JP6850621B2 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP6850621B2
JP6850621B2 JP2017017786A JP2017017786A JP6850621B2 JP 6850621 B2 JP6850621 B2 JP 6850621B2 JP 2017017786 A JP2017017786 A JP 2017017786A JP 2017017786 A JP2017017786 A JP 2017017786A JP 6850621 B2 JP6850621 B2 JP 6850621B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
electrode current
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017786A
Other languages
Japanese (ja)
Other versions
JP2018125213A (en
Inventor
啓一郎 東
啓一郎 東
大澤 康彦
康彦 大澤
雄樹 草地
雄樹 草地
佐藤 一
一 佐藤
赤間 弘
弘 赤間
堀江 英明
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2017017786A priority Critical patent/JP6850621B2/en
Publication of JP2018125213A publication Critical patent/JP2018125213A/en
Application granted granted Critical
Publication of JP6850621B2 publication Critical patent/JP6850621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなり、電解液を含む単電池を有するリチウムイオン電池に関する。 The present invention relates to a lithium ion battery having a cell cell in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer and a negative electrode current collector are laminated in this order and contains an electrolytic solution.

リチウムイオン(二次)電池は、高容量で小型軽量な二次電池として、近年様々な用途に多用されている。このうち、小型で薄型のリチウムイオン電池として、正極活物質及び電解液を含む正極電極組成物層を正極集電体の表面に形成した正極と、同様に負極活物質及び電解液を含む負極電極組成物層を負極集電体の表面に形成した負極とがセパレータを挾んで積層され、正極、セパレータ及び負極の端部をシール部によりシールしてなる略平板状のリチウム二次単電池を製造し、このリチウム二次単電池を複数層積層して積層型電池モジュールとして構成されていた。 Lithium-ion (secondary) batteries have been widely used in various applications in recent years as high-capacity, compact and lightweight secondary batteries. Among these, as a small and thin lithium ion battery, a positive electrode having a positive electrode composition layer containing a positive electrode active material and an electrolytic solution formed on the surface of a positive electrode current collector, and a negative electrode containing a negative electrode active material and an electrolytic solution in the same manner. A substantially flat plate-shaped lithium secondary cell is manufactured in which a negative electrode having a composition layer formed on the surface of a negative electrode current collector is laminated with a separator sandwiched between them, and the positive electrode, the separator, and the ends of the negative electrode are sealed by a sealing portion. However, a plurality of layers of this lithium secondary cell were laminated to form a laminated battery module.

このようなリチウム二次単電池において、この単電池に振動等の衝撃が与えられた結果、また、シール部の経時変化などの理由により生じたシール部の間隙から正極、負極の電解液が単電池外部に漏洩してしまう可能性がある。仮に、電解液が外部に漏洩してしまった場合、リチウム二次単電池の特性低下を招くおそれがあった。 In such a lithium secondary cell, the electrolytic solutions of the positive electrode and the negative electrode are simply discharged from the gap of the seal portion generated as a result of the impact such as vibration being applied to the cell and the change with time of the seal portion. It may leak to the outside of the battery. If the electrolytic solution leaks to the outside, there is a risk that the characteristics of the lithium secondary cell will deteriorate.

このようなリチウム二次単電池において電解液の漏洩を防ぐ手法として、リチウム二次単電池を正極、負極の積層方向に複数積層してなるバイポーラ電池の平面図においてシール層が単電池の外方へ露出し、さらに積層方向に隣接するシール層を互いに接着したバイポーラ電池が提案されている(特許文献1参照)。 As a method for preventing leakage of the electrolytic solution in such a lithium secondary battery, the seal layer is outside the cell in the plan view of the bipolar battery in which a plurality of lithium secondary batteries are laminated in the stacking direction of the positive electrode and the negative electrode. A bipolar battery that is exposed to the surface and further adheres to each other with adjacent seal layers in the stacking direction has been proposed (see Patent Document 1).

特開2005−190713号公報Japanese Unexamined Patent Publication No. 2005-190713

しかしながら、上述した従来のバイポーラ電池でもなお、シール部のシール性能が向上しても、このシール部が破損した場合に電解液の漏洩の可能性をゼロにすることはできない。従って、たとえシール部が破損した場合でも電解液が漏洩しないリチウム二次単電池が望まれていた。 However, even with the above-mentioned conventional bipolar battery, even if the sealing performance of the sealing portion is improved, the possibility of leakage of the electrolytic solution cannot be eliminated when the sealing portion is damaged. Therefore, there has been a demand for a lithium secondary battery in which the electrolytic solution does not leak even if the seal portion is damaged.

本発明は上述した課題に鑑みてなされたものであり、固定部の経時変化や形状変化があってもこの固定部からの電解液の漏洩を十分抑制することの可能なリチウムイオン電池の提供を、その目的の一つとしている。 The present invention has been made in view of the above-mentioned problems, and provides a lithium ion battery capable of sufficiently suppressing leakage of an electrolytic solution from the fixed portion even if the fixed portion changes with time or shape. , Is one of the purposes.

本発明は、正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなり、電解液を含む単電池を有するリチウムイオン電池に適用される。そして、正極集電体及び負極集電体の間に配置され、セパレータの端部が埋め込まれることで前記正極集電体及び前記負極集電体の間にセパレータの周縁部を固定し、かつ正極活物質層、セパレータ、及び負極活物質層を封止する固定部を備え、正極活物質層及び負極活物質層は、正極活物質粒子及び負極活物質粒子を電解液と混合してそれぞれ得られる正極電極組成物及び負極電極組成物からなり、固定部と正極集電体及び/ 又は負極集電体との間に、電解液を吸収して少なくともその一部を保持する電解液吸収体を設けることにより、上述の課題の少なくとも一つを解決している。
The present invention is applied to a lithium ion battery having a cell cell in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer and a negative electrode current collector are laminated in this order and contains an electrolytic solution. Then, it is arranged between the positive electrode current collector and the negative electrode current collector, and by embedding the end portion of the separator, the peripheral edge portion of the separator is fixed between the positive electrode current collector and the negative electrode current collector, and the positive electrode A fixing portion for sealing the active material layer, the separator, and the negative electrode active material layer is provided, and the positive electrode active material layer and the negative electrode active material layer are obtained by mixing the positive electrode active material particles and the negative electrode active material particles with an electrolytic solution, respectively. It is composed of a positive electrode composition and a negative electrode composition, and an electrolytic solution absorber that absorbs an electrolytic solution and retains at least a part thereof is provided between the fixed portion and the positive electrode current collector and / or the negative electrode current collector. This solves at least one of the above-mentioned problems.

本発明のリチウムイオン電池において、固定部と正極集電体及び/又は負極集電体との間に、外部との間で連通する場所が生じてこの連通した場所から電解液が漏洩しようとした場合、固定部に設けられた電解液吸収体によりこの電解液が吸液されて外部への漏洩が防止される。 In the lithium ion battery of the present invention, a place for communication with the outside is generated between the fixed portion and the positive electrode current collector and / or the negative electrode current collector, and the electrolytic solution tries to leak from the communication place. In this case, the electrolytic solution absorber provided in the fixed portion absorbs the electrolytic solution and prevents leakage to the outside.

ここで、電解液吸収体は、固定部に無端環状に設けられることが好ましい。また、正極集電体及び/又は負極集電体は略板状に形成された場合、電解液吸収体は、固定部と正極集電体及び/又は負極集電体との接触面に設けられることが好ましい。さらに、セパレータが略板状に形成された場合、固定部は、正極集電体及び負極集電体の周縁部を封止する枠状に形成されることが好ましい。また、正極集電体及び/又は負極集電体はその周縁部に無端環状に形成された溝部を備え、電解液吸収体はこの溝部に設けられていることが好ましい。 Here, it is preferable that the electrolytic solution absorber is provided in the fixed portion in an endless annular shape. When the positive electrode current collector and / or the negative electrode current collector is formed in a substantially plate shape, the electrolytic solution absorber is provided on the contact surface between the fixed portion and the positive electrode current collector and / or the negative electrode current collector. Is preferable. Further, when the separator is formed in a substantially plate shape, the fixing portion is preferably formed in a frame shape that seals the peripheral portions of the positive electrode current collector and the negative electrode current collector. Further, it is preferable that the positive electrode current collector and / or the negative electrode current collector is provided with a groove formed in an endless annular shape on the peripheral edge thereof, and the electrolytic solution absorber is provided in this groove.

本発明によれば、固定部の経時変化や形状変化があってもこの固定部からの電解液の漏洩を十分抑制することの可能なリチウムイオン電池を提供することができる。 According to the present invention, it is possible to provide a lithium ion battery capable of sufficiently suppressing leakage of an electrolytic solution from the fixed portion even if the fixed portion changes with time or shape.

本発明の第1実施形態であるリチウムイオン電池が有する単電池1を示す一部破断斜視図である。It is a partially cutaway perspective view which shows the cell 1 which the lithium ion battery which is 1st Embodiment of this invention has. 第1実施形態であるリチウムイオン電池が有する単電池1の固定部を示す断面図である。It is sectional drawing which shows the fixed part of the cell 1 which the lithium ion battery which is 1st Embodiment has. 第1実施形態であるリチウムイオン電池が有する単電池1の固定部において、電解液吸収体が電解液を吸液した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which an electrolytic solution absorber absorbs an electrolytic solution in a fixed portion of the cell 1 of the lithium ion battery according to the first embodiment. 本発明の第2実施形態であるリチウムイオン電池が有する単電池を示す断面図である。It is sectional drawing which shows the cell | cell which the lithium ion battery which is 2nd Embodiment of this invention has. 第2実施形態であるリチウムイオン電池が有する単電池の固定部を示す断面図である。It is sectional drawing which shows the fixed part of the cell cell which the lithium ion battery which is 2nd Embodiment has. 第2実施形態であるリチウムイオン電池が有する単電池の固定部において、電解液吸収体が電解液を吸液した状態を示す断面図である。It is sectional drawing which shows the state which the electrolytic solution absorber absorbed the electrolytic solution in the fixed part of the cell of the lithium ion battery which is 2nd Embodiment.

(第1実施形態)
図1及び図2を参照して、本発明の第1実施形態であるリチウムイオン電池について詳細を説明する。図1は本発明の第1実施形態であるリチウムイオン電池が有する単電池を示す一部破断斜視図、図2は第1実施形態であるリチウムイオン電池が有する単電池の固定部を示す断面図である。
(First Embodiment)
The lithium ion battery according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a partially cutaway perspective view showing a cell cell included in the lithium ion battery according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a fixed portion of the cell cell included in the lithium ion battery according to the first embodiment. Is.

本発明が適用される電池である、本実施形態のリチウムイオン電池は、これらの図で説明される単電池である外形略平板状のリチウム二次単電池1が単数、あるいは複数枚直列に積層されてなる積層型電池モジュールが、リチウムイオン電池の外殻をなす電池外装容器内に収納されて構成されている。 In the lithium ion battery of the present embodiment, which is a battery to which the present invention is applied, a single or a plurality of lithium secondary batteries 1 having a substantially flat plate shape, which are the single batteries described in these figures, are stacked in series. The stacked battery module is housed in a battery outer container that forms the outer shell of a lithium-ion battery.

ここで、本発明においてリチウム二次単電池とは、正極電極活物質と電解液とを含む正極電極組成物層を正極集電体の表面に形成した正極と、負極電極活物質と電解液とを含む負極電極組成物層を負極集電体の表面に形成した負極とがセパレータを介して積層された構造を有し、電池容器、端子配置及び電子制御装置等を備えていない電池である。なお、リチウム二次単電池は単電池と略する場合がある。 Here, in the present invention, the lithium secondary cell is a positive electrode having a positive electrode composition layer containing a positive electrode active material and an electrolytic solution formed on the surface of a positive electrode current collector, and a negative electrode active material and an electrolytic solution. It is a battery having a structure in which a negative electrode having a negative electrode composition layer containing the above electrode formed on the surface of a negative electrode current collector is laminated via a separator, and is not provided with a battery container, a terminal arrangement, an electronic control device, or the like. The lithium secondary cell may be abbreviated as a cell.

リチウム二次単電池1は、図1に詳細を示すように、略矩形平板状の正極集電体7の表面に正極電極活物質と電解液とを含む正極活物質層である略平板状の正極電極組成物層5が形成された正極2と、同様に略矩形平板状の負極集電体8の表面に負極電極活物質と電解液とを含む負極活物質層である略平板状の負極電極組成物層6が形成された負極3とが、同様に略平板状のセパレータ4を介して積層されて構成され、全体として略矩形平板状に形成されている。これにより、対向する正極集電体7及び負極集電体8を最外層に有するリチウム二次単電池1が構成される。 As shown in detail in FIG. 1, the lithium secondary cell 1 is a substantially flat plate-shaped positive electrode active material layer containing a positive electrode active material and an electrolytic solution on the surface of a substantially rectangular flat plate-shaped positive electrode current collector 7. A substantially flat negative electrode, which is a negative electrode active material layer containing a negative electrode active material and an electrolytic solution on the surface of the positive electrode 2 on which the positive electrode composition layer 5 is formed and the negative electrode current collector 8 having a substantially rectangular flat plate shape. The negative electrode 3 on which the electrode composition layer 6 is formed is similarly laminated via a substantially flat plate-shaped separator 4, and is formed in a substantially rectangular flat plate shape as a whole. As a result, the lithium secondary cell 1 having the opposite positive electrode current collector 7 and the negative electrode current collector 8 in the outermost layer is configured.

より詳細には、正極電極組成物層5及び負極電極組成物層6は、本発明の固定部である、リチウム二次単電池1の厚さ方向に延在する外形略矩形枠状のシール部材9内に形成されており、また、セパレータ4の端部もこのシール部材9内に埋め込まれ、セパレータ4の周縁部がシール部材9で固定されている。そして、正極集電体7及び負極集電体8は、それぞれ図1において正極電極組成物層5の上面及び負極電極組成物層6の下面を覆うように設けられているとともに、シール部材9の上面及び下面も覆うように設けられ、正極集電体7及び負極集電体8の間に正極活物質層(正極電極組成物層5)、セパレータ4、及び負極活物質層(負極電極組成物層6)が封止されている。従って、シール部材9は、正極集電体7及び負極集電体8の間に配置されて正極集電体7及び負極集電体8の間に、セパレータ4の周縁部を固定し、かつ正極活物質層(正極電極組成物層5)及び負極活物質層(負極電極組成物層6)を封止する固定部として機能する。 More specifically, the positive electrode composition layer 5 and the negative electrode composition layer 6 are seal members having a substantially rectangular frame shape extending in the thickness direction of the lithium secondary cell 1 which is a fixed portion of the present invention. It is formed in 9, and the end portion of the separator 4 is also embedded in the seal member 9, and the peripheral edge portion of the separator 4 is fixed by the seal member 9. The positive electrode current collector 7 and the negative electrode current collector 8 are provided so as to cover the upper surface of the positive electrode composition layer 5 and the lower surface of the negative electrode composition layer 6 in FIG. 1, respectively, and the seal member 9 is provided. It is provided so as to cover the upper surface and the lower surface, and the positive electrode active material layer (positive electrode electrode composition layer 5), the separator 4, and the negative electrode active material layer (negative electrode electrode composition) are provided between the positive electrode current collector 7 and the negative electrode current collector 8. The layer 6) is sealed. Therefore, the seal member 9 is arranged between the positive electrode current collector 7 and the negative electrode current collector 8, and the peripheral edge portion of the separator 4 is fixed between the positive electrode current collector 7 and the negative electrode current collector 8 and the positive electrode is positive. It functions as a fixing portion for sealing the active material layer (positive electrode composition layer 5) and the negative electrode active material layer (negative electrode composition layer 6).

正極集電体7及び負極集電体8は、シール部材9により所定間隔をもって対向するように位置決めされているとともに、セパレータ4と正極集電体7及び負極集電体8もシール部材9により所定間隔をもって対向するように位置決めされている。 The positive electrode current collector 7 and the negative electrode current collector 8 are positioned so as to face each other at a predetermined interval by the seal member 9, and the separator 4, the positive electrode current collector 7, and the negative electrode current collector 8 are also predetermined by the seal member 9. It is positioned so as to face each other with an interval.

正極集電体7とセパレータ4との間の間隔、及び、負極集電体8とセパレータ4との間の間隔はリチウムイオン電池の容量に応じて調整され、これら正極集電体7、負極集電体8及びセパレータ4の位置関係は必要な間隔が得られるように定められている。 The distance between the positive electrode current collector 7 and the separator 4 and the distance between the negative electrode current collector 8 and the separator 4 are adjusted according to the capacity of the lithium ion battery, and these positive electrode current collector 7 and the negative electrode current collector 7 are adjusted. The positional relationship between the electric body 8 and the separator 4 is determined so that the required spacing can be obtained.

シール部材9と正極集電体7及び/又は負極集電体8との間には、電解液を吸収して少なくともその一部を保持する電解液吸収体10が設けられている。 An electrolytic solution absorber 10 that absorbs the electrolytic solution and holds at least a part thereof is provided between the sealing member 9 and the positive electrode current collector 7 and / or the negative electrode current collector 8.

より詳細には、図1及び図2に詳細を示すように、シール部材9の正極集電体7及び負極集電体8との接触面である図2における上面及び下面には、単電池1を平面視した状態で溝部が無端環状に形成され(図1参照)、この溝部には電解液吸収体10が設けられている。従って、シール部材9の正極集電体7及び負極集電体8との接触面には、電解液吸収体10が無端環状に設けられていることになる。 More specifically, as shown in detail in FIGS. 1 and 2, a cell 1 is formed on the upper surface and the lower surface in FIG. 2, which are contact surfaces of the sealing member 9 with the positive electrode current collector 7 and the negative electrode current collector 8. The groove portion is formed in an endless annular shape in a plan view (see FIG. 1), and the electrolytic solution absorber 10 is provided in this groove portion. Therefore, the electrolytic solution absorber 10 is provided in an endless annular shape on the contact surface of the seal member 9 with the positive electrode current collector 7 and the negative electrode current collector 8.

本発明において、正極活物質層である正極電極組成物層5及び負極活物質層である負極電極組成物層6は、それぞれ活物質粒子(正極活物質粒子又は負極活物質粒子)を電解液と混合して得られる正極電極組成物又は負極電極組成物をシート状に成形して得られる。粉体状の正極活物質粒子及び負極活物質粒子をシート状に成形した後、電解液を添加する方法、及び活物質粒子を溶媒と混合して得られる正極電極スラリー又は負極電極スラリーをシート状に成形した後、電解液を添加する方法等で得ることができる。 In the present invention, the positive electrode composition layer 5 which is the positive electrode active material layer and the negative electrode electrode composition layer 6 which is the negative electrode active material layer each use active material particles (positive electrode active material particles or negative electrode active material particles) as an electrolytic solution. It is obtained by molding a positive electrode composition or a negative electrode composition obtained by mixing into a sheet. A method of adding an electrolytic solution after forming powdery positive electrode active material particles and negative electrode active material particles into a sheet, and a sheet of positive electrode slurry or negative electrode slurry obtained by mixing the active material particles with a solvent. It can be obtained by a method of adding an electrolytic solution or the like after molding into.

シート状の正極電極組成物層5及び負極電極組成物層6を成形する場合、電極組成物又は電極活物質スラリーにバインダ(結着剤ともいう)を用いても良い。結着剤としては、ポリフッ化ビニリデン及びスチレンブタジエン樹脂等の公知のバインダを用いることができる。 When the sheet-shaped positive electrode composition layer 5 and the negative electrode composition layer 6 are molded, a binder (also referred to as a binder) may be used in the electrode composition or the electrode active material slurry. As the binder, known binders such as polyvinylidene fluoride and styrene-butadiene resin can be used.

正極電極組成物は正極活物質粒子を含んでなり、正極活物質粒子としては、リチウムと遷移金属との複合酸化物(例えばLiCoO2、LiNiO2、LiMnO2、LiMn24及びLiNi0.8Co0.15Al0.05)、遷移金属酸化物(例えばMnO2及びV25)、遷移金属硫化物(例えばMoS2及びTiS2)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ−p−フェニレン及びポリカルバゾール)等が挙げられる。正極活物質の体積平均粒子径は、電池の電気特性の観点から0.1〜100μmが好ましく、1〜50μmであることがより好ましく、2〜20μmであることが更に好ましい。 The positive electrode composition contains positive electrode active material particles, and the positive electrode active material particles include composite oxides of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 and LiNi 0.8). Co 0.15 Al 0.05 O 2 ), transition metal oxides (eg MnO 2 and V 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, etc.) Polythiophene, polyacetylene, poly-p-phenylene and polycarbazole) and the like can be mentioned. The volume average particle size of the positive electrode active material is preferably 0.1 to 100 μm, more preferably 1 to 50 μm, and even more preferably 2 to 20 μm from the viewpoint of the electrical characteristics of the battery.

正極活物質の体積平均粒子径は、レーザー回折・散乱法(マイクロトラック法ともいう)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。レーザー回折・散乱法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法であり、体積平均粒子径の測定には、日機装株式会社製のマイクロトラック等を用いることができる。 The volume average particle size of the positive electrode active material means the particle size (Dv50) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method (also referred to as the microtrack method). The laser diffraction / scattering method is a method of obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light, and for measuring the volume average particle size, a microtrack manufactured by Nikkiso Co., Ltd., etc. Can be used.

また、負極電極組成物は負極活物質粒子を含んでなり、負極活物質粒子としては、黒鉛、難黒鉛化性炭素、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリキノリン等)、スズ、シリコン、及び金属合金(例えばリチウム−スズ合金、リチウム−シリコン合金、リチウム−アルミニウム合金及びリチウム−アルミニウム−マンガン合金等)、リチウムと遷移金属との複合酸化物(例えばLi4Ti512等)等が挙げられる。負極活物質の体積平均粒子径は、電池の電気特性の観点から、0.01〜100μmが好ましく、0.1〜20μmであることがより好ましく、2〜10μmであることが更に好ましい。 Further, the negative electrode electrode composition contains negative electrode active material particles, and as the negative electrode active material particles, graphite, non-graphitizable carbon, amorphous carbon, polymer compound calcined material (for example, phenol resin, furan resin, etc.) is calcined. Carbonized materials, etc.), cokes (eg, pitch coke, needle coke, petroleum coke, etc.), carbon fibers, conductive polymers (eg, polyacetylene and polyquinolin, etc.), tin, silicon, and metal alloys (eg, lithium-tin alloys). , Lithium-silicon alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.), composite oxide of lithium and transition metal (for example, Li 4 Ti 5 O 12 etc.) and the like. The volume average particle size of the negative electrode active material is preferably 0.01 to 100 μm, more preferably 0.1 to 20 μm, and even more preferably 2 to 10 μm from the viewpoint of the electrical characteristics of the battery.

負極活物質の体積平均粒子径は、正極活物質と同様に求めることができる。 The volume average particle size of the negative electrode active material can be obtained in the same manner as that of the positive electrode active material.

正極活物質粒子及び負極活物質粒子は、表面の少なくとも一部が被覆用樹脂を含む被覆剤からなる被覆層で被覆されてなる被覆活物質粒子であることが好ましい。被覆活物質粒子であると正極電極組成物層5及び負極電極組成物層6の柔軟性と導電性とがそれぞれ更に良好となり、充放電時に発生する電解液と活物質との電気化学反応を抑制できて電解液の劣化を抑制できてサイクル特性が良好となると考えられる。 The positive electrode active material particles and the negative electrode active material particles are preferably coated active material particles in which at least a part of the surface is coated with a coating layer made of a coating agent containing a coating resin. When the coating active material particles are used, the flexibility and conductivity of the positive electrode composition layer 5 and the negative electrode composition layer 6 are further improved, and the electrochemical reaction between the electrolytic solution and the active material generated during charging and discharging is suppressed. It is considered that the deterioration of the electrolytic solution can be suppressed and the cycle characteristics are improved.

本発明において被覆とは、活物質粒子の表面の少なくとも一部に被覆剤が付着している状態を意味し、活物質粒子表面に被覆剤が点在している状態も含む。活物質粒子の表面に被覆剤が付着している状態は、走査型電子顕微鏡等を用いて得られた被覆活物質粒子の拡大観察画像を観察することで確認することができる。 In the present invention, the coating means a state in which the coating agent is attached to at least a part of the surface of the active material particles, and also includes a state in which the coating agent is scattered on the surface of the active material particles. The state in which the coating agent is attached to the surface of the active material particles can be confirmed by observing a magnified observation image of the coating active material particles obtained by using a scanning electron microscope or the like.

被覆用樹脂としては、電解液を吸収して膨潤する樹脂を用いることができ、具体的な例としては、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート等が挙げられる。これらの中ではビニル樹脂が好ましく、(メタ)アクリル酸、及び炭素数4〜36のモノアルコールと(メタ)アクリル酸とのエステルとを必須構成単量体とする共重合体がより好ましい。 As the coating resin, a resin that absorbs the electrolytic solution and swells can be used, and specific examples thereof include vinyl resin, urethane resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, silicone resin, and phenol. Examples thereof include resins, melamine resins, urea resins, aniline resins, ionomer resins, and polycarbonates. Among these, a vinyl resin is preferable, and a copolymer containing (meth) acrylic acid and an ester of a monoalcohol having 4 to 36 carbon atoms and (meth) acrylic acid as an essential constituent monomer is more preferable.

被覆剤は更に導電助剤を含んでも良く、導電助剤としては、導電性を有する材料から選択して用いることができる。 The coating agent may further contain a conductive auxiliary agent, and the conductive auxiliary agent can be selected and used from materials having conductivity.

導電性を有する材料としては、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、導電性カーボン[グラファイト、カーボンブラック、アセチレンブラック、バルカン(登録商標)、ケッチェンブラック(登録商標)、ブラックパール(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック、カーボンナノチューブ(単層カーボンナノチューブ及び多層カーボンナノチューブ等)、カーボンナノホーン、カーボンナノバルーン、ハードカーボン及びフラーレン等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。 Materials with conductivity include metals [aluminum, stainless steel (SUS), silver, gold, copper and titanium, etc.], conductive carbon [graphite, carbon black, acetylene black, vulcan (registered trademark), and ketjen black (registered). Trademarks), Black Pearl (registered trademark), Furness Black, Channel Black, Thermal Lamp Black, Carbon Nanotubes (Single-walled Carbon Nanotubes and Multi-walled Carbon Nanotubes, etc.), Carbon Nanohorns, Carbon Nanoballoons, Hard Carbon, Fullerenes, etc.], and these Examples thereof include, but are not limited to these.

これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、金、銅、チタン及びこれらの混合物であり、より好ましくは銀、金、アルミニウム、ステンレス及びカーボンであり、更に好ましくはカーボンである。また導電助剤としては、粒子系セラミック材料、樹脂材料等の非導電性材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をメッキ等でコーティングしたもの及び非導電性材料と導電性材料(上記した導電助剤の材料のうち金属のもの)とを混合したものも用いることができる。 These conductive aids may be used alone or in combination of two or more. Moreover, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, gold, copper, titanium and mixtures thereof are preferable, silver, gold, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. is there. The conductive auxiliary agent includes a non-conductive material such as a particle-based ceramic material and a resin material coated with a conductive material (a metal material among the above-mentioned conductive auxiliary agent materials) by plating or the like, and a non-conductive material. A mixture of a conductive material and a conductive material (a metal material among the above-mentioned conductive aid materials) can also be used.

導電助剤の形状に特に制限はなく、球状、不定形状、繊維状、単一粒子状、凝集体及びこれらの組み合わせ等の形状を有するものを用いることができ、なかでも、導電性等の観点から、一次粒子径が5〜50nmの微粒子の凝集体であることが好ましい。導電助剤の形状は、走査型電子顕微鏡等を用いて得られた導電助剤の拡大観察画像を観察し視野にある粒子を計測することで得ることができる。 The shape of the conductive auxiliary agent is not particularly limited, and those having a shape such as a spherical shape, an indefinite shape, a fibrous shape, a single particle shape, an agglomerate, or a combination thereof can be used. Therefore, it is preferable that it is an agglomerate of fine particles having a primary particle diameter of 5 to 50 nm. The shape of the conductive auxiliary agent can be obtained by observing a magnified observation image of the conductive auxiliary agent obtained by using a scanning electron microscope or the like and measuring the particles in the field of view.

被覆剤が被覆用樹脂と導電助剤とを含む場合、被覆剤に含まれる被覆用樹脂と導電助剤との重量比は、被覆用樹脂:導電助剤=100:1〜100:200が好ましく、更に好ましくは100:5〜100:100である。この範囲にあると正極電極組成物層5及び負極電極組成物層6の導電性が良好となる。 When the coating agent contains a coating resin and a conductive auxiliary agent, the weight ratio of the coating resin and the conductive auxiliary agent contained in the coating agent is preferably coating resin: conductive auxiliary agent = 100: 1 to 100: 200. , More preferably 100: 5 to 100: 100. Within this range, the conductivity of the positive electrode composition layer 5 and the negative electrode composition layer 6 becomes good.

被覆活物質粒子は、例えば、正極活物質粒子又は負極活物質粒子を万能混合機に入れて30〜500rpmで撹拌した状態で、被覆用樹脂及び必要により用いる導電助剤を有機溶剤に混合した樹脂溶液を1〜90分かけて滴下混合し、更に必要により用いる導電助剤を混合し、撹拌したまま50〜200℃に昇温し、0.007〜0.04MPaまで減圧した後に10〜150分保持することにより得ることができる。 The coating active material particles are, for example, a resin in which positive electrode active material particles or negative electrode active material particles are placed in a universal mixer and stirred at 30 to 500 rpm, and a coating resin and a conductive auxiliary agent used as necessary are mixed with an organic solvent. The solution is added dropwise over 1 to 90 minutes, and if necessary, the conductive additive to be used is mixed, the temperature is raised to 50 to 200 ° C. with stirring, the pressure is reduced to 0.007 to 0.04 MPa, and then 10 to 150 minutes. It can be obtained by holding.

樹脂溶液に含まれる被覆用樹脂の割合は、樹脂溶液の重量に基づいて10〜50重量%が好ましい。樹脂溶液に用いる有機溶剤としては被覆用樹脂を溶解可能な有機溶剤を選択することができる。 The proportion of the coating resin contained in the resin solution is preferably 10 to 50% by weight based on the weight of the resin solution. As the organic solvent used in the resin solution, an organic solvent capable of dissolving the coating resin can be selected.

被覆活物質粒子が得られたことは、走査型電子顕微鏡等を用いて得られた被覆活物質粒子の拡大観察画像を観察することで確認することができる。 It can be confirmed that the coating active material particles are obtained by observing the magnified observation image of the coating active material particles obtained by using a scanning electron microscope or the like.

正極電極組成物及び負極電極組成物をそれぞれ形成する場合、正極電極組成物及び負極電極組成物としては、正極活物質粒子及び負極活物質粒子のそれぞれをそれぞれ電解液又は非水溶媒と混合して得られる混合物であることが好ましく、スラリー状の混合物であることがより好ましい。この場合、正極電極組成物及び負極電極組成物にそれぞれ含まれる正極活物質粒子及び負極活物質粒子の重量は、電解液又は非水溶媒の重量に基づいて10〜60重量%であることが好ましい。 When the positive electrode composition and the negative electrode composition are formed, respectively, as the positive electrode composition and the negative electrode composition, the positive electrode active material particles and the negative electrode active material particles are mixed with an electrolytic solution or a non-aqueous solvent, respectively. It is preferably a mixture obtained, and more preferably a slurry-like mixture. In this case, the weights of the positive electrode active material particles and the negative electrode active material particles contained in the positive electrode composition and the negative electrode composition are preferably 10 to 60% by weight based on the weight of the electrolytic solution or the non-aqueous solvent. ..

電解液としては、公知のリチウムイオン電池の製造に用いられる電解質及び非水溶媒を混合して得られる公知の電解液を使用することができる。 As the electrolytic solution, a known electrolytic solution obtained by mixing an electrolyte and a non-aqueous solvent used in the production of a known lithium ion battery can be used.

電解質としては、通常の電解液に用いられているもの等が使用でき、無機酸のリチウム塩(LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等)及び有機酸のリチウム塩[LiN(CF3SO22、LiN(C25SO22及びLiC(CF3SO23等]等が挙げられ、これらの電解質は1種を単独で用いてもよいし、2種以上を併用してもよい。これらのなかでも電池出力及び充放電サイクル特性の観点から好ましいのはLiPF6である。 As the electrolyte, a normal is can be used such as those used in the electrolytic solution, the lithium salt of an inorganic acid (LiPF 6, LiBF 4, LiSbF 6, LiAsF 6 , and LiClO 4, etc.) and a lithium salt of an organic acid [LiN ( CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2, LiC (CF 3 SO 2 ) 3, etc.], etc., and one of these electrolytes may be used alone or two. The above may be used together. Among these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

非水溶媒としては、通常の電解液に用いられているもの等が使用でき、ラクトン、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物等を用いることができる。これらの非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。 As the non-aqueous solvent, those used in ordinary electrolytic solutions can be used, and lactones, cyclic or chain carbonates, chain carboxylic acid esters, cyclic or chain ethers, phosphoric acid esters, nitrile compounds, and amides can be used. Compounds, sulfones, sulfolanes and the like and mixtures thereof and the like can be used. One of these non-aqueous solvents may be used alone, or two or more thereof may be used in combination.

非水溶媒のなかでも電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、より好ましいのはラクトン、環状炭酸エステル及び鎖状炭酸エステルであり、更に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。特に好ましいのはプロピレンカーボネート(PC)、又はエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。 Among the non-aqueous solvents, lactone, cyclic carbonate, chain carbonate and phosphoric acid ester are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and lactone, cyclic carbonate and chain carbonate are more preferable. It is an ester, and more preferably, a mixed solution of a cyclic carbonate ester and a chain carbonate ester. Particularly preferred is propylene carbonate (PC) or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC).

電解液に含まれる電解質の濃度は、電解液の容量に基づいて0.1〜3mol/Lが好ましく、0.5〜2mol/Lがより好ましい。 The concentration of the electrolyte contained in the electrolytic solution is preferably 0.1 to 3 mol / L, more preferably 0.5 to 2 mol / L, based on the volume of the electrolytic solution.

本発明において正極電極組成物層5及び負極電極組成物層6は、イオン抵抗を低減できる等の観点からそれぞれ前記の被覆活物質粒子とともに繊維状導電性フィラーを含むことが好ましい。繊維状導電性フィラーとしては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維のなかでも炭素繊維が好ましい。 In the present invention, the positive electrode composition layer 5 and the negative electrode composition layer 6 preferably contain a fibrous conductive filler together with the above-mentioned coating active material particles from the viewpoint of reducing ionic resistance and the like. Examples of the fibrous conductive filler include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing a metal or graphite having good conductivity in synthetic fibers, and stainless steel. Examples thereof include metal fibers obtained by fiberizing metal, conductive fibers in which the surface of organic fibers is coated with metal, and conductive fibers in which the surface of organic fibers is coated with conductive resin. Among these conductive fibers, carbon fiber is preferable.

繊維状導電性フィラーは、イオン抵抗及び活物質層の強度等の観点から、平均繊維長が100〜1000μmが好ましく、110μm〜600μmが更に好ましく、150μm〜500μmが特に好ましい。平均繊維径は、0.1〜100μmであることが好ましく、0.5〜2.0μmであることが更に好ましい。 The fibrous conductive filler preferably has an average fiber length of 100 to 1000 μm, more preferably 110 μm to 600 μm, and particularly preferably 150 μm to 500 μm, from the viewpoint of ion resistance, strength of the active material layer, and the like. The average fiber diameter is preferably 0.1 to 100 μm, more preferably 0.5 to 2.0 μm.

正極電極組成物層5及び負極電極組成物層6に繊維状導電性フィラーを含む場合、繊維状導電性フィラーの割合は、被覆活物質粒子の重量に基づいて0.5〜5重量%であることが好ましい。 When the positive electrode composition layer 5 and the negative electrode composition layer 6 contain the fibrous conductive filler, the proportion of the fibrous conductive filler is 0.5 to 5% by weight based on the weight of the coating active material particles. Is preferable.

正極電極組成物層5及び負極電極組成物層6に繊維状導電性フィラーを含む場合、正極2及び負極3のそれぞれに、正極活物質粒子と繊維状導電性フィラーと電解液とを含む正極電極組成物及び負極活物質粒子と繊維状導電性フィラーと電解液とを含む負極電極組成物をそれぞれ充填して正極電極組成物層5及び負極電極組成物層6を形成することが好ましい。 When the positive electrode composition layer 5 and the negative electrode composition layer 6 contain a fibrous conductive filler, the positive electrode 2 and the negative electrode 3 each contain positive electrode active material particles, a fibrous conductive filler, and an electrolytic solution. It is preferable to fill the negative electrode composition containing the composition, the negative electrode active material particles, the fibrous conductive filler, and the electrolytic solution, respectively, to form the positive electrode composition layer 5 and the negative electrode composition layer 6.

正極電極組成物層5及び負極電極組成物層6の厚さは、200μm以上であることが好ましい。より好ましくは500μm以上、更に好ましくは1000μm以上である。この厚さ以上であると、単位体積あたりの活物質量が多くなり、蓄電容量が大きい電池とできる。 The thickness of the positive electrode composition layer 5 and the negative electrode composition layer 6 is preferably 200 μm or more. It is more preferably 500 μm or more, still more preferably 1000 μm or more. If it is thicker than this thickness, the amount of active material per unit volume increases, and a battery having a large storage capacity can be obtained.

セパレータ4としては、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素系樹脂及びポリオレフィン(ポリエチレン及びポリプロピレン等)製の多孔性フィルム、多孔性フィルムの多層フィルム(例えば、PP/PE/PPの3層構造をした積層体等)、合成繊維(ポリエステル繊維及びアラミド繊維等)及びガラス繊維等からなる不織布並びにこれらの表面にシリカ、アルミナ及びチタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用セパレータ等を用いることができる。 The separator 4 includes a hydrocarbon resin such as polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), a porous film made of polyolefin (polyethylene, polypropylene, etc.), and a multilayer film of a porous film (for example, PP / PE / Laminates having a three-layer structure of PP, etc.), non-woven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.), glass fibers, etc., and those with ceramic fine particles such as silica, alumina, and titania attached to their surfaces, etc. A known separator for a lithium ion battery or the like can be used.

セパレータ4の厚みは、リチウムイオン電池の用途により調整することができるが、携帯機器等の電子機器等の用途においては、単層あるいは多層で好ましくは5〜100μmであり、更に好ましくは10〜50μmである。 The thickness of the separator 4 can be adjusted depending on the use of the lithium ion battery, but in the use of electronic devices such as mobile devices, the thickness of the separator 4 is preferably 5 to 100 μm in a single layer or a multilayer, and more preferably 10 to 50 μm. Is.

前記多孔性フィルム又はその多層フィルムからなるセパレータ4の細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが好ましい。不織布を用いる場合、セパレータ4の厚さは、好ましくは5〜200μmであり、特に好ましくは10〜100μmである。 The pore diameter of the separator 4 made of the porous film or the multilayer film thereof is preferably 1 μm or less (usually, the pore diameter is about several tens of nm) at the maximum. When a non-woven fabric is used, the thickness of the separator 4 is preferably 5 to 200 μm, particularly preferably 10 to 100 μm.

正極集電体7及び負極集電体8は金属集電体又は樹脂集電体であり、それぞれ公知の金属集電体並びに日本国特許公開第2012−150905号公報及び国際公開第WO2015/005116号等に記載の公知の樹脂集電体等を用いることができる。 The positive electrode current collector 7 and the negative electrode current collector 8 are a metal current collector or a resin current collector, and are known metal current collectors, as well as Japanese Patent Publication No. 2012-150905 and International Publication No. WO2015 / 005116, respectively. The known resin current collectors and the like described in the above can be used.

金属集電体としては、リチウムイオン電池に一般に使用する金属集電体を用いることができ、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン及びこれらの一種以上を含む合金並びにステンレス合金からなる群から選択される一種以上の金属からなる集電体等が挙げられる。 As the metal collector, a metal collector generally used for lithium ion batteries can be used, and copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimon and these Examples thereof include alloys containing one or more and current collectors made of one or more metals selected from the group consisting of stainless alloys.

金属集電体の基材の形態は、薄板状、金属箔状及びメッシュ状のいずれであってもよく、金属集電体の基材の表面にスパッタリング、電着及び塗布等の手法により金属層を形成してもよい。 The form of the base material of the metal current collector may be any of a thin plate shape, a metal foil shape and a mesh shape, and a metal layer is formed on the surface of the base material of the metal current collector by a method such as sputtering, electrodeposition and coating. May be formed.

樹脂集電体とは、導電性高分子材料又は非導電性高分子材料に導電性を付与した高分子から形成された集電体である。 The resin current collector is a current collector formed of a conductive polymer material or a polymer obtained by imparting conductivity to a non-conductive polymer material.

導電性高分子材料としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル及びポリオキサジアゾール等が挙げられる。なお、導電性の高分子材料を含む樹脂集電体の導電性を向上させる目的から、更に後述する導電性フィラーを含んでいることが好ましい。 Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, polyoxadiazole and the like. For the purpose of improving the conductivity of the resin current collector containing the conductive polymer material, it is preferable to further contain a conductive filler described later.

非導電性高分子材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂及びこれらの混合物等が挙げられる。 Non-conductive polymer materials include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetrafluoroethylene. (PTFE), styrene butadiene rubber (SBR), polyacrylic nitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin and mixtures thereof. Be done.

非導電性高分子材料としては、電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、より好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。 As the non-conductive polymer material, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE) is more preferable from the viewpoint of electrical stability. , Polypropylene (PP) and Polymethylpentene (PMP).

非導電性高分子材料に導電性を付与した高分子は、非導電性高分子材料と導電性フィラーとを混合することで得ることができ、導電性フィラーは、導電性を有する材料から得られるフィラーから選択される。好ましくは、集電体内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料から得られるフィラーからを用いるのが好ましい。具体的には、カーボン材料、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、ニッケル及びステンレス(SUS)等の合金材等から得られるフィラーが挙げられるが、これらに限定されるものではない。なかでも耐食性の観点から、好ましくはアルミニウム、ステンレス、カーボン材料又はニッケルから得られるフィラー、より好ましくはカーボン材料から得られるフィラーである。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。なお、導電性フィラーとしては、粒子系セラミック材料や樹脂材料の周りに、上記で示される金属をメッキ等でコーティングしたものを用いることもできる。 The polymer obtained by imparting conductivity to the non-conductive polymer material can be obtained by mixing the non-conductive polymer material and the conductive filler, and the conductive filler is obtained from the material having conductivity. Selected from fillers. Preferably, from the viewpoint of suppressing ion permeation in the current collector, it is preferable to use a filler obtained from a material having no conductivity with respect to ions used as a charge transfer medium. Specific examples thereof include fillers obtained from carbon materials, alloy materials such as aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, titanium, nickel and stainless steel (SUS). It is not limited to these. Among them, from the viewpoint of corrosion resistance, a filler obtained from aluminum, stainless steel, a carbon material or nickel is preferable, and a filler obtained from a carbon material is more preferable. These conductive fillers may be used alone or in combination of two or more. As the conductive filler, a particle-based ceramic material or a resin material coated with the metal shown above by plating or the like can also be used.

導電性フィラーの形状は粒子状、繊維状及びこれらの凝集体のいずれの形状であってもよい。 The shape of the conductive filler may be a particle shape, a fibrous shape, or an aggregate thereof.

樹脂集電体は、日本国特許公開第2012−150905号公報及び国際公開第WO2015/005116号等に記載の公知の方法で得ることができ、具体例としては、ポリプロピレンに導電性フィラーとしてアセチレンブラックを5〜20部分散させた後、熱プレス機で圧延したもの等が挙げられる。また、その厚みも特に制限されず、公知のものと同様、あるいは適宜変更して適用することができる。 The resin current collector can be obtained by a known method described in Japanese Patent Publication No. 2012-150905 and International Publication No. WO 2015/005116, and as a specific example, acetylene black as a conductive filler in polypropylene can be obtained. After dispersing 5 to 20 parts of the above, rolled with a hot press machine and the like can be mentioned. Further, the thickness thereof is not particularly limited, and the same as known ones or appropriately modified ones can be applied.

正極集電体7及び負極集電体8は、金属集電体又は樹脂集電体をそのまま用いても、その表面に後述する導電層を形成したものを用いてもよく、電池特性等の観点から、導電層を形成した金属集電体又は樹脂集電体であることが好ましい。 As the positive electrode current collector 7 and the negative electrode current collector 8, the metal current collector or the resin current collector may be used as they are, or those having a conductive layer to be described later may be used on the surface thereof, from the viewpoint of battery characteristics and the like. Therefore, it is preferable that it is a metal current collector or a resin current collector on which a conductive layer is formed.

シール部材9を構成する材料としては、電解液に対して耐久性のある材料であれば特に限定されないが、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。 The material constituting the seal member 9 is not particularly limited as long as it is a material durable to the electrolytic solution, but a polymer material is preferable, and a thermosetting polymer material is more preferable. Specific examples thereof include epoxy-based resins, polyolefin-based resins, polyurethane-based resins, and polyvinylidene fluoride resins, and epoxy-based resins are preferable because they have high durability and are easy to handle.

電解液吸収体10としては、正極電極組成物層5及び負極電極組成物層6に含まれる電解液を吸収可能な材料であれば制限無く使用できるが、好ましい材料としては国際公開第2015/005117号に記載のリチウムイオン電池活物質被覆用樹脂として記載された高分子化合物等を用いることができ、なかでもビニル樹脂及びウレタン樹脂が好ましく、(メタ)アクリル酸、及び炭素数4〜36のモノアルコールと(メタ)アクリル酸とのエステルとを必須構成単量体とする共重合体がより好ましい。
これらの高分子化合物は電解液を吸収することで固体状態から膨潤状態になることができ、電解液吸収体として好ましい。
The electrolytic solution absorber 10 can be used without limitation as long as it is a material capable of absorbing the electrolytic solution contained in the positive electrode composition layer 5 and the negative electrode composition layer 6, but the preferred material is International Publication No. 2015/005117. The polymer compound described as the resin for coating the active material of the lithium ion battery described in No. can be used, and among them, vinyl resin and urethane resin are preferable, and (meth) acrylic acid and mono having 4 to 36 carbon atoms are used. A copolymer containing an ester of alcohol and (meth) acrylic acid as an essential constituent monomer is more preferable.
These polymer compounds can change from a solid state to a swollen state by absorbing the electrolytic solution, and are preferable as an electrolytic solution absorber.

次に、以上の構成を有するリチウム二次単電池1の製造方法について説明する。 Next, a method for manufacturing the lithium secondary cell 1 having the above configuration will be described.

まず、負極集電体8の一面の周縁部に固体状態の電解液吸収体10を無端環状に配置し、その上にシール部材9を形成する。負極集電体8に電解液吸収体10を配置する手法及びシール部材9を形成する手法は任意であるが、一例として、インクジェット機や3Dプリンタ等の印刷装置、及びノズルを所定箇所に移動制御して所定量の部材を吐出できる機構を有する装置等により電解液吸収体10又はシール部材9を形成する部材を吐出する手法が好適に挙げられる。 First, the solid electrolyte absorber 10 is arranged in an endless annular shape on the peripheral edge of one surface of the negative electrode current collector 8, and the seal member 9 is formed on the solid electrolyte absorber 10. The method of arranging the electrolytic solution absorber 10 on the negative electrode current collector 8 and the method of forming the seal member 9 are arbitrary, but as an example, the printing device such as an inkjet machine or a 3D printer and the nozzle are moved and controlled to a predetermined position. A method of discharging the member forming the electrolytic solution absorber 10 or the seal member 9 by a device or the like having a mechanism capable of discharging a predetermined amount of the member is preferably mentioned.

負極電極組成物層6を形成すべき高さまでシール部材9を形成したら、負極電極活物質と電解液とを含む負極活物質層である負極電極組成物層6を、シール部材9が形成された負極集電体8の一面に形成して負極3を形成する。負極3を形成する手法は任意であり、負極集電体8の一面に負極電極組成物を塗布する、負極集電体8の一面に、ノズル等を介して負極電極組成物を載置した後に所定厚になるようにヘラ等で均す、など、種々の手法が挙げられる。 After the sealing member 9 was formed to a height at which the negative electrode composition layer 6 should be formed, the sealing member 9 was formed on the negative electrode composition layer 6 which is a negative electrode active material layer containing the negative electrode active material and the electrolytic solution. It is formed on one surface of the negative electrode current collector 8 to form the negative electrode 3. The method of forming the negative electrode 3 is arbitrary, and the negative electrode composition is applied to one surface of the negative electrode current collector 8, and after the negative electrode composition is placed on one surface of the negative electrode current collector 8 via a nozzle or the like. Various methods can be mentioned, such as leveling with a spatula or the like so as to have a predetermined thickness.

次に、負極3を形成する負極電極組成物層6の、負極集電体8とは反対側の一面を覆い、端部がシール部材9の端部に載置するように、セパレータ4を載置する。セパレータ4を負極電極組成物層6の一面に載置する手法は任意であり、一例として、真空チャックによりセパレータ4の一面を保持し、この真空チャックを用いてセパレータ4を負極電極組成物層6の一面に載置した後、チャックをセパレータ4から外すような手法が好適に挙げられる。 Next, the separator 4 is placed so as to cover one surface of the negative electrode composition layer 6 forming the negative electrode 3 on the side opposite to the negative electrode current collector 8 and to place the end portion on the end portion of the seal member 9. Place. The method of placing the separator 4 on one surface of the negative electrode composition layer 6 is arbitrary. As an example, one surface of the separator 4 is held by a vacuum chuck, and the separator 4 is mounted on the negative electrode composition layer 6 using this vacuum chuck. A method in which the chuck is removed from the separator 4 after being placed on one surface is preferably mentioned.

次に、セパレータ4の一面にさらにシール部材9を形成し、正極電極組成物層5を形成すべき高さまでシール部材9を形成したら、正極電極活物質と電解液とを含む正極活物質層である正極電極組成物層5を、セパレータ4の負極電極組成物層6とは反対側の一面に形成して正極2を形成する。正極2を形成する手法は、負極3を形成する手法と略同一であるので、ここではその説明を省略する。 Next, the sealing member 9 is further formed on one surface of the separator 4, and the sealing member 9 is formed to a height at which the positive electrode composition layer 5 should be formed. A certain positive electrode composition layer 5 is formed on one surface of the separator 4 opposite to the negative electrode composition layer 6 to form the positive electrode 2. Since the method of forming the positive electrode 2 is substantially the same as the method of forming the negative electrode 3, the description thereof will be omitted here.

次に、正極電極組成物層5を形成すべき高さまで形成したシール部材9の上に固体状態の電解液吸収体10を無端環状に配置した後、正極2を形成する正極電極組成物層5の一面を覆い、端部が電解液吸収体10を覆い、かつシール部材9の端部に載置するように、正極集電体7を載置する。電解液吸収体10を配置する手法は、負極集電体8の一面に電解液吸収体10を配置する手法と略同位置であり、正極集電体7を正極電極組成物層5の一面に載置する手法は、セパレータ4を負極電極組成物層6の一面に載置する手法と略同一であるので、それぞれここではその説明を省略する。これにより、図1に示すリチウム二次単電池1を製造することができる。 Next, the positive electrode composition layer 5 for forming the positive electrode 2 is formed after the electrolytic solution absorber 10 in a solid state is arranged in an endless annular shape on the seal member 9 formed to a height at which the positive electrode composition layer 5 should be formed. The positive electrode current collector 7 is placed so that one surface is covered, the end portion covers the electrolytic solution absorber 10, and the end portion is placed on the end portion of the seal member 9. The method of arranging the electrolytic solution absorber 10 is substantially the same as the method of arranging the electrolytic solution absorber 10 on one surface of the negative electrode current collector 8, and the positive electrode current collector 7 is placed on one surface of the positive electrode composition layer 5. Since the mounting method is substantially the same as the method of mounting the separator 4 on one surface of the negative electrode composition layer 6, the description thereof will be omitted here. As a result, the lithium secondary cell 1 shown in FIG. 1 can be manufactured.

本実施形態のリチウムイオン電池は、図1に示すリチウム二次単電池を電池外装容器に収容することで得られる。電池外装容器としては、この容器内に正極電極組成物層5及び負極電極組成物層6を安定に収納しうるものであり、特に、可撓性を有することが好ましいという観点から選定されている。加えて電池外装容器は、電極組成物と電池外装容器とが接触する可能性を考慮して、絶縁性を有する材料で構成されたることが好ましく、正極集電体7、正極電極組成物層5、セパレータ4、負極電極組成物層6及び負極集電体8を順に積層してなる発電素子を内部に収納した状態で封止(好ましくは減圧封止)することを考慮して、気密性を有する材料で構成されることが好ましい。 The lithium ion battery of the present embodiment can be obtained by accommodating the lithium secondary cell shown in FIG. 1 in a battery outer container. The battery outer container is selected from the viewpoint that the positive electrode composition layer 5 and the negative electrode composition layer 6 can be stably stored in the container, and it is particularly preferable to have flexibility. .. In addition, the battery outer container is preferably made of an insulating material in consideration of the possibility of contact between the electrode composition and the battery outer container, and the positive electrode current collector 7 and the positive electrode composition layer 5 are used. , Separation 4, negative electrode composition layer 6 and negative electrode current collector 8 are laminated in this order, and the power generation element is sealed (preferably reduced pressure sealing) in a state of being housed inside. It is preferably composed of the material to be provided.

電池外装容器は、ラミネートフィルムからなる容器であることが好ましく、ラミネートフィルムとしては、耐熱性樹脂フィルムを含む外層と熱可塑性樹脂フィルムを含む内層との間に金属層を介在した複合フィルムを用いることができ、耐熱性樹脂フィルムとしてはポリアミド樹脂又はポリエステル樹脂の延伸フィルム等を好ましく用いることができ、熱可塑性樹脂フィルムとしては未延伸ポリオレフィンフィルム等を好ましく用いることができる。 The battery outer container is preferably a container made of a laminated film, and as the laminated film, a composite film having a metal layer interposed between an outer layer containing a heat-resistant resin film and an inner layer containing a thermoplastic resin film is used. As the heat-resistant resin film, a stretched film of polyamide resin or polyester resin can be preferably used, and as the thermoplastic resin film, an unstretched polyolefin film or the like can be preferably used.

金属層としては、アルミニウム箔、ステンレス箔及び銅箔等による層を用いることができる。なお、耐熱性樹脂フィルムとは、樹脂フィルムの融点が内層となる熱可塑性樹脂フィルムの融点よりも高い樹脂フィルムであることを意味し、耐熱性樹脂フィルムを外層に用いると、内層となる熱可塑性樹脂フィルムだけを十分に加熱溶融することができ、電池外装容器のヒートシールを確実に行うことが可能になる。 As the metal layer, a layer made of aluminum foil, stainless steel foil, copper foil or the like can be used. The heat-resistant resin film means that the melting point of the resin film is higher than the melting point of the thermoplastic resin film as the inner layer, and when the heat-resistant resin film is used as the outer layer, the thermoplastic resin film becomes the inner layer. Only the resin film can be sufficiently heated and melted, and the heat seal of the battery outer container can be reliably performed.

ラミネートフィルムの一例としては、アルミニウム又はニッケル等の金属層の面のうち、電池外装容器の外面となる第一面に耐熱性樹脂(ポリアミド樹脂及びポリエステル樹脂等)をコーティングし、電池外装容器の内面となる第二面に熱可塑性樹脂(ポリエチレン及びポリプロピレン等)をコーティングしたフィルムが上げられる。 As an example of the laminated film, a heat-resistant resin (polyethylene resin, polyester resin, etc.) is coated on the first surface of the metal layer such as aluminum or nickel, which is the outer surface of the battery outer container, and the inner surface of the battery outer container is coated. A film coated with a thermoplastic resin (polyethylene, polypropylene, etc.) is raised on the second surface.

以上のような構成の本実施形態のリチウムイオン電池において、単電池1に振動等の衝撃が与えられ、あるいは、シール部の経時変化などの理由により、例えば図3に示すように、シール部材9と正極集電体7との接触面に間隙が生じ、正極電極組成物層5及び負極電極組成物層6を構成する電解液(図3に示す例では正極電極組成物層5を構成する電解液)がこのシール部材9に漏洩してしまった場合、電解液吸収体10が電解液を吸収し、膨潤体としてこのシール部材9を塞ぐとともに電解液吸収体10が電解液を保持する。結果として、電解液がこのシール部材9から漏洩することが極力抑制される。 In the lithium ion battery of the present embodiment having the above configuration, the seal member 9 is, for example, as shown in FIG. 3, due to an impact such as vibration being applied to the cell 1 or a change with time of the seal portion. A gap is formed on the contact surface between the positive electrode current collector and the positive electrode current collector 7, and the electrolytic solution forming the positive electrode composition layer 5 and the negative electrode composition layer 6 (in the example shown in FIG. 3, the electrolysis forming the positive electrode composition layer 5). When the liquid) leaks to the seal member 9, the electrolytic solution absorber 10 absorbs the electrolytic solution, closes the seal member 9 as a swelling body, and the electrolytic solution absorber 10 holds the electrolytic solution. As a result, leakage of the electrolytic solution from the sealing member 9 is suppressed as much as possible.

従って、本実施形態のリチウムイオン電池によれば、固定部であるシール部材9と正極集電体7及び/又は負極集電体8との間に間隙が生じてしまった際にも特性低下を抑制することの可能なリチウムイオン電池を実現することができる。しかも、シール部材9が万が一破損した場合でも、電解液吸収体10による電解液漏洩能を低下させることはない。 Therefore, according to the lithium ion battery of the present embodiment, the characteristics are deteriorated even when a gap is formed between the seal member 9 which is a fixed portion and the positive electrode current collector 7 and / or the negative electrode current collector 8. It is possible to realize a lithium ion battery that can be suppressed. Moreover, even if the seal member 9 is damaged, the electrolytic solution leakage ability of the electrolytic solution absorber 10 is not reduced.

従って、本実施形態によれば、固定部の経時変化や形状変化があってもこの固定部からの電解液の漏洩を十分抑制することの可能なリチウムイオン電池を実現することができる。 Therefore, according to the present embodiment, it is possible to realize a lithium ion battery capable of sufficiently suppressing leakage of the electrolytic solution from the fixed portion even if the fixed portion changes with time or shape.

(第2実施形態)
次に、図4〜6を参照して、本発明の第2実施形態であるリチウムイオン電池が有する単電池について詳細を説明する。図4は本発明の第2実施形態であるリチウムイオン電池が有する単電池を示す断面図、図5は第2実施形態であるリチウムイオン電池が有する単電池の固定部を示す断面図、図6は第2実施形態であるリチウムイオン電池が有する単電池の固定部において、電解液吸収体が電解液を吸液した状態を示す断面図である。
(Second Embodiment)
Next, the cell cell included in the lithium ion battery according to the second embodiment of the present invention will be described in detail with reference to FIGS. 4 to 6. FIG. 4 is a sectional view showing a cell of the lithium ion battery according to the second embodiment of the present invention, and FIG. 5 is a sectional view showing a fixed portion of the cell of the lithium ion battery of the second embodiment, FIG. Is a cross-sectional view showing a state in which the electrolytic solution absorber absorbs the electrolytic solution in the fixed portion of the cell cell of the lithium ion battery according to the second embodiment.

これら図において、本実施形態のリチウムイオン電池が有する単電池の外側に位置する正極集電体7と負極集電体8とは、図4に詳細を示すように、それぞれ活物質組成物の収容部を有する所定形状に形成されている。正極集電体7と負極集電体8とがそれぞれ有する収容部は略同一の形状に形成されており、正極集電体7と負極集電体8とは前記の収容部を有する本体7a、8aと図4において左右の端部から側方に突出する、収容部の外周部である一対の上側縁部7b及び下側縁部8bとを備える。そして、これら収容部と縁部が形成された正極集電体7と負極集電体8とにより、中空の収容部21が形成されている。 In these figures, the positive electrode current collector 7 and the negative electrode current collector 8 located outside the cell of the lithium ion battery of the present embodiment each contain an active material composition, as shown in detail in FIG. It is formed in a predetermined shape having a portion. The accommodating portions of the positive electrode current collector 7 and the negative electrode current collector 8 are formed to have substantially the same shape, and the positive electrode current collector 7 and the negative electrode current collector 8 have the main body 7a having the accommodating portions. 8a and a pair of upper edge portions 7b and lower edge portions 8b, which are outer peripheral portions of the accommodating portion, are provided so as to project laterally from the left and right end portions in FIG. A hollow housing portion 21 is formed by the positive electrode current collector 7 and the negative electrode current collector 8 on which the housing portion and the edge portion are formed.

収容部21には略平板状のセパレータ4が配置され、この収容部21を正極室及び負極室に区分している。 A substantially flat plate-shaped separator 4 is arranged in the accommodating portion 21, and the accommodating portion 21 is divided into a positive electrode chamber and a negative electrode chamber.

正極室及び負極室には正極活物質層である正極電極組成物層5及び負極活物質層である負極電極組成物層6がそれぞれ充填され、これにより、正極集電体7及び正極電極組成物層5からなる正極2、セパレータ4、負極電極組成物層6及び負極集電体8からなる負極3が順に積層されてなり、電解液を含む本実施形態の単電池が構成されている。そして、セパレータ4の端部が上側縁部7b及び下側縁部8bの間に配置された状態で、これら上側縁部7b及び下側縁部8bの間がシール部材9により封止されることで、本実施形態のリチウムイオン電池が有する単電池が形成されている。 The positive electrode chamber and the negative electrode chamber are filled with a positive electrode composition layer 5 which is a positive electrode active material layer and a negative electrode composition layer 6 which is a negative electrode active material layer, respectively. The positive electrode 2 composed of the layer 5, the separator 4, the negative electrode composition layer 6 and the negative electrode 3 composed of the negative electrode current collector 8 are laminated in this order to form the cell cell of the present embodiment containing the electrolytic solution. Then, in a state where the end portion of the separator 4 is arranged between the upper edge portion 7b and the lower edge portion 8b, the space between the upper edge portion 7b and the lower edge portion 8b is sealed by the sealing member 9. Therefore, the cell cell of the lithium ion battery of the present embodiment is formed.

従って、シール部材9は、正極集電体7及び負極集電体8の間に配置されて正極集電体7及び負極集電体8の間に、セパレータ4の周縁部を固定し、かつ正極活物質層(正極電極組成物層5)及び負極活物質層(負極電極組成物層6)を封止する固定部として機能する。 Therefore, the seal member 9 is arranged between the positive electrode current collector 7 and the negative electrode current collector 8, and the peripheral edge portion of the separator 4 is fixed between the positive electrode current collector 7 and the negative electrode current collector 8 and the positive electrode is positive. It functions as a fixing portion for sealing the active material layer (positive electrode composition layer 5) and the negative electrode active material layer (negative electrode composition layer 6).

シール部材9には、図4及び図5に詳細を示すように、電解液を吸収して少なくともその一部を保持する電解液吸収体10が設けられている。 As shown in detail in FIGS. 4 and 5, the sealing member 9 is provided with an electrolytic solution absorber 10 that absorbs the electrolytic solution and holds at least a part thereof.

より詳細には、シール部材9は、正極集電体7及び負極集電体8の外周部全体にわたって無端環状に延在し、電解液吸収体10は、このシール部材9に沿って無端環状に設けられている。さらに、正極集電体7の上側縁部7b及び負極集電体8の下側縁部8bは、それぞれ図4及び図5に示すように、無端環状に形成された溝部7c、8cを備え、電解液吸収体10は2つの溝部7c、8cの間に形成される中空部を満たすように設けられていることが好ましい。 More specifically, the seal member 9 extends in an endless annular shape over the entire outer peripheral portion of the positive electrode current collector 7 and the negative electrode current collector 8, and the electrolytic solution absorber 10 has an endless annular shape along the seal member 9. It is provided. Further, the upper edge portion 7b of the positive electrode current collector 7 and the lower edge portion 8b of the negative electrode current collector 8 are provided with groove portions 7c and 8c formed in an endless annular shape, respectively, as shown in FIGS. 4 and 5, respectively. The electrolytic solution absorber 10 is preferably provided so as to fill the hollow portion formed between the two groove portions 7c and 8c.

本発明において、正極電極組成物層5及び負極電極組成物層6は、前記の電極組成物を正極室及び負極室にそれぞれ直接充填しても得ることができる。 In the present invention, the positive electrode composition layer 5 and the negative electrode composition layer 6 can also be obtained by directly filling the positive electrode chamber and the negative electrode chamber with the electrode composition.

ここで、本明細書において、「充填された」とは、正極活物質粒子及び負極活物質粒子が正極室及び負極室にそれぞれ収納されている状態を意味し、好ましくは、この正極活物質粒子及び負極活物質粒子と電解質とが正極室及び負極室にそれぞれ収納されている状態を意味する。さらに好ましくは、正極活物質粒子及び負極活物質粒子と電解質とが混合された状態を意味する。 Here, in the present specification, "filled" means a state in which the positive electrode active material particles and the negative electrode active material particles are housed in the positive electrode chamber and the negative electrode chamber, respectively, and preferably the positive electrode active material particles. It means that the negative electrode active material particles and the electrolyte are housed in the positive electrode chamber and the negative electrode chamber, respectively. More preferably, it means a state in which the positive electrode active material particles and the negative electrode active material particles and the electrolyte are mixed.

本発明において正極室及び負極室に正極電極組成物層5及び負極電極組成物層6が充填された状態にするには、粉体状の正極活物質粒子及び負極活物質粒子を直接正極室及び負極室にそれぞれに入れてもよく、正極活物質又は負極活物質粒子と電解液とを含むスラリー状の正極電極組成物及び負極電極組成を正極室及び負極室にそれぞれ入れることで行ってもよい。粉体状の正極活物質及び負極活物質粒子を直接正極室及び負極室に入れた場合、その後電解液を入れることで正極室及び負極室のそれぞれに正極電極組成物層5及び負極電極組成物層6が充填される。 In the present invention, in order to fill the positive electrode chamber and the negative electrode chamber with the positive electrode composition layer 5 and the negative electrode composition layer 6, powdered positive electrode active material particles and negative electrode active material particles are directly placed in the positive electrode chamber and the negative electrode chamber. It may be put in each of the negative electrode chambers, or it may be done by putting the slurry positive electrode electrode composition and the negative electrode composition containing the positive electrode active material or the negative electrode active material particles and the electrolytic solution in the positive electrode chamber and the negative electrode chamber, respectively. .. When the powdery positive electrode active material and the negative electrode active material particles are directly put into the positive electrode chamber and the negative electrode chamber, and then the electrolytic solution is put into the positive electrode chamber and the negative electrode chamber, respectively, the positive electrode composition layer 5 and the negative electrode composition Layer 6 is filled.

また、溝部7c、8cは、集電体の外周部を無端環状に型押しすること等の方法で成形することで設けることが出来る。 Further, the groove portions 7c and 8c can be provided by molding the outer peripheral portion of the current collector by a method such as embossing in an endless annular shape.

次に、本実施形態のリチウムイオン電池の製造方法について説明する。 Next, a method for manufacturing the lithium ion battery of the present embodiment will be described.

まず、所定形状に形成され、上側縁部7b及び下側縁部8bにそれぞれ溝部7c、8cが形成された正極集電体7及び負極集電体8が有する本体7a、8aの収容部である凹部に正極電極組成物及び負極電極組成物をそれぞれ充填し、正極活物質層である正極電極組成物層5及び負極活物質層である負極電極組成物層6を形成する。正極電極組成物及び負極電極組成物を前記凹部に充填する手法に限定はなく、一例として、正極電極組成物及び負極電極組成物が格納されたタンクからノズルを介して充填する手法や、インクジェット装置により正極集電体7及び負極集電体8の凹部に正極電極組成物及び負極電極組成物を充填する手法、周知の手法が好適に適用される。 First, it is an accommodating portion of the main bodies 7a and 8a of the positive electrode current collector 7 and the negative electrode current collector 8 which are formed in a predetermined shape and have grooves 7c and 8c formed in the upper edge portion 7b and the lower edge portion 8b, respectively. The recesses are filled with the positive electrode composition and the negative electrode composition, respectively, to form the positive electrode composition layer 5 which is the positive electrode active material layer and the negative electrode composition layer 6 which is the negative electrode active material layer. The method of filling the positive electrode composition and the negative electrode composition into the recesses is not limited, and as an example, a method of filling the positive electrode composition and the negative electrode composition from a tank in which the positive electrode composition and the negative electrode composition are stored via a nozzle, an inkjet device, or the like. Therefore, a method of filling the recesses of the positive electrode current collector 7 and the negative electrode current collector 8 with the positive electrode composition and the negative electrode composition, and a well-known method are preferably applied.

なお、正極集電体7及び負極集電体8の凹部に正極電極組成物及び負極電極組成物層を充填する量は、少なくとも凹部がこれら正極電極組成物及び負極電極組成物により充満される程度の量であり、好ましくは、正極電極組成物及び負極電極組成物が、上側縁部7b及び下側縁部8bのそれぞれから若干盛り上がる程度の量であることが好ましい。 The amount of the positive electrode composition and the negative electrode composition layer filled in the recesses of the positive electrode current collector 7 and the negative electrode current collector 8 is at least such that the recesses are filled with the positive electrode composition and the negative electrode composition. The amount of the positive electrode composition and the negative electrode composition is preferably such that the positive electrode composition and the negative electrode composition are slightly raised from each of the upper edge portion 7b and the lower edge portion 8b.

次いで、正極集電体7及び負極集電体8のいずれか一方の上面に平板状のセパレータ4を配置することで、正極電極組成物層5及び負極電極組成物層6のいずれか一方の上面をセパレータ4で覆う。この際、上述のように正極または負極電極組成物層5、6を上側縁部7b及び下側縁部8bから盛り上がる程度の量を凹部に充填した場合、セパレータ4の上面をローラで押さえながらこのセパレータ4を配置することで、正極または負極電極組成物層5、6を均すことが好ましい。 Next, by arranging the flat plate-shaped separator 4 on the upper surface of either the positive electrode current collector 7 or the negative electrode current collector 8, the upper surface of either the positive electrode composition layer 5 or the negative electrode composition layer 6 is arranged. Is covered with the separator 4. At this time, when the positive electrode or negative electrode composition layers 5 and 6 are filled in the recesses in an amount sufficient to rise from the upper edge portion 7b and the lower edge portion 8b as described above, the upper surface of the separator 4 is pressed by a roller. It is preferable to level the positive electrode or negative electrode composition layers 5 and 6 by arranging the separator 4.

次いで、上側縁部7b及び下側縁部8bの溝部7c、8cの間に形成される中空部に電解液吸収体10を無端環状に充填し、上側縁部7b及び下側縁部8bにシール部材9を無端環状に配置した後、正極電極組成物層5を形成した正極集電体7及び負極電極組成物6を形成した負極集電体8のいずれかを上下逆転させて、上側縁部7b及び下側縁部8bが相対向するように配置する。この状態で、正極集電体7と負極集電体8の本体7a、8aの収容部により形成される収容部21内を脱気し、シール部材9を加熱溶融等することにより接着して封止することで、第2実施形態にかかる図5に示すようなリチウムイオン電池に用いるリチウム二次単電池を得ることができる。 Next, the hollow portion formed between the grooves 7c and 8c of the upper edge portion 7b and the lower edge portion 8b is filled with the electrolytic solution absorber 10 in an endless ring shape, and the upper edge portion 7b and the lower edge portion 8b are sealed. After arranging the members 9 in an endless annular shape, either the positive electrode current collector 7 on which the positive electrode composition layer 5 is formed or the negative electrode current collector 8 on which the negative electrode composition 6 is formed is inverted upside down to form an upper edge portion. 7b and the lower edge portion 8b are arranged so as to face each other. In this state, the inside of the accommodating portion 21 formed by the accommodating portions of the positive electrode current collector 7 and the main bodies 7a and 8a of the negative electrode current collector 8 is degassed, and the sealing member 9 is adhered and sealed by heating and melting. By stopping, it is possible to obtain a lithium secondary cell used for the lithium ion battery as shown in FIG. 5 according to the second embodiment.

本実施形態のリチウムイオン電池は、前記のリチウム二次単電池を第1実施形態で例示した電池外装容器と同様の電池外装容器に収容することで得られる。 The lithium ion battery of the present embodiment can be obtained by housing the above-mentioned lithium secondary cell in a battery outer container similar to the battery outer container exemplified in the first embodiment.

本実施形態のリチウムイオン電池においても、リチウムイオン電池に振動等の衝撃が与えられ、あるいは、シール部の経時変化などの理由により、例えば図6に示すように、シール部材9と上側縁部7bとの接触面に間隙が生じ、正極電極組成物層5及び負極電極組成物層6を構成する電解液(図6に示す例では正極電極組成物層5を構成する電解液)がこのシール部材9に漏洩してしまった場合、電解液吸収体10が電解液を吸収し、膨潤体としてこのシール部材9を塞ぐとともに電解液吸収体10が電解液を保持する。結果として、電解液がこのシール部材9から漏洩することが極力抑制される。 Also in the lithium ion battery of the present embodiment, as shown in FIG. 6, for example, the seal member 9 and the upper edge portion 7b are given an impact such as vibration to the lithium ion battery or the seal portion changes with time. A gap is formed on the contact surface with the positive electrode, and the electrolytic solution forming the positive electrode composition layer 5 and the negative electrode composition layer 6 (in the example shown in FIG. 6, the electrolytic solution forming the positive electrode composition layer 5) is the sealing member. When the leakage occurs to 9, the electrolytic solution absorber 10 absorbs the electrolytic solution, closes the sealing member 9 as a swelling body, and the electrolytic solution absorber 10 holds the electrolytic solution. As a result, leakage of the electrolytic solution from the sealing member 9 is suppressed as much as possible.

従って、本実施形態のリチウムイオン電池によっても、上述の第1実施形態のリチウムイオン電池と同様の効果を得ることができる。
(変形例)
Therefore, the lithium ion battery of the present embodiment can also obtain the same effect as the lithium ion battery of the first embodiment described above.
(Modification example)

なお、本発明のリチウムイオン電池は、その細部が上述の各実施形態に限定されず、種々の変形例が可能である。一例として、本発明のリチウムイオン電池の外形は図1及び図4に示すようなリチウムイオン電池のそれに限定されず、種々の外形が採用可能である。 The details of the lithium ion battery of the present invention are not limited to the above-described embodiments, and various modifications are possible. As an example, the outer shape of the lithium ion battery of the present invention is not limited to that of the lithium ion battery as shown in FIGS. 1 and 4, and various outer shapes can be adopted.

1 単電池
2 正極
3 負極
4 セパレータ
5 正極活物質層
6 負極活物質層
7 正極集電体
7c、8c 溝部
8 負極集電体
9 シール部材
10 電解液吸収体
1 Single battery 2 Positive electrode 3 Negative electrode 4 Separator 5 Positive electrode active material layer 6 Negative electrode active material layer 7 Positive electrode current collector 7c, 8c Groove 8 Negative electrode current collector 9 Sealing member 10 Electrolyte absorber

Claims (5)

正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなり、電解液を含む単電池を有するリチウムイオン電池であって、
前記正極集電体及び前記負極集電体の間に配置され、前記セパレータの端部が埋め込まれることで前記正極集電体及び前記負極集電体の間に前記セパレータの周縁部を固定し、かつ前記正極活物質層、前記セパレータ、及び前記負極活物質層を封止する固定部を備え、
前記正極活物質層及び前記負極活物質層は、正極活物質粒子及び負極活物質粒子を前記電解液と混合してそれぞれ得られる正極電極組成物及び負極電極組成物からなり、
前記固定部と前記正極集電体及び/又は前記負極集電体との間には、前記電解液を吸収して少なくともその一部を保持する電解液吸収体が設けられているリチウムイオン電池。
A lithium ion battery in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector are laminated in this order and has a single battery containing an electrolytic solution.
It is arranged between the positive electrode current collector and the negative electrode current collector, and by embedding the end portion of the separator, the peripheral edge portion of the separator is fixed between the positive electrode current collector and the negative electrode current collector. Moreover, the positive electrode active material layer, the separator, and the fixing portion for sealing the negative electrode active material layer are provided.
The positive electrode active material layer and the negative electrode active material layer are composed of a positive electrode electrode composition and a negative electrode composition obtained by mixing positive electrode active material particles and negative electrode active material particles with the electrolytic solution, respectively.
A lithium ion battery in which an electrolytic solution absorber that absorbs the electrolytic solution and holds at least a part thereof is provided between the fixed portion and the positive electrode current collector and / or the negative electrode current collector.
請求項1記載のリチウムイオン電池において、
前記電解液吸収体は、前記固定部に無端環状に設けられているリチウムイオン電池。
In the lithium ion battery according to claim 1,
The electrolyte absorber is a lithium ion battery provided in the fixed portion in an endless annular shape.
請求項1または2記載のリチウムイオン電池において、
前記正極集電体及び/又は前記負極集電体は略板状に形成され、
前記電解液吸収体は、前記固定部と前記正極集電体及び/又は前記負極集電体との接触面に設けられているリチウムイオン電池。
In the lithium ion battery according to claim 1 or 2.
The positive electrode current collector and / or the negative electrode current collector is formed in a substantially plate shape.
The electrolytic solution absorber is a lithium ion battery provided on a contact surface between the fixed portion and the positive electrode current collector and / or the negative electrode current collector.
請求項3記載のリチウムイオン電池において、
前記セパレータは略板状に形成され、
前記固定部は、前記正極集電体及び前記負極集電体の周縁部を封止する枠状に形成されているリチウムイオン電池。
In the lithium ion battery according to claim 3.
The separator is formed in a substantially plate shape and has a substantially plate shape.
The fixed portion is a lithium ion battery formed in a frame shape that seals the peripheral portions of the positive electrode current collector and the negative electrode current collector.
請求項2記載のリチウムイオン電池において、
前記正極集電体及び/又は前記負極集電体はその周縁部に無端環状に形成された溝部を備え、前記電解液吸収体はこの溝部に設けられているリチウムイオン電池。
In the lithium ion battery according to claim 2.
The positive electrode current collector and / or the negative electrode current collector is provided with a groove formed in an endless annular shape on the peripheral edge thereof, and the electrolytic solution absorber is a lithium ion battery provided in the groove.
JP2017017786A 2017-02-02 2017-02-02 Lithium ion battery Active JP6850621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017017786A JP6850621B2 (en) 2017-02-02 2017-02-02 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017786A JP6850621B2 (en) 2017-02-02 2017-02-02 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2018125213A JP2018125213A (en) 2018-08-09
JP6850621B2 true JP6850621B2 (en) 2021-03-31

Family

ID=63111522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017786A Active JP6850621B2 (en) 2017-02-02 2017-02-02 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP6850621B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632264A (en) * 2019-03-20 2021-11-09 Apb株式会社 Lithium ion battery and method for determining deterioration of lithium ion battery
WO2021117908A1 (en) 2019-12-12 2021-06-17 Apb株式会社 Battery system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155922U (en) * 1976-07-23 1977-11-26
JPS5368030U (en) * 1976-11-10 1978-06-08
JP2003123711A (en) * 2001-10-12 2003-04-25 Japan Storage Battery Co Ltd Storage battery
JP4042613B2 (en) * 2003-04-14 2008-02-06 日産自動車株式会社 Bipolar battery
JP4367220B2 (en) * 2004-04-28 2009-11-18 日産自動車株式会社 Bipolar battery, bipolar battery manufacturing method, assembled battery, and automobile using the assembled battery
JP2005340175A (en) * 2004-04-28 2005-12-08 Ngk Spark Plug Co Ltd Lithium primary battery
WO2006062204A1 (en) * 2004-12-10 2006-06-15 Nissan Motor Co., Ltd. Bipolar battery
JP6050066B2 (en) * 2012-09-14 2016-12-21 Nok株式会社 Bipolar secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018125213A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP5177301B2 (en) Current collector for bipolar secondary battery
US8481197B2 (en) Bipolar secondary battery, method for manufacturing the bipolar secondary battery, bipolar electrode, method for manufacturing the bipolar electrode and assembled battery
JP6585964B2 (en) Method for manufacturing lithium ion battery
JP7190314B2 (en) bipolar secondary battery
JP2010056067A (en) Coin-type lithium secondary battery
JP6785110B2 (en) Current collectors for lithium-ion batteries and lithium-ion batteries
JP6731716B2 (en) Lithium-ion battery and manufacturing method thereof
JP7209558B2 (en) bipolar secondary battery
JP7181752B2 (en) Lithium ion battery and manufacturing method thereof
JP7163647B2 (en) battery
JP7136592B2 (en) lithium ion battery
JP6850621B2 (en) Lithium ion battery
JP6888937B2 (en) Battery manufacturing method
JP6843580B2 (en) Lithium-ion battery manufacturing method
JP6861016B2 (en) Lithium ion battery
JP2021082391A (en) Lithium-ion battery module and battery pack
JP6611321B2 (en) Battery module and manufacturing method thereof
JP6549944B2 (en) Lithium ion battery
JP7016234B2 (en) Lithium ion battery
JP6738701B2 (en) Method for manufacturing lithium-ion battery
JP6865051B2 (en) Lithium ion battery
JP6700030B2 (en) Battery separator and lithium-ion battery
JP6738706B2 (en) Lithium ion battery
JP2017117713A (en) Collector for lithium ion battery and lithium ion battery
JP6675854B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210308

R150 Certificate of patent or registration of utility model

Ref document number: 6850621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150