mixing tank 4 or the chemical liquid tank 14 is provided so that the electrolytic hydrogen water can be accommodated in the chemical liquid tank 14. The chemical tank 14 may contain liquid pesticides or electrolyzed hydrogen water. A chemical solution or electrolytic hydrogen water can be supplied from the chemical solution tank 14 to a spray device 16 provided above the bed 1 with a chemical solution pump to spray the plants for sterilization. The chemical solution is mainly used for removing pests, and the electrolyzed hydrogen water is mainly used for sterilizing bacteria. That is, both the chemical solution and the electrolytic hydrogen water can be supplied by using the route supplied from the chemical solution tank 14 to the spraying device 16.

次に、排液を殺菌する構成について説明する。 Next, the configuration for sterilizing the drainage liquid will be described.

排液案内体8から排出された排液は排液回収タンク17に収容される。排液回収タンク17の排液は殺菌装置18に供給されて殺菌され、混合タンク4に供給されて養液として再利用される。混合タンク4に残った養液を、養液回収通路のドレン用の電磁弁19を開けて排液回収タンク17に戻して再利用することができる。 The drainage discharged from the drainage guide body 8 is stored in the drainage collection tank 17. The drainage from the drainage recovery tank 17 is supplied to the sterilizer 18 to be sterilized, and is supplied to the mixing tank 4 to be reused as a nutrient solution. The nutrient solution remaining in the mixing tank 4 can be reused by opening the solenoid valve 19 for draining the nutrient solution recovery passage and returning it to the drainage recovery tank 17.

混合タンク4に養液を長期間収容すると細菌等が発生する場合があるが、排液回収タンク17から殺菌装置18で再度殺菌することで安全性を向上させる。 Bacteria and the like may be generated when the nutrient solution is stored in the mixing tank 4 for a long period of time, but safety is improved by sterilizing the drainage recovery tank 17 again with the sterilizer 18.

次に、養液を供給するタイミングについて説明する。 Next, the timing of supplying the nutrient solution will be described.

図4に示すように、植物Kの周囲を軟性の樹脂製の覆い体20で覆う。覆い体20の一部は開閉装置21で開閉自在に構成する。本実施の形態では覆い体20の上部を開閉する。覆い体20の内部には湿度センサ22を設け、覆い体20内の湿度を測定可能に構成する。そして、覆い体20を閉状態で単位時間における湿度の変化を測定し、設定以上の湿度の上昇を測定すると、混合タンク4内の養液を養液供給管7へ供給を開始する。そして、覆い体20を開閉装置21で開状態とし、覆い体20内部の湿気を排出する。開状態にしてから設定時間経過後に開閉装置21で覆い体20を閉状態として覆い体20内の湿度を測定することを繰り返す。すなわち、単位時間当たりの覆い体20内の湿度の上昇から植物Kの蒸散量を演算し、設定量以上の蒸散量を演算すると養液の供給を開始し、設定量の養液を供給する。 As shown in FIG. 4, the circumference of the plant K is covered with a covering body 20 made of a soft resin. A part of the covering body 20 is configured to be openable and closable by a switchgear 21. In the present embodiment, the upper part of the covering body 20 is opened and closed. A humidity sensor 22 is provided inside the covering body 20 so that the humidity inside the covering body 20 can be measured. Then, when the change in humidity in a unit time is measured with the covering body 20 closed and the increase in humidity above the set value is measured, the nutrient solution in the mixing tank 4 is started to be supplied to the nutrient solution supply pipe 7. Then, the cover body 20 is opened by the opening / closing device 21, and the moisture inside the cover body 20 is discharged. After a lapse of a set time from the open state, the cover 20 is closed by the opening / closing device 21 and the humidity inside the cover 20 is repeatedly measured. That is, the amount of transpiration of plant K is calculated from the increase in humidity in the covering body 20 per unit time, and when the amount of transpiration equal to or greater than the set amount is calculated, the supply of nutrient solution is started and the set amount of nutrient solution is supplied.

従来の、排液量を検出するセンサで植物Kの蒸散の状態を判定して養液の供給(灌水)のタイミングを制御する公知の技術では、蒸散の状態を直接判定できなかった。本実施の形態により、植物Kの蒸散状態を直接判定して養液の供給のタイミングを適切にすることができる。また、湿度センサ22で行えるため、安価に構成することができる。 Conventional known techniques for controlling the timing of supply (irrigation) of nutrient solution by determining the transpiration state of plant K with a sensor that detects the amount of drainage cannot directly determine the transpiration state. According to this embodiment, the transpiration state of the plant K can be directly determined and the timing of supplying the nutrient solution can be adjusted appropriately. Further, since it can be performed by the humidity sensor 22, it can be constructed at low cost.

なお、図5に示すように植物Kの大きさを撮像可能なカメラ(撮像手段)23を設け、植物Kの大きさから植物Kの蒸散能力を演算する。そして、湿度センサ22による湿度の上昇により、蒸散量を演算して蒸散能力と比較し、設定以上の蒸散量を検出すると、養液の供給を開始する構成としても良い。この構成によると植物の生長に適した養液量の供給を行うこともできる。 As shown in FIG. 5, a camera (imaging means) 23 capable of capturing the size of the plant K is provided, and the transpiration ability of the plant K is calculated from the size of the plant K. Then, when the humidity rises by the humidity sensor 22, the transpiration amount is calculated and compared with the transpiration capacity, and when the transpiration amount equal to or greater than the set value is detected, the supply of the nutrient solution may be started. According to this configuration, it is possible to supply a nutrient solution amount suitable for the growth of the plant.

カメラ23で植物の大きさを撮像する構成については、外気温度センサ24とハウスH内の室温を測定する室温センサ25との値の差から植物の蒸散量を演算して養液の供給のタイミング及び供給する養液量を決定しても良い。 Regarding the configuration in which the size of the plant is imaged by the camera 23, the amount of evapotranspiration of the plant is calculated from the difference between the values of the outside air temperature sensor 24 and the room temperature sensor 25 that measures the room temperature in the house H, and the timing of supplying the nutrient solution. And the amount of nutrient solution to be supplied may be determined.

養液の供給の開始時刻について説明する。 The start time of the supply of the nutrient solution will be described.

夜間に湿度センサ22で複数回測定してその平均湿度を測定する。そして、図6に示すように、平均湿度に応じて養液の供給開始時刻を変更するように制御する。平均湿度が高くなるほど、給液の開始時刻を遅くする制御を行う。夜間の湿度が高い場合には、植物Kの果実jが結露し易く、そのような状態で養液の供給を行うと果実jが割れる等の不具合が出やすくなる。そのため、養液の供給の開始時刻を遅らせることでこれを防止することができる。 The humidity sensor 22 measures the humidity a plurality of times at night to measure the average humidity. Then, as shown in FIG. 6, it is controlled to change the supply start time of the nutrient solution according to the average humidity. The higher the average humidity, the later the start time of the liquid supply is controlled. When the humidity at night is high, the fruit j of the plant K is likely to condense, and if the nutrient solution is supplied in such a state, problems such as cracking of the fruit j are likely to occur. Therefore, this can be prevented by delaying the start time of the supply of the nutrient solution.

図7は、室温センサ25で測定した室温に応じて養液の供給量を補正する内容について記載している。 FIG. 7 describes the content of correcting the supply amount of the nutrient solution according to the room temperature measured by the room temperature sensor 25.

室温が高くなるほど供給する養液量が多くなるように補正している。すなわち、室温が高い程、植物Kの蒸散量が多くなる傾向があるので、それに対応するようにする。 It is corrected so that the amount of nutrient solution supplied increases as the room temperature rises. That is, the higher the room temperature, the larger the amount of transpiration of plant K tends to be.

図8は、湿度センサ22で測定した湿度に応じて養液の供給量を補正する内容について記載している。すなわち、湿度が高い程、供給する養液量を少なくする。 FIG. 8 describes the content of correcting the supply amount of the nutrient solution according to the humidity measured by the humidity sensor 22. That is, the higher the humidity, the smaller the amount of nutrient solution to be supplied.

図9は、日射センサ26で検出する日射量に応じて養液の供給量を補正する内容について記載している。すなわち、日射量が多い程、養液の供給量が多くする。 FIG. 9 describes the content of correcting the supply amount of the nutrient solution according to the amount of solar radiation detected by the solar radiation sensor 26. That is, the larger the amount of solar radiation, the larger the supply amount of nutrient solution.

室温や湿度や日射量に基づく養液の供給量の補正は、前述の湿度の上昇に基づく養液の供給開始のタイミングを変更する制御に加えることができる。また、季節に応じて養液の供給量の補正の条件を変更することができる。例えば、夏には日射量に基づく補正を優先して行い、冬場には室温に基づく補正を優先して行い、秋と春には湿度に基づく補正を優先して行う。 The correction of the supply amount of the nutrient solution based on the room temperature, humidity and the amount of solar radiation can be added to the control for changing the timing of starting the supply of the nutrient solution based on the increase in humidity described above. In addition, the conditions for correcting the supply amount of nutrient solution can be changed according to the season. For example, in the summer, the correction based on the amount of solar radiation is given priority, in the winter, the correction based on the room temperature is given priority, and in the autumn and spring, the correction based on the humidity is given priority.

また、植物Kに青色LEDを照射して植物の光合成を促進させてクロロフィル蛍光をカメラ23で撮像し、該撮像結果から光合成の活性度と蒸散量を演算して養液量や養液の供給開始のタイミングを制御する構成でも良い。 Further, the plant K is irradiated with a blue LED to promote the photosynthesis of the plant, the chlorophyll fluorescence is imaged by the camera 23, the activity of photosynthesis and the amount of transpiration are calculated from the imaging result, and the amount of nutrient solution and the amount of nutrient solution are supplied. It may be configured to control the start timing.

本実施の形態の植物栽培設備は図3に示すように制御部Sで制御される。すなわち、蒸散量の演算や養液の供給量や養液の供給の開始等のタイミング等を制御部Sで制御するものである。 The plant cultivation equipment of the present embodiment is controlled by the control unit S as shown in FIG. That is, the control unit S controls the calculation of the transpiration amount, the supply amount of the nutrient solution, the timing of starting the supply of the nutrient solution, and the like.

本実施の形態の果実は主としてトマトを想定しているが、その他の果実でも応用できる。 The fruit of this embodiment is mainly assumed to be tomato, but other fruits can also be applied.

H ハウス内
S 制御部
2 培地
6 養液供給ポンプ(養液供給手段)
20 覆い体
22 湿度センサ
23 カメラ(撮像手段)
H House S Control unit 2 Medium 6 Nutrient solution supply pump (nutrient solution supply means)
20 Cover 22 Humidity sensor 23 Camera (imaging means)

Claims (2)

ハウス(H)内に培地(2)に養液を供給して植物を栽培する植物栽培設備において、
ハウス(H)内の湿度を測定する湿度センサ(22)を設け、
湿度センサ(22)で測定した単位時間当たりの湿度の変化から蒸散量を演算する蒸散量演算手段を設け、
蒸散量演算手段から養液を供給する養液供給手段の駆動のタイミングを決定する養液供給決定手段を設け、
植物(K)の周囲を軟性の樹脂製の覆い体(20)で覆い、覆い体(20)の上部を開閉装置(21)で開閉可能とし、覆い体(20)の内部には湿度センサ(22)を設け、覆い体(20)を閉状態で単位時間における湿度の変化を測定し、設定以上の湿度の上昇を測定すると、混合タンク(4)内の養液の供給を開始し、次いで、覆い体(20)を開閉装置(21)で開状態として覆い体(20)内部の湿気を排出し、該開状態にしてから設定時間経過後に開閉装置(21)で覆い体(20)を閉状態として覆い体(20)内の湿度を測定することを複数回繰り返すものであって、
夜間に湿度センサ(22)で複数回測定してその平均湿度を測定し、平均湿度が高くなるほど、養液供給手段による供給開始の時刻を遅くする制御を行うことを特徴とする植物栽培設備。
In a plant cultivation facility for cultivating plants by supplying a nutrient solution to the medium (2 ) in the house (H).
A humidity sensor (22) for measuring the humidity inside the house (H) is provided.
A transpiration amount calculation means for calculating the transpiration amount from the change in humidity per unit time measured by the humidity sensor (22) is provided.
Provided is provided with a nutrient solution supply determining means for determining the drive timing of the nutrient solution supply means for supplying the nutrient solution from the transpiration amount calculation means.
The circumference of the plant (K) is covered with a soft resin covering body (20), the upper part of the covering body (20) can be opened and closed by an opening / closing device (21), and a humidity sensor (20) is inside the covering body (20). 22) is provided, the change in humidity in a unit time is measured with the covering body (20) closed, and when the increase in humidity above the set value is measured, the supply of the nutrient solution in the mixing tank (4) is started, and then the supply of the nutrient solution is started. The cover body (20) is opened by the opening / closing device (21) to discharge the moisture inside the covering body (20), and after a lapse of a set time has passed since the covering body (20) was opened, the covering body (20) is opened by the opening / closing device (21). The measurement of the humidity inside the covering body (20) in the closed state is repeated a plurality of times.
A plant cultivation facility characterized in that the humidity sensor (22) is used to measure the average humidity a plurality of times at night, and the higher the average humidity is, the later the supply start time is controlled by the nutrient solution supply means.
植物の大きさを撮像する撮像手段を設け、
該撮像手段で撮像された植物の大きさから、当該植物の蒸散能力を演算する蒸散能力演算手段を設け、
蒸散量演算手段で演算された蒸散量と、蒸散能力を比較して養液供給手段の駆動のタイミングを決定することを特徴とする請求項1記載の植物栽培設備。
Provided an imaging means to image the size of the plant,
A transpiration capacity calculation means for calculating the transpiration capacity of the plant from the size of the plant imaged by the imaging means is provided.
The plant cultivation facility according to claim 1, wherein the timing of driving the nutrient solution supply means is determined by comparing the transpiration amount calculated by the transpiration amount calculation means with the transpiration capacity.
JP2017228092A 2017-11-28 2017-11-28 Plant cultivation equipment Active JP6897522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017228092A JP6897522B2 (en) 2017-11-28 2017-11-28 Plant cultivation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017228092A JP6897522B2 (en) 2017-11-28 2017-11-28 Plant cultivation equipment

Publications (2)

Publication Number Publication Date
JP2019097395A JP2019097395A (en) 2019-06-24
JP6897522B2 true JP6897522B2 (en) 2021-06-30

Family

ID=66973314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017228092A Active JP6897522B2 (en) 2017-11-28 2017-11-28 Plant cultivation equipment

Country Status (1)

Country Link
JP (1) JP6897522B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554157B (en) * 2019-09-12 2021-08-10 中国农业大学 Device and method for measuring postharvest physiological parameters of fruits and vegetables

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397162B1 (en) * 1999-03-29 2002-05-28 Phytech Ltd. System, device and method for estimating evapo-transpiration in plants
JP2007071758A (en) * 2005-09-08 2007-03-22 Horiba Ltd Evaluation device of photosynthesis or evaluation method of photosynthesis
JP5233204B2 (en) * 2007-08-20 2013-07-10 井関農機株式会社 Plant cultivation control device
US10412901B2 (en) * 2008-10-30 2019-09-17 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. System for selecting plants from among a population of plants
JP5939057B2 (en) * 2012-06-29 2016-06-22 井関農機株式会社 Cultivation facility
JP2014215215A (en) * 2013-04-26 2014-11-17 シャープ株式会社 Transpiration amount detector
JP2015008699A (en) * 2013-07-01 2015-01-19 株式会社日立ソリューションズ Plant measurement processing apparatus, plant measurement processing method, and plant measurement processing program
JP6123621B2 (en) * 2013-10-01 2017-05-10 井関農機株式会社 Cultivation equipment
JP6210384B2 (en) * 2015-03-26 2017-10-11 広島県 Automatic dimming control method and apparatus for tomato cultivation
JP6536190B2 (en) * 2015-06-09 2019-07-03 三菱ケミカルアグリドリーム株式会社 Hydroponic cultivation apparatus and cultivation system
JP5984075B1 (en) * 2016-02-26 2016-09-06 パナソニックIpマネジメント株式会社 Water content observation device, water content observation method and cultivation device

Also Published As

Publication number Publication date
JP2019097395A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US10314251B2 (en) System, apparatus and method for growing marijuana
KR101339204B1 (en) Method for circulating water culture with circulating water culture system
KR101712582B1 (en) recycle supplying systems of nutrient solution of cultivation under structure used ICT
JP5807209B2 (en) Hydroponics equipment
KR20160142599A (en) Control system for supplying nutrient solution using wireless communication
KR101375709B1 (en) Nutrient Solution Circular Supply System
KR102062081B1 (en) Integrated converter for supplying equipment of nutrient solution of cultivation structure
KR102648940B1 (en) Plant cultivation apparatus and condtrol method for the same
US20210298252A1 (en) Nutriculture system
JP6897522B2 (en) Plant cultivation equipment
KR20160026375A (en) Recycling system for nutriculture
KR102232881B1 (en) Drainage water recycling system of recycling process water culture
JP2009044999A (en) Plant cultivation controller
US20200060108A1 (en) Indoor process and system for cultivating and harvesting duckweed
KR20170005796A (en) Cultivation apparatus and cultivation method
JP5219083B2 (en) Method and apparatus for hydroponic wastewater from genetically modified plants
KR100902492B1 (en) Hydroponic Recyclic System Using the Visible Light-reactive Titanium Oxide Photocatalyst for Sterilization and Purification of Nutrient Solution
KR20170083976A (en) Purifying device adopting high-frequency multi rotation magnetic field for water pipe and water tank
KR20160014849A (en) System for supplying nutrient solution
JP6853497B2 (en) Hydroponic cultivation system
JP6737130B2 (en) Plant cultivation equipment
CN107173193A (en) Nutrient solution decontamination system and incubator
JP7059558B2 (en) Tree growth method and tree growth system
JP2017143779A (en) Cultivation system and cultivation method
KR102330228B1 (en) Nutrient solution supply control apparatus for greenhouse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6897522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150