JP6843580B2 - Lithium-ion battery manufacturing method - Google Patents

Lithium-ion battery manufacturing method Download PDF

Info

Publication number
JP6843580B2
JP6843580B2 JP2016207019A JP2016207019A JP6843580B2 JP 6843580 B2 JP6843580 B2 JP 6843580B2 JP 2016207019 A JP2016207019 A JP 2016207019A JP 2016207019 A JP2016207019 A JP 2016207019A JP 6843580 B2 JP6843580 B2 JP 6843580B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
current collector
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016207019A
Other languages
Japanese (ja)
Other versions
JP2018067508A (en
Inventor
真功 西口
真功 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2016207019A priority Critical patent/JP6843580B2/en
Publication of JP2018067508A publication Critical patent/JP2018067508A/en
Application granted granted Critical
Publication of JP6843580B2 publication Critical patent/JP6843580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、電池外装材の内面に集電体を配置する工程を有するリチウムイオン電池の製造方法に関する。さらに詳しくは、集電体を配置する工程が、液体上に集電体を載せ置いて、集電体を電池外装材の内面の所定の場所に位置決めする工程を有するリチウムイオン電池の製造方法に関する。 The present invention relates to a method for manufacturing a lithium ion battery, which comprises a step of arranging a current collector on the inner surface of the battery exterior material. More specifically, the present invention relates to a method for manufacturing a lithium ion battery, wherein the step of arranging the current collector includes a step of placing the current collector on a liquid and positioning the current collector at a predetermined position on the inner surface of the battery exterior material. ..

リチウムイオン電池は、小型で高容量な二次電池として、近年様々な用途に多用されており、特にエネルギー密度の高いリチウムイオン電池として積層型リチウムイオン電池が知られている。積層型リチウムイオン電池は、正極活物質層を配置した正極集電体と負極活物質層を配置した負極集電体とをセパレータを介して積層した発電要素をアルミラミネートフィルム等の電池外装材で封止した構造を有し、発電要素を何層にも積層することで高出力の電池が得られることが知られている。 Lithium-ion batteries have been widely used in various applications in recent years as small-sized and high-capacity secondary batteries, and laminated lithium-ion batteries are known as lithium-ion batteries having a particularly high energy density. In a laminated lithium-ion battery, a power generation element in which a positive electrode current collector on which a positive electrode active material layer is arranged and a negative electrode current collector on which a negative electrode active material layer is arranged is laminated via a separator is used as a battery exterior material such as an aluminum laminate film. It is known that a high output battery can be obtained by having a sealed structure and stacking power generation elements in multiple layers.

しかし、小型のリチウムイオン電池を特許文献1等に記載された積層型リチウムイオン電池で構成する場合には、所定の大きさの発電要素をアルミラミネートフィルム等の電池外装材内に封止する必要があり、シート状に作製した積層体をリチウムイオン電池の大きさに合わせて切断等して小さくした積層体を電池外装材に封入必要がある。
積層体を小さく切断する場合には切断時に生じる応力よって積層体の内部等に欠陥を生じる場合があるだけでなく所定の位置に固定することが困難なため、電池外装材を封止する際に積層体の位置が変化して内部に欠陥を生じる場合があった。そして、これらの内部の欠陥によって、リチウムイオン電池が十分な電気特性を発揮出来ないことがあるという課題があった。
However, when a small lithium-ion battery is composed of the laminated lithium-ion battery described in Patent Document 1 and the like, it is necessary to seal a power generation element having a predetermined size in a battery exterior material such as an aluminum laminate film. Therefore, it is necessary to enclose the laminated body produced in the form of a sheet in the battery exterior material by cutting it according to the size of the lithium ion battery to make it smaller.
When cutting the laminate into small pieces, not only may defects occur inside the laminate due to the stress generated during cutting, but it is also difficult to fix the laminate in place, so when sealing the battery exterior material, The position of the laminate may change, causing internal defects. Then, there is a problem that the lithium ion battery may not exhibit sufficient electrical characteristics due to these internal defects.

特開2013−175308号公報Japanese Unexamined Patent Publication No. 2013-175308

本発明は上述した課題に鑑みてなされたものであり、小型であっても集電体を所定の位置に位置決めする事ができ、かつその集電体の位置が変化しないリチウムイオン電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides a lithium ion battery capable of positioning a current collector at a predetermined position even if it is small in size, and the position of the current collector does not change. The purpose is.

本発明者らは、前記の目的を達成すべく検討を行った結果、本発明に到達した。すなわち、本発明は、外装材の内面に集電体を配置する工程を有し、前記の集電体を配置する工程が、電池外装材の内面に液体を供給する工程と、電池外装材の内面に供給された液体上に集電体を載せ置く工程とを有するリチウムイオン電池の製造方法である。 The present inventors have arrived at the present invention as a result of studies for achieving the above object. That is, the present invention includes a step of arranging a current collector on the inner surface of the exterior material, and the step of arranging the current collector is a step of supplying a liquid to the inner surface of the battery exterior material and a step of supplying the battery exterior material. This is a method for manufacturing a lithium ion battery, which comprises a step of placing a current collector on a liquid supplied on the inner surface.

本発明のリチウムイオン電池の製造方法は、集電体を容易に電池外装材に固定できるため、発電要素の積層精度を維持することができ、小型のリチウムイオン電池であっても十分な電気特性を発揮出来るリチウムイオン電池をえることができる。 In the method for manufacturing a lithium-ion battery of the present invention, since the current collector can be easily fixed to the battery exterior material, the stacking accuracy of the power generation elements can be maintained, and even a small lithium-ion battery has sufficient electrical characteristics. It is possible to obtain a lithium-ion battery that can demonstrate the above.

本発明のリチウムイオン電池の製造方法は、電池外装材の内面に集電体を配置する工程を有し、前記の集電体を配置する工程が、電池外装材の内面に液体を供給する工程と、電池外装材の内面に供給された液体上に集電体を載せ置く工程とを有する。 The method for manufacturing a lithium-ion battery of the present invention includes a step of arranging a current collector on the inner surface of the battery exterior material, and the step of arranging the current collector is a step of supplying a liquid to the inner surface of the battery exterior material. And a step of placing the current collector on the liquid supplied to the inner surface of the battery exterior material.

まず、本発明の製造方法で得られるリチウムイオン電池について説明する。
本発明の製造方法で得られるリチウムイオン電池は、正極集電体、正極活物質層、セパレータ、負極活物質層および負極集電体が順に積層した積層体を電池外装材で密封した構造を有するリチウムイオン電池である。電池外装材の内部にある前記の積層体の数は、1つであっても、2つ以上であってもよい。積層体の数は製造するリチウムイオン電池の出力に応じて調整することができるが、積層体が1つの場合であっても、2つ以上の場合であっても。最外層には正極集電体及び負極集電体が配置される。前記の積層体を2つ以上用いる場合、積層体の接続は直列であっても並列であっても良い。
First, the lithium ion battery obtained by the manufacturing method of the present invention will be described.
The lithium ion battery obtained by the production method of the present invention has a structure in which a laminate in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer and a negative electrode current collector are laminated in this order is sealed with a battery exterior material. It is a lithium-ion battery. The number of the above-mentioned laminates inside the battery exterior material may be one or two or more. The number of laminates can be adjusted according to the output of the lithium-ion battery to be manufactured, regardless of whether the number of laminates is one or two or more. A positive electrode current collector and a negative electrode current collector are arranged on the outermost layer. When two or more of the above-mentioned laminates are used, the laminates may be connected in series or in parallel.

次に、電池外装材の内面に集電体を配置する工程について説明する。
本発明の製造方法において、集電体が配置される電池外装材の内面とは、電池外装材が有する面のうち、前記の積層体の最外層にある正極集電体又は負極集電体の少なくとも一部と接する面を意味する。
Next, a step of arranging the current collector on the inner surface of the battery exterior material will be described.
In the manufacturing method of the present invention, the inner surface of the battery exterior material on which the current collector is arranged is the positive electrode current collector or the negative electrode current collector on the outermost layer of the laminated body among the surfaces of the battery exterior material. It means the surface that comes into contact with at least a part.

本発明の製造方法で用いる電池外装材としては、金属製外装材およびラミネートフィルム製外装材等があげられ、これらの電池外装材としては、金属箔およびラミネートフィルム等を用いることができる。 Examples of the battery exterior material used in the manufacturing method of the present invention include a metal exterior material and a laminate film exterior material, and as these battery exterior materials, a metal foil, a laminate film, and the like can be used.

金属箔としては、アルミニウム、アルミニウム合金、鉄及びステンレス等からなるフィルム、シート及び薄板等が挙げられ、なかでもこれらの金属に絶縁性樹脂をコーティング等して積層した金属箔が好ましい。金属箔の厚さは、1mm以下であることが好ましく、より好ましくは0.5mm以下、さらに好ましくは0.2mm以下である。
なかでも、軽量であり強度が高いことから、絶縁性樹脂をコーティング等して積層したアルミニウム合金が好ましい。
Examples of the metal foil include films, sheets and thin plates made of aluminum, aluminum alloys, iron, stainless steel and the like, and among them, a metal foil obtained by coating these metals with an insulating resin or the like and laminating them is preferable. The thickness of the metal foil is preferably 1 mm or less, more preferably 0.5 mm or less, still more preferably 0.2 mm or less.
Among them, an aluminum alloy laminated by coating an insulating resin or the like is preferable because it is lightweight and has high strength.

ラミネートフィルムとしては、基材と熱可塑性樹脂との積層体および基材と熱可塑性樹脂との間に中間基材(バリアー層ともいう)を有するフィルムを用いることができ、中間基材としては、エチレン−ビニルアルコール共重合体等の高分子製フィルム、アルミニウム蒸着ポリエチレンフィルム及びアルミニウム箔等が挙げられる。なかでも、アルミラミネートフィルムと呼ばれる、中間基材にアルミニウム蒸着ポリエチレンフィルム又はアルミニウム箔を有するラミネートフィルムが好ましい。アルミラミネートフィルムは、水蒸気などのバリア性、光線遮断性に優れていることが知られており、リチウムイオン電池の耐久性等の観点で好ましい。ラミネートフィルムの厚さは、0.5mm以下であることが好ましく、0.2mm以下であることがより好ましい。
なお、ラミネートフィルムは、少なくとも基材と熱可塑性樹脂層とを積層して得られる多層フィルムであり、加熱によって熱可塑性樹脂を溶融して接着することができるフィルムであり、ラミネートフィルムに用いる基剤及び熱可塑性樹脂としてはポリプロピレン、ポリエチレン、ナイロンおよびポリエチレンテレフタレート等が挙げられる。
As the laminate film, a laminate of a base material and a thermoplastic resin and a film having an intermediate base material (also referred to as a barrier layer) between the base material and the thermoplastic resin can be used, and the intermediate base material can be used as the intermediate base material. Examples thereof include polymer films such as ethylene-vinyl alcohol copolymers, aluminum-deposited polyethylene films, and aluminum foils. Among them, a laminated film having an aluminum-deposited polyethylene film or an aluminum foil as an intermediate base material, which is called an aluminum laminated film, is preferable. The aluminum laminated film is known to have excellent barrier properties such as water vapor and light blocking properties, and is preferable from the viewpoint of durability of the lithium ion battery and the like. The thickness of the laminated film is preferably 0.5 mm or less, more preferably 0.2 mm or less.
The laminate film is a multilayer film obtained by laminating at least a base material and a thermoplastic resin layer, and is a film capable of melting and adhering the thermoplastic resin by heating, and is a base used for the laminate film. Examples of the thermoplastic resin include polypropylene, polyethylene, nylon and polyethylene terephthalate.

なかでも、本発明の製造方法に用いる外装材としては、電池性能等の観点から、ラミネートフィルムが好ましく、アルミラミネートフィルムが更に好ましい。 Among them, as the exterior material used in the production method of the present invention, a laminated film is preferable from the viewpoint of battery performance and the like, and an aluminum laminated film is more preferable.

本発明の製造方法において、電池外装材の内面に集電体を配置する工程は、電池外装材の内面に液体を供給する工程と、電池外装材の内面に供給された液体上に集電体を載せ置く工程を有する。 In the manufacturing method of the present invention, the steps of arranging the current collector on the inner surface of the battery exterior material include a step of supplying a liquid to the inner surface of the battery exterior material and a current collector on the liquid supplied to the inner surface of the battery exterior material. Has a step of placing.

本発明の製造方法において、電池外装材の内面に供給された液体上の載せ置く集電体は、正極集電体であっても負極集電体であってよく、その両方でも良い。
正極集電体と負極集電体の両方を液体上に載せ置く場合、正極集電体と負極集電体とを正極側と負極側で対を成す2枚の電池外装材にそれぞれ配置しても良く、一枚の電池外装材の異なる位置に配置しても良い。正極集電体と負極集電体とを正極側と負極側で対を成す2枚の電池外装材にそれぞれ配置する場合、正極側電池外装材と負極側電池外装材との間に後述する活物質層とセパレータとを配置し、正極側電池外装材と負極側電池外装材の外周部を貼り合わせて封止することでリチウムイオン電池を得ることができ、正極集電体と負極集電体とを一枚の電池外装材の異なる位置に配置する場合には、正極集電体と負極集電体との間に後述する活物質層とセパレータとが配置される様に一枚の電池外装材を折り曲げ、電池外装材の外周部を貼り合わせて封止することでリチウムイオン電池を得ることができる。
In the manufacturing method of the present invention, the current collector placed on the liquid supplied to the inner surface of the battery exterior material may be a positive electrode current collector or a negative electrode current collector, or both.
When both the positive electrode current collector and the negative electrode current collector are placed on the liquid, the positive electrode current collector and the negative electrode current collector are arranged on two battery exterior materials that form a pair on the positive electrode side and the negative electrode side, respectively. It may be arranged at different positions on one battery exterior material. When the positive electrode current collector and the negative electrode current collector are arranged on the two battery exterior materials that form a pair on the positive electrode side and the negative electrode side, the activities described later are performed between the positive electrode side battery exterior material and the negative electrode side battery exterior material. A lithium ion battery can be obtained by arranging a material layer and a separator, and bonding and sealing the outer peripheral portions of the positive electrode side battery exterior material and the negative electrode side battery exterior material. When the above is arranged at different positions on one battery exterior material, one battery exterior is arranged so that the active material layer and the separator, which will be described later, are arranged between the positive electrode current collector and the negative electrode current collector. A lithium ion battery can be obtained by bending the material and bonding and sealing the outer peripheral portion of the battery exterior material.

電池外装材の内面に液体を供給する工程は、電池の外装材の内面の所定の位置に液体を供給すれば特に制限はなく、少量の液体を供給できる公知の治具(スポイト及びピペット等)を用いて液体の液滴を形成する方法、および公知の塗工装置(刷毛及びコーター等)を用いて液体の塗膜を生成する方法等を用いることができる。 The process of supplying the liquid to the inner surface of the battery exterior material is not particularly limited as long as the liquid is supplied to a predetermined position on the inner surface of the battery exterior material, and a known jig (dropper, pipette, etc.) capable of supplying a small amount of liquid is used. A method of forming a liquid droplet using the above method, a method of forming a liquid coating film using a known coating device (brush, coater, etc.), and the like can be used.

電池外装材の内面に供給する液体としては、集電体を配置する工程を行うときの温度(例えば20〜30℃)で流動性を有する化合物であれば制限はないが、リチウムイオン電池用電解液及びリチウムイオン電池用電解液に用いる溶媒が好ましく、電解液であることがさらに好ましい。
液体として前記の電解液又は前記の溶媒を用いると、リチウムイオン電池の内部に不純物となる材料が入らないため、リチウムイオン電池の耐久性が良好となり好ましく、前記の電解液を用いると製造工程中で電解質塩の濃度を一定に保つことができ、製造が容易になりさらに好ましい。
The liquid supplied to the inner surface of the battery exterior material is not limited as long as it is a compound having fluidity at the temperature (for example, 20 to 30 ° C.) when the process of arranging the current collector is performed, but electrolysis for lithium ion batteries The solvent used for the liquid and the electrolytic solution for the lithium ion battery is preferable, and the electrolytic solution is more preferable.
When the electrolytic solution or the solvent is used as the liquid, the material that becomes an impurity does not enter the inside of the lithium ion battery, so that the durability of the lithium ion battery is improved, which is preferable. The concentration of the electrolyte salt can be kept constant, which facilitates production and is more preferable.

電池外装材の内面に供給する液体が電解液である場合、電解液としてはリチウムイオン電池に用いられる公知の電解質及びリチウムイオン電池に用いられる公知の溶媒を含有する電解液を用いることができる。 When the liquid supplied to the inner surface of the battery exterior material is an electrolytic solution, an electrolytic solution containing a known electrolyte used in a lithium ion battery and a known solvent used in a lithium ion battery can be used as the electrolytic solution.

電解液に含まれる電解質としては、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩系電解質、LiN(CFSO及びLiN(CSO等のイミド系電解質、LiC(CFSO等のアルキルリチウム系電解質等が挙げられる。
これらの内、高濃度時のイオン伝導性及び熱分解温度の観点から好ましいのはLiPFである。LiPFは、他の電解質と併用してもよいが、単独で使用することがより好ましい。
As the electrolyte contained in the electrolytic solution, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6 and LiClO lithium salt electrolyte of an inorganic acid, such as 4, LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) Examples include imide-based electrolytes such as 2 and alkyllithium-based electrolytes such as LiC (CF 3 SO 2 ) 3 .
Of these, LiPF 6 is preferable from the viewpoint of ionic conductivity at high concentration and thermal decomposition temperature. LiPF 6 may be used in combination with other electrolytes, but it is more preferable to use LiPF 6 alone.

電解液の電解質濃度としては、特に限定されないが、0.5〜5mol/Lであることが好ましく、0.8〜4mol/Lであることがより好ましく、1〜2mol/Lであることがさらに好ましい。 The electrolyte concentration of the electrolytic solution is not particularly limited, but is preferably 0.5 to 5 mol / L, more preferably 0.8 to 4 mol / L, and further preferably 1 to 2 mol / L. preferable.

リチウムイオン電池に用いられる公知の溶媒としては、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン等及びこれらの混合物を用いることができる。 Known solvents used in lithium-ion batteries include lactone compounds, cyclic or chain carbonates, chain carboxylic acid esters, cyclic or chain ethers, phosphate esters, nitrile compounds, amide compounds, sulfone and the like, and mixtures thereof. Can be used.

ラクトン化合物としては、5員環(γ−ブチロラクトン及びγ−バレロラクトン等)及び6員環のラクトン化合物(δ−バレロラクトン等)等を挙げることができる。 Examples of the lactone compound include a 5-membered ring (γ-butyrolactone, γ-valerolactone, etc.) and a 6-membered ring lactone compound (δ-valerolactone, etc.).

環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート及びジ−n−プロピルカーボネート等が挙げられる。
Examples of the cyclic carbonic acid ester include propylene carbonate, ethylene carbonate and butylene carbonate.
Examples of the chain carbonate ester include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, di-n-propyl carbonate and the like.

鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン及び1,4−ジオキサン等が挙げられる。
鎖状エーテルとしては、ジメトキシメタン及び1,2−ジメトキシエタン等が挙げられる。
Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, propyl acetate, methyl propionate and the like.
Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.

リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2−エトキシ−1,3,2−ジオキサホスホラン−2−オン、2−トリフルオロエトキシ−1,3,2−ジオキサホスホラン−2−オン及び2−メトキシエトキシ−1,3,2−ジオキサホスホラン−2−オン等が挙げられる。
ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等の鎖状スルホン及びスルホラン等の環状スルホン等が挙げられる。非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。
Phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples thereof include dioxaphosphoran-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
Examples of the nitrile compound include acetonitrile and the like. Examples of the amide compound include dimethylformamide and the like. Examples of the sulfone include a chain sulfone such as dimethyl sulfone and diethyl sulfone, a cyclic sulfone such as sulfolane, and the like. One type of non-aqueous solvent may be used alone, or two or more types may be used in combination.

リチウムイオン電池に用いられる公知の溶媒のうち、リチウムイオン電池の出力及び充放電サイクル特性等の観点から、好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルである。更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネートとジメチルカーボネートとの混合液、又は、エチレンカーボネートとジエチルカーボネートとの混合液である。 Among the known solvents used in lithium-ion batteries, lactone compounds, cyclic carbonic acid esters, chain carbonic acid esters, and phosphoric acid esters are preferable from the viewpoint of output and charge / discharge cycle characteristics of lithium-ion batteries. More preferred are lactone compounds, cyclic carbonates and chained carbonates, and particularly preferred is a mixture of cyclic carbonates and chained carbonates. The most preferable is a mixed solution of ethylene carbonate and dimethyl carbonate, or a mixed solution of ethylene carbonate and diethyl carbonate.

電池外装材の内面に供給する液体がリチウムイオン電池用電解液に用いる溶媒である場合、リチウムイオン電池用電解液に用いる溶媒としては、前記の電解液に含まれる公知の溶媒と同じものを用いることができ、好ましいものも同じである。 When the liquid supplied to the inner surface of the battery exterior material is the solvent used for the electrolytic solution for the lithium ion battery, the same solvent as the known solvent contained in the electrolytic solution is used as the solvent used for the electrolytic solution for the lithium ion battery. And so are the preferred ones.

電池外装材の内面に供給する液体の量は、配置する集電体の大きさに応じて調整されるが、固定のし易さ等の観点から、集電体の単位面積当たりの液体の合計容量が0.05〜0.5ml/cmであることが好ましい。
なお、電池外装材の内面に供給する液体が液滴を形成する場合には、電池外装材の内面に形成する液滴の数は、1つであっても複数であってもよく、集電体の大きさに応じて調整することができる。
電池外装材の内面に供給する液体は、少なくとも、載せ置く集電体の中央に位置する場所に供給することが好ましい。複数の液滴を形成する場合、液滴は載せ置く集電体の電池外装材との接触面に対して偏り無く接触する位置に供給されることが好ましい。
The amount of liquid supplied to the inner surface of the battery exterior material is adjusted according to the size of the current collector to be placed, but from the viewpoint of ease of fixing, etc., the total amount of liquid per unit area of the current collector The volume is preferably 0.05 to 0.5 ml / cm 2.
When the liquid supplied to the inner surface of the battery exterior material forms droplets, the number of droplets formed on the inner surface of the battery exterior material may be one or more, and current collection may occur. It can be adjusted according to the size of the body.
The liquid supplied to the inner surface of the battery exterior material is preferably supplied to at least a place located in the center of the current collector on which the battery exterior material is placed. When forming a plurality of droplets, it is preferable that the droplets are supplied at a position where the current collector to be placed is in uniform contact with the contact surface with the battery exterior material.

本発明の製造方法は、電池外装材の内面に液体を供給する工程に続いて、電池外装材の内面に供給された液体上に集電体を載せ置く工程を有する。 The manufacturing method of the present invention includes a step of supplying a liquid to the inner surface of the battery exterior material, and then a step of placing a current collector on the liquid supplied to the inner surface of the battery exterior material.

本発明の製造方法においては、電池外装材の内面に供給された液体上に集電体を載せ置くことで、液体の表面張力を利用することによって外装体の内面に集電体を所定の場所に位置決めし、固定することができる。そのため、小型のリチウムイオン電池の場合であっても、電池外装材の内面に集電体を容易に固定することができ、後述する活物質層を配置する工程および外装材を密閉する工程を容易に行うことができるために積層精度が高く、欠陥のない積層体を得ることができる。 In the manufacturing method of the present invention, the current collector is placed on the liquid supplied to the inner surface of the battery exterior material, and the surface tension of the liquid is used to place the current collector on the inner surface of the exterior body at a predetermined location. Can be positioned and fixed to. Therefore, even in the case of a small lithium-ion battery, the current collector can be easily fixed to the inner surface of the battery exterior material, and the step of arranging the active material layer and the step of sealing the exterior material, which will be described later, are easy. Therefore, it is possible to obtain a laminated body having high lamination accuracy and no defects.

電池外装材の内面に供給された液体上に集電体を載せ置く工程は、電池外装材の内面に供給された液体の上に所定の集電体を載せ置くこと以外、特に制限はなく実施することができ、手で載せ置く方法や、市販のシート材料積層装置等を用いて行う方法等で行うことができる。 The process of placing the current collector on the liquid supplied to the inner surface of the battery exterior material is not particularly limited except for placing a predetermined current collector on the liquid supplied to the inner surface of the battery exterior material. It can be carried out by a method of placing it by hand, a method of using a commercially available sheet material laminating device or the like, or the like.

液体上に載せ置く集電体としては、金属集電体及び樹脂集電体を用いることができる。 As the current collector to be placed on the liquid, a metal current collector and a resin current collector can be used.

金属集電体としては、公知の金属集電体を用いることができ、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、およびこれらの一種以上を含む合金、ならびにステンレス合金からなる群から選択される一種以上の金属からなるフィルム状基材(薄板および箔等)等が挙げられる。金属集電体としては、前記の金属からなるフィルム状基材に、さらに蒸着等してカーボン粒子を固着した集電体を用いても良い。 As the metal current collector, a known metal current collector can be used, and includes copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and one or more of them. Examples thereof include a film-like base material (thin plate, foil, etc.) made of one or more metals selected from the group consisting of alloys and stainless alloys. As the metal current collector, a current collector in which carbon particles are fixed by vapor deposition or the like to the film-like base material made of the metal may be used.

樹脂集電体とは、導電性を有する高分子材料からなる導電性層を含んでなる集電体であり、導電性を有する高分子材料を公知の方法でシート状に成形することで得ることができる。
樹脂集電体を構成する導電性を有する高分子材料としては、導電性高分子、および導電性を有さない高分子に導電性を付与した高分子材料を用いることができる。
The resin current collector is a current collector including a conductive layer made of a conductive polymer material, and can be obtained by molding the conductive polymer material into a sheet by a known method. Can be done.
As the conductive polymer material constituting the resin current collector, a conductive polymer and a polymer material in which conductivity is imparted to a non-conductive polymer can be used.

樹脂集電体を構成する高分子材料のうち、導電性高分子としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレンおよびポリオキサジアゾール等が挙げられる。 Among the polymer materials constituting the resin current collector, examples of the conductive polymer include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, and polyoxadiazole.

導電性を有さない高分子材料としては、脂肪族ポリオレフィン[ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリイソブチレン、ポリブタジエン及びポリメチルペンテン(PMP)並びにこれらの共重合体等]、脂環式ポリオレフィン[ポリシクロオレフィン(PCO)等]、ポリエステル樹脂[ポリエチレンテレフタレート(PET)等]、ポリエーテルニトリル(PEN)、合成ゴム[スチレンブタジエンゴム(SBR)等]、アクリル樹脂[ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)及びポリメチルメタクリレート(PMMA)等]、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂及びこれらの混合物等が挙げられる。 Examples of the non-conductive polymer material include aliphatic polyolefins [polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), and polyisobutylene. , Polybutadiene and polymethylpentene (PMP) and their copolymers, etc.], Alicyclic polyolefin [Polycycloolefin (PCO), etc.], Polyester resin [Polyethylene terephthalate (PET), etc.], Polyethernitrile (PEN), Synthetic rubber [styrene butadiene rubber (SBR), etc.], acrylic resin [polyacrylonitrile (PAN), polymethylacrylate (PMA), polymethylmethacrylate (PMMA), etc.], polyvinylidene fluoride (PVdF), epoxy resin, silicone resin and Examples thereof include a mixture thereof.

高分子材料が導電性高分子である場合には、樹脂集電体の導電性を向上させる目的で導電性フィラーを含んでいると好ましい。また、高分子材料が導電性を有さない高分子に導電性を付与した高分子材料である場合には、導電性を有さない高分子材料に導電性を付与する目的から、導電性フィラーを含む。これに用いる導電性フィラーは、導電性を有する材料からなる粒子又は短繊維を用いることができ、カーボン[グラファイト、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)、カーボンナノチューブ(単層、多層及びこれらの混合物等)等]、金属(アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタンおよびニッケル等)等からなる粒子又は短繊維が挙げられる。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。 When the polymer material is a conductive polymer, it is preferable that the polymer material contains a conductive filler for the purpose of improving the conductivity of the resin current collector. Further, when the polymer material is a polymer material in which conductivity is imparted to a polymer having no conductivity, a conductive filler is used for the purpose of imparting conductivity to the polymer material having no conductivity. including. As the conductive filler used for this, particles or short fibers made of a conductive material can be used, and carbon [graphite, carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.)) can be used. , Carbon nanotubes (single-walled, multi-walled and mixtures thereof, etc.)], metals (aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, titanium, nickel, etc.), etc. Examples include fiber. These conductive fillers may be used alone or in combination of two or more.

樹脂集電体としては、特開2012−150905号公報、特開2014−216296号公報及び国際公開番号WO2015/005116号等に記載の樹脂集電体を用いることができ、これら公知の樹脂集電体と異なる導電性の高分子材料を用いる樹脂集電体は、前記の公知の樹脂集電体と同様の方法で得ることができる。
例えば、ポリプロピレンに導電性フィラーとしてアセチレンブラックを5〜20部分散させた後、熱プレス機で圧延したものが挙げられる。また、その厚みも特に制限されず、公知のものと同様、あるいは適宜変更して適用することができる。
As the resin current collector, the resin current collectors described in JP-A-2012-150905, JP-A-2014-216296, International Publication No. WO2015 / 005116, etc. can be used, and these known resin current collectors can be used. A resin current collector using a conductive polymer material different from the body can be obtained by the same method as the above-mentioned known resin current collector.
For example, polypropylene is dispersed with 5 to 20 parts of acetylene black as a conductive filler and then rolled with a hot press. Further, the thickness thereof is not particularly limited, and the same as known ones or appropriately modified ones can be applied.

液体上の載せ置く集電体の大きさは、製造するリチウムイオン電池に応じて調整することができるが、電池外装材の内面の面積よりも小さく、かつ後述する活物質層が有する面のうち、集電体と接する面の全体を覆うことができる大きさであることが好ましい。 The size of the current collector placed on the liquid can be adjusted according to the lithium-ion battery to be manufactured, but it is smaller than the area of the inner surface of the battery exterior material and is among the surfaces of the active material layer described later. , It is preferable that the size is such that the entire surface in contact with the current collector can be covered.

液体上の載せ置く集電体の表面には後述する活物質層が配置されていても良い。集電体の表面に活物質層が配置されている場合には、活物質層が配置されていない面が液体と接触する向きに集電体を液体上に載せ置く。表面に活物質層が配置されている集電体は、後述する集電体上に活物質層を配置する方法と同じ方法で活物質層を配置することが得ることができる。 An active material layer, which will be described later, may be arranged on the surface of the current collector to be placed on the liquid. When the active material layer is arranged on the surface of the current collector, the current collector is placed on the liquid so that the surface on which the active material layer is not arranged comes into contact with the liquid. In the current collector in which the active material layer is arranged on the surface, the active material layer can be arranged by the same method as the method of arranging the active material layer on the current collector described later.

本発明の製造方法は、電池外装材の内面に供給された液体上に集電体を載せ置く工程の後、さらに電池外装材の内面に位置決めされた集電体上に電極活物質層を配置する工程を有することが好ましい。 In the manufacturing method of the present invention, after the step of placing the current collector on the liquid supplied to the inner surface of the battery exterior material, the electrode active material layer is further arranged on the current collector positioned on the inner surface of the battery exterior material. It is preferable to have a step of performing.

電極活物質層は、正極活物質を含んでなる正極活物質層又は負極活物質を含んでなる負極活物質層であり、集電体上に電極活物質層を配置する工程は、対応する正極活物質又は負極活物質を含む組成物を集電体上に塗布する方法、および対応する正極活物質又は負極活物質を含む組成物を成形して得た電極活物質成形体を集電体上に配置する方法を用いて行うことができる。 The electrode active material layer is a positive electrode active material layer containing a positive electrode active material or a negative electrode active material layer containing a negative electrode active material, and the step of arranging the electrode active material layer on the current collector is a corresponding positive electrode. A method of applying a composition containing an active material or a negative electrode active material onto a current collector, and an electrode active material molded body obtained by molding a corresponding composition containing a positive electrode active material or a negative electrode active material are placed on the current collector. It can be done by using the method of arranging in.

電極活物質層が正極活物質層である場合、正極活物質としてはリチウムイオン電池用正極活物質として公知のものを使用できる、リチウムと遷移金属との複合酸化物(例えばLiNi0.8Co0.15l0.05、LiCoO、LiNiO、LiMnO及びLiMn)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ−p−フェニレン及びポリビニルカルバゾール)等が挙げられる。 When the electrode active material layer is a positive electrode active material layer, a known positive electrode active material for a lithium ion battery can be used as the positive electrode active material, and a composite oxide of lithium and a transition metal (for example, LiNi 0.8 Co 0) can be used. .15 Al0.05 O 2 , LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (eg MnO 2 and V 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2). ) And conductive polymers (eg, polyaniline, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene and polyvinylcarbazole) and the like.

電極活物質層が負極活物質層である場合、負極活物質としてはリチウムイオン電池用負極活物質として公知のものを使用できる、黒鉛、難黒鉛化性炭素、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリキノリン等)、スズ、シリコン、及び金属合金(例えばリチウム−スズ合金、リチウム−シリコン合金、リチウム−アルミニウム合金及びリチウム−アルミニウム−マンガン合金等)、リチウムと遷移金属との複合酸化物(例えばLi4Ti5O12等)等が挙げられる。 When the electrode active material layer is a negative electrode active material layer, a known negative electrode active material for a lithium ion battery can be used as the negative electrode active material, such as graphite, non-graphitizable carbon, amorphous carbon, and a fired polymer compound (a fired product of a polymer compound). For example, phenolic resin, furan resin, etc. are calcined and carbonized), cokes (eg, pitch coke, needle coke, petroleum coke, etc.), carbon fibers, conductive polymers (eg, polyacetylene and polyquinolin, etc.), tin, silicon. , And metal alloys (eg, lithium-thin alloys, lithium-silicon alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.), composite oxides of lithium and transition metals (eg, Li4Ti5O12, etc.) and the like.

本発明の製造方法において、正極活物質又は負極活物質としては、その表面の少なくとも一部に被覆用樹脂組成物を含む被覆層を有する正極活物質又は負極活物質を用いても良い。なお、本明細書において、被覆層を有さない正極活物質および負極活物質と被覆層を有する正極活物質および負極活物質とを区別するため、被覆層を有する正極活物質および負極活物質をそれぞれ正極被覆活物質および負極被覆活物質と記載し、単に被覆電極活物質と記載した場合には正極被覆活物質および/又は負極被覆活物質を意味し、単に正極活物質と記載した場合には、被覆層を有さない正極活物質と被覆層を有する正極活物質とを含み、単に負極活物質と記載した場合には、被覆層を有さない負極活物質と被覆層を有する負極活物質とを含むものとする。 In the production method of the present invention, as the positive electrode active material or the negative electrode active material, a positive electrode active material or a negative electrode active material having a coating layer containing a coating resin composition on at least a part of the surface thereof may be used. In this specification, in order to distinguish between the positive electrode active material and the negative electrode active material having no coating layer and the positive electrode active material and the negative electrode active material having the coating layer, the positive electrode active material and the negative electrode active material having the coating layer are used. They are described as a positive electrode coating active material and a negative electrode coating active material, respectively, and when simply described as a coated electrode active material, they mean a positive electrode coating active material and / or a negative electrode coating active material, and when simply described as a positive electrode active material, they are described. , A positive electrode active material having no coating layer and a positive electrode active material having a coating layer, and when simply described as a negative electrode active material, a negative electrode active material having no coating layer and a negative electrode active material having a coating layer And shall be included.

活物質粒子の表面が被覆層を有すると、充放電時に生じる電極の体積変化が緩和され、電極の膨脹を抑制することができる。
被覆層が含む被覆用樹脂組成物の例としては、国際公開第2015/005117号に記載の被覆用樹脂等が挙げられ、国際公開第2015/041184号に記載の方法等で被覆活物質を得ることができる。
When the surface of the active material particles has a coating layer, the volume change of the electrode that occurs during charging and discharging is alleviated, and the expansion of the electrode can be suppressed.
Examples of the coating resin composition contained in the coating layer include the coating resin described in International Publication No. 2015/005117, and the coating active material is obtained by the method described in International Publication No. 2015/041184. be able to.

前記の被覆層は、さらに導電助剤を含んでもよく、導電助剤としては、前記の樹脂集電体で例示した導電性フィラーと同じものを用いることができる。 The coating layer may further contain a conductive auxiliary agent, and as the conductive auxiliary agent, the same conductive filler as those exemplified in the resin current collector can be used.

集電体上に電極活物質層を配置する工程を、正極活物質又は負極活物質を含む組成物を集電体上に塗布する方法で行う場合、正極活物質又は負極活物質を含む組成物は、正極活物質又は負極活物質と、電解液又は非水溶媒とを含むことが好ましい。
電解液および非水溶媒としては、電池外装材の内面に供給する液体として例示した電解液および非水溶媒と同じ電解液および非水溶媒が挙げられ、好ましい電解液および非水溶媒も同じである。
When the step of arranging the electrode active material layer on the current collector is performed by applying a composition containing a positive electrode active material or a negative electrode active material onto the current collector, the composition containing the positive electrode active material or the negative electrode active material. Preferably contains a positive electrode active material or a negative electrode active material and an electrolytic solution or a non-aqueous solvent.
Examples of the electrolytic solution and the non-aqueous solvent include the same electrolytic solution and non-aqueous solvent as the electrolytic solution and non-aqueous solvent exemplified as the liquid supplied to the inner surface of the battery exterior material, and the preferred electrolytic solution and non-aqueous solvent are also the same. ..

集電体上に電極活物質層を配置する工程を、正極活物質又は負極活物質を含む組成物を集電体上に塗布する方法で行う場合、正極活物質又は負極活物質を含む組成物中に含まれる正極活物質又は負極活物質の重量割合は、塗布のし易さ等の観点から、正極活物質又は負極活物質を含む組成物の合計重量に基づいて10〜60重量%であることが好ましい。なお、電極活物質として前記の被覆電極活物質を用いた場合には、組成物中に含まれる電極活物質の重量は、被覆電極活物質の重量を用いて計算される。 When the step of arranging the electrode active material layer on the current collector is performed by applying a composition containing the positive electrode active material or the negative electrode active material onto the current collector, the composition containing the positive electrode active material or the negative electrode active material. The weight ratio of the positive electrode active material or the negative electrode active material contained therein is 10 to 60% by weight based on the total weight of the composition containing the positive electrode active material or the negative electrode active material from the viewpoint of ease of application and the like. Is preferable. When the coated electrode active material is used as the electrode active material, the weight of the electrode active material contained in the composition is calculated using the weight of the coated electrode active material.

正極活物質又は負極活物質を含む組成物は、電極活物質を電解液又は非水溶媒に公知の分散装置を用いて混合分散することで得ることができる。 The composition containing the positive electrode active material or the negative electrode active material can be obtained by mixing and dispersing the electrode active material in an electrolytic solution or a non-aqueous solvent using a known dispersion device.

集電体上に電極活物質層を配置する工程を、電極活物質を含む組成物を集電体上に塗布する方法で行う場合、ディスペンサー等の公知の供給装置を用いて前記の組成物を集電体上に供給する方法、および公知の塗布装置を用いて集電体上に前記の組成物による塗膜を形成する方法等を用いることができる。 When the step of arranging the electrode active material layer on the current collector is performed by a method of applying the composition containing the electrode active material on the current collector, the above composition is prepared using a known supply device such as a dispenser. A method of supplying the current collector and a method of forming a coating film of the above composition on the current collector using a known coating device can be used.

集電体上に電極活物質層を配置する工程を、正極活物質又は負極活物質を含む組成物を成形して得た電極活物質成形体を集電体上に配置する方法で行う場合、成形のし易さ等の観点から、正極活物質又は負極活物質を含む組成物中に含まれる正極又は負極活物質の重量割合は、正極活物質又は負極活物質を含む組成物の合計重量に基づいて50〜90重量%であることが好ましい。
なお、電極活物質として前記の被覆電極活物質を用いた場合には、組成物中に含まれる電極活物質の重量は、被覆電極活物質の重量を用いて計算される。
When the step of arranging the electrode active material layer on the current collector is performed by arranging the electrode active material molded body obtained by molding the positive electrode active material or the composition containing the negative electrode active material on the current collector. From the viewpoint of ease of molding, the weight ratio of the positive electrode or the negative electrode active material contained in the composition containing the positive electrode active material or the negative electrode active material is the total weight of the composition containing the positive electrode active material or the negative electrode active material. Based on this, it is preferably 50 to 90% by weight.
When the coated electrode active material is used as the electrode active material, the weight of the electrode active material contained in the composition is calculated using the weight of the coated electrode active material.

集電体上に電極活物質層を配置する工程を、正極活物質又は負極活物質を含む組成物を成形して得た電極活物質成形体を集電体上に配置する方法で行う場合、前記の組成物を所定の成形型にいれて20〜200MPaの圧力で加圧成形する等の公知の成型方法を用いることができる。 When the step of arranging the electrode active material layer on the current collector is performed by arranging the electrode active material molded product obtained by molding the positive electrode active material or the composition containing the negative electrode active material on the current collector. A known molding method such as placing the composition in a predetermined molding mold and pressure molding at a pressure of 20 to 200 MPa can be used.

対応する正極活物質又は負極活物質を含む組成物を集電体上に塗布する方法の場合であっても、対応する正極活物質又は負極活物質を含む組成物を成形して得た電極活物質成形体を集電体上に配置する方法の場合であっても、正極活物質又は負極活物質を含む組成物には、結着剤(バインダともいう)を含まないことが好ましい。
ここでいう結着剤としては、リチウムイオン電池の電極において活物質粒子と集電体との結着及び活物質粒子同士の結着を行うことで電池の使用中において活物質粒子を電極内に恒久的に固定することを目的として用いられる材料であり、公知の結着剤(デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン−ブタジエンゴム、ポリエチレン及びポリプロピレン等の高分子化合物)等が挙げられる。
結着剤を含む場合、結着剤によって活物質粒子を電極内に固定され、活物質粒子間の導電経路が維持されるが、例えば被覆電極活物質を用いる場合には、活物質粒子を電極内に固定することなく被覆用樹脂の働きによって導電経路を維持することができるため、結着剤を添加する必要がない。また、結着剤を添加しないことによって、活物質粒子が電極内に固定化されないため活物質粒子の体積変化に対する緩和能力が良好となり好ましい。
正極活物質又は負極活物質を含む組成物が結着剤を含んだものであったか、結着剤を含まないものであったかは、活物質層を取り出し、電解液中に浸漬することで区別することができる。結着剤を含んでいる場合には、活物質粒子が結着剤で固定されているため容易に崩壊する事はないが、結着剤を含まない場合には、活物質粒子が結着剤で恒久的に固定されていないので結着剤を含んでいる場合に比較して容易に崩壊が起こる。
Even in the case of the method of applying the corresponding positive electrode active material or the composition containing the negative electrode active material on the current collector, the electrode activity obtained by molding the composition containing the corresponding positive electrode active material or the negative electrode active material. Even in the case of the method of arranging the material molded body on the current collector, it is preferable that the composition containing the positive electrode active material or the negative electrode active material does not contain a binder (also referred to as a binder).
As the binder referred to here, the active material particles are bound to the current collector and the active material particles are bound to each other at the electrode of the lithium ion battery, so that the active material particles are placed in the electrode during use of the battery. A material used for the purpose of permanent fixation, such as known binders (starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, polypropylene, etc.) Polymer compounds) and the like.
When a binder is included, the active material particles are fixed in the electrode by the binder, and the conductive path between the active material particles is maintained. For example, when a coated electrode active material is used, the active material particles are used as electrodes. Since the conductive path can be maintained by the action of the coating resin without being fixed inside, it is not necessary to add a binder. Further, by not adding the binder, the active material particles are not immobilized in the electrode, so that the ability to alleviate the volume change of the active material particles is good, which is preferable.
Whether the positive electrode active material or the composition containing the negative electrode active material contains a binder or does not contain a binder is distinguished by taking out the active material layer and immersing it in an electrolytic solution. Can be done. When the binder is contained, the active material particles are fixed by the binder and do not easily disintegrate, but when the binder is not contained, the active material particles are the binder. Since it is not permanently fixed in, disintegration occurs more easily than when it contains a binder.

本発明の製造方法は、さらに、集電体上に配置された電極活物質層の上にセパレータを配置する工程、集電体が配置された電池外装材をセパレータを介して極活物質層と負極活物質層とが対向する向きに配置する工程、並びに電池外装材の外周部を封止して正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層した積層体を電池外装材に密閉する工程を有することが好ましい。 The manufacturing method of the present invention further comprises a step of arranging a separator on the electrode active material layer arranged on the current collector, and using the battery exterior material on which the current collector is arranged as a polar active material layer via the separator. The process of arranging the negative electrode active material layer so as to face each other, and sealing the outer peripheral portion of the battery exterior material, the positive electrode current collector, the positive electrode active material layer, the separator, the negative electrode active material layer, and the negative electrode current collector are laminated in this order. It is preferable to have a step of sealing the laminated body to the battery exterior material.

集電体上に配置された電極活物質層の上にセパレータを配置する工程は、正極活物質層の上にセパレータを配置してもよく、負極活物質層の上にセパレータを配置してもよく、正極活物質層と負極活物質層のそれぞれにセパレータを配置してもよい。 In the step of arranging the separator on the electrode active material layer arranged on the current collector, the separator may be arranged on the positive electrode active material layer or the negative electrode active material layer. Often, separators may be arranged in each of the positive electrode active material layer and the negative electrode active material layer.

セパレータとしては、公知のリチウムイオン電池に用いられるセパレータをもちいることができ、ポリエチレン、ポリプロピレン等、ポリオレフィン製の微多孔膜フィルム、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。 As the separator, a separator used in known lithium ion batteries can be used, and a microporous film film made of polyolefin such as polyethylene and polypropylene, a multilayer film of a porous polyethylene film and polypropylene, a polyester fiber, and an aramid fiber. , Non-woven fabric made of glass fiber or the like, and those in which ceramic fine particles such as silica, alumina, and titania are adhered to the surface thereof.

電極活物質層の上に配置するセパレータは、正極活物質層と負極活物質層とを絶縁する必要があるため、電極活物質層の表面を全て覆う態様で配置され、なかでもセパレータとして活物質層よりも大きなものを用いてセパレータの周縁部と電池外装材とが直接重なることが好ましい。セパレータの周縁部と電池外装材とが直接重なると、電池外装材を密閉することで対向する正極活物質層と負極活物質層との間を隙間無く分けることができ、活物質同士が混ざることを防止できる点で好ましい。 Since the separator arranged on the electrode active material layer needs to insulate the positive electrode active material layer and the negative electrode active material layer, it is arranged so as to cover the entire surface of the electrode active material layer, and among them, the active material as a separator. It is preferable that the peripheral portion of the separator and the battery exterior material directly overlap each other by using a layer larger than the layer. When the peripheral edge of the separator and the battery exterior material directly overlap, the battery exterior material can be sealed so that the opposite positive electrode active material layer and the negative electrode active material layer can be separated without a gap, and the active materials are mixed with each other. It is preferable in that it can prevent.

セパレータを介して正極活物質層と負極活物質層とが対向する向きに配置する工程は、セパレータを配置した電極活物質層を配置済みの正極側電池外装材と負極側電池外装材を電極活物質層が対向する向きに重ねることで行うことができる。なお、一つの外装材に正極活物質層と負極活物質層とが形成されている場合には、その間を二つ折りにすることで正極活物質層と負極活物質層とがセパレータを介して隣接する向きに配置することができる。 In the step of arranging the positive electrode active material layer and the negative electrode active material layer so as to face each other via the separator, the positive electrode side battery exterior material and the negative electrode side battery exterior material on which the electrode active material layer on which the separator is arranged are arranged as electrode active. This can be done by stacking the material layers in opposite directions. When a positive electrode active material layer and a negative electrode active material layer are formed on one exterior material, the positive electrode active material layer and the negative electrode active material layer are adjacent to each other via a separator by folding the space between them in half. It can be arranged in the direction in which it is used.

電池外装材を封止する工程は、シール材を用いて封止してもよく、外装材として金属箔を用いる場合には正極側外装体と負極側外装体とを樹脂製のガスケット等を介してかしめる方法を用いてもよく、外装材としてラミネートフィルムを用いる場合には、ラミネートフィルムを加熱してラミネートフィルムを構成するフィルムの一部(熱可塑性樹脂層の一部)を溶融して熱圧着して封止してもよい。
シール材を用いて封止する場合、シール材としては、電解液に対して耐久性があり、電池外装材に対する接着性を有する材料であれば特に限定されないが、エポキシ系樹脂およびポリウレタン系樹脂等を主成分とすることが好ましく、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
シール材は、好ましくは両面テープ状のシール部材(平面状の基材の両面に上述の熱硬化性樹脂等を塗布して形成したシール部材等)を用いることができ、三層構造のシールフィルム(ポリエチレンナフタレートフィルムの上下に変性ポリプロピレンフィルムを積層したフィルム等)等の公知のものを用いることができる。シールフィルムはインパルスシーラー等の公知のシール装置を用いて加熱圧着することでシールすることができる。
In the step of sealing the battery exterior material, a sealing material may be used to seal the battery, and when a metal foil is used as the exterior material, the positive electrode side exterior body and the negative electrode side exterior body are sealed via a resin gasket or the like. A crimping method may be used, and when a laminate film is used as the exterior material, the laminate film is heated to melt a part of the film (a part of the thermoplastic resin layer) constituting the laminate film and heat it. It may be crimped and sealed.
When sealing with a sealing material, the sealing material is not particularly limited as long as it is a material that is durable against the electrolytic solution and has adhesiveness to the battery exterior material, but is not particularly limited, but is limited to epoxy resin, polyurethane resin, etc. Is preferable as the main component, and an epoxy resin is preferable because it has high durability and is easy to handle.
As the sealing material, a double-sided tape-shaped sealing member (such as a sealing member formed by applying the above-mentioned heat-curable resin or the like on both sides of a flat base material) can be preferably used, and a three-layer structure sealing film can be used. Known materials such as (a film in which a modified polypropylene film is laminated on top of a polyethylene naphthalate film, etc.) can be used. The seal film can be sealed by heat-pressing using a known sealing device such as an impulse sealer.

本発明の製造方法において、電池外装材を封止する工程の前に、所定量の電解液を正極活物質層及び/又は負極活物質層に保持させる工程を行うことが好ましい。所定量の電解液を正極活物質層及び/又は負極活物質層に保持させる工程は、前記の電解液をスポイト等の公知の液体供給治具を用いて正極活物質層及又は負極活物質層の上に電解液を直接供給する方法等で行うことができる。 In the production method of the present invention, it is preferable to perform a step of holding a predetermined amount of the electrolytic solution in the positive electrode active material layer and / or the negative electrode active material layer before the step of sealing the battery exterior material. In the step of holding a predetermined amount of the electrolytic solution in the positive electrode active material layer and / or the negative electrode active material layer, the positive electrode active material layer and / or the negative electrode active material layer use a known liquid supply jig such as a dropper to hold the electrolytic solution. It can be carried out by a method such as directly supplying the electrolytic solution onto the surface.

本発明の製造方法において、正極集電体及び負極集電体には電流取り出し用の端子が設けられていることが好ましい。電流取り出し用の端子が設けられている場合、電池外装材の封止部分から電流取り出し用の端子の少なくとも一部が電池の外部に露出していることが好ましい。 In the manufacturing method of the present invention, it is preferable that the positive electrode current collector and the negative electrode current collector are provided with terminals for taking out current. When the current extraction terminal is provided, it is preferable that at least a part of the current extraction terminal is exposed to the outside of the battery from the sealing portion of the battery exterior material.

以上の工程によって、集電体が小さい場合であっても集電体を所定の位置に位置決めする事ができ、かつその集電体の位置が変化することが無くリチウムイオン電池を製造することができる。製造されたリチウムイオン電池は、集電体が所定の位置に固定されているため、内部に欠陥を生じる場合がなく、十分な電気特性を発揮することが出来る。 Through the above steps, the current collector can be positioned at a predetermined position even when the current collector is small, and the position of the current collector does not change, so that a lithium ion battery can be manufactured. it can. Since the current collector of the manufactured lithium-ion battery is fixed at a predetermined position, it does not cause any internal defects and can exhibit sufficient electrical characteristics.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 Next, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples as long as the gist of the present invention is not deviated. Unless otherwise specified, parts mean parts by weight and% means% by weight.

<製造例1:被覆用高分子化合物とその溶液の作製>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにジメチルホルムアミド70.0部を入れ、75℃まで加熱昇温した。次いで、メタクリル酸ブチル20.0部、アクリル酸55.0部、メタクリル酸メチル22.0部、アリルスルホン酸ナトリウム3部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.4部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をジメチルホルムアミド10.0部に溶解した開始剤溶液とを75℃に加熱した4つ口フラスコ内に窒素を吹き込みながら、撹拌下に滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。
滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行ってDMFを留去し、被覆用高分子化合物を得た。
<Production Example 1: Preparation of coating polymer compound and its solution>
70.0 parts of dimethylformamide was placed in a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, and heated to 75 ° C. Next, a monomer compounding solution containing 20.0 parts of butyl methacrylate, 55.0 parts of acrylate, 22.0 parts of methyl methacrylate, 3 parts of sodium allylsulfonate and 20 parts of DMF, and 2,2'-azobis (2). , 4-Dimethylvaleronitrile) 0.4 parts and 2,2'-azobis (2-methylbutyronitrile) 0.8 parts dissolved in 10.0 parts of dimethylformamide, and the initiator solution was heated to 75 ° C. While blowing nitrogen into the four-necked flask, radical polymerization was carried out by continuously dropping the mixture with a dropping funnel over 2 hours under stirring.
After completion of the dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a polymer compound for coating.

<実施例>
[被覆正極活物質の製造]
正極活物質粉末(LiNi0.8Co0.15l0.05粉末、平均粒子径4μm)100部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物をイソプロパノールに1.9重量%の濃度で溶解して得られた被覆用高分子化合物溶液11.3部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電剤であるアセチレンブラック[電気化学工業(株)製 デンカブラック(登録商標)]6.1部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、実施例1に係る被覆正極活物質粒子(P−1)を得た。
<Example>
[Manufacturing of coated positive electrode active material]
100 parts of positive electrode active material powder (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, average particle diameter 4 μm) was placed in a universal mixer high-speed mixer FS25 [manufactured by Artecnica Co., Ltd.] at room temperature, 720 rpm. The coating polymer compound obtained in Production Example 1 was dissolved in isopropanol at a concentration of 1.9% by weight, and 11.3 parts of the coating polymer compound solution obtained was added over 2 minutes. The mixture was added dropwise, and the mixture was further stirred for 5 minutes.
Then, while stirring, 6.1 parts of acetylene black [Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.], which is a conductive agent, was added in 2 minutes while being divided, and stirring was continued for 30 minutes. Then, the pressure was reduced to 0.01 MPa while maintaining the stirring, then the temperature was raised to 140 ° C. while maintaining the stirring and the degree of pressure reduction, and the stirring, the degree of pressure reduction and the temperature were maintained for 8 hours to distill off the volatile components. .. The obtained powder was classified by a sieve having a mesh size of 212 μm to obtain coated positive electrode active material particles (P-1) according to Example 1.

[被覆負極活物質の製造]
難黒鉛化性炭素粉末1(平均粒子径20μm)100部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆用高分子化合物をイソプロパノールに19.8重量%の濃度で溶解して得られた被覆用高分子化合物溶液9.2部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電剤であるアセチレンブラック[電気化学工業(株)製 デンカブラック(登録商標)]11.3部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、実施例に係る被覆負極活物質粒子(N−1)を得た。
[Manufacturing of coated negative electrode active material]
It was obtained in Production Example 1 in a state where 100 parts of non-graphitizable carbon powder 1 (average particle diameter 20 μm) was placed in a universal mixer high-speed mixer FS25 [manufactured by Artecnica Co., Ltd.] and stirred at room temperature and 720 rpm. 9.2 parts of the coating polymer compound solution obtained by dissolving the coating polymer compound in isopropanol at a concentration of 19.8% by weight was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes.
Then, in a stirred state, 11.3 parts of acetylene black [Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.], which is a conductive agent, was added in 2 minutes while being divided, and stirring was continued for 30 minutes. Then, the pressure was reduced to 0.01 MPa while maintaining the stirring, then the temperature was raised to 140 ° C. while maintaining the stirring and the degree of pressure reduction, and the stirring, the degree of pressure reduction and the temperature were maintained for 8 hours to distill off the volatile components. .. The obtained powder was classified by a sieve having a mesh size of 212 μm to obtain coated negative electrode active material particles (N-1) according to Examples.

[正極側外装体及び負極側外装体の成形]
電池外装材となる平面視寸法が20mm×20mmの四角形のアルミニウム製ラミネートフィルム(
1477029989962_0
製)に、所定の型を用いて、内寸が深さ0.9mm、上面視15mm×15mmの正方形となる凹部を形成し正極収容部とすることで、正極側電池外装体を得た。同様の手順で、正極側電池外装体と同一形状の負極側電池外装体を得た。
[Molding of positive electrode side exterior body and negative electrode side exterior body]
A square aluminum laminated film with a plan view size of 20 mm x 20 mm, which is used as a battery exterior material.
1477029989962_0
A positive electrode side battery outer body was obtained by forming a concave portion having an inner dimension of 0.9 mm in depth and a square shape of 15 mm × 15 mm in top view using a predetermined mold to serve as a positive electrode accommodating portion. In the same procedure, a negative electrode side battery outer body having the same shape as the positive electrode side battery outer body was obtained.

[集電体を配置する工程]
正極側電池外装体及び負極側電池外装体のそれぞれの内面の中央にガラス製スポイトを用いて、電解液[エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比率1:1)にLiPFを1mol/Lの割合で溶解させたもの]を2滴(約0.5ml)供給し、正極側電池外装体及び負極側電池外装体のそれぞれに形成して液滴の上に、平面視寸法が15mm×15mmの四角形の正極集電体と負極集電体をそれぞれ載せ置いた。液滴上に載せ置いた正極集電体と負極集電体とは、正極側外装体及び負極側外装体を動かしても正極側外装体及び負極側外装体の内面の所定の位置から動くことなく固定されていた。
なお、正極集電体としては電流取り出し用端子を接続したカーボンコートアルミ箔を用い、負極集電体としては電流取り出し用端子を接続した銅箔を用いた。
[Process of arranging current collector]
Using a glass dropper in the center of each inner surface of the positive electrode side battery exterior and the negative electrode side battery exterior, 1 mol / L of LiPF 6 was added to the electrolytic solution [mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1)). 2 drops (about 0.5 ml) were supplied and formed on each of the positive electrode side battery exterior and the negative electrode side battery exterior, and the plan view dimensions were 15 mm × 15 mm on the droplets. The square positive electrode current collector and the negative electrode current collector of the above were placed respectively. The positive electrode current collector and the negative electrode current collector placed on the droplets move from predetermined positions on the inner surfaces of the positive electrode side exterior body and the negative electrode side exterior body even if the positive electrode side exterior body and the negative electrode side exterior body are moved. It was fixed without.
As the positive electrode current collector, a carbon-coated aluminum foil to which the current extraction terminal was connected was used, and as the negative electrode current collector, a copper foil to which the current extraction terminal was connected was used.

[正極活物質層の配置]
被覆正極活物質粒子(P−1)と前記の電解液とを9:1の重量比で混合した混合物0.335gを、50MPaで圧縮成形して厚さ1.2mm、上面視寸法が9.9mm×9.9mmのペレット状に成形し、正極側外装体の内面に位置決めした正極集電体の上に配置した。
[Arrangement of positive electrode active material layer]
0.335 g of a mixture of the coated positive electrode active material particles (P-1) and the electrolytic solution at a weight ratio of 9: 1 was compression-molded at 50 MPa to a thickness of 1.2 mm and a top view dimension of 9. It was formed into pellets of 9 mm × 9.9 mm and placed on a positive electrode current collector positioned on the inner surface of the positive electrode side exterior body.

[負極活物質層の配置]
被覆負極活物質粒子(N−1)と前記の電解液を9:1の重量比で混合した混合物0.122gを、50MPaで圧縮成形して厚さ1.2mm、上面視寸法が9.9mm×9.9mmのペレット状に成形し、負極側外装体の内面に位置決めした負極集電体の上に配置した。
[Arrangement of negative electrode active material layer]
0.122 g of a mixture of coated negative electrode active material particles (N-1) and the above electrolytic solution in a weight ratio of 9: 1 was compression molded at 50 MPa to a thickness of 1.2 mm and a top view dimension of 9.9 mm. It was formed into a pellet of × 9.9 mm and placed on a negative electrode current collector positioned on the inner surface of the negative electrode side exterior body.

[セパレータの配置]
正極活物質層と負極活物質層とのそれぞれにスポイトを用いて前記の電解液(0.1ml)を滴下し、電解液が活物質層に吸収されたことを確認した後、正極活物質層と負極活物質層との間に2枚のPP製セパレータ(旭化成製Celgard、12mm×12mm)が位置する様に2枚のセパレータと活物質層配置済みの正極側外装体と活物質層配置済みの負極側外装体とを積層 した。
[Arrangement of separator]
The above-mentioned electrolytic solution (0.1 ml) was dropped onto each of the positive electrode active material layer and the negative electrode active material layer using a dropper, and after confirming that the electrolytic solution was absorbed by the active material layer, the positive electrode active material layer. Two separators, a positive electrode side exterior body in which the active material layer is arranged, and an active material layer are arranged so that two PP separators (Celgard manufactured by Asahi Kasei, 12 mm × 12 mm) are located between the negative electrode active material layer and the negative electrode active material layer. The negative electrode side exterior body of the above was laminated.

[外装材の封止]
正極活物質層と負極活物質層との間に2枚のセパレータが位置する様に積層した正極側外装体と負極側外装体を、電流取り出し用端子が電池の外部に露出させたまま、セパレータの外縁部から外側に1mmの箇所をヒートシールし、正極外装体と負極外装体とを封止すると同時にセパレータを外装材に固定することにより、実施例に係るリチウムイオン電池を作製した。
[Seal of exterior material]
The positive electrode side exterior body and the negative electrode side exterior body laminated so that two separators are located between the positive electrode active material layer and the negative electrode active material layer are separated while the current extraction terminal is exposed to the outside of the battery. The lithium ion battery according to the embodiment was produced by heat-sealing a portion 1 mm outward from the outer edge portion of the above, sealing the positive electrode exterior body and the negative electrode exterior body, and at the same time fixing the separator to the exterior material.

<電池特性の評価>
実施例で作成したリチウムイオン電池を用いて、以下の方法で充放電試験を行い、レート特性と内部抵抗を測定した結果、良好なレート特性(94%)と低い内部抵抗(2.3Ω)を示した。
<Evaluation of battery characteristics>
Using the lithium-ion battery prepared in the example, a charge / discharge test was performed by the following method, and as a result of measuring the rate characteristics and internal resistance, good rate characteristics (94%) and low internal resistance (2.3 Ω) were obtained. Indicated.

[レート特性の評価]
45℃下、充放電測定装置「HJ−SD8」[北斗電工(株)製]を用いて以下の方法により実施例に掛かるリチウムイオン電池のレート特性の評価を行った。
定電流定電圧充電方式(CCCVモードともいう)で0.1Cの電流で4.2Vまで充電し、10分間の休止後、0.1Cの電流で2.6Vまで放電した。
その後、再び0.1Cの電流で4.2Vまで充電した後、10分間の休止後、1.0Cの電流で2.6Vまで放電した。
その後、10分間休止した後0.5Cで2.6Vまで放電し、その後10分間休止した後に続けて0.2Cで2.6Vまで放電し、更に10分間休止した後に引き続き0.1Cの電流で2.6Vまで放電を行った。
1.0Cの電流で2.6Vまで放電した時の放電容量と最後に0.1Cの電流で2.6Vまで放電を行った時の放電容量から、以下の式でレート特性(0.1Cでの放電容量と1.0Cでの放電容量の比率)を算出したレート特性の値が大きいほど容量の低下が少なく優れた電池特性を有することを意味する。
[レート特性(%)]=[1.0Cにおける放電容量]÷[0.1Cにおける放電容量]×100
[Evaluation of rate characteristics]
At 45 ° C., the rate characteristics of the lithium ion battery according to the examples were evaluated by the following method using the charge / discharge measuring device “HJ-SD8” [manufactured by Hokuto Denko Co., Ltd.].
It was charged to 4.2 V with a current of 0.1 C by a constant current constant voltage charging method (also referred to as CCCV mode), and after a 10-minute rest, it was discharged to 2.6 V with a current of 0.1 C.
Then, it was charged again to 4.2 V with a current of 0.1 C, and after a 10-minute rest, it was discharged to 2.6 V with a current of 1.0 C.
Then, after resting for 10 minutes, it is discharged to 2.6V at 0.5C, then after resting for 10 minutes, it is continuously discharged to 2.6V at 0.2C, and after resting for another 10 minutes, it is continuously discharged at a current of 0.1C. The discharge was performed up to 2.6 V.
From the discharge capacity when discharging to 2.6V with a current of 1.0C and the discharge capacity when discharging to 2.6V with a current of 0.1C at the end, the rate characteristics (at 0.1C) are calculated by the following formula. The larger the value of the rate characteristic calculated (the ratio of the discharge capacity to the discharge capacity at 1.0 C), the smaller the decrease in capacity and the better the battery characteristics.
[Rate characteristic (%)] = [Discharge capacity at 1.0C] ÷ [Discharge capacity at 0.1C] x 100

[内部抵抗の測定]
上記のレート特性の測定と同様にして1.0Cにおける放電0秒後の電圧及び電流並びに1.0Cにおける放電10秒後の電圧及び電流を測定し、以下の式で内部抵抗を算出した。内部抵抗が小さいほど優れた電池特性を有することを意味する。
なお、放電0秒後の電圧とは、放電したと同時に計測される電圧(放電時電圧ともいう)である。
[内部抵抗(Ω)]=[(1.0Cにおける放電0秒後の電圧)−(1.0Cにおける放電10秒後の電圧)]/[(1.0Cにおける放電0秒後の電流)−(1.0Cにおける放電10秒後の電流)]
[Measurement of internal resistance]
In the same manner as the above-mentioned measurement of the rate characteristics, the voltage and current after 0 seconds of discharge at 1.0 C and the voltage and current after 10 seconds of discharge at 1.0 C were measured, and the internal resistance was calculated by the following formula. The smaller the internal resistance, the better the battery characteristics.
The voltage after 0 seconds of discharge is a voltage measured at the same time as discharge (also referred to as discharge voltage).
[Internal resistance (Ω)] = [(voltage after 0 seconds of discharge at 1.0 C)-(voltage after 10 seconds of discharge at 1.0 C)] / [(current after 0 seconds of discharge at 1.0 C)- (Current after 10 seconds of discharge at 1.0C)]

本発明のリチウムイオン電池の製造方法により、小型であっても、配置する集電体を固定でき、電気特性に優れるリチウムイオン電池が容易に得られることがわかった。 It has been found that, according to the method for producing a lithium ion battery of the present invention, a lithium ion battery having excellent electrical characteristics can be easily obtained because the current collector to be arranged can be fixed even if it is small in size.

本発明のリチウムイオン電池の製造方法により得られるリチウムイオン電池は、特に小型化のニーズの大きいウエアラブル機器等のモバイル機器用として有用である。 The lithium ion battery obtained by the method for manufacturing a lithium ion battery of the present invention is particularly useful for mobile devices such as wearable devices, which have a great need for miniaturization.

Claims (3)

電池外装材の内面に集電体を配置する工程を有し、
前記の集電体を配置する工程が、
電池外装材の内面に液体を供給する工程と、
電池外装材の内面に供給された液体上に集電体を載せ置く工程とを有し、
前記液体が、リチウムイオン電池用電解液又はリチウムイオン電池用電解液に用いる溶媒であるリチウムイオン電池の製造方法。
It has a process of arranging a current collector on the inner surface of the battery exterior material,
The process of arranging the current collector is
The process of supplying liquid to the inner surface of the battery exterior material,
Possess a step of placing placing a current collector on the liquid supplied to the inner surface of the battery exterior material,
A method for producing a lithium ion battery, wherein the liquid is a solvent used for an electrolytic solution for a lithium ion battery or an electrolytic solution for a lithium ion battery.
電池外装材の内面に位置決めされた集電体上に電極活物質層を配置する工程を有する請求項1に記載のリチウムイオン電池の製造方法。 The method for manufacturing a lithium ion battery according to claim 1, further comprising a step of arranging an electrode active material layer on a current collector positioned on the inner surface of the battery exterior material. 電池外装材が、アルミラミネートフィルムである請求項1又は2に記載のリチウムイオン電池の製造方法。 The method for manufacturing a lithium ion battery according to claim 1 or 2, wherein the battery exterior material is an aluminum laminated film.
JP2016207019A 2016-10-21 2016-10-21 Lithium-ion battery manufacturing method Active JP6843580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016207019A JP6843580B2 (en) 2016-10-21 2016-10-21 Lithium-ion battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016207019A JP6843580B2 (en) 2016-10-21 2016-10-21 Lithium-ion battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2018067508A JP2018067508A (en) 2018-04-26
JP6843580B2 true JP6843580B2 (en) 2021-03-17

Family

ID=62086268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016207019A Active JP6843580B2 (en) 2016-10-21 2016-10-21 Lithium-ion battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6843580B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521032B (en) * 2017-04-21 2023-08-25 三洋化成工业株式会社 Method for producing molded body of electrode active material for lithium ion battery, and method for producing lithium ion battery
JP6839028B2 (en) * 2017-04-25 2021-03-03 三洋化成工業株式会社 Lithium-ion battery manufacturing method
JP6909821B2 (en) 2019-03-28 2021-07-28 三洋化成工業株式会社 Manufacturing method for lithium-ion battery components

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965466U (en) * 1982-10-25 1984-05-01 日本電気ホームエレクトロニクス株式会社 battery
JP2001313025A (en) * 2000-04-28 2001-11-09 Mitsubishi Electric Corp Battery
JP4190139B2 (en) * 2000-08-31 2008-12-03 三洋電機株式会社 battery
JP4694030B2 (en) * 2001-04-24 2011-06-01 東芝電池株式会社 Flat non-aqueous electrolyte secondary battery
JP5987692B2 (en) * 2011-01-07 2016-09-07 日本電気株式会社 Power storage device
US20170222213A1 (en) * 2014-08-05 2017-08-03 Nec Energy Devices, Ltd. Method for producing negative electrode for lithium ion battery and method for producing lithium ion battery

Also Published As

Publication number Publication date
JP2018067508A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
US9214697B2 (en) Lithium secondary battery
JP5629789B2 (en) Battery and battery manufacturing method
US9136556B2 (en) Electrode assembly of novel structure and process for preparation of the same
EP2503628A1 (en) Current collector for bipolar secondary battery
JP2014127242A (en) Lithium secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP2007257862A (en) Electrode for secondary battery, and secondary battery
JP6785110B2 (en) Current collectors for lithium-ion batteries and lithium-ion batteries
JP2021034141A (en) Lithium ion battery module and battery pack
JP6843580B2 (en) Lithium-ion battery manufacturing method
JP2019175657A (en) Lithium ion secondary battery
JP2016072015A (en) Flexible battery
JP2021082391A (en) Lithium-ion battery module and battery pack
JP7003775B2 (en) Lithium ion secondary battery
KR102553116B1 (en) Negative electrode, and lithium secondarty battery comprising the negative electrode
CN112640183A (en) Secondary battery
JP2004087325A (en) Nonaqueous electrolytic solution battery
KR20190130851A (en) Negative electrode, and lithium secondarty battery comprising the negative electrode
KR20080009354A (en) Cylindrical secondary battery having high safety by radiant heat
CN111213277B (en) Nonaqueous electrolyte secondary battery
CN110612630B (en) Bipolar secondary battery
JP2023518591A (en) A negative electrode and a secondary battery including the negative electrode
WO2020080245A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6839028B2 (en) Lithium-ion battery manufacturing method
JP2021077476A (en) Lithium ion battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210224

R150 Certificate of patent or registration of utility model

Ref document number: 6843580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150