JP6852748B2 - 情報処理方法および情報処理装置 - Google Patents
情報処理方法および情報処理装置 Download PDFInfo
- Publication number
- JP6852748B2 JP6852748B2 JP2019078617A JP2019078617A JP6852748B2 JP 6852748 B2 JP6852748 B2 JP 6852748B2 JP 2019078617 A JP2019078617 A JP 2019078617A JP 2019078617 A JP2019078617 A JP 2019078617A JP 6852748 B2 JP6852748 B2 JP 6852748B2
- Authority
- JP
- Japan
- Prior art keywords
- information
- neural network
- statistical information
- information processing
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/34—Graphical or visual programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/0482—Interaction with lists of selectable items, e.g. menus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/04845—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range for image manipulation, e.g. dragging, rotation, expansion or change of colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
- G06N3/105—Shells for specifying net layout
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3452—Performance evaluation by statistical analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/35—Creation or generation of source code model driven
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/36—Software reuse
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/38—Creation or generation of source code for implementing user interfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/451—Execution arrangements for user interfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/451—Execution arrangements for user interfaces
- G06F9/453—Help systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Human Computer Interaction (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Neurology (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- User Interface Of Digital Computer (AREA)
- Stored Programmes (AREA)
Description
1.背景
1.1.ニューラルネットワークとは
1.2.ビジュアルプログラミングの概要
2.実施形態
2.1.本開示に係るシステム構成例
2.2.本実施形態に係る情報処理端末
2.3.本実施形態に係るサーバ30
2.4.本実施形態に係るフォームの説明
2.5.統計情報の算出に係るリアルタイム性
2.6.ハードウェア上での実行予測情報の算出
2.7.クラウドリソースの見積情報の算出
2.8.統計情報、プロパティ、及び見積情報の連動
2.9.レイヤーに係る比較情報の提示
2.10.ニューラルネットワークに係る実行結果の提示
3.ハードウェア構成例
4.まとめ
<<1.1.ニューラルネットワークとは>>
ニューラルネットワークとは、人間の脳神経回路を模したモデルであり、人間が持つ学習能力をコンピュータ上で実現しようとする技法である。上述したとおり、ニューラルネットワークは学習能力を有することを特徴の一つとする。ニューラルネットワークでは、シナプスの結合によりネットワークを形成した人工ニューロン(ノード)が、学習によりシナプスの結合強度を変化させることで、問題に対する解決能力を獲得することが可能である。すなわち、ニューラルネットワークは、学習を重ねることで、問題に対する解決ルールを自動的に推論することができる。
続いて、本開示に係るビジュアルプログラミングについて、概要を説明する。本開示において、ビジュアルプログラミングとは、ソフトウェア開発において、プログラムコードをテキストで記述することなく、視覚的なオブジェクトを用いて作成する手法を指す。ビジュアルプログラミングでは、例えば、GUI(Graphical User Interface)上で、オブジェクトを操作することで、プログラムを作成することができる。
<<2.1.本開示に係るシステム構成例>>
まず、図2を参照して本開示の実施形態に係る情報処理方法を実施するためのシステム構成例について説明する。図2を参照すると、本実施形態に係る情報処理方法を実施するためのシステムは、情報処理端末10、サーバ30、及びデバイス40を備える。また、情報処理端末10、サーバ30、及びデバイス40は、ネットワーク20を介して、互いに通信が行えるように接続される。
次に、本実施形態に係る情報処理端末10について詳細に説明する。本実施形態に係る情報処理端末10は、ニューラルネットワークのビジュアルプログラミングに係るフォームをユーザに提供する機能を有する。また、情報処理端末10は、作成されるニューラルネットワークに係る統計情報をユーザに提示する機能を有する。ニューラルネットワークに係る統計情報には、ニューラルネットワークにおけるアウトプットユニットの数、処理されるパラメータ数、及び演算種類ごとの演算量などが含まれてよい。また、上述したとおり、統計情報は、コンポーネントやプロパティが変更されたことに基づいて、リアルタイムに算出される情報であってよい。
表示部110は、情報処理端末10の各構成により制御される情報を表示する機能を有する。本実施形態においては、特に、ニューラルネットワークのビジュアルプログラミングを行うためのフォームを表示する機能を有してよい。上記の機能は、例えば、CRT(Cathode Ray Tube)ディスプレイ装置、液晶ディスプレイ(LCD:Liquid Crystal Display)装置、OLED(Organic Light Emitting Diode)装置により実現されてもよい。また、表示部110は、ユーザからの情報入力を受け付ける入力部としての機能を有してもよい。入力部としての機能は、例えば、タッチパネルにより実現され得る。
入力部120は、ユーザからの情報入力を受け付け、情報処理端末10の各構成に入力情報を引き渡す機能を有する。本実施形態においては、特に、ビジュアルプログラミングに係るフォーム上におけるユーザの操作を受け付け、当該操作に基づく入力情報を後述するフォーム制御部130に引き渡す機能を有してよい。上記の機能は、例えば、キーボードやマウスにより実現されてもよい。
フォーム制御部130は、ニューラルネットワークのビジュアルプログラミングに係るフォームを制御する機能を有する。具体的には、フォーム制御部130は、入力部120から取得する情報に基づいて、フォーム上のコンポーネントや当該コンポーネントの値を制御することができる。また、フォーム制御部130は、後述するサーバ通信部140を介してサーバ30から取得する情報に基づいて、表示部110に表示させる内容を制御する機能を有する。
サーバ通信部140は、ネットワーク20を介して、サーバ30との情報通信を行う機能を有する。具体的には、サーバ通信部140は、フォーム制御部130の制御に基づいて、上記フォームに係る情報をサーバ30に送信する。また、サーバ通信部140は、サーバ30から取得した情報をフォーム制御部130に引き渡す。
次に、本実施形態に係るサーバ30について詳細に説明する。本実施形態に係るサーバ30は、フォーム上に配置されるコンポーネントと、当該コンポーネントに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成する情報処理装置である。また、サーバ30は、上記ニューラルネットワークに係る統計情報を算出する機能を有する。さらには、サーバ30は、作成したニューラルネットワークをエミュレータまたはデバイス40に実行させることができる。
プログラム作成部310は、後述する端末通信部330を介して情報処理端末10から取得した情報に基づいて、ニューラルネットワークを構築するプログラムを作成する機能を有する。また、プログラム作成部310は、情報処理端末10から取得した情報に基づいて、ニューラルネットワークに係る統計情報をリアルタイムに算出する機能を有する。ここで、情報処理端末10から取得される情報は、フォーム上に配置されるコンポーネントと、当該コンポーネントに設定されるプロパティに係る情報であってよい。また、上述したとおり、統計情報は、ニューラルネットワークにおけるアウトプットユニットの数、処理されるパラメータ数、及び演算種類ごとの演算量などであってよい。
エミュレータ部320は、プログラム作成部310が作成したニューラルネットを構築するプログラムをエミュレータ上で実行し、実行結果を取得する機能を有する。エミュレータ部320は、上記のニューラルネットワークが実装されるハードウェアに係るエミュレータを複数含んでもよい。また、エミュレータ部320は、ネットワーク20を介してサーバ30と接続されるエミュレータにプログラムを実行させ、実行結果を取得してもよい。
端末通信部330は、ネットワーク20を介して、情報処理端末10及びデバイス40との情報通信を行う機能を有する。具体的には、端末通信部330は、プログラム作成部310が算出する情報を情報処理端末10に送信する。ここで、プログラム作成部310が算出する情報には、統計情報、ハードウェア上での実行予測情報、クラウドリソースの見積情報が含まれてよい。また、端末通信部330は、エミュレータ部320が取得する情報を情報処理端末10に送信する。ここで、エミュレータ部320が取得する情報には、エミュレータまたはハードウェア上におけるニューラルネットワークの実行結果が含まれてよい。
次に、本実施形態に係るビジュアルプログラミングを行うためのフォームについて詳細に説明する。本実施系形態に係るフォームは、情報処理端末10の表示部110に表示されてよい。ユーザは、上記のフォーム上で操作を行うことで、ニューラルネットワークを構築することができる。
上述したとおり、パレットP1は、レイヤーのリストを表示するための領域である。図5に示す一例のように、パレットP1には、レイヤーが分類ごとに表示されてもよい。また、分類名をクリックすることで、分類ごとのレイヤーの一覧が展開されるよう制御されてもよい。図5を参照すると、パレットP1には、入出力層や中間層、活性化関数などに分類されたレイヤーのリストが表示されている。ユーザは、パレットP1に表示されるレイヤーをドラッグすることで、該当するレイヤーをパレットP2に追加することができる。または、パレットP1に表示されるレイヤーを選択することで、該当するレイヤーがパレットP2に追加されてもよい。なお、図5や以降の図に示されるレイヤーは、よく知られたものであるため、詳細な説明は省略する。
パレットP2は、レイヤーを編集しニューラルネットワークを構築するための領域である。図5に示す一例では、レイヤーを線でつなぐことで、ニューラルネットワークにおける処理の流れを構築している。ユーザは、レイヤーを移動、追加または削除することで、ニューラルネットワークを視覚的に構築することができる。また、パレットP2では、ユーザによって選択されたレイヤーが他のレイヤーとは異なる表示形式で示されてもよい。図5の一例は、レイヤー「Affine #2」が選択された状態を示している。
パレットP3は、ニューラルネットに係る各種の情報を表示するための領域である。図5を参照すると、パレットP3には、インフォメーションi1として、パレットP2で選択されたレイヤーに係るプロパティ情報が表示されている。また、パレットP3には、インフォメーションi2として、パレットP2に配置されたレイヤーに基づくニューラルネットワークの統計情報が表示されている。なお、パレットP3には、プロパティ情報及び統計情報の他、ハードウェア上での実行予測情報、クラウドリソースの見積情報、エミュレータまたはデバイス40上での実行結果などが表示されてよい。
続いて、パレットP3に表示されるプロパティ情報について詳細に説明する。図6は、パレットP3に表示されるプロパティ情報の一例である。図6には、図5のパレットP2において、レイヤー「Affine #2」が選択された場合のプロパティ情報の一例を示している。図6を参照すると、プロパティ情報には、レイヤー名称を示す「Name」などのレイヤーに係る基本情報の他、レイヤー間の接続状況やレイヤーの特性によって自動算出される情報、及びレイヤー種類ごとに特有の設定値が含まれている。
続いて、パレットP3に表示される統計情報について詳細に説明する。上述したとおり、本実施系形態に係る統計情報は、フォーム上に配置されたレイヤーと、当該レイヤーのプロパティが変更されたことに基づいて、リアルタイムに算出される情報である。また、本実施形態に係る統計情報は、レイヤーごとに算出されたメモリ量や演算量の総和であってよい。
次に、本実施形態の統計情報の算出に係るリアルタイム性について説明する。上述したとおり、本実施形態に係る情報処理方法によれば、レイヤーや当該レイヤーに設定されるプロパティが変更されたことに基づいて、統計情報をリアルタイムに算出することができる。以下、図8及び図9を参照して、本実施形態の統計情報の算出に係るリアルタイム性について説明する。
図8は、パレットP2上でニューラルネットワークに係るレイヤーの構成が変更されたことを示す図である。図8に示す一例では、図5に示したレイヤー構成に加え、新たにレイヤー「Tanh #2」及び「Affine #3」が追加されている。なお、図8に示すように、パレットP2上の各レイヤーは、直線状に配置されなくてもかまわない。
まず、Affineレイヤーにおけるパラメータ数の算出方法について説明する。Affineレイヤーにおけるパラメータ数は、InputとOutputの数、及びバイアス項に基づいて算出されてよい。図10は、Affineレイヤーにおけるパラメータ数及び演算量の算出方法を説明するための図である。
続いて、Convolutionレイヤーにおけるパラメータ数の算出方法について説明する。Convolutionレイヤーにおけるパラメータ数及び演算量は、Mapサイズ、入力Mapの数、及び出力Mapの数を基に算出される図11は、Convolutionレイヤーにおけるパラメータ数及び演算量の算出方法を説明するための図である。
次に、本実施形態に係るハードウェア上での実行予測情報の算出について説明する。本実施形態に係る情報処理方法では、統計情報と、ハードウェアのプロファイルと、に基づいて、当該ハードウェア上におけるニューラルネットワークの実行予測情報を算出することができる。以下、図12を参照して、上記の機能について詳細に説明する。
次に、本実施形態に係るクラウドリソースの見積情報の算出について説明する。本実施形態に係る情報処理方法では、統計情報と、クラウドサービスから取得した情報と、に基づいて、ニューラルネットワークによる処理を実行するためのクラウド上のコンピューティングリソースに係る見積情報を算出することができる。また、本実施形態に係る情報処理方法では、算出した上記の見積情報における各項目を変数として扱い、各項目の値を変更することができる。この場合、変更された項目の値に基づいて、他の項目の値が更新されてよい。以下、図13を参照して、上記の機能について詳細に説明する。
次に、本実施形態に係る統計情報、プロパティ、及び見積情報の連動について詳細に説明する。上述したとおり、本実施形態に係る統計情報はレイヤー構成に基づいて算出され、本実施形態に係る見積情報は統計情報に基づいて算出される。一方、本実施形態に係るプロパティに設定される値は、統計情報が変更されたことに基づいて動的に変更されてよい。また、本実施形態に係る統計情報は、見積情報が変更されたことに基づいて、動的に変更されてよい。以下、図14を参照して、本実施形態に係る上記の機能について詳細に説明する。
次に、本実施形態のレイヤーに係る比較情報の提示について説明する。本実施形態に係る情報処理方法では、統計情報を構成する各レイヤーの比較情報をユーザに提示することが可能である。情報処理端末10のフォーム制御部130は、サーバ30から取得した情報を基に、上記の比較情報をフォームに表示させることができる。図15は、本実施形態に係る比較情報の表示例を示す図である。
次に、本実施形態のニューラルネットワークに係る実行結果の提示について説明する。本実施形態に係る情報処理方法では、エミュレータまたはデバイス40上で実行されたニューラルネットワークの実行結果を取得し、当該実行結果をユーザに提示することが可能である。エミュレータ部320は、プログラム作成部310が作成したニューラルネットワークに係るプログラムをエミュレータ上で実行し、実行結果を取得することができる。また、エミュレータ部320は、プログラム作成部310が作成したニューラルネットワークに係るプログラムをデバイス40に実行させ、実行結果を取得することができる。
次に、本開示に係る情報処理端末10、サーバ30、及びデバイス40に共通するハードウェア構成例について説明する。図17は、本開示に係る情報処理端末10、サーバ30、及びデバイス40のハードウェア構成例を示すブロック図である。図17を参照すると、情報処理端末10、サーバ30、及びデバイス40は、例えば、CPU871と、ROM872と、RAM873と、ホストバス874と、ブリッジ875と、外部バス876と、インターフェース877と、入力部878と、出力部879と、記憶部880と、ドライブ881と、接続ポート882と、通信部883と、を有する。なお、ここで示すハードウェア構成は一例であり、構成要素の一部が省略されてもよい。また、ここで示される構成要素以外の構成要素をさらに含んでもよい。
CPU871は、例えば、演算処理装置又は制御装置として機能し、ROM872、RAM873、記憶部880、又はリムーバブル記録媒体901に記録された各種プログラムに基づいて各構成要素の動作全般又はその一部を制御する。
ROM872は、CPU871に読み込まれるプログラムや演算に用いるデータ等を格納する手段である。RAM873には、例えば、CPU871に読み込まれるプログラムや、そのプログラムを実行する際に適宜変化する各種パラメータ等が一時的又は永続的に格納される。
CPU871、ROM872、RAM873は、例えば、高速なデータ伝送が可能なホストバス874を介して相互に接続される。一方、ホストバス874は、例えば、ブリッジ875を介して比較的データ伝送速度が低速な外部バス876に接続される。また、外部バス876は、インターフェース877を介して種々の構成要素と接続される。
入力部878には、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、及びレバー等が用いられる。さらに、入力部878としては、赤外線やその他の電波を利用して制御信号を送信することが可能なリモートコントローラ(以下、リモコン)が用いられることもある。
出力部879には、例えば、CRT(Cathode Ray Tube)、LCD、又は有機EL等のディスプレイ装置、スピーカ、ヘッドホン等のオーディオ出力装置、プリンタ、携帯電話、又はファクシミリ等、取得した情報を利用者に対して視覚的又は聴覚的に通知することが可能な装置である。
記憶部880は、各種のデータを格納するための装置である。記憶部880としては、例えば、ハードディスクドライブ(HDD)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイス等が用いられる。
ドライブ881は、例えば、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体901に記録された情報を読み出し、又はリムーバブル記録媒体901に情報を書き込む装置である。
リムーバブル記録媒体901は、例えば、DVDメディア、Blu−ray(登録商標)メディア、HD DVDメディア、各種の半導体記憶メディア等である。もちろん、リムーバブル記録媒体901は、例えば、非接触型ICチップを搭載したICカード、又は電子機器等であってもよい。
接続ポート882は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)、RS−232Cポート、又は光オーディオ端子等のような外部接続機器902を接続するためのポートである。
外部接続機器902は、例えば、プリンタ、携帯音楽プレーヤ、デジタルカメラ、デジタルビデオカメラ、又はICレコーダ等である。
通信部883は、ネットワーク903に接続するための通信デバイスであり、例えば、有線又は無線LAN、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カード、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は各種通信用のモデム等である。
以上説明したように、本開示に係る情報処理方法では、配置されるレイヤーと、当該レイヤーに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成するためのフォームを提供することができる。また、本開示に係る情報処理方法では、上記ニューラルネットワークに係る統計情報を提示することができる。係る構成によれば、ニューラルネットワークの開発効率を向上させる情報をユーザに提示することが可能となる。
(1)
プロセッサが、配置されるコンポーネントと、前記コンポーネントに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成するためのフォームを提供することと、
前記ニューラルネットワークに係る統計情報を提示することと、
を含む、情報処理方法。
(2)
前記統計情報には、前記ニューラルネットワークにおけるアウトプットユニットの数、処理されるパラメータ数、または演算種類ごとの演算量のうち、少なくとも1つが含まれる、
前記(1)に記載の情報処理方法。
(3)
前記フォーム上に配置される前記コンポーネント、または前記コンポーネントに設定されるプロパティが変更されたことに基づいて算出される前記統計情報をリアルタイムに提示する、
前記(1)または(2)に記載の情報処理方法。
(4)
前記統計情報と、前記ニューラルネットワークが実装されるハードウェアのプロファイルと、に基づいて算出される前記ハードウェアにおける前記ニューラルネットワークの実行予測情報を提示すること、
をさらに含む、
前記(1)〜(3)のいずれかに記載の情報処理方法。
(5)
前記実行予測情報には、前記ニューラルネットワークによる処理の実行時間、メモリ使用量、消費電力、または演算量のうち、少なくとも1つが含まれる、
前記(4)に記載の情報処理方法。
(6)
前記統計情報が前記ハードウェアにおける制限情報を逸脱したことに基づいて生成されるアラート情報を提示すること、
をさらに含む、
前記(4)または(5)に記載の情報処理方法。
(7)
前記統計情報を基に算出される、前記ニューラルネットワークによる処理を実行するためのクラウド上のコンピューティングリソースに係る見積情報を提示すること、
をさらに含む、
前記(1)〜(6)のいずれかに記載の情報処理方法。
(8)
前記コンピューティングリソースに係る見積情報には、インスタンスのタイプ、前記インスタンスの数、金額、または前記コンピューティングリソース上に実装された前記ニューラルネットワークによる処理時間のうち少なくとも1つが含まれる、
前記(7)に記載の情報処理方法。
(9)
前記統計情報の値を変更するユーザの操作を受け付け、当該操作に基づいて変更される前記コンポーネントのプロパティ値と前記コンピューティングリソースに係る見積情報と、をリアルタイムに提示すること、
をさらに含む、
前記(7)または(8)に記載の情報処理方法。
(10)
前記コンピューティングリソースに係る見積情報の値を変更するユーザの操作を受け付け、当該操作に基づいて変更される前記コンポーネントのプロパティ値と前記統計情報と、をリアルタイムに提示すること、
をさらに含む、
前記(7)〜(9)のいずれかに記載の情報処理方法。
(11)
前記統計情報に含まれる要素を選択するユーザの操作を受け付け、選択された前記要素の値を、前記コンポーネントごとに比較して提示すること、
をさらに含む、
前記(1)〜(10)のいずれかに記載の情報処理方法。
(12)
前記コンポーネントごとの前記要素の値と、当該要素の値の大きさを示すインジケータと、を前記フォーム上に配置された前記コンポーネントに関連付けて提示する、
前記(11)に記載の情報処理方法。
(13)
エミュレータ上における前記ニューラルネットワークの実行結果を提示すること、
をさらに含む、
前記(1)〜(12)のいずれかに記載の情報処理方法。
(14)
ハードウェア上における前記ニューラルネットワークの実行結果を提示すること、
をさらに含む、
前記(1)〜(13)のいずれかに記載の情報処理方法。
(15)
前記実行結果には、前記ニューラルネットワークによる処理の実行時間、メモリ使用量、消費電力、または演算量のうち、少なくとも1つが含まれる、
前記(13)または(14)に記載の情報処理方法。
(16)
配置されるコンポーネントと、前記コンポーネントに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成するためのフォームを提供するフォーム制御部、
を備え、
前記フォーム制御部は、前記ニューラルネットワークに係る統計情報を提示する、
情報処理装置。
(17)
フォーム上に配置されるコンポーネントと、前記コンポーネントに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成するプログラム作成部、
を備え、
前記プログラム作成部は、前記ニューラルネットワークに係る統計情報を算出する、
情報処理装置。
110 表示部
120 入力部
130 フォーム制御部
140 サーバ通信部
20 ネットワーク
30 サーバ
310 プログラム作成部
320 エミュレータ部
330 端末通信部
40 デバイス
Claims (8)
- プロセッサが、配置されるコンポーネントと、前記コンポーネントに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成するためのフォームを提供することと、
前記ニューラルネットワークに係る統計情報を提示することと、
前記統計情報と、前記ニューラルネットワークが実装されるハードウェアのプロファイルと、に基づいて算出される前記ハードウェアにおける前記ニューラルネットワークの実行予測情報を提示することと、
前記統計情報が前記ハードウェアにおける制限情報を逸脱したことに基づいて生成されるアラート情報を提示することと、
を含む、情報処理方法。 - 前記実行予測情報には、前記ニューラルネットワークによる処理の実行時間、メモリ使用量、消費電力、または演算量のうち、少なくとも1つが含まれる、
請求項1に記載の情報処理方法。 - プロセッサが、配置されるコンポーネントと、前記コンポーネントに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成するためのフォームを提供することと、
前記ニューラルネットワークに係る統計情報を提示することと、
前記統計情報を基に算出される、前記ニューラルネットワークによる処理を実行するためのクラウド上のコンピューティングリソースに係る見積情報を提示することと、
を含む、情報処理方法。 - 前記コンピューティングリソースに係る見積情報には、インスタンスのタイプ、前記インスタンスの数、金額、または前記コンピューティングリソース上に実装された前記ニューラルネットワークによる処理時間のうち少なくとも1つが含まれる、
請求項3に記載の情報処理方法。 - 前記統計情報の値を変更するユーザの操作を受け付け、当該操作に基づいて変更される前記コンポーネントのプロパティ値と前記コンピューティングリソースに係る見積情報と、をリアルタイムに提示すること、
をさらに含む、
請求項3または4に記載の情報処理方法。 - 前記コンピューティングリソースに係る見積情報の値を変更するユーザの操作を受け付け、当該操作に基づいて変更される前記コンポーネントのプロパティ値と前記統計情報と、をリアルタイムに提示すること、
をさらに含む、
請求項3〜5のいずれか1項に記載の情報処理方法。 - 配置されるコンポーネントと、前記コンポーネントに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成するためのフォームを提供するフォーム制御部、
を備え、
前記フォーム制御部は、
前記ニューラルネットワークに係る統計情報を提示し、
前記統計情報と、前記ニューラルネットワークが実装されるハードウェアのプロファイルと、に基づいて算出される前記ハードウェアにおける前記ニューラルネットワークの実行予測情報を提示し、
前記統計情報が前記ハードウェアにおける制限情報を逸脱したことに基づいて生成されるアラート情報を提示する、
情報処理装置。 - 配置されるコンポーネントと、前記コンポーネントに設定されるプロパティと、に基づいて、ニューラルネットワークを構築するプログラムを作成するためのフォームを提供するフォーム制御部、
を備え、
前記フォーム制御部は、
前記ニューラルネットワークに係る統計情報を提示し、
前記統計情報を基に算出される、前記ニューラルネットワークによる処理を実行するためのクラウド上のコンピューティングリソースに係る見積情報を提示する、
情報処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016024545 | 2016-02-12 | ||
JP2016024545 | 2016-02-12 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017566526A Division JP6516025B2 (ja) | 2016-02-12 | 2016-11-25 | 情報処理方法および情報処理装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019139792A JP2019139792A (ja) | 2019-08-22 |
JP2019139792A5 JP2019139792A5 (ja) | 2019-12-19 |
JP6852748B2 true JP6852748B2 (ja) | 2021-03-31 |
Family
ID=59563307
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017566526A Active JP6516025B2 (ja) | 2016-02-12 | 2016-11-25 | 情報処理方法および情報処理装置 |
JP2019078617A Active JP6852748B2 (ja) | 2016-02-12 | 2019-04-17 | 情報処理方法および情報処理装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017566526A Active JP6516025B2 (ja) | 2016-02-12 | 2016-11-25 | 情報処理方法および情報処理装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10942711B2 (ja) |
EP (1) | EP3416105A4 (ja) |
JP (2) | JP6516025B2 (ja) |
WO (1) | WO2017138220A1 (ja) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11630666B2 (en) | 2018-02-13 | 2023-04-18 | Shanghai Cambricon Information Technology Co., Ltd | Computing device and method |
US12073215B2 (en) | 2018-02-13 | 2024-08-27 | Shanghai Cambricon Information Technology Co., Ltd | Computing device with a conversion unit to convert data values between various sizes of fixed-point and floating-point data |
EP3651075B1 (en) | 2018-02-13 | 2021-10-27 | Shanghai Cambricon Information Technology Co., Ltd | Computation device and method |
US20210019122A1 (en) | 2018-03-28 | 2021-01-21 | Sony Corporation | Information processing method, information processing apparatus, and program |
WO2019216404A1 (ja) * | 2018-05-10 | 2019-11-14 | パナソニックIpマネジメント株式会社 | ニューラルネットワーク構築装置、情報処理装置、ニューラルネットワーク構築方法及びプログラム |
WO2020042739A1 (zh) | 2018-08-28 | 2020-03-05 | 中科寒武纪科技股份有限公司 | 数据预处理方法、装置、计算机设备和存储介质 |
WO2020062392A1 (zh) | 2018-09-28 | 2020-04-02 | 上海寒武纪信息科技有限公司 | 信号处理装置、信号处理方法及相关产品 |
JP7391504B2 (ja) * | 2018-11-30 | 2023-12-05 | キヤノン株式会社 | 情報処理装置、情報処理方法及びプログラム |
KR102190103B1 (ko) * | 2018-12-27 | 2020-12-11 | (주)아크릴 | 인공 신경망의 상용화 서비스 제공 방법 |
CN111383637A (zh) | 2018-12-28 | 2020-07-07 | 上海寒武纪信息科技有限公司 | 信号处理装置、信号处理方法及相关产品 |
KR102142205B1 (ko) | 2019-01-04 | 2020-08-06 | 에스케이 주식회사 | 설명 가능한 인공지능 모델링 및 시뮬레이션 시스템 및 방법 |
JP6854993B2 (ja) * | 2019-02-15 | 2021-04-07 | 三菱電機株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
WO2020166641A1 (ja) * | 2019-02-15 | 2020-08-20 | ソニー株式会社 | 情報処理装置、情報処理方法およびプログラム |
CN111831543B (zh) * | 2019-04-18 | 2024-07-16 | 中科寒武纪科技股份有限公司 | 一种数据处理方法及相关产品 |
US11934940B2 (en) | 2019-04-18 | 2024-03-19 | Cambricon Technologies Corporation Limited | AI processor simulation |
CN112148276A (zh) | 2019-06-28 | 2020-12-29 | 微软技术许可有限责任公司 | 用于深度学习的可视化编程 |
US11640539B2 (en) | 2019-07-08 | 2023-05-02 | Vianai Systems, Inc. | Techniques for visualizing the operation of neural networks using samples of training data |
US11681925B2 (en) | 2019-07-08 | 2023-06-20 | Vianai Systems, Inc. | Techniques for creating, analyzing, and modifying neural networks |
US11615321B2 (en) * | 2019-07-08 | 2023-03-28 | Vianai Systems, Inc. | Techniques for modifying the operation of neural networks |
CN113966494A (zh) * | 2019-08-27 | 2022-01-21 | 西门子股份公司 | 支持基于神经元块图形编程的系统、方法及存储介质 |
US20210081841A1 (en) * | 2019-09-12 | 2021-03-18 | Viani Systems, Inc. | Visually creating and monitoring machine learning models |
CN111736836B (zh) * | 2020-07-22 | 2020-11-17 | 平安国际智慧城市科技股份有限公司 | 基于关系图的组件配置方法、装置及计算机可读存储介质 |
EP3968108A1 (de) | 2020-09-15 | 2022-03-16 | Siemens Aktiengesellschaft | Steuerung eines technischen systems mit einer recheneinheit für künstliche intelligenz |
CN116940948A (zh) * | 2021-02-03 | 2023-10-24 | 索尼集团公司 | 服务器装置、生成方法、电子装置生成方法、数据库生成方法和电子装置 |
KR20230002041A (ko) * | 2021-06-29 | 2023-01-05 | 주식회사 에너자이(ENERZAi) | 이미지 처리를 위한 인공 신경망 모델 학습 방법 및 시스템 |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE58909182D1 (de) * | 1988-07-05 | 1995-05-24 | Siemens Ag | Netzwerk -Baustein und Architektur für die programmierbare Emulation künstlicher neuronaler Netze mit digitaler Arbeitsweise. |
JP2691022B2 (ja) | 1989-06-30 | 1997-12-17 | 株式会社日立製作所 | ニューラルネットを用いた画像認識システム |
JPH04153866A (ja) | 1990-10-18 | 1992-05-27 | Fujitsu Ltd | ネットワーク編集方式 |
JPH04190461A (ja) | 1990-11-26 | 1992-07-08 | Fujitsu Ltd | ニューラルネットワークの構築表示方法 |
US6081750A (en) * | 1991-12-23 | 2000-06-27 | Hoffberg; Steven Mark | Ergonomic man-machine interface incorporating adaptive pattern recognition based control system |
US6400996B1 (en) * | 1999-02-01 | 2002-06-04 | Steven M. Hoffberg | Adaptive pattern recognition based control system and method |
US5875108A (en) * | 1991-12-23 | 1999-02-23 | Hoffberg; Steven M. | Ergonomic man-machine interface incorporating adaptive pattern recognition based control system |
US5903454A (en) * | 1991-12-23 | 1999-05-11 | Hoffberg; Linda Irene | Human-factored interface corporating adaptive pattern recognition based controller apparatus |
US6418424B1 (en) * | 1991-12-23 | 2002-07-09 | Steven M. Hoffberg | Ergonomic man-machine interface incorporating adaptive pattern recognition based control system |
US10361802B1 (en) * | 1999-02-01 | 2019-07-23 | Blanding Hovenweep, Llc | Adaptive pattern recognition based control system and method |
US20070061735A1 (en) * | 1995-06-06 | 2007-03-15 | Hoffberg Steven M | Ergonomic man-machine interface incorporating adaptive pattern recognition based control system |
JPH09160949A (ja) | 1995-12-07 | 1997-06-20 | Hitachi Ltd | ハードウエアとソフトウエアの混在システムの設計支援方法 |
JP3315890B2 (ja) | 1996-05-31 | 2002-08-19 | 株式会社東芝 | データ処理システム |
JP3819313B2 (ja) * | 1996-05-31 | 2006-09-06 | 株式会社東芝 | システム構築装置 |
GB2321362A (en) * | 1997-01-21 | 1998-07-22 | Northern Telecom Ltd | Generic processing capability |
GB2321363A (en) * | 1997-01-21 | 1998-07-22 | Northern Telecom Ltd | Telecommunications |
US6678640B2 (en) * | 1998-06-10 | 2004-01-13 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for parameter estimation, parameter estimation control and learning control |
US8032409B1 (en) * | 1999-11-22 | 2011-10-04 | Accenture Global Services Limited | Enhanced visibility during installation management in a network-based supply chain environment |
US7130807B1 (en) * | 1999-11-22 | 2006-10-31 | Accenture Llp | Technology sharing during demand and supply planning in a network-based supply chain environment |
US7716077B1 (en) * | 1999-11-22 | 2010-05-11 | Accenture Global Services Gmbh | Scheduling and planning maintenance and service in a network-based supply chain environment |
US7124101B1 (en) * | 1999-11-22 | 2006-10-17 | Accenture Llp | Asset tracking in a network-based supply chain environment |
US7610233B1 (en) * | 1999-12-22 | 2009-10-27 | Accenture, Llp | System, method and article of manufacture for initiation of bidding in a virtual trade financial environment |
US7167844B1 (en) * | 1999-12-22 | 2007-01-23 | Accenture Llp | Electronic menu document creator in a virtual financial environment |
US7069234B1 (en) * | 1999-12-22 | 2006-06-27 | Accenture Llp | Initiating an agreement in an e-commerce environment |
JP2001282574A (ja) | 2000-03-30 | 2001-10-12 | Oki Electric Ind Co Ltd | 処理時間情報を含む図式表現プログラムの表現方法 |
JP2002268883A (ja) | 2001-03-13 | 2002-09-20 | Sony Corp | プログラム、記録媒体、ソフトウエア生成方法並びに情報処理装置 |
US6704718B2 (en) * | 2001-06-05 | 2004-03-09 | Microsoft Corporation | System and method for trainable nonlinear prediction of transform coefficients in data compression |
JP3676296B2 (ja) * | 2001-12-20 | 2005-07-27 | 日本水産株式会社 | 米糠水抽出物およびその練製品添加物への使用 |
US9170812B2 (en) * | 2002-03-21 | 2015-10-27 | Pact Xpp Technologies Ag | Data processing system having integrated pipelined array data processor |
US7483868B2 (en) * | 2002-04-19 | 2009-01-27 | Computer Associates Think, Inc. | Automatic neural-net model generation and maintenance |
US20050086635A1 (en) * | 2003-10-20 | 2005-04-21 | Pegasus Technologies, Inc. | Visual programming system and method |
JP4525477B2 (ja) * | 2005-02-23 | 2010-08-18 | ソニー株式会社 | 学習制御装置および学習制御方法、並びに、プログラム |
US20070016389A1 (en) * | 2005-06-24 | 2007-01-18 | Cetin Ozgen | Method and system for accelerating and improving the history matching of a reservoir simulation model |
US7502763B2 (en) * | 2005-07-29 | 2009-03-10 | The Florida International University Board Of Trustees | Artificial neural network design and evaluation tool |
WO2007048900A1 (fr) * | 2005-10-27 | 2007-05-03 | France Telecom | Individualisation de hrtfs utilisant une modelisation par elements finis couplee a un modele correctif |
US9600767B1 (en) * | 2006-10-06 | 2017-03-21 | Hrl Laboratories, Llc | System, method, and computer program product for generating a single software code based on a description of a distributed architecture |
EP2108166B1 (en) * | 2007-02-02 | 2013-06-19 | ExxonMobil Upstream Research Company | Modeling and designing of well drilling system that accounts for vibrations |
WO2009029496A1 (en) * | 2007-08-24 | 2009-03-05 | Yiping Ding | Virtualization planning system |
JP4840426B2 (ja) * | 2008-09-24 | 2011-12-21 | ソニー株式会社 | 電子機器、ぼけ画像選別方法及びプログラム |
WO2010059295A1 (en) * | 2008-11-21 | 2010-05-27 | Exxonmobil Upstream Research Company | Methods and systems for modeling, designing, and conducting drilling operations that consider vibrations |
US8311961B2 (en) * | 2009-05-29 | 2012-11-13 | International Business Machines Corporation | Effort estimation using text analysis |
US8200593B2 (en) * | 2009-07-20 | 2012-06-12 | Corticaldb Inc | Method for efficiently simulating the information processing in cells and tissues of the nervous system with a temporal series compressed encoding neural network |
US8442927B2 (en) * | 2009-07-30 | 2013-05-14 | Nec Laboratories America, Inc. | Dynamically configurable, multi-ported co-processor for convolutional neural networks |
US8999721B2 (en) * | 2009-10-23 | 2015-04-07 | Therabrake, Inc. | Method and system to provide personalized pharmaceutical compositions and dosages |
US7996723B2 (en) * | 2009-12-22 | 2011-08-09 | Xerox Corporation | Continuous, automated discovery of bugs in released software |
WO2012109407A1 (en) * | 2011-02-09 | 2012-08-16 | The Trustees Of Columbia University In The City Of New York | Encoding and decoding machine with recurrent neural networks |
US9063818B1 (en) * | 2011-03-16 | 2015-06-23 | Google Inc. | Automated software updating based on prior activity |
US8880450B2 (en) * | 2011-05-26 | 2014-11-04 | World Heart Corporation | Systems and methods for predicting characteristics of an artificial heart using an artificial neural network |
US9916538B2 (en) * | 2012-09-15 | 2018-03-13 | Z Advanced Computing, Inc. | Method and system for feature detection |
US9153230B2 (en) * | 2012-10-23 | 2015-10-06 | Google Inc. | Mobile speech recognition hardware accelerator |
US9147153B2 (en) * | 2012-11-06 | 2015-09-29 | Rockwell Automation Technologies, Inc. | Empirical modeling with globally enforced general constraints |
US9235801B2 (en) * | 2013-03-15 | 2016-01-12 | Citrix Systems, Inc. | Managing computer server capacity |
US9112801B2 (en) * | 2013-03-15 | 2015-08-18 | International Business Machines Corporation | Quantized congestion notification in a virtual networking system |
US10832289B2 (en) * | 2013-06-14 | 2020-11-10 | Oath Inc. | Systems and methods for providing and using an internet sentiment index |
US9690575B2 (en) * | 2014-01-17 | 2017-06-27 | Fair Isaac Corporation | Cloud-based decision management platform |
US9324022B2 (en) * | 2014-03-04 | 2016-04-26 | Signal/Sense, Inc. | Classifying data with deep learning neural records incrementally refined through expert input |
US20150262061A1 (en) * | 2014-03-14 | 2015-09-17 | Qualcomm Incorporated | Contextual real-time feedback for neuromorphic model development |
DE112015002433T5 (de) * | 2014-05-23 | 2017-03-23 | Datarobot | Systeme und Techniken zur prädikativen Datenanalytik |
US11094015B2 (en) * | 2014-07-11 | 2021-08-17 | BMLL Technologies, Ltd. | Data access and processing system |
US10686869B2 (en) * | 2014-09-29 | 2020-06-16 | Microsoft Technology Licensing, Llc | Tool for investigating the performance of a distributed processing system |
SG10201406215YA (en) * | 2014-09-30 | 2016-04-28 | Mentorica Technology Pte Ltd | Systems and methods for automated data analysis and customer relationship management |
US20160162779A1 (en) * | 2014-12-05 | 2016-06-09 | RealMatch, Inc. | Device, system and method for generating a predictive model by machine learning |
US20160210550A1 (en) * | 2015-01-20 | 2016-07-21 | Nomizo, Inc. | Cloud-based neural networks |
US9910481B2 (en) * | 2015-02-13 | 2018-03-06 | Intel Corporation | Performing power management in a multicore processor |
CA3209826A1 (en) * | 2015-03-27 | 2016-10-06 | Equifax, Inc. | Optimizing neural networks for risk assessment |
US9786036B2 (en) * | 2015-04-28 | 2017-10-10 | Qualcomm Incorporated | Reducing image resolution in deep convolutional networks |
US11423311B2 (en) * | 2015-06-04 | 2022-08-23 | Samsung Electronics Co., Ltd. | Automatic tuning of artificial neural networks |
US10540588B2 (en) * | 2015-06-29 | 2020-01-21 | Microsoft Technology Licensing, Llc | Deep neural network processing on hardware accelerators with stacked memory |
US10664743B2 (en) * | 2015-10-28 | 2020-05-26 | International Business Machines Corporation | Modeling a subject process by machine learning with adaptive inputs |
US9953217B2 (en) * | 2015-11-30 | 2018-04-24 | International Business Machines Corporation | System and method for pose-aware feature learning |
US11715025B2 (en) * | 2015-12-30 | 2023-08-01 | Nutanix, Inc. | Method for forecasting distributed resource utilization in a virtualization environment |
US10282822B2 (en) * | 2016-12-01 | 2019-05-07 | Almalence Inc. | Digital correction of optical system aberrations |
CN112506568A (zh) * | 2016-12-31 | 2021-03-16 | 英特尔公司 | 用于异构计算的系统、方法和装置 |
US20180315141A1 (en) * | 2017-04-26 | 2018-11-01 | Clause, Inc. | System and method for business intelligence through data-driven contract analysis |
-
2016
- 2016-11-25 EP EP16889921.9A patent/EP3416105A4/en not_active Ceased
- 2016-11-25 WO PCT/JP2016/085025 patent/WO2017138220A1/ja active Application Filing
- 2016-11-25 JP JP2017566526A patent/JP6516025B2/ja active Active
- 2016-11-25 US US15/774,318 patent/US10942711B2/en active Active
-
2019
- 2019-04-17 JP JP2019078617A patent/JP6852748B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP6516025B2 (ja) | 2019-05-22 |
US10942711B2 (en) | 2021-03-09 |
EP3416105A1 (en) | 2018-12-19 |
JP2019139792A (ja) | 2019-08-22 |
EP3416105A4 (en) | 2019-02-20 |
JPWO2017138220A1 (ja) | 2018-11-29 |
US20200257506A1 (en) | 2020-08-13 |
WO2017138220A1 (ja) | 2017-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6852748B2 (ja) | 情報処理方法および情報処理装置 | |
JP6881511B2 (ja) | 情報処理方法および情報処理装置 | |
JP6922945B2 (ja) | 情報処理方法 | |
US11367050B2 (en) | Digital processing systems and methods for customized chart generation based on table data selection in collaborative work systems | |
US20190057309A1 (en) | Information processing apparatus and information processing method | |
CN107615310A (zh) | 信息处理设备 | |
JP2022060420A (ja) | アバター生成装置およびコンピュータプログラム | |
CN104350495B (zh) | 在全景显示中管理对象以导航电子表格 | |
WO2022160222A1 (zh) | 缺陷检测方法及装置、模型训练方法及装置及电子设备 | |
CA2673556C (en) | Transparent flow model simulation implementing bi-directional links | |
CN107122990A (zh) | 应用推荐方法、客户端、服务器及系统 | |
CN110447041A (zh) | 噪声神经网络层 | |
JPWO2019220755A1 (ja) | 情報処理装置および情報処理方法 | |
US11687785B2 (en) | Modification of neural network topology | |
Kaya et al. | Low-fidelity prototyping with simple collaborative tabletop computer-aided design systems | |
CN108090110A (zh) | 推荐软件动作以创建图像和推荐图像以示范软件动作的效果 | |
WO2019187542A1 (ja) | 情報処理方法、情報処理装置、およびプログラム | |
US20230072820A1 (en) | Vaccine site assessment simulator | |
US20120078808A1 (en) | Prescriptive wellbeing utilizing an enterprise grid | |
JP6360197B2 (ja) | 知識の認識ベースの処理のためのシステムおよび方法 | |
Khakpour et al. | What We Know About the Greenability of Reality Technologies: A Systematic Literature Review | |
CN114675913B (zh) | 页面布局信息处理方法、装置、电子设备和介质 | |
Thangarasu et al. | Recurrent Neural Network on Revolutionizing Multimedia Systems and Empowering User Experience With Dynamic Content Delivery | |
CN117423054A (zh) | 一种考虑云边协同的能源设备模型组态方法 | |
McGregor et al. | Toward Visualization Methods for Interactive Improvement of MDP Specifications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190515 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191106 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210222 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6852748 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |