JP6888937B2 - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP6888937B2
JP6888937B2 JP2016199250A JP2016199250A JP6888937B2 JP 6888937 B2 JP6888937 B2 JP 6888937B2 JP 2016199250 A JP2016199250 A JP 2016199250A JP 2016199250 A JP2016199250 A JP 2016199250A JP 6888937 B2 JP6888937 B2 JP 6888937B2
Authority
JP
Japan
Prior art keywords
current collector
frame portion
active material
electrode active
exterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016199250A
Other languages
Japanese (ja)
Other versions
JP2018060754A (en
Inventor
康裕 進藤
康裕 進藤
啓一郎 東
啓一郎 東
大澤 康彦
康彦 大澤
雄樹 草地
雄樹 草地
佐藤 一
一 佐藤
赤間 弘
弘 赤間
堀江 英明
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2016199250A priority Critical patent/JP6888937B2/en
Publication of JP2018060754A publication Critical patent/JP2018060754A/en
Application granted granted Critical
Publication of JP6888937B2 publication Critical patent/JP6888937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池の製造方法に関する。 The present invention relates to a method for manufacturing a battery.

従来、バイポーラ型の電池を製造する工程としては、シート状の集電体を巻回したロールから、第1極集電体シートを供給しつつ、この集電体上に所定間隔で絶縁体を複数配し、一対の絶縁体間に負極層、電解質層、正極層を積層して電池構造体を形成し、さらに別のロールから供給される第2極集電体をこれら電池構造体及び絶縁体上に配してから、絶縁体の位置で切断するという方法が採られてきた(例えば特許文献1)。 Conventionally, in the process of manufacturing a bipolar type battery, a first electrode current collector sheet is supplied from a roll wound with a sheet-shaped current collector, and insulators are provided on the current collector at predetermined intervals. A plurality of layers are arranged, and a negative electrode layer, an electrolyte layer, and a positive electrode layer are laminated between a pair of insulators to form a battery structure, and a second pole current collector supplied from another roll is insulated from these battery structures. A method has been adopted in which the battery is placed on the body and then cut at the position of the insulator (for example, Patent Document 1).

特開2008−053103号公報Japanese Unexamined Patent Publication No. 2008-053103

しかし上記従来例の方法では、電池の外形状を矩形板状とすることは容易であるが、自由な形状の電池を得ることが容易でない。 However, in the method of the above-mentioned conventional example, it is easy to make the outer shape of the battery into a rectangular plate shape, but it is not easy to obtain a battery having a free shape.

本発明は上記実情に鑑みて為されたもので、所望の形状を有する電池を容易に得ることのできる電池の製造方法を提供することをその目的の一つとする。 The present invention has been made in view of the above circumstances, and one of its objects is to provide a method for manufacturing a battery capable of easily obtaining a battery having a desired shape.

上記従来例の問題点を解決する本発明は、第1極集電体、正極活物質層、セパレータ、負極活物質層及び第2極集電体が順に積層されてなる単電池セルと、前記単電池セルを内包する電池外装とを有するリチウムイオン電池の製造方法であって、所定の造形領域に、粉体状、液体状又はペースト状の材料の吐出と固化とを繰り返して立体形状を造形する材料積層装置を用いて、前記電池外装を形成する工程を含み、前記の電池外装を形成する工程が、所定形状を有する第1の外装部を、前記材料積層装置を用いて形成する工程と、所定形状に形成された前記第1の外装部に内包される形状の主部を有する第1極集電体を、前記第1の外装部上に配置する工程と、前記第1の外装部上に配置した前記第1極集電体の主部の周縁部を前記第1の外装部上に固定する第1の枠部を、前記材料積層装置を用いて形成する工程と、少なくとも前記第1の枠部の内縁で囲まれた領域を覆い、前記第1の枠部の外縁で囲まれた領域に内包される形状を有するセパレータを、その周縁部が前記第1の枠部に重なるように位置決めして配置する工程と、前記第1の枠部上に配置した前記セパレータの周縁部を前記第1の枠部上に固定する第2の枠部を、前記材料積層装置を用いて形成する工程と、少なくとも前記第2の枠部の内縁で囲まれた領域を覆い、前記第2の枠部の外縁で囲まれた領域に内包される形状の主部を有する第2極集電体を、当該主部の周縁部が前記第2の枠部に重なるように位置決めして配置する工程と、少なくとも前記第2極集電体の主部を覆う形状を有する第2の外装部を、前記第2の枠部及び前記第2極集電体上に、材料積層装置を用いて形成する工程と、を有することとしたものである。 The present invention that solves the problems of the above conventional example includes a cell cell in which a first pole current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a second pole current collector are laminated in this order. A method for manufacturing a lithium-ion battery having a battery exterior including a cell, and forming a three-dimensional shape by repeating ejection and solidification of a powdery, liquid, or paste-like material in a predetermined molding region. The step of forming the battery exterior includes the step of forming the battery exterior using the material laminating device, and the step of forming the first exterior portion having a predetermined shape is a step of forming the first exterior portion having a predetermined shape using the material laminating device. A step of arranging a first electrode current collector having a main portion having a shape included in the first exterior portion formed in a predetermined shape on the first exterior portion, and the first exterior portion. A step of forming a first frame portion for fixing the peripheral edge portion of the main portion of the first pole current collector arranged above on the first exterior portion by using the material laminating device, and at least the first step. A separator having a shape that covers the area surrounded by the inner edge of the frame portion 1 and is included in the area surrounded by the outer edge of the first frame portion so that the peripheral edge portion thereof overlaps the first frame portion. The process of positioning and arranging the separator and the second frame portion for fixing the peripheral edge portion of the separator arranged on the first frame portion on the first frame portion are formed by using the material laminating device. A second pole current collector having a main portion having a shape that covers at least the region surrounded by the inner edge of the second frame portion and is included in the region surrounded by the outer edge of the second frame portion. A step of positioning and arranging the peripheral portion of the main portion so as to overlap the second frame portion, and a second exterior portion having a shape covering at least the main portion of the second pole current collector. It is determined to have a step of forming on the second frame portion and the second pole current collector by using a material laminating device.

またここで、前記第1の枠部に囲まれた領域内に、第1の電極活物質と電解液とを含んでなる第1の電極活物質組成物を充填する工程と、前記第2の枠部に囲まれた領域内に、第2の電極活物質と電解液とを含んでなる第2の電極活物質組成物を充填する工程と、を含んでもよい。なお、前記第1の枠部を形成する工程と第1の枠部に囲まれた領域内に第1の電極活物質組成物を充填する工程とは同時に並行して行っても良く、前記第2の枠部を形成する工程と第2の枠部に囲まれた領域内に第1の電極活物質組成物を充填する工程とは同時に並行して行っても良い。 Further, here, the step of filling the region surrounded by the first frame portion with the first electrode active material composition containing the first electrode active material and the electrolytic solution, and the second step. The region surrounded by the frame portion may include a step of filling the second electrode active material composition containing the second electrode active material and the electrolytic solution. The step of forming the first frame portion and the step of filling the region surrounded by the first frame portion with the first electrode active material composition may be performed in parallel at the same time. The step of forming the second frame portion and the step of filling the region surrounded by the second frame portion with the first electrode active material composition may be performed in parallel at the same time.

また、前記セパレータを、材料積層装置を用いて形成することとしてもよい。 Further, the separator may be formed by using a material laminating device.

本発明によると、粉体状、液体状又はペースト状の材料の吐出と固化とを繰り返して立体形状を造形する材料積層装置を用いて電池を製造するので、所望の形状に沿って電池を構成する材料を固化させることで、所望の形状を有する電池を容易に製造できる。 According to the present invention, since a battery is manufactured using a material laminating device that repeatedly discharges and solidifies a powdery, liquid, or paste-like material to form a three-dimensional shape, the battery is configured according to a desired shape. By solidifying the material to be used, a battery having a desired shape can be easily manufactured.

本発明の実施の形態に係る電池の製造方法を模式的に表す説明図である。It is explanatory drawing which shows typically the manufacturing method of the battery which concerns on embodiment of this invention. 本発明の実施の形態に係る電池のもう一つの製造方法を模式的に表す説明図である。It is explanatory drawing which schematically represents another manufacturing method of the battery which concerns on embodiment of this invention. 本発明の実施の形態の一例に係る電池の製造方法で得られる電池の外形状及び一部断面の例を表す説明図である。It is explanatory drawing which shows the example of the outer shape and the partial cross section of the battery obtained by the manufacturing method of the battery which concerns on an example of Embodiment of this invention. 本発明の実施の形態の一例に係る電池の製造方法で用いる集電体及びセパレータの形状例を表す説明図である。It is explanatory drawing which shows the shape example of the current collector and the separator used in the manufacturing method of the battery which concerns on an example of Embodiment of this invention. 本発明の実施の形態に係る電池のさらにもう一つの製造方法を模式的に表す説明図である。It is explanatory drawing which schematically represents yet another manufacturing method of the battery which concerns on embodiment of this invention. 本発明の実施の形態に係る電池のさらにもう一つの製造方法により得られる電池の例を表す説明図である。It is explanatory drawing which shows the example of the battery obtained by still another manufacturing method of the battery which concerns on embodiment of this invention. 本発明の実施の形態に係る電池の別の製造方法の例により製造された電池の例を表す説明図である。It is explanatory drawing which shows the example of the battery manufactured by the example of another manufacturing method of the battery which concerns on embodiment of this invention.

本発明の実施の形態について図面を参照しながら説明する。本発明の実施の形態に係る電池の製造方法では、図1に例示するように、所定の造形領域(加工範囲)に、粉体状、液体状又はペースト状の材料の吐出と固化とを繰り返して立体形状を造形する材料積層装置(いわゆる3Dプリンタ)が用いられる。 Embodiments of the present invention will be described with reference to the drawings. In the method for manufacturing a battery according to the embodiment of the present invention, as illustrated in FIG. 1, the powdery, liquid or paste-like material is repeatedly discharged and solidified in a predetermined molding region (processing range). A material laminating device (so-called 3D printer) for forming a three-dimensional shape is used.

この材料積層装置としては、液状の結合剤を粉末床に噴射して選択的固化を実現する結合剤噴射方式、材料を供給しつつビーム等で熱の発生位置を制御し、材料を選択的に溶融・固化(結合)させる指向性エネルギー堆積方式、流動性のある材料をノズルから押し出して、堆積させつつ固化させる材料押出方式、材料液滴を噴射し、選択的に堆積して固化する方法(インクジェット法等)を用いた材料噴射方式、粉末を敷いた領域を熱エネルギーによって選択的に溶融結合(固化)させる粉末床溶融結合方式、その他、シート積層方式、光重合方式等があるが(「平成25年度 特許出願技術動向調査報告書 3Dプリンター」,特許庁刊)、ここではそのどの方式のものであっても構わない。 This material laminating device uses a binder injection method that injects a liquid binder onto a powder bed to achieve selective solidification, and controls the heat generation position with a beam or the like while supplying the material to selectively select the material. A directional energy deposition method that melts and solidifies (bonds), a material extrusion method that extrudes a fluid material from a nozzle and solidifies it while depositing it, and a method that ejects material droplets and selectively deposits and solidifies them ( There are a material injection method using an inkjet method, etc., a powder bed melt bonding method that selectively melt-bonds (solidifies) the area where the powder is laid by heat energy, a sheet lamination method, a photopolymerization method, etc. (" 2013 Patent Application Technology Trend Survey Report 3D Printer ”, published by the Patent Office), whichever method is used here.

本発明は、材料積層装置を用いて電池外装を形成する工程を含み、電池の外装を構成する材料としては、電解液(電解質および溶媒)に対して耐久性の高い材料であれば特に制限はないが、ポリフェニルスルホン(PPSF)樹脂、架橋度の高いアクリレート系の光硬化性樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ABS樹脂及びPJP(植物由来プラスチック)樹脂から選択して用いることが好ましい。前記の電池の外装を構成する材料は、選択した材料に応じて異なる方式の材料積層装置10を用いることができる。例えば、上記アクリレート系の光硬化性樹脂を採用するのであれば、光重合方式を用いた材料積層装置10を用いる。また、ABS樹脂及びPJP(植物由来プラスチック)樹脂を用いるのであれば、粉末床溶融結合方式を用いた材料積層装置10を用い、ポリフェニルスルホン樹脂等の高耐熱樹脂を用いる場合には、粉末状の樹脂に液状の結合剤を噴射して選択的固化を実現する結合剤噴射方式を用いることができる。 The present invention includes a step of forming a battery exterior using a material laminating device, and the material constituting the battery exterior is particularly limited as long as it is a material having high durability against an electrolytic solution (electrolyte and solvent). However, it is used by selecting from polyphenylsulfone (PPSF) resin, acrylate-based photocurable resin with high degree of cross-linking, polyethylene (PE) resin, polypropylene (PP) resin, ABS resin and PJP (plant-derived plastic) resin. Is preferable. As the material constituting the exterior of the battery, a material laminating device 10 of a different type can be used depending on the selected material. For example, if the above-mentioned acrylate-based photocurable resin is adopted, a material laminating apparatus 10 using a photopolymerization method is used. When ABS resin and PJP (plant-derived plastic) resin are used, the material laminating device 10 using the powder bed melt-bonding method is used, and when a highly heat-resistant resin such as polyphenylsulfone resin is used, it is in powder form. A binder injection method can be used in which a liquid binder is sprayed onto the resin of the above to realize selective solidification.

本実施の形態の電池の製造方法では、第1極集電体11、正極活物質12、セパレータ13、負極活物質14及び第2極集電体15が予め用意される。第1極集電体および第2極集電体(以下区別の必要のない場合は集電体と総称する)は、後述する第1の外装部および第2の外装部にそれぞれ内包される形状の主部を有し、さらにそれぞれの主部は、集電体に電気的に接続され、外部に電流を取り出す電流取り出し部(タブ部ともいう)を有する。なお、電流取り出し部は集電体と一体に形成されていても、異なる部材を電気的に接続しているものであっても良い。 In the battery manufacturing method of the present embodiment, the first pole current collector 11, the positive electrode active material 12, the separator 13, the negative electrode active material 14, and the second pole current collector 15 are prepared in advance. The first-pole current collector and the second-pole current collector (hereinafter collectively referred to as current collectors when it is not necessary to distinguish them) have a shape contained in the first exterior portion and the second exterior portion, which will be described later, respectively. Each main part has a current take-out part (also referred to as a tab part) which is electrically connected to a current collector and takes out a current to the outside. The current extraction unit may be integrally formed with the current collector, or may be an electric connection of different members.

第1極集電体11及び第2極集電体15は、金属集電体や樹脂集電体を用いることができ、それぞれ公知の金属集電体並びに日本国特許公開第2012−150905号公報及び国際公開第WO2015/005116号等に記載の公知の樹脂集電体等を用いることができる。 A metal current collector or a resin current collector can be used as the first pole current collector 11 and the second pole current collector 15, respectively, and known metal current collectors and Japanese Patent Publication No. 2012-150905 are available. And known resin current collectors and the like described in International Publication No. WO 2015/005116 and the like can be used.

金属集電体としては、リチウムイオン電池に一般に使用する金属集電体を用いることができ、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、およびこれらの一種以上を含む合金、ならびにステンレス合金からなる群から選択される一種以上の金属等からなる集電体を用いることができる。 As the metal current collector, a metal current collector generally used for lithium ion batteries can be used, and copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and these. An alloy containing one or more of the above, and a current collector made of one or more metals selected from the group consisting of stainless alloys can be used.

金属集電体の形状は、薄板状、金属箔状及びメッシュ状のいずれであってもよく、金属集電体の表面にさらにスパッタリング、電着、塗布等の手法により別の金属層が形成されたものであってもよい。 The shape of the metal collector may be any of a thin plate, a metal foil, and a mesh, and another metal layer is further formed on the surface of the metal collector by a method such as sputtering, electrodeposition, or coating. It may be a metal leaf.

樹脂集電体としては、導電性高分子材料又は非導電性高分子材料に導電性を付与した高分子を基材とした集電体を用いることができる。 As the resin current collector, a conductive polymer material or a current collector based on a polymer obtained by imparting conductivity to a non-conductive polymer material can be used.

導電性高分子材料としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル及びポリオキサジアゾール等が挙げられる。なお、導電性の高分子材料を含む樹脂集電体の導電性を向上させる目的から、さらに後述する導電性フィラーを含んでいることが好ましい。 Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, polyoxadiazole and the like. For the purpose of improving the conductivity of the resin current collector containing the conductive polymer material, it is preferable to further contain a conductive filler described later.

非導電性高分子材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂及びこれらの混合物等が挙げられる。 Non-conductive polymer materials include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetrafluoroethylene. (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethylacrylate (PMA), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin and mixtures thereof. Be done.

非導電性高分子材料としては、電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、より好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。 As the non-conductive polymer material, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE) is more preferable from the viewpoint of electrical stability. , Polypropylene (PP) and Polymethylpentene (PMP).

非導電性高分子材料に導電性を付与した高分子は、非導電性高分子材料と導電性フィラーとを混合することで得ることができ、導電性フィラーは、導電性を有する材料から得られるフィラーから選択される。好ましくは、集電体内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料から得られるフィラーからを用いるのが好ましい。具体的には、カーボン材料、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、ニッケル及びステンレス(SUS)等の合金材等から得られるフィラーが挙げられるが、これらに限定されるものではない。なかでも耐食性の観点から、好ましくはアルミニウム、ステンレス、カーボン材料又はニッケルから得られるフィラー、より好ましくはカーボン材料から得られるフィラーである。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。なお、導電性フィラーとしては、粒子系セラミック材料や樹脂材料の周りに、上記で示される金属をメッキ等でコーティングしたものを用いることもできる。 The polymer obtained by imparting conductivity to the non-conductive polymer material can be obtained by mixing the non-conductive polymer material and the conductive filler, and the conductive filler is obtained from the material having conductivity. Selected from fillers. Preferably, from the viewpoint of suppressing ion permeation in the current collector, it is preferable to use a filler obtained from a material having no conductivity with respect to ions used as a charge transfer medium. Specific examples thereof include fillers obtained from carbon materials, alloy materials such as aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, titanium, nickel and stainless steel (SUS). It is not limited to these. Among them, from the viewpoint of corrosion resistance, a filler obtained from aluminum, stainless steel, a carbon material or nickel is preferable, and a filler obtained from a carbon material is more preferable. These conductive fillers may be used alone or in combination of two or more. As the conductive filler, a particle-based ceramic material or a resin material coated with the metal shown above by plating or the like can also be used.

導電性フィラーの形状は粒子状、繊維状及びこれらの凝集体のいずれの形状であってもよい。 The shape of the conductive filler may be a particle shape, a fibrous shape, or an aggregate thereof.

樹脂集電体は、日本国特許公開第2012−150905号公報及び国際公開第WO2015/005116号等に記載の公知の方法で得ることができ、具体例としては、ポリプロピレンに導電性フィラーとしてアセチレンブラックを5〜20部分散させた後、熱プレス機で圧延したもの等が挙げられる。また、その厚みも特に制限されず、公知のものと同様、あるいは適宜変更して適用することができる。 The resin current collector can be obtained by a known method described in Japanese Patent Publication No. 2012-150905 and International Publication No. WO 2015/005116, and as a specific example, acetylene black as a conductive filler in polypropylene can be obtained. After dispersing 5 to 20 parts of the above, rolled with a hot press machine and the like can be mentioned. Further, the thickness thereof is not particularly limited, and the same as known ones or appropriately modified ones can be applied.

正極集電体7及び負極集電体8は、金属集電体又は樹脂集電体をそのまま用いても、その表面に後述する導電層を形成したものを用いてもよく、電池特性等の観点から、導電層を形成した金属集電体又は樹脂集電体であることが好ましい。 As the positive electrode current collector 7 and the negative electrode current collector 8, a metal current collector or a resin current collector may be used as they are, or a metal current collector or a resin current collector having a conductive layer formed on the surface thereof may be used, from the viewpoint of battery characteristics and the like. Therefore, it is preferable that it is a metal current collector or a resin current collector on which a conductive layer is formed.

正極活物質組成物12は、正極活物質粒子と電解液とを混合して得られる。ここで正極活物質粒子としては、リチウムと遷移金属との複合酸化物(例えばLiCoO2、LiNiO2、LiMnO2及びLiMn24)、遷移金属酸化物(例えばMnO2及びV25)、遷移金属硫化物(例えばMoS2及びTiS2)及び導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ−p−フェニレン及びポリカルバゾール)等を用いることができる。 The positive electrode active material composition 12 is obtained by mixing positive electrode active material particles and an electrolytic solution. Here, as the positive electrode active material particles, a composite oxide of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), a transition metal oxide (for example, MnO 2 and V 2 O 5 ), Transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene and polycarbazole) and the like can be used.

また、負極活物質組成物14は、当該負極活物質粒子を電解液と混合して得られる。ここで負極活物質粒子としては、黒鉛、難黒鉛化性炭素、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリピロール等)、スズ、シリコン、及び金属合金(例えばリチウム−スズ合金、リチウム−シリコン合金、リチウム−アルミニウム合金及びリチウム−アルミニウム−マンガン合金等)、リチウムと遷移金属との複合酸化物(例えばLi4Ti5O12等)等がある。 Further, the negative electrode active material composition 14 is obtained by mixing the negative electrode active material particles with an electrolytic solution. Here, as the negative electrode active material particles, graphite, non-graphitizable carbon, amorphous carbon, a fired polymer compound (for example, one obtained by calcining a phenol resin, a furan resin, etc. and carbonizing), cokes (for example, pitch coke, etc. Needle coke and petroleum coke, etc.), carbon fibers, conductive polymers (eg, polyacetylene and polypyrrole, etc.), tin, silicon, and metal alloys (eg, lithium-tin alloys, lithium-silicon alloys, lithium-aluminum alloys, and lithium-aluminum). - manganese alloy), there composite oxide of lithium and transition metals (e.g., Li 4 Ti 5 O1 2, etc.) and the like.

本実施の形態においては、正極活物質組成物12及び負極活物質組成物14にそれぞれ含まれる正極活物質粒子および負極活物質粒子は、それぞれその表面の少なくとも一部が被覆用樹脂及び導電助剤を含む被覆剤で被覆されてなる被覆活物質粒子であることが好ましい。 In the present embodiment, at least a part of the surface of the positive electrode active material particles and the negative electrode active material particles contained in the positive electrode active material composition 12 and the negative electrode active material composition 14, respectively, is a coating resin and a conductive auxiliary agent. It is preferable that the coating active material particles are coated with a coating agent containing.

活物質粒子の周囲が被覆剤で被覆されていると、充放電時に生じる電極の体積変化が緩和され、充放電を繰り返すことによる電極の劣化を抑制することができる。また、PVdF等のバインダーを用いて結着させることなく電極を形成することができるため、前記第1の枠部に囲まれた領域内に、第1の電極活物質と電解液とを含んでなる第1の電極活物質組成物を充填する工程と、前記第2の枠部に囲まれた領域内に、第2の電極活物質と電解液とを含んでなる第2の電極活物質組成物を充填する工程とを行うことが容易になり好ましい。 When the periphery of the active material particles is coated with a coating agent, the volume change of the electrode that occurs during charging / discharging is alleviated, and deterioration of the electrode due to repeated charging / discharging can be suppressed. Further, since the electrode can be formed without binding using a binder such as PVdF, the first electrode active material and the electrolytic solution are contained in the region surrounded by the first frame portion. The second electrode active material composition comprising the step of filling the first electrode active material composition and the second electrode active material and the electrolytic solution in the region surrounded by the second frame portion. It is preferable because it facilitates the step of filling the material.

なお、バインダーを添加しないことによって、活物質が電極内に固定化されないため電極活物質の体積変化に対する緩和能力がさらに良好となる効果も有し、好ましい。 It should be noted that by not adding the binder, since the active material is not immobilized in the electrode, it also has an effect of further improving the mitigation ability against the volume change of the electrode active material, which is preferable.

被覆用樹脂としては、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート等が挙げられる。これらの中ではビニル樹脂、ウレタン樹脂、ポリエステル樹脂又はポリアミド樹脂が好ましい。 Examples of the coating resin include vinyl resin, urethane resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, silicone resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, and polycarbonate. Among these, vinyl resin, urethane resin, polyester resin or polyamide resin are preferable.

被覆剤に含まれる導電助剤としては、導電性を有する材料から選択して用いることができる。 As the conductive auxiliary agent contained in the coating agent, it can be selected and used from materials having conductivity.

導電性を有する材料としては、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、導電性カーボン[カーボンナノファイバー、グラファイト、カーボンブラック、アセチレンブラック、バルカン(登録商標)、ケッチェンブラック(登録商標)、ブラックパール(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック、カーボンナノチューブ(単層カーボンナノチューブ及び多層カーボンナノチューブ等)、カーボンナノホーン、カーボンナノバルーン、ハードカーボン及びフラーレン等]及びこれらの混合物等があるが、これらに限定されない。 Materials with conductivity include metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], conductive carbon [carbon nanofibers, graphite, carbon black, acetylene black, vulcan (registered trademark), and ket. Chain black (registered trademark), black pearl (registered trademark), furnace black, channel black, thermal lamp black, carbon nanotubes (single-walled carbon nanotubes and multi-walled carbon nanotubes, etc.), carbon nanohorns, carbon nanoballoons, hard carbon, fullerenes, etc. ] And mixtures thereof, etc., but not limited to these.

これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、金、銅、チタン及びこれらの混合物であり、より好ましくは銀、金、アルミニウム、ステンレス及び導電性カーボンであり、さらに好ましくは導電性カーボンである。 These conductive auxiliaries may be used alone or in combination of two or more. Moreover, these alloys or metal oxides may be used. From the viewpoint of electrical stability, it is preferably aluminum, stainless steel, carbon, silver, gold, copper, titanium and a mixture thereof, more preferably silver, gold, aluminum, stainless steel and conductive carbon, and even more preferably. It is conductive carbon.

また導電助剤としては、粒子系セラミック材料、樹脂材料等の非導電性材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をメッキ等でコーティングしたもの及び非導電性材料と導電性材料(上記した導電助剤の材料のうち金属のもの)とを混合したものも用いることができる。 The conductive auxiliary agent includes a non-conductive material such as a particle-based ceramic material and a resin material coated with a conductive material (a metal material among the above-mentioned conductive auxiliary agent materials) by plating or the like, and a non-conductive material. A mixture of a conductive material and a conductive material (a metal material among the above-mentioned conductive aid materials) can also be used.

また、導電助剤として合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、合繊繊維等の有機物繊維の表面を金属で被覆した導電性繊維等を用いることもできる。 Further, as a conductive auxiliary agent, a conductive fiber in which a metal having good conductivity or graphite is uniformly dispersed in a synthetic fiber, a conductive fiber in which the surface of an organic fiber such as a synthetic fiber is coated with a metal, or the like can be used. it can.

被覆剤に含まれる被覆用樹脂と導電助剤との重量比は、被覆用樹脂:導電助剤=100:1〜100:200が好ましく、さらに好ましくは100:5〜100:100である。この範囲にあると正極活物質層5及び負極活物質層6の導電性が良好となる。 The weight ratio of the coating resin contained in the coating agent to the conductive auxiliary agent is preferably coating resin: conductive auxiliary agent = 100: 1 to 100: 200, and more preferably 100: 5 to 100: 100. Within this range, the conductivity of the positive electrode active material layer 5 and the negative electrode active material layer 6 becomes good.

被覆活物質粒子は、例えば、活物質粒子を万能混合機に入れて30〜500rpmで撹拌した状態で、被覆用樹脂を含む樹脂溶液を1〜90分かけて滴下混合し、さらに導電助剤を混合し、撹拌したまま50〜200℃に昇温し、0.007〜0.04MPaまで減圧した後に10〜150分保持することにより得ることができる。 For the coating active material particles, for example, in a state where the active material particles are placed in a universal mixer and stirred at 30 to 500 rpm, a resin solution containing a coating resin is added dropwise over 1 to 90 minutes, and a conductive additive is further added. It can be obtained by mixing, raising the temperature to 50 to 200 ° C. with stirring, reducing the pressure to 0.007 to 0.04 MPa, and then holding the mixture for 10 to 150 minutes.

被覆活物質粒子が得られたことは、走査型電子顕微鏡等を用いて得られた被覆活物質粒子の拡大観察画像を観察することで確認することができる。 It can be confirmed that the coating active material particles are obtained by observing the magnified observation image of the coating active material particles obtained by using a scanning electron microscope or the like.

また、正極活物質粒子または負極活物質粒子を、電解液と混合して正極活物質組成物12または負極活物質組成物14とする場合、電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する電解液を使用することができる。 When the positive electrode active material particles or the negative electrode active material particles are mixed with the electrolytic solution to obtain the positive electrode active material composition 12 or the negative electrode active material composition 14, the electrolytic solution is used for manufacturing a lithium ion battery. An electrolytic solution containing an electrolyte and a non-aqueous solvent can be used.

電解質としては、通常のリチウムイオン電池用電解液に用いられているもの等が使用でき、LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO22、LiN(C25SO22及びLiC(CF3SO23等の有機酸のリチウム塩等がある。これらのうち、電池出力及び充放電サイクル特性の観点からはLiPF6が好ましい。 As the electrolyte, those used in ordinary electrolytes for lithium-ion batteries can be used, and lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 and LiN (CF 3 SO) can be used. 2 ) There are lithium salts of organic acids such as 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3. Of these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

また非水溶媒としては、通常のリチウムイオン電池用電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。この非水溶媒は一種類を単独で用いてもよいし、二種類以上の非水溶媒を併用してもよい。 As the non-aqueous solvent, those used in ordinary electrolytic solutions for lithium ion batteries can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylic acid esters, cyclic or chain ethers, and the like. Phosylate esters, nitrile compounds, amide compounds, sulfones, sulfolanes and the like and mixtures thereof can be used. One type of this non-aqueous solvent may be used alone, or two or more types of non-aqueous solvents may be used in combination.

上記の非水溶媒の例のうち、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、より好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、さらに好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。特に好ましいのはプロピレンカーボネート(PC)、またはプロピレンカーボネートとエチレンカーボネート(EC)の混合液である。 Among the above examples of non-aqueous solvents, lactone compounds, cyclic carbonates, chain carbonates and phosphate esters are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and lactone compounds and cyclics are more preferable. Carbonate ester and chain carbonate ester are more preferable, and a mixed solution of cyclic carbonate ester and chain carbonate ester is more preferable. Particularly preferred is propylene carbonate (PC) or a mixture of propylene carbonate and ethylene carbonate (EC).

電解液に含まれる電解質の濃度は、電解液の容量に基づいて0.1〜3mol/Lが好ましく、0.5〜2mol/Lがより好ましい。 The concentration of the electrolyte contained in the electrolytic solution is preferably 0.1 to 3 mol / L, more preferably 0.5 to 2 mol / L, based on the volume of the electrolytic solution.

本発明において正極活物質層12及び負極活物質層14は、イオン抵抗を低減できる等の観点からそれぞれ前記の被覆活物質粒子とともに繊維状導電性フィラーを含むことが好ましい。繊維状導電性フィラーとしては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維のなかでも炭素繊維が好ましい。 In the present invention, the positive electrode active material layer 12 and the negative electrode active material layer 14 preferably contain a fibrous conductive filler together with the above-mentioned coating active material particles from the viewpoint of reducing ionic resistance and the like. Examples of the fibrous conductive filler include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing a metal or graphite having good conductivity in synthetic fibers, and stainless steel. Examples thereof include metal fibers obtained by fiberizing metal, conductive fibers in which the surface of organic fibers is coated with metal, and conductive fibers in which the surface of organic fibers is coated with conductive resin. Among these conductive fibers, carbon fiber is preferable.

正極活物質層12及び負極活物質層14に繊維状導電性フィラーを含む場合、繊維状導電性フィラーの割合は、被覆活物質粒子の重量に基づいて0.5〜5重量%であることが好ましい。 When the positive electrode active material layer 12 and the negative electrode active material layer 14 contain the fibrous conductive filler, the proportion of the fibrous conductive filler may be 0.5 to 5% by weight based on the weight of the coating active material particles. preferable.

正極活物質層12及び負極活物質層14の厚さは、200μm以上であることが好ましい。より好ましくは500μm以上、さらに好ましくは1000μm以上である。この厚さ以上であると、単位体積あたりの活物質量が多くなり、蓄電容量が大きい電池とできる。 The thickness of the positive electrode active material layer 12 and the negative electrode active material layer 14 is preferably 200 μm or more. It is more preferably 500 μm or more, still more preferably 1000 μm or more. If it is thicker than this thickness, the amount of active material per unit volume increases, and a battery having a large storage capacity can be obtained.

正極活物質組成物12及び負極活物質組成物14において、活物質粒子及び導電助剤を、その合計重量が電解液の重量に基づいて10〜60重量%の濃度で含有することが好ましい。 In the positive electrode active material composition 12 and the negative electrode active material composition 14, it is preferable that the active material particles and the conductive auxiliary agent are contained in a concentration of 10 to 60% by weight based on the weight of the electrolytic solution.

また、正極活物質組成物12及び負極活物質組成物14がさらに熱または光硬化性化合物を含有することも好ましい。正極活物質組成物12及び負極活物質組成物14がさらに熱または光硬化性化合物を含有する場合、正極活物質組成物12及び負極活物質組成物14をそれぞれ所定の領域に充填した後、さらに加熱または紫外線照射を行うことによって正極活物質組成物12及び負極活物質組成物14をゲル化させることができる。正極活物質組成物12及び負極活物質組成物14をゲル化すると、セパレータの配置及び集電体の配置が容易になり好ましい。 It is also preferable that the positive electrode active material composition 12 and the negative electrode active material composition 14 further contain a heat or photocurable compound. When the positive electrode active material composition 12 and the negative electrode active material composition 14 further contain a heat or photocurable compound, the positive electrode active material composition 12 and the negative electrode active material composition 14 are filled in predetermined regions, respectively, and then further. The positive electrode active material composition 12 and the negative electrode active material composition 14 can be gelled by heating or irradiating with ultraviolet rays. It is preferable to gel the positive electrode active material composition 12 and the negative electrode active material composition 14 because the arrangement of the separator and the arrangement of the current collector are facilitated.

さらに本実施の形態では、所望の形状に切断されたセパレータ13が用意される。このセパレータ13としては、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素系樹脂及びポリオレフィン(ポリエチレン及びポリプロピレン等)製の多孔性フィルム、多孔性フィルムの多層フィルム(例えば、PP/PE/PPの3層構造をした積層体等)、合成繊維(ポリエステル繊維及びアラミド繊維等)及びガラス繊維等からなる不織布並びにこれらの表面にシリカ、アルミナ及びチタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用セパレータ等を用いることができる。このセパレータ13の形状については後に述べる。 Further, in the present embodiment, a separator 13 cut into a desired shape is prepared. The separator 13 includes a hydrocarbon resin such as polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), a porous film made of polyolefin (polyethylene, polypropylene, etc.), and a multilayer film of a porous film (for example, PP / PE). / PP three-layer structure laminate, etc.), non-woven fabric made of synthetic fibers (polyester fiber, aramid fiber, etc.), glass fiber, etc., and those with ceramic fine particles such as silica, alumina, and titania attached to their surfaces, etc. A known separator for a lithium ion battery or the like can be used. The shape of the separator 13 will be described later.

以上の用意の下、本実施の形態では次の工程により電池を製造する。 With the above preparations, in the present embodiment, the battery is manufactured by the following steps.

本実施の形態では図1に例示するように、まず第1極集電体11を配した電池外装の下部21が形成され(図1、工程aから工程c)、第1の電極組成物(例えば正極活物質12を含む)を充填し(工程d)、セパレータ13を配する(工程e)。そして、第2極集電体15を配した電池外装の上部22が、第2の電極組成物(例えば負極活物質14を含む)を内包させつつ形成される(工程fから工程j)。これにより、電池外装20により、第1極集電体11、正極活物質12の層、セパレータ13、負極活物質14の層及び第2極集電体15が積層されてなる積層体が封じられる。 In the present embodiment, as illustrated in FIG. 1, first, the lower portion 21 of the battery exterior in which the first electrode current collector 11 is arranged is formed (FIG. 1, steps a to c), and the first electrode composition (FIG. 1, steps a to c) is formed. (For example, the positive electrode active material 12 is included) is filled (step d), and the separator 13 is arranged (step e). Then, the upper portion 22 of the battery exterior on which the second electrode current collector 15 is arranged is formed while including the second electrode composition (for example, the negative electrode active material 14) (steps f to j). As a result, the battery exterior 20 seals the laminated body in which the first pole current collector 11, the layer of the positive electrode active material 12, the separator 13, the layer of the negative electrode active material 14, and the second pole current collector 15 are laminated. ..

さらに詳細に図1の例では、まず、所定の造形領域に、電池外装20を形成する前記の材料を材料積層装置10を用い、電池外装下部21の底部21a(第1の外装部材に相当)を形成する(図1:工程a)。ここで底部21aの形状は、電池形状として所望の形状に合わせておく。例えば電池形状を、底面がハート型の柱状体とする場合、底部21aをハート型の平板状とする。 More specifically, in the example of FIG. 1, first, the material laminating device 10 is used to form the battery exterior 20 in a predetermined modeling region, and the bottom portion 21a of the battery exterior lower portion 21 (corresponding to the first exterior member). (Fig. 1: Step a). Here, the shape of the bottom portion 21a is adjusted to a desired shape as the battery shape. For example, when the battery shape is a heart-shaped columnar body, the bottom portion 21a is a heart-shaped flat plate.

次に、第1極集電体11がこの底部21a上に配される(図1:工程b)。第1極集電体11は、図4に例示するように、底部21aの形状(所定形状)に内包される位置に配される(突出する箇所がないように重ね合わせられる)主部11aと、主部11aの周縁部の少なくとも一部から外側へ延伸され(図4の例では凸状をなす)、底部21aより外側へ突出するよう配されるタブ部11bとを有する。なお、図4では、第1極集電体11,セパレータ13,第2極集電体15を重ねて図示しているため、第1極集電体11(及びセパレータ13)の外形が一部隠されているが、当該隠された部分は破線で示している。 Next, the first pole current collector 11 is arranged on the bottom portion 21a (FIG. 1: step b). As illustrated in FIG. 4, the first pole current collector 11 is arranged with a main portion 11a arranged at a position included in the shape (predetermined shape) of the bottom portion 21a (superposed so that there is no protruding portion). It has a tab portion 11b that extends outward from at least a part of the peripheral edge portion of the main portion 11a (convex shape in the example of FIG. 4) and is arranged so as to project outward from the bottom portion 21a. In FIG. 4, since the first pole current collector 11, the separator 13, and the second pole current collector 15 are shown in an overlapping manner, the outer shape of the first pole current collector 11 (and the separator 13) is partially drawn. Although it is hidden, the hidden part is indicated by a broken line.

次に、第1極集電体11の主部の周縁部(主部11aの外周縁から所定長さの範囲、主部11a全体を覆わないものとする)に、材料積層装置10を用いて、前記第1極集電体上に配置した前記第1極集電体の主部の周縁部を前記第1の外装部との間で挟み込むことで前記第1の外装部上に固定する第1の枠部[電池外装下部21の枠部(枠体下部に相当)]21bを形成する(図1:工程c)。図1は、第1極集電体11の中心部を通る面で破断した断面を図示しているため、枠部21bの間には空間が生じているが、枠部21bは、第1極集電体11の周縁部を全周に亘って封止(底部21aと枠部21bとで挟み込むように)しており、ここでは実質的に柱状の空間が生じていることとなる。 Next, the material laminating device 10 is used on the peripheral edge portion of the main portion of the first pole current collector 11 (the range of a predetermined length from the outer peripheral edge of the main portion 11a, which does not cover the entire main portion 11a). The peripheral portion of the main portion of the first pole current collector arranged on the first pole current collector is sandwiched between the first exterior portion and the first exterior portion to be fixed on the first exterior portion. The frame portion [frame portion (corresponding to the lower portion of the frame body) of the lower portion 21 of the battery exterior] 21b of 1 is formed (FIG. 1: step c). FIG. 1 shows a cross section fractured on a surface passing through the central portion of the first pole current collector 11, so that a space is generated between the frame portions 21b, but the frame portion 21b is the first pole. The peripheral edge of the current collector 11 is sealed (sandwiched between the bottom 21a and the frame 21b) over the entire circumference, and a columnar space is substantially formed here.

そして第1極集電体11の周縁部に配した枠部21bにて囲まれた領域(上記柱状の空間)内に、第1の電極活物質(例えば正極活物質12)と電解液とを含んでなる第1の電極組成物を充填する(図1:工程d)。 Then, the first electrode active material (for example, the positive electrode active material 12) and the electrolytic solution are placed in a region (the columnar space) surrounded by the frame portion 21b arranged on the peripheral edge of the first electrode current collector 11. The first electrode composition comprising is filled (FIG. 1: Step d).

次に、外装下部21上(枠部21b上)に、セパレータ13をその周縁部が前記第1の枠部に重なるように位置決めして配する(図1:工程e)。ここでセパレータ13は、少なくとも前記第1の枠部の内縁で囲まれた領域を覆い、前記第1の枠部の外縁で囲まれた領域に内包される形状を有し、例えば第1極集電体11の主部11aと相似形状、または、枠部21bとの間に隙間を生じない形状としておく。このセパレータ13により第1の電極組成物が封じられる。 Next, the separator 13 is positioned and arranged on the outer lower portion 21 (on the frame portion 21b) so that the peripheral edge portion thereof overlaps the first frame portion (FIG. 1: step e). Here, the separator 13 has a shape that covers at least the region surrounded by the inner edge of the first frame portion and is included in the region surrounded by the outer edge of the first frame portion, for example, the first pole collection. The shape is similar to that of the main portion 11a of the electric body 11, or has a shape that does not generate a gap between the main portion 11a and the frame portion 21b. The separator 13 seals the first electrode composition.

次に、セパレータ13の周縁部(セパレータ13の外周縁から所定長さの範囲、セパレータ13全体を覆わないものとする)に、材料積層装置10を用いて、前記セパレータの周縁部を前記第1の枠部との間で挟み込むことで前記第1の枠部上に固定する第2の枠部[電池外装上部22の枠部(枠体に相当)]22aを形成する(図1:工程f)。この工程では、枠部21bと平面視では同形状となるように(つまり第1の外装部材上に)枠部22aを形成してよい。 Next, a material laminating device 10 is used on the peripheral edge portion of the separator 13 (a range of a predetermined length from the outer peripheral edge of the separator 13 and the entire separator 13 is not covered), and the peripheral edge portion of the separator is attached to the first peripheral portion. A second frame portion [frame portion (corresponding to the frame body) of the upper portion 22 of the battery exterior] 22a to be fixed on the first frame portion is formed by sandwiching the frame portion between the two frames (FIG. 1: Step f). ). In this step, the frame portion 22a may be formed so as to have the same shape as the frame portion 21b in a plan view (that is, on the first exterior member).

図1は、第1極集電体11やセパレータ13の中心部を通る面で破断した断面を図示しているため、枠部22aの間には空間が生じているが、枠部22aは、セパレータ13の周縁部を全周に亘って封止(枠部22aと枠部21bとで挟み込むように)しており、ここでは実質的に柱状の空間が生じていることとなる。 FIG. 1 shows a cross section broken at a surface passing through the central portion of the first pole current collector 11 and the separator 13, so that a space is generated between the frame portions 22a. The peripheral edge of the separator 13 is sealed over the entire circumference (so as to be sandwiched between the frame portion 22a and the frame portion 21b), and a columnar space is substantially formed here.

そしてセパレータ13の周縁部に配した枠部22aにて囲まれた領域(上記柱状の空間)内に、第2の電極活物質(例えば負極活物質14)と電解液とを含んでなる第2の電極組成物を充填する(図1:工程g)。 A second electrode active material (for example, the negative electrode active material 14) and an electrolytic solution are contained in a region (the columnar space) surrounded by the frame portion 22a arranged on the peripheral edge of the separator 13. The electrode composition of (Fig. 1: Step g) is filled.

次に、第2極集電体15が当該主部の周縁部が前記第2の枠部22aに重なるように位置決めして、この枠部22a上に配される(図1:工程h)。第2極集電体15は、枠部22aにその周縁部が支持されるよう配される。この第2極集電体15は、少なくとも前記第2の枠部の内縁で囲まれた領域を覆い、前記第2の枠部の外縁で囲まれた領域に内包される形状を有し、主部15aと、主部15aの周縁部の少なくとも一部から外側へ延伸され(一例では凸状をなし)、枠部22aより外側へ突出するよう配されるタブ部15bとを有する。一例として、この第2極集電体15は第1極集電体11と同形状のものであって、枠部22aとの間に隙間を生じない形状としておく。この第2極集電体15により第2の電極組成物が封じられる。 Next, the second pole current collector 15 is positioned so that the peripheral edge portion of the main portion overlaps the second frame portion 22a, and is arranged on the frame portion 22a (FIG. 1: step h). The second pole current collector 15 is arranged so that its peripheral edge is supported by the frame portion 22a. The second pole current collector 15 has a shape that covers at least the region surrounded by the inner edge of the second frame portion and is included in the region surrounded by the outer edge of the second frame portion. It has a portion 15a and a tab portion 15b that extends outward from at least a part of the peripheral edge portion of the main portion 15a (in one example, has a convex shape) and is arranged so as to project outward from the frame portion 22a. As an example, the second pole current collector 15 has the same shape as the first pole current collector 11 and has a shape that does not form a gap between the second pole current collector 15 and the frame portion 22a. The second electrode composition is sealed by the second electrode current collector 15.

そして次に、少なくとも前記第2極集電体の主部を覆う形状を有する第2の外装部として、第2極集電体15上に、材料積層装置10を用いて、電池外装上部22の平面部22b(第2の外装部材に相当する。また枠部21b,22aが第1の外装部材及び第2の外装部材の間に配された枠体に相当する)を形成する(図1:工程i)。このように電池外装下部21と電池外装上部22とにより電池外装20が形成され、第1極集電体11、正極活物質12の層、セパレータ13、負極活物質14の層及び第2極集電体15が積層されてなる積層体が封止され、単電池セルを内包する電池外装とを有するリチウムイオン電池が得られる。また、このとき、第1極集電体11のタブ部11bと、第2極集電体15のタブ部15bとが電池外装20から外部へ突出した状態となる(図1:工程j,図3)。これらタブ部11b,15bがここで製造されるリチウムイオン電池の電流取り出し部(電極)として機能することとなる。なお、図3では説明のため、電池の一部破断面を示している。 Next, as a second exterior portion having a shape that covers at least the main portion of the second pole current collector, the material laminating device 10 is used on the second pole current collector 15 to cover the upper portion 22 of the battery exterior. The flat surface portion 22b (corresponding to the second exterior member, and the frame portions 21b, 22a correspond to the frame body arranged between the first exterior member and the second exterior member) is formed (FIG. 1: FIG. Step i). In this way, the battery exterior 20 is formed by the battery exterior lower portion 21 and the battery exterior upper portion 22, and the first pole current collector 11, the positive electrode active material 12 layer, the separator 13, the negative electrode active material 14 layer, and the second pole collection. A laminated body formed by laminating the electric bodies 15 is sealed, and a lithium ion battery having a battery exterior including a cell is obtained. Further, at this time, the tab portion 11b of the first pole current collector 11 and the tab portion 15b of the second pole current collector 15 are in a state of protruding from the battery exterior 20 to the outside (FIG. 1: Step j, FIG. 3). These tab portions 11b and 15b function as current extraction portions (electrodes) of the lithium ion battery manufactured here. Note that FIG. 3 shows a partially fractured surface of the battery for the sake of explanation.

このように本実施の形態の例によると、電池外装20が材料積層装置10により自由な形状で形成できるため、所望の形状を有したリチウムイオン電池が製造可能となる。 As described above, according to the example of the present embodiment, since the battery exterior 20 can be formed in a free shape by the material laminating device 10, a lithium ion battery having a desired shape can be manufactured.

なお、本実施の形態の以上の説明において、図1の工程a,c,f,iについては、複数の材料積層装置10を用いて並行して複数の電池分の加工を行い、その他の工程(図1の工程b,d,e,g,h)については、複数の材料積層装置10にて加工された複数の加工品に対して逐次的に加工処理を施すようにしてもよい(図2)。このようにすると、製造の効率が向上する。 In the above description of the present embodiment, with respect to the steps a, c, f, and i of FIG. 1, a plurality of battery components are processed in parallel using a plurality of material laminating devices 10, and other steps are performed. Regarding (steps b, d, e, g, h in FIG. 1), a plurality of processed products processed by the plurality of material laminating devices 10 may be sequentially processed (FIG. 1). 2). In this way, the efficiency of manufacturing is improved.

なお、図1の各工程a,c,f,iにおいて用いる材料積層装置10(複数でもよい)は工程a,c,f,iのそれぞれにおいて別々のものであってもよいし、共用されても構わない。 The material laminating apparatus 10 (s) used in each of the steps a, c, f, and i in FIG. 1 may be separate or shared in each of the steps a, c, f, and i. It doesn't matter.

また、ここまでの説明では、電池外装20の底面形状を平面状としていたが、本実施の形態は、これに限られない。例えば、電池外装20をアレイ状(ピーナッツ様の形状)とする場合、図5に例示するように、カップ状部を一列に配した形状の電池外装下部21の底部21a(第1の外装部材に相当)を形成すればよい(図5:工程a)。 Further, in the description so far, the bottom surface shape of the battery exterior 20 has been made flat, but the present embodiment is not limited to this. For example, when the battery exterior 20 has an array shape (peanut-like shape), as illustrated in FIG. 5, the bottom portion 21a of the battery exterior lower portion 21 having a cup-shaped portion arranged in a row (on the first exterior member). (Equivalent) may be formed (FIG. 5: step a).

また、第1極集電体11,第2極集電体15及びセパレータ13も、それぞれの材料を積層する材料積層装置10′,10″を用いて形成することとしてもよい。 Further, the first pole current collector 11, the second pole current collector 15, and the separator 13 may also be formed by using the material laminating device 10', 10 ″ for laminating the respective materials.

すなわち、集電体の材料を積層する材料積層装置10′により第1極集電体11をこの底部21a上に形成する(図5:工程b)。このとき第1極集電体11は、底部21aに内包される主部11aと、主部11aの周縁部の少なくとも一部から外側へ延伸され(一例では凸状をなし)、底部21aより外側へ突出するタブ部11bとを含む形状に加工する。 That is, the first pole current collector 11 is formed on the bottom portion 21a by the material laminating device 10'for laminating the materials of the current collector (FIG. 5: step b). At this time, the first pole current collector 11 extends outward from at least a part of the main portion 11a contained in the bottom portion 21a and the peripheral edge portion of the main portion 11a (in one example, has a convex shape), and is outside the bottom portion 21a. It is processed into a shape including the tab portion 11b protruding to.

次に、第1極集電体11の少なくともタブ部11bの主部11a側の一部を封じつつ(挟み込みつつ)、材料積層装置10を用いて、電池外装下部21の枠部(枠体下部に相当)21bを形成する(図5:工程c)。 Next, while sealing (sandwiching) at least a part of the first pole current collector 11 on the main portion 11a side of the tab portion 11b, the frame portion (lower part of the frame body) of the battery exterior lower portion 21 is used by using the material laminating device 10. 21b is formed (FIG. 5: step c).

そして第1極集電体11上、電池外装下部21にて囲まれた領域(上記2つ連なったカップ状の空間)内に、第1の電極活物質(例えば正極活物質12)と電解液とを含んでなる第1の電極組成物を充填する(図5:工程d)。 Then, on the first electrode current collector 11, the first electrode active material (for example, the positive electrode active material 12) and the electrolytic solution are contained in the region surrounded by the lower portion 21 of the battery exterior (the two connected cup-shaped spaces). The first electrode composition comprising and is filled (FIG. 5: step d).

次にセパレータ13の材料を積層する材料積層装置10″を用いて、外装下部21上(枠部21b上)に、セパレータ13を形成する(図5:工程e)。ここでセパレータ13は、枠部21bとの間に隙間を生じない形状としておく。これによりセパレータ13が第1の電極組成物を封じる。 Next, the separator 13 is formed on the outer lower portion 21 (on the frame portion 21b) by using the material laminating device 10 ″ for laminating the materials of the separator 13 (FIG. 5: step e). Here, the separator 13 is the frame. The shape is such that no gap is formed between the portion 21b and the separator 13, whereby the separator 13 seals the first electrode composition.

次に、セパレータ13の周縁部(セパレータ13の外周縁から所定長さの範囲、セパレータ13全体を覆わないものとする)に、材料積層装置10を用いて、電池外装上部22の枠部(枠体に相当)22aを形成する(図5:工程f)。 Next, the material laminating device 10 is used on the peripheral edge portion of the separator 13 (a range of a predetermined length from the outer peripheral edge of the separator 13 to not cover the entire separator 13), and the frame portion (frame) of the upper portion 22 of the battery exterior (Corresponding to the body) 22a is formed (FIG. 5: step f).

そしてセパレータ13上であって、上記枠部22aにて囲まれた領域(上記柱状の空間)内に、第2の電極活物質(例えば負極活物質14)と電解液とを含んでなる第2の電極組成物を充填する(図5:工程g)。 A second electrode active material (for example, the negative electrode active material 14) and an electrolytic solution are contained in the region (the columnar space) surrounded by the frame portion 22a on the separator 13. (Fig. 5: Step g).

次に、集電体の材料を積層する材料積層装置10′を用いて第2極集電体15を第2の電極活物質上に形成する(図5:工程h)。このとき、第2極集電体15も、平面視において枠部22aで囲まれた範囲に内包される主部15aと、この主部15aの周縁部の少なくとも一部から外側へ延伸され(一例では凸状をなし)、枠部22aより外側へ突出するタブ部15bとを含む形状に加工しておく。 Next, the second pole current collector 15 is formed on the second electrode active material by using the material laminating device 10'for laminating the materials of the current collector (FIG. 5: step h). At this time, the second pole current collector 15 is also extended outward from at least a part of the main portion 15a included in the range surrounded by the frame portion 22a and the peripheral portion of the main portion 15a in a plan view (example). Then, it is processed into a shape including a tab portion 15b protruding outward from the frame portion 22a).

次に、材料積層装置10を用いて、第2極集電体15の少なくともタブ部15bの主部15a側の一部を封じつつ(挟み込みつつ)、電池外装上部22の上体部22b′(第2の外装部材に相当する。またここでも枠部21b,22aが第1の外装部材及び第2の外装部材の間に配された枠体に相当する)を形成する(図5:工程i)。この上体部22b′もまた、2つのカップ状体を一列に配した形状とするなど、所望の形状に加工する。 Next, using the material laminating device 10, at least a part of the tab portion 15b of the second pole current collector 15 on the main portion 15a side is sealed (sandwiched), and the upper body portion 22b'(while sandwiching) the upper body portion 22 of the battery exterior 22 ( It corresponds to the second exterior member, and again, the frame portions 21b and 22a correspond to the frame body arranged between the first exterior member and the second exterior member) (FIG. 5: step i). ). The upper body portion 22b'is also processed into a desired shape, such as a shape in which two cup-shaped bodies are arranged in a row.

そしてこれより電池外装下部21と電池外装上部22とにより電池外装20が形成され、第1極集電体11、正極活物質12の層、セパレータ13、負極活物質14の層及び第2極集電体15が積層されてなる積層体が封止された状態となる。また、このとき、第1極集電体11のタブ部11bと、第2極集電体15のタブ部15bとは電池外装20から外部へ突出した状態となる(図5:工程j,図6)。これらタブ部11b,15bがここで製造されるリチウムイオン電池の電流取り出し部(電極)として機能することとなる。なお、図6では説明のため、電池を一部破断した状態を示している。 From this, the battery exterior 20 is formed by the battery exterior lower portion 21 and the battery exterior upper portion 22, and the first pole current collector 11, the positive electrode active material 12 layer, the separator 13, the negative electrode active material 14 layer, and the second pole collection. The laminated body formed by laminating the electric bodies 15 is in a sealed state. Further, at this time, the tab portion 11b of the first pole current collector 11 and the tab portion 15b of the second pole current collector 15 are in a state of protruding outward from the battery exterior 20 (FIG. 5: step j, FIG. 6). These tab portions 11b and 15b function as current extraction portions (electrodes) of the lithium ion battery manufactured here. Note that FIG. 6 shows a state in which the battery is partially broken for the sake of explanation.

また、この図5の例においても、第1極集電体11、セパレータ13、第2極集電体15は、材料積層装置10を用いて形成する代わりに、予め所望の形状に加工しておいたものを用意し、図5の工程b,e,hでは、それぞれ当該予め加工されたものを配置することとしてもよい。 Further, also in the example of FIG. 5, the first pole current collector 11, the separator 13, and the second pole current collector 15 are processed into a desired shape in advance instead of being formed by using the material laminating device 10. You may prepare the prepared ones and arrange the pre-processed ones in the steps b, e, and h of FIG. 5, respectively.

さらにここまでの説明において、電池外装20(底部21a,枠部21b,22a,及び平面部22bや上体部22b′を含む)と集電体11,15との間は直接接触している(場合によっては電解液がこの間に入り込む)こととしていたが、本実施の形態はこの例だけに限られない。 Further, in the above description, the battery exterior 20 (including the bottom portion 21a, the frame portions 21b, 22a, and the flat surface portion 22b and the upper body portion 22b') and the current collectors 11 and 15 are in direct contact with each other (including the bottom portion 21a, the frame portions 21b, 22a, and the flat surface portion 22b and the upper body portion 22b'). In some cases, the electrolytic solution enters during this period), but the present embodiment is not limited to this example.

すなわち、電池外装20(底部21a,枠部21b,22a,及び平面部22bや上体部22b′を含む)と集電体11,15との間に、シール部材30を配してもよい(図7)。このシール部材としては、例えばエポキシ樹脂やウレタン樹脂等を用いることができる。 That is, the seal member 30 may be arranged between the battery exterior 20 (including the bottom portion 21a, the frame portions 21b, 22a, and the flat surface portion 22b and the upper body portion 22b') and the current collectors 11 and 15 (including the bottom portion 21a, the frame portions 21b, 22a, and the flat surface portion 22b and the upper body portion 22b'). FIG. 7). As the sealing member, for example, an epoxy resin, a urethane resin, or the like can be used.

この例では、シール部材30もまた、材料積層装置10を用いて形成する。具体的に図7の例では、電池外装20を構成する底部21a,枠部21b,22a,及び平面部22bや上体部22b′と集電体11,15、並びにセパレータ13との間に、材料積層装置10を用いてシール部材30の層を形成した例を示している。この場合、シール部材30を形成する材料積層装置10は、例えば2液性のエポキシ樹脂を使用する場合、2つのノズルから同時に噴射させて、固化させる方式のものを採用する。 In this example, the seal member 30 is also formed using the material laminating device 10. Specifically, in the example of FIG. 7, between the bottom portions 21a, the frame portions 21b, 22a, and the flat surface portions 22b and the upper body portions 22b', which constitute the battery exterior 20, the current collectors 11, 15, and the separator 13. An example in which a layer of the sealing member 30 is formed by using the material laminating device 10 is shown. In this case, as the material laminating device 10 for forming the seal member 30, for example, when a two-component epoxy resin is used, a method of simultaneously injecting and solidifying from two nozzles is adopted.

このようにシール部材30を設けることとすれば、電池外装20には必ずしも電解液への耐性が要求されないので、電池外装20の材料としてより広く種々のものを採用可能となる。 If the seal member 30 is provided in this way, the battery exterior 20 is not necessarily required to have resistance to the electrolytic solution, so that a wider variety of materials can be used for the battery exterior 20.

本実施の形態の方法で製造した電池は、さらにアルミラミネートフィルムおよび金属製容器等の防湿性容器に封入してもよい。防湿性容器に封入することで耐久性をさらに向上できる。 The battery manufactured by the method of the present embodiment may be further enclosed in a moisture-proof container such as an aluminum laminate film and a metal container. Durability can be further improved by enclosing it in a moisture-proof container.

さらに本実施の形態の一例においては、電池外装20の底部21aを形成する前に、平面状の底面を有し、底部21aの外形状に沿った凹部を有するサポート部40を予め形成し、このサポート部40上で、図5等に例示した各工程により電池を形成してもよい。この場合、サポート部40は、例えば水溶性の粉体を水溶性の接着剤で固定したものとして、材料積層装置10を用いて形成してもよい。この例では、サポート部40上に電池を形成した後、サポート部40を(水溶性のものであれば水などにより)溶解させて電池を得る。またサポート部40は必ずしも溶解可能なものでなくてもよく、電池と分離可能なものであれば、どのようなものであってもよい。またサポート部40の材料も、密度を異ならせておけば、電池外装20の材料と同じものであってもよい。一例として、電池外装20と同じ材料を用いて、電池外装20よりも粗く、空気をより多く含むようにサポート部40を形成することで、電池外装20からサポート部40を分離できる。 Further, in an example of the present embodiment, before forming the bottom portion 21a of the battery exterior 20, a support portion 40 having a flat bottom surface and a recessed portion along the outer shape of the bottom portion 21a is formed in advance. A battery may be formed on the support unit 40 by each step illustrated in FIG. 5 and the like. In this case, the support portion 40 may be formed by using the material laminating device 10 as, for example, a water-soluble powder fixed with a water-soluble adhesive. In this example, after forming a battery on the support portion 40, the support portion 40 is dissolved (if it is water-soluble, with water or the like) to obtain a battery. Further, the support unit 40 does not necessarily have to be soluble, and may be any as long as it can be separated from the battery. Further, the material of the support portion 40 may be the same as the material of the battery exterior 20 as long as the densities are different. As an example, the support portion 40 can be separated from the battery exterior 20 by forming the support portion 40 which is coarser than the battery exterior 20 and contains more air by using the same material as the battery exterior 20.

10,10′,10″ 材料積層装置、11 第1極集電体、12 正極活物質、13 セパレータ、14 負極活物質、15 第2極集電体、20 電池外装、21 電池外装下部、22 電池外装上部、30 シール部材、40 サポート部。
10, 10', 10 "material laminating device, 11 1st pole current collector, 12 positive electrode active material, 13 separator, 14 negative electrode active material, 15 2nd pole current collector, 20 battery exterior, 21 battery exterior lower part, 22 Upper part of battery exterior, 30 seal members, 40 support part.

Claims (3)

第1極集電体、表面の少なくとも一部が被覆用樹脂及び導電助剤を含む被覆剤で被覆されてなる正極活物質層、セパレータ、表面の少なくとも一部が被覆用樹脂及び導電助剤を含む被覆剤で被覆されてなる負極活物質層及び第2極集電体が順に積層されてなる単電池セルと、前記単電池セルを内包する電池外装とを有するリチウムイオン電池の製造方法であって、
所定の造形領域に、粉体状、液体状又はペースト状の材料の吐出と固化とを繰り返して立体形状を造形する材料積層装置を用いて、前記電池外装を形成する工程を含み、`
前記の電池外装を形成する工程が、
所定形状を有する第1の外装部を、前記材料積層装置を用いて形成する工程と、
所定形状に形成された前記第1の外装部に内包される形状の主部を有する第1極集電体を、前記第1の外装部上に、シール部材の層を介して配置する工程と、
前記第1の外装部上に配置した前記第1極集電体の主部の周縁部を前記第1の外装部上に固定する第1の枠部を、前記材料積層装置を用いて形成する工程と、
少なくとも前記第1の枠部の内縁で囲まれた領域を覆い、前記第1の枠部の外縁で囲まれた領域に内包される形状を有するセパレータを、その周縁部が前記第1の枠部に重なるように位置決めし、シール部材の層を介して配置する工程と、
前記第1の枠部上に配置した前記セパレータの周縁部を前記第1の枠部上に固定する第2の枠部を、前記材料積層装置を用いて、シール部材の層を介して形成する工程と、
少なくとも前記第2の枠部の内縁で囲まれた領域を覆い、前記第2の枠部の外縁で囲まれた領域に内包される形状の主部を有する第2極集電体を、当該主部の周縁部が前記第2の枠部に重なるように位置決めして配置する工程と、
少なくとも前記第2極集電体の主部を覆う形状を有する第2の外装部を、前記第2の枠部及び前記第2極集電体上に、材料積層装置を用いて、シール部材の層を介して形成する工程と、
を有することを特徴とするリチウムイオン電池の製造方法。
A positive electrode active material layer in which at least a part of the surface of the first electrode current collector is coated with a coating resin and a coating agent containing a conductive auxiliary agent , a separator, and at least a part of the surface is a coating resin and a conductive auxiliary agent. It is a method for manufacturing a lithium ion battery having a cell cell in which a negative electrode active material layer coated with a coating agent containing the mixture and a second electrode current collector are laminated in this order, and a battery exterior containing the cell. hand,
A step of forming the battery exterior by using a material laminating device that repeatedly discharges and solidifies a powdery, liquid, or paste-like material in a predetermined molding region to form a three-dimensional shape is included.
The process of forming the battery exterior is
A step of forming a first exterior portion having a predetermined shape by using the material laminating device, and
A step of arranging a first pole current collector having a main portion having a shape contained in the first exterior portion formed in a predetermined shape on the first exterior portion via a layer of a sealing member. ,
The material laminating device is used to form a first frame portion for fixing the peripheral edge portion of the main portion of the first pole current collector arranged on the first exterior portion on the first exterior portion. Process and
A separator having a shape that covers at least the region surrounded by the inner edge of the first frame portion and is included in the region surrounded by the outer edge of the first frame portion, and the peripheral portion thereof is the first frame portion. The process of positioning so that they overlap with each other and arranging them through the layers of the sealing member,
A second frame portion for fixing the peripheral edge portion of the separator arranged on the first frame portion on the first frame portion is formed via a layer of a sealing member by using the material laminating device. Process and
A second pole current collector having a main portion having a shape that covers at least the region surrounded by the inner edge of the second frame portion and is included in the region surrounded by the outer edge of the second frame portion is the main body. A step of positioning and arranging the peripheral portion of the portion so as to overlap the second frame portion.
A second exterior portion having a shape that covers at least the main portion of the second pole current collector is placed on the second frame portion and the second pole current collector by using a material laminating device . The process of forming through layers and
A method for manufacturing a lithium ion battery.
請求項1に記載のリチウムイオン電池の製造方法であって、
前記第1の枠部に囲まれた領域内に、第1の電極活物質と電解液とを含んでなる第1の電極活物質組成物を、前記第1の枠部とは前記シール部材を介して充填する工程と、
前記第2の枠部に囲まれた領域内に、第2の電極活物質と電解液とを含んでなる第2の電極活物質組成物を、前記第2の枠部とは前記シール部材を介して充填する工程と、
を含むリチウムイオン電池の製造方法。
The method for manufacturing a lithium ion battery according to claim 1.
The first electrode active material composition containing the first electrode active material and the electrolytic solution is contained in the region surrounded by the first frame portion, and the sealing member is referred to the first frame portion. And the process of filling through
A second electrode active material composition containing a second electrode active material and an electrolytic solution is provided in a region surrounded by the second frame portion, and the sealing member is provided with the second frame portion. And the process of filling through
A method for manufacturing a lithium ion battery including.
請求項1又は2のいずれかに記載のリチウムイオン電池の製造方法であって、
前記セパレータを、材料積層装置を用いて形成することを特徴とするリチウムイオン電池の製造方法。
The method for manufacturing a lithium ion battery according to claim 1 or 2.
A method for manufacturing a lithium ion battery, which comprises forming the separator using a material laminating device.
JP2016199250A 2016-10-07 2016-10-07 Battery manufacturing method Active JP6888937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016199250A JP6888937B2 (en) 2016-10-07 2016-10-07 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199250A JP6888937B2 (en) 2016-10-07 2016-10-07 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2018060754A JP2018060754A (en) 2018-04-12
JP6888937B2 true JP6888937B2 (en) 2021-06-18

Family

ID=61907808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199250A Active JP6888937B2 (en) 2016-10-07 2016-10-07 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6888937B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201711147D0 (en) * 2017-07-11 2017-08-23 Univ College Cork - Nat Univ Of Ireland 3D Printed Battery and method of making same
US20210273235A1 (en) * 2018-07-23 2021-09-02 Honda Motor Co., Ltd. Positive electrode for solid-state battery, manufacturing method of positive electrode for solid-state battery, and solid-state battery
CN109326744B (en) * 2018-09-13 2023-03-17 深圳光韵达机电设备有限公司 Hard shell packaging structure of lithium ion battery and processing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899723B2 (en) * 2006-08-25 2012-03-21 トヨタ自動車株式会社 Multilayer battery manufacturing method and manufacturing apparatus
US10462907B2 (en) * 2013-06-24 2019-10-29 President And Fellows Of Harvard College Printed three-dimensional (3D) functional part and method of making

Also Published As

Publication number Publication date
JP2018060754A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US9564660B2 (en) Electric core for thin film battery
JP5585622B2 (en) Bipolar battery manufacturing method
JP5124961B2 (en) Bipolar battery
EP2530769B1 (en) Collector for bipolar lithium ion secondary battery
EP2557625B1 (en) Process for production of seal structure for bipolar battery, process for production of bipolar battery, seal structure for bipolar battery, and bipolar battery
KR100790768B1 (en) Process for producing composite particle for electrode, process for producing electrode and process for producing electrochemical element, and apparatus for producing composite particle for electrode, apparatus for producing electrode and apparatus for producing electrochemical element
CN102349181B (en) Bipolar battery current collector and bipolar cell
CN104106158B (en) Bipolar electrode and use its bipolar lithium ion secondary battery
JP6618352B2 (en) Multilayer battery manufacturing equipment
CN102687317A (en) Bipolar secondary battery current collector
JP2006190649A (en) Biploar battery and its manufacturing method
CN103703595A (en) Collector for bipolar lithium ion secondary batteries
JP6585964B2 (en) Method for manufacturing lithium ion battery
JP6888937B2 (en) Battery manufacturing method
US10236478B2 (en) Method for producing lithium ion cell and lithium ion cell
CN108140802A (en) Electrode and its manufacturing method
JP2021034141A (en) Lithium ion battery module and battery pack
JP2019207750A (en) Lithium ion battery
JP5573922B2 (en) Method for manufacturing battery electrode
JP2020061282A (en) Lithium ion battery and manufacturing method of the same
JP6850621B2 (en) Lithium ion battery
JP6611321B2 (en) Battery module and manufacturing method thereof
JP7510749B2 (en) How lithium-ion batteries are manufactured
JP2017117713A (en) Collector for lithium ion battery and lithium ion battery
JP7016234B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6888937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150