JP6845711B2 - Boiler duct structure, method for reducing solid particles contained in boiler and solid gas two-phase flow - Google Patents

Boiler duct structure, method for reducing solid particles contained in boiler and solid gas two-phase flow Download PDF

Info

Publication number
JP6845711B2
JP6845711B2 JP2017035466A JP2017035466A JP6845711B2 JP 6845711 B2 JP6845711 B2 JP 6845711B2 JP 2017035466 A JP2017035466 A JP 2017035466A JP 2017035466 A JP2017035466 A JP 2017035466A JP 6845711 B2 JP6845711 B2 JP 6845711B2
Authority
JP
Japan
Prior art keywords
duct
duct portion
flow
boiler
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017035466A
Other languages
Japanese (ja)
Other versions
JP2018141581A (en
Inventor
享平 櫻井
享平 櫻井
貴洋 祐延
貴洋 祐延
学 小田
学 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Priority to JP2017035466A priority Critical patent/JP6845711B2/en
Publication of JP2018141581A publication Critical patent/JP2018141581A/en
Application granted granted Critical
Publication of JP6845711B2 publication Critical patent/JP6845711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば石炭焚きボイラから排出される燃焼排ガスのように、気体中に固体粒子を含む固気二相流を流すダクト構造、ボイラ及び固気二相流に含まれる固体粒子の低減方法に関するものである。 The present invention relates to a duct structure for flowing a solid-gas two-phase flow containing solid particles in a gas, such as combustion exhaust gas discharged from a coal-fired boiler, and a method for reducing solid particles contained in the boiler and the solid-gas two-phase flow. It is about.

石炭焚きボイラでは、火炉内から石炭の燃焼により燃焼排ガスが排出される。この燃焼排ガス中には、石炭のサイズや組成、物性などは炭種により異なるものの、フライアッシュや高空隙率大径灰(ポップコーンアッシュ)(以下「大径灰」という。)と呼ばれる石炭灰(固体粒子)が含まれている。
このうち、フライアッシュは、粒径が数μmオーダーの非常に細かい粒子である。これに対して、大径灰は、粒径が概ね1mm以上と比較的大きくなるが、空隙率が高いため見かけ比重の小さい粒子となる。
In a coal-fired boiler, combustion exhaust gas is emitted from the inside of a fireplace by burning coal. In this combustion exhaust gas, although the size, composition, and physical properties of coal differ depending on the coal type, fly ash and coal ash (hereinafter referred to as "large diameter ash") called fly ash and high void ratio large diameter ash (popcorn ash) (hereinafter referred to as "large diameter ash") Solid particles) are included.
Of these, fly ash is a very fine particle having a particle size on the order of several μm. On the other hand, the large-diameter ash has a relatively large particle size of about 1 mm or more, but has a high porosity, so that the particles have a small apparent specific gravity.

従来は、石炭焚きボイラ100の火炉102から排出された燃焼排ガスは、石炭灰(固体粒子)が含まれた固気二相流であり、例えば図11に示すように、鉄板製のダクトにより形成された煙道110を通り、脱硝装置140で脱硝等の燃焼排ガスを大気中へ放出するために必要な処理を施した後、図示しない煙突等から大気へ放出される。
煙道110は、燃焼排ガスGの流れ方向上流側、すなわち火炉102側から順に、第1水平煙道部111、第1垂直煙道部112、第2水平煙道部113,第2垂直煙道部114,第3水平煙道部115及び第3垂直煙道部116が連続して設けられている。
Conventionally, the combustion exhaust gas discharged from the fireplace 102 of the coal-fired boiler 100 is a solid-gas two-phase flow containing coal ash (solid particles), and is formed by a duct made of an iron plate, for example, as shown in FIG. After passing through the flue 110 and performing the treatment necessary for releasing the combustion exhaust gas such as denitration into the atmosphere by the denitration device 140, it is discharged to the atmosphere from a chimney or the like (not shown).
The flue 110 has a first horizontal flue 111, a first vertical flue 112, a second horizontal flue 113, and a second vertical flue in order from the upstream side in the flow direction of the combustion exhaust gas G, that is, the fireplace 102 side. A portion 114, a third horizontal flue portion 115, and a third vertical flue portion 116 are continuously provided.

図示の構成例では、第1垂直煙道部112及び第2垂直煙道部114の下端部にそれぞれ第1ホッパー120及び第2ホッパー130が設置され、火炉102から燃焼排ガスとともに飛散してくる大径灰150を回収する。さらに、第3垂直煙道部116には、燃焼排ガスGを通過させる際に脱硝処理を行う脱硝装置140が設置されている。 In the illustrated configuration example, the first hopper 120 and the second hopper 130 are installed at the lower ends of the first vertical flue portion 112 and the second vertical flue portion 114, respectively, and are scattered together with the combustion exhaust gas from the fireplace 102. Collect the diameter ash 150. Further, a denitration device 140 that performs a denitration treatment when passing the combustion exhaust gas G is installed in the third vertical flue portion 116.

脱硝装置140は、例えば格子状酸化チタン担体の上に二酸化バナジウムを担持した脱硝剤(脱硝触媒)をパレットに入れ、このパレットを装置内に多数配置しておく構成となっている。 The denitration device 140 is configured such that, for example, a denitration agent (denitration catalyst) in which vanadium dioxide is supported on a lattice-shaped titanium oxide carrier is placed in a pallet, and a large number of the pallets are arranged in the pallet.

このような煙道110において、火炉102から飛散してくる固体粒子である大径灰150の一部は、第1ホッパー120、第2ホッパー130で回収されず、燃焼排ガスGの流れに乗って脱硝装置140まで到達することがある。すると、格子状の脱硝触媒には大径灰150が徐々に堆積して目詰まりを発生し、煙道110の有効流路断面積が低下して圧力損失を上昇させてしまうとともに、脱硝性能が低下することが危惧されるので、定期的な点検とメンテナンス作業が行われることがある。 In such a flue 110, a part of the large-diameter ash 150, which is a solid particle scattered from the fireplace 102, is not recovered by the first hopper 120 and the second hopper 130, and rides on the flow of the combustion exhaust gas G. It may reach the denitration device 140. Then, the large-diameter ash 150 gradually accumulates on the lattice-shaped denitration catalyst to cause clogging, and the effective flow path cross-sectional area of the flue 110 decreases, the pressure loss increases, and the denitration performance deteriorates. Regular inspections and maintenance work may be performed as there is a risk of deterioration.

このような脱硝触媒の目詰まりを防止するため、例えば下記の特許文献1には、脱硝装置の上流側の煙道において、排ガスの流れが水平から垂直方向に変わる立ち上がりダクト構造とし、水平ダクトの断面積よりも垂直ダクトの断面積を大きくして、垂直ダクト部における排ガスの流れを遅くすることが記載されている。これにより、大粒径のダストが垂直ダクト部で落下しやすくなり、下流側の脱硝装置へ大粒径のダストが流れにくい構造とすることができる。
なお、特許文献2では、ボイラから排出される未処理ガスが排ガス入口ダクトを下降し、排ガスの一部又は全量が脱硝装置入口ダクト内を水平に流れ、脱硝反応器内を下降した後、排ガス出口ダクトへ流れる構造が記載されている。
In order to prevent such clogging of the denitration catalyst, for example, in Patent Document 1 below, in the flue on the upstream side of the denitration device, a rising duct structure in which the flow of exhaust gas changes from horizontal to vertical is provided, and the horizontal duct is provided. It is described that the cross-sectional area of the vertical duct is made larger than the cross-sectional area to slow down the flow of exhaust gas in the vertical duct portion. As a result, the dust having a large particle size can easily fall in the vertical duct portion, and the structure can be made such that the dust having a large particle size does not easily flow to the denitration device on the downstream side.
In Patent Document 2, untreated gas discharged from the boiler descends the exhaust gas inlet duct, and a part or all of the exhaust gas flows horizontally in the denitration device inlet duct, descends in the denitration reactor, and then exhaust gas. The structure that flows to the outlet duct is described.

特開平2−95415号公報Japanese Unexamined Patent Publication No. 2-95415 特開昭64−70128号公報Japanese Unexamined Patent Publication No. 64-70128

近年、ボイラの大型化に伴う排ガス処理装置の大型化によって、ボイラの出口ダクトと脱硝装置の入口ダクトにおいて、各装置の配置や脱硝触媒のサイズ及び流通する燃焼排ガスの流速などの適正化をはかるために、流路経路を移動したり、流路断面積を異ならせたりする場合が生じている。流路断面積が異なるサイズのダクトを接続するため、ダクトが部分的に末広がりに構成されることがある。例えば、図11に示した脱硝装置140の上流側に設けられた第2水平煙道部113において、図12に示すように、ダクト高さは一定のまま、ダクトがテーパー状に燃焼排ガス流れの下流側に向けて拡張されている。このダクトの側壁のなす角(拡大角)は、一般的には、流通する燃焼排ガスが流路壁から剥離することを抑制しつつ構造の大型化を抑制するために、45°以上60°以下の範囲とすることが多い。 In recent years, due to the increase in size of exhaust gas treatment equipment due to the increase in size of boilers, in the outlet duct of the boiler and the inlet duct of the denitration device, the arrangement of each device, the size of the denitration catalyst, the flow velocity of the circulated exhaust gas, etc. are optimized. Therefore, there are cases where the flow path is moved or the cross-sectional area of the flow path is different. Since ducts of different sizes are connected, the ducts may be partially divergent. For example, in the second horizontal flue portion 113 provided on the upstream side of the denitration device 140 shown in FIG. 11, as shown in FIG. 12, the duct is tapered to flow the combustion exhaust gas while the duct height remains constant. It is expanded toward the downstream side. The angle (enlarged angle) formed by the side wall of this duct is generally 45 ° or more and 60 ° or less in order to suppress the expansion of the structure while suppressing the separation of the flowing combustion exhaust gas from the flow path wall. Often in the range of.

この場合、ダクトの拡張部において、燃焼排ガス流れに旋回流が発生することがある。その結果、比較的比重の小さい大径灰が第2ホッパー130へ落下することなく、燃焼排ガス流れに乗って第2垂直煙道部114を上昇し、脱硝装置140に到達する量が増加することが判明した。すなわち、ダクト内の燃焼排ガスの気流の流速だけでなく、旋回流の発生が大径灰の後流側への搬送に影響することが判明した。 In this case, a swirling flow may occur in the combustion exhaust gas flow at the extension portion of the duct. As a result, the large-diameter ash having a relatively small specific gravity does not fall to the second hopper 130, but rises in the second vertical flue portion 114 along with the combustion exhaust gas flow, and the amount reaching the denitration device 140 increases. There was found. That is, it was found that not only the flow velocity of the airflow of the combustion exhaust gas in the duct but also the generation of the swirling flow affects the transport of the large-diameter ash to the wake side.

本発明は、このような事情に鑑みてなされたものであって、ホッパーにおける固体粒子の捕集率を向上させて、固体粒子のダクト下流側への流出を低減できるボイラ用ダクト構造、ボイラ及び固気二相流に含まれる固体粒子の低減方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a duct structure for a boiler, a boiler, and a boiler that can improve the collection rate of solid particles in a hopper and reduce the outflow of solid particles to the downstream side of the duct. It is an object of the present invention to provide a method for reducing solid particles contained in a solid air two-phase flow.

本発明の第1態様に係るボイラ用ダクト構造は、ボイラ内の燃焼排ガスによる気流の下流側に設けられ、前記気流が水平方向に流れる横方向ダクトと、前記横方向ダクトにおいて前記気流の流れ方向下流側の終端部に連続して設けられ、前記気流が鉛直方向上方に向かって流れる縦方向ダクトとを備え、前記横方向ダクトは、流れ方向に沿って流路断面積が一定である第1ダクト部と、前記第1ダクト部の下流側に接続され、下流側に向かって流路断面積が拡大する第2ダクト部を有し、前記第2ダクト部の鉛直方向に設けられた側壁は、前記第1ダクト部の鉛直方向に設けられた側壁とのなす角度が0°よりも大きく45°よりも小さい角度、又は、70°よりも大きく90°よりも小さい角度である。 The duct structure for a boiler according to the first aspect of the present invention is provided on the downstream side of the airflow due to the combustion exhaust gas in the boiler, and the lateral duct through which the airflow flows in the horizontal direction and the flow direction of the airflow in the lateral duct. A first duct that is continuously provided at the end on the downstream side and includes a vertical duct through which the airflow flows upward in the vertical direction, and the lateral duct has a constant flow path cross-sectional area along the flow direction. The side wall provided in the vertical direction of the second duct portion has a duct portion and a second duct portion connected to the downstream side of the first duct portion and the flow path cross-sectional area expands toward the downstream side. The angle formed by the side wall provided in the vertical direction of the first duct portion is larger than 0 ° and smaller than 45 °, or larger than 70 ° and smaller than 90 °.

上記第1態様において、前記第2ダクト部の鉛直方向に設けられた側壁は、前記第1ダクト部の鉛直方向に設けられた側壁とのなす角度が0°よりも大きく35°よりも小さい角度でもよい。 In the first aspect, the side wall provided in the vertical direction of the second duct portion has an angle formed by an angle of more than 0 ° and less than 35 ° with the side wall provided in the vertical direction of the first duct portion. But it may be.

上記第1態様において、前記第1ダクト部の水平方向幅Y、前記第1ダクト部の鉛直方向高さZ、前記第2ダクト部の前記第1ダクト部に対する水平方向幅の増加分d、及び、前記縦方向ダクトの水平方向奥行き長さeで表されるダクト拡大比(d/Y)/(e/Z)が、
0.15≦(d/Y)/(e/Z)≦0.3
でももよい。
In the first aspect, the horizontal width Y of the first duct portion, the vertical height Z of the first duct portion, the increase d of the horizontal width of the second duct portion with respect to the first duct portion, and , The duct enlargement ratio (d / Y) / (e / Z) represented by the horizontal depth length e of the vertical duct is
0.15 ≤ (d / Y) / (e / Z) ≤ 0.3
But it's okay.

上記第1態様において、前記横方向ダクトは、前記第1ダクト部に接続され、前記第1ダクト部における前記気流の流れ方向に対し、前記気流の流れ方向が斜行する第3ダクト部を更に有し、前記第3ダクト部の鉛直方向に設けられた側壁は、前記第1ダクト部の鉛直方向に設けられた側壁とのなす角度が0°よりも大きく30°以下でもよい。 In the first aspect, the lateral duct is connected to the first duct portion, and a third duct portion in which the flow direction of the air flow is oblique to the flow direction of the air flow in the first duct portion is further formed. The side wall provided in the vertical direction of the third duct portion may have an angle formed by the side wall provided in the vertical direction of the first duct portion of more than 0 ° and 30 ° or less.

上記第1態様において、前記第2ダクト部入口部から前記第3ダクト部出口部までの距離f、及び、前記第1ダクト部の水平方向幅Yの関係が、
0.25≦f/Y
で表されてもよい。
In the first aspect, the relationship between the distance f from the entrance portion of the second duct portion to the outlet portion of the third duct portion and the horizontal width Y of the first duct portion is determined.
0.25 ≤ f / Y
It may be represented by.

本発明の第2態様に係るボイラは、上記第1態様のボイラ用ダクト構造を備える。 The boiler according to the second aspect of the present invention includes the boiler duct structure of the first aspect.

本発明の第3態様に係る固気二相流に含まれる固体粒子の低減方法は、ボイラ内の燃焼排ガスによる気流の下流側に設けられ、前記気流が水平方向に流れる横方向ダクトと、前記横方向ダクトにおいて前記気流の流れ方向下流側の終端部に連続して設けられ、前記気流が鉛直方向上方に向かって流れる縦方向ダクトとを備え、前記横方向ダクトは、流れ方向に沿って流路断面積が一定である第1ダクト部と、前記第1ダクト部の下流側に接続され、下流側に向かって流路断面積が拡大する第2ダクト部を有し、前記第2ダクト部の鉛直方向に設けられた側壁は、前記第1ダクト部の鉛直方向に設けられた側壁とのなす角度が0°よりも大きく45°よりも小さい角度、又は、70°よりも大きく90°よりも小さい角度であるボイラ用ダクト構造を備えるダクトに対し、前記気流として固体粒子を含む固気二相流を流すことで、前記気流中から前記固体粒子を排除することを特徴とする。 The method for reducing solid particles contained in the solid-gas two-phase flow according to the third aspect of the present invention includes a lateral duct provided on the downstream side of the airflow due to the combustion exhaust gas in the boiler and the airflow flowing in the horizontal direction, and the above-mentioned. The lateral duct is provided continuously at the end on the downstream side in the flow direction of the airflow, and includes a vertical duct in which the airflow flows upward in the vertical direction, and the lateral duct flows along the flow direction. The second duct portion has a first duct portion having a constant road cross-sectional area and a second duct portion connected to the downstream side of the first duct portion and the flow path cross-sectional area expands toward the downstream side. The angle formed by the side wall provided in the vertical direction of the first duct portion with the side wall provided in the vertical direction is greater than 0 ° and less than 45 °, or greater than 70 ° and greater than 90 °. It is characterized in that the solid particles are excluded from the air flow by flowing a solid air two-phase flow containing the solid particles as the air flow through the duct provided with the duct structure for the boiler having a small angle.

本発明によれば、ホッパーにおける固体粒子の捕集率を向上させて、固体粒子のダクト下流側への流出を低減できる。 According to the present invention, it is possible to improve the collection rate of solid particles in the hopper and reduce the outflow of solid particles to the downstream side of the duct.

本発明の一実施形態に係るボイラ用ダクト構造を備えるボイラを示す縦断面図である。It is a vertical cross-sectional view which shows the boiler which comprises the duct structure for the boiler which concerns on one Embodiment of this invention. 本発明の一実施形態に係るボイラ用ダクト構造を示す斜視図である。It is a perspective view which shows the duct structure for a boiler which concerns on one Embodiment of this invention. 本発明の一実施形態に係るボイラ用ダクト構造を示す横断面図である。It is sectional drawing which shows the duct structure for a boiler which concerns on one Embodiment of this invention. 本発明の一実施形態に係るボイラ用ダクト構造を示す横断面図である。It is sectional drawing which shows the duct structure for a boiler which concerns on one Embodiment of this invention. 大径灰の飛散率とダクト拡大比の関係を示すグラフである。It is a graph which shows the relationship between the scattering rate of large-diameter ash and the duct enlargement ratio. 大径灰の飛散率と拡大角の関係を示すグラフである。It is a graph which shows the relationship between the scattering rate of large-diameter ash and the enlargement angle. 大径灰の飛散率と拡大前直線部の関係を示すグラフである。It is a graph which shows the relationship between the scattering rate of large-diameter ash and the straight line part before expansion. 大径灰の飛散率と偏向角の関係を示すグラフである。It is a graph which shows the relationship between the scattering rate of large-diameter ash and the deflection angle. 拡大角が55°であるときの旋回流及び旋回流中心を示すシミュレーション結果である。This is a simulation result showing the swirling flow and the center of the swirling flow when the enlargement angle is 55 °. 拡大角が90°であるときの旋回流及び旋回流中心を示すシミュレーション結果である。It is a simulation result which shows the swirling flow and the swirling flow center when the expansion angle is 90 °. 従来のボイラ用ダクト構造を備えるボイラを示す縦断面図である。It is a vertical cross-sectional view which shows the boiler which has the duct structure for a conventional boiler. 従来のボイラ用ダクト構造を示す斜視図である。It is a perspective view which shows the duct structure for a conventional boiler.

以下に、本発明の一実施形態に係るボイラ用ダクト構造について、図面を参照して説明する。 The boiler duct structure according to the embodiment of the present invention will be described below with reference to the drawings.

図1に示すように、本実施形態に係るボイラ用ダクト構造を備える煙道10は、例えば石炭焚きボイラ1の火炉2から排出された固気二相流の燃焼排ガスを、図示しない煙突等に流すものである。煙道10は、鉄板製のダクトにより形成された燃焼排ガスGの流路を形成し、例えば矩形断面を有している。火炉2から排出される燃焼排ガスGは、フライアッシュや大径灰と呼ばれる石炭灰(固体粒子)を含む固気二相流であり、煙道10を通る際に脱硝装置4で脱硝等の燃焼排ガスを大気中へ放出するために必要な処理を施した後、図1中に矢印で示すように流れて図示しない煙突等から大気へ放出される。 As shown in FIG. 1, the flue 10 provided with the boiler duct structure according to the present embodiment, for example, converts the solid air two-phase flow combustion exhaust gas discharged from the furnace 2 of the coal-fired boiler 1 into a chimney (not shown) or the like. It is something to shed. The flue 10 forms a flow path of the combustion exhaust gas G formed by a duct made of an iron plate, and has, for example, a rectangular cross section. The combustion exhaust gas G discharged from the furnace 2 is a solid-air two-phase flow containing coal ash (solid particles) called fly ash or large-diameter ash, and is burned by the denitration device 4 when passing through the flue 10. After performing the treatment necessary for releasing the exhaust gas into the atmosphere, the exhaust gas flows as shown by an arrow in FIG. 1 and is released into the atmosphere from a chimney or the like (not shown).

なお以下の説明で、上向きとは鉛直方向上向きを、下向きとは鉛直方向下向きを示し、それぞれを上向き、下向きと記載する。上部と下部や、上端と下端も同様である。 In the following description, upward means vertical upward, downward means vertical downward, and each is described as upward and downward. The same applies to the upper and lower parts and the upper and lower ends.

煙道10は、燃焼排ガスGの流れ方向上流側となる火炉2側から順に、第1水平煙道部11、第1垂直煙道部12、第2水平煙道部(横方向ダクト)13,第2垂直煙道部(縦方向ダクト)14,第3水平煙道部15及び第3垂直煙道部16が連続して設けられている。 The flue 10 has a first horizontal flue portion 11, a first vertical flue portion 12, a second horizontal flue portion (lateral duct) 13, in order from the furnace 2 side which is the upstream side in the flow direction of the combustion exhaust gas G. A second vertical flue section (longitudinal duct) 14, a third horizontal flue section 15, and a third vertical flue section 16 are continuously provided.

煙道10には、下向きの速度成分を有する燃焼排ガスGが流れる第1垂直煙道部12の下端部に第1ホッパー20が設けられ、さらに、上向きの速度成分を有する燃焼排ガスGが流れる第2垂直煙道部14の下端部に第2ホッパー30が設置されている。そして、下向きの速度成分を有する燃焼排ガスGが流れる第3垂直煙道部16には、燃焼排ガスGを通過させて脱硝処理を行う脱硝装置4が設置されている。 The flue 10 is provided with a first hopper 20 at the lower end of the first vertical flue portion 12 through which the combustion exhaust gas G having a downward velocity component flows, and further, the combustion exhaust gas G having an upward velocity component flows. 2 A second hopper 30 is installed at the lower end of the vertical flue portion 14. A denitration device 4 for passing the combustion exhaust gas G to perform the denitration treatment is installed in the third vertical flue portion 16 through which the combustion exhaust gas G having a downward velocity component flows.

第1ホッパー20及び第2ホッパー30は、主として燃焼排ガスG中に含まれる固体粒子のうち、大径灰の回収を目的として設置されたものである。なお、非常に粒径の小さいフライアッシュについては、燃焼排ガスGの流れから分離されるものは少ない。したがって、大径灰のように第1ホッパー20及び第2ホッパー30で回収されるものは少なく、燃焼排ガスGで煙道10内を気流搬送されて、脱硝装置4を通過して更に燃焼排ガスGの流れ方向下流側で図示しない集塵装置などで除去される。 The first hopper 20 and the second hopper 30 are mainly installed for the purpose of recovering large-diameter ash among the solid particles contained in the combustion exhaust gas G. For fly ash with a very small particle size, few are separated from the flow of combustion exhaust gas G. Therefore, there are few large-diameter ashs that are recovered by the first hopper 20 and the second hopper 30, and the combustion exhaust gas G is conveyed in the flue 10 by an air flow, passes through the denitration device 4, and is further burned exhaust gas G. It is removed by a dust collector (not shown) on the downstream side in the flow direction of.

第2垂直煙道部14は、第2水平煙道部13において燃焼排ガスGの流れ方向下流側の終端部13eに連続して設けられ、燃焼排ガスGが鉛直方向上方に向かって流れる。 The second vertical flue portion 14 is continuously provided at the terminal portion 13e on the downstream side in the flow direction of the combustion exhaust gas G in the second horizontal flue portion 13, and the combustion exhaust gas G flows upward in the vertical direction.

図2及び図3に示すように、第2水平煙道部13は、燃焼排ガスGの流れ方向に沿って流路断面積が一定である第1ダクト部17と、第1ダクト部17の下流側に接続され、下流側に向かって流路断面積が拡大する第2ダクト部18などを有する。ここで、第2水平煙道部13の第1ダクト部17で、燃焼排ガスGの流れ方向となる長手軸方向をx軸方向、x軸方向に直交して第1ダクト部17の水平方向をy軸方向、x軸方向とy軸方向と直交する鉛直上下方向をz軸方向とする。なお、図2に示す第2ダクト部18は、水平方向(y軸方向)片側のみ第1ダクト部17に対して側壁18aがx軸方向に対して斜めに設けられる場合であり、図3に示す第2ダクト部18は、水平方向(y軸方向)両側において第1ダクト部17に対して側壁18aが斜めに設けられる場合である。 As shown in FIGS. 2 and 3, the second horizontal flue portion 13 has a first duct portion 17 having a constant flow path cross-sectional area along the flow direction of the combustion exhaust gas G and a downstream of the first duct portion 17. It has a second duct portion 18 and the like that are connected to the side and the cross-sectional area of the flow path expands toward the downstream side. Here, in the first duct portion 17 of the second horizontal flue portion 13, the longitudinal axis direction, which is the flow direction of the combustion exhaust gas G, is orthogonal to the x-axis direction and the x-axis direction, and the horizontal direction of the first duct portion 17 is set. The vertical vertical direction orthogonal to the y-axis direction, the x-axis direction and the y-axis direction is defined as the z-axis direction. The second duct portion 18 shown in FIG. 2 is a case where the side wall 18a is provided obliquely with respect to the first duct portion 17 only on one side in the horizontal direction (y-axis direction), and is shown in FIG. The second duct portion 18 shown is a case where the side wall 18a is provided obliquely with respect to the first duct portion 17 on both sides in the horizontal direction (y-axis direction).

第1ダクト部17には、脱硝処理のためのアンモニア注入ノズル40が設けられる。アンモニア注入ノズル40より燃焼排ガスGの流れ方向下流側は、脱硝装置4の反応容器に収容される脱硝触媒のサイズに合わせて流路断面積が拡大される。このとき、第2水平煙道部13は、第2垂直煙道部14の流速(例えば10m/s以上)が維持されて、燃焼排ガスGの流れの偏流が抑制されるように構成される。 The first duct portion 17 is provided with an ammonia injection nozzle 40 for denitration treatment. On the downstream side of the combustion exhaust gas G from the ammonia injection nozzle 40 in the flow direction, the cross-sectional area of the flow path is expanded according to the size of the denitration catalyst housed in the reaction vessel of the denitration device 4. At this time, the second horizontal flue portion 13 is configured so that the flow velocity (for example, 10 m / s or more) of the second vertical flue portion 14 is maintained and the drift of the flow of the combustion exhaust gas G is suppressed.

図5から図10で示した結果は、数値解析ソフト(Fluent定常解析)によって、レイノルズ数Re=400万〜800万(乱流域)、ダクト内流速10m/s〜18m/s、排ガス温度300℃〜400℃の条件下で演算して得られたものである。これにより各ダクト部について、大径灰の飛散率を低減するような形状の適正な範囲を検討している。
図2に示すように、第1ダクト部17の水平方向(y軸方向)幅をYとすると、第2ダクト部18の終端において水平方向(y軸方向)幅はY+dまで拡大する。また、第1ダクト部17の鉛直方向(z軸方向)高さZは、第2垂直煙道部14において水平方向(x軸方向)奥行きをeまで拡大する。なお、第2ダクト部18の鉛直方向高さは、第1ダクト部17の鉛直方向高さZと同一のZである。
The results shown in FIGS. 5 to 10 show that the Reynolds number Re = 4 million to 8 million (turbulent flow area), the flow velocity in the duct is 10 m / s to 18 m / s, and the exhaust gas temperature is 300 ° C. by numerical analysis software (Fruent steady state analysis). It was obtained by calculation under the condition of ~ 400 ° C. As a result, for each duct portion, an appropriate range of shape that reduces the scattering rate of large-diameter ash is being investigated.
As shown in FIG. 2, assuming that the horizontal direction (y-axis direction) width of the first duct portion 17 is Y, the horizontal direction (y-axis direction) width expands to Y + d at the end of the second duct portion 18. Further, the height Z in the vertical direction (z-axis direction) of the first duct portion 17 expands the depth in the horizontal direction (x-axis direction) of the second vertical flue portion 14 to e. The vertical height of the second duct portion 18 is the same as the vertical height Z of the first duct portion 17.

燃焼排ガスGの流れ方向が水平方向から鉛直上下方向に変わり、上記dは、第2ダクト部18の第1ダクト部17に対する水平方向(y軸方向)幅の増加分であり、第1ダクト部の鉛直方向(z軸方向)高さZ、第2ダクト部18の第1ダクト部17に対する水平方向(y軸方向)幅の増加分d、及び、第2垂直煙道部14の水平方向(x軸方向)奥行きeとする。このとき無次元化したダクト拡大比の関係は、
ダクト拡大比:(d/Y)/(e/Z)
0.15≦(d/Y)/(e/Z)≦0.3
にあることが好ましい。
The flow direction of the combustion exhaust gas G changes from the horizontal direction to the vertical vertical direction, and d is an increase in the horizontal (y-axis direction) width of the second duct portion 18 with respect to the first duct portion 17, and is the first duct portion. Vertical direction (z-axis direction) height Z, increase in horizontal (y-axis direction) width d of the second duct portion 18 with respect to the first duct portion 17, and the horizontal direction of the second vertical flue portion 14 ( x-axis direction) Depth e. At this time, the relationship of the dimensionless duct enlargement ratio is
Duct enlargement ratio: (d / Y) / (e / Z)
0.15 ≤ (d / Y) / (e / Z) ≤ 0.3
It is preferable to be in.

ダクト拡大比(d/Y)/(e/Z)が大きくなると、図5に示すように、大径灰の飛散率が上昇する。これは、燃焼排ガスGの流れの剥離位置が第2ダクト部18の入口付近に存在し、ダクト拡大比が大きくなると、剥離位置と、第2ダクト部18の入口後流側で形成される旋回流の中心位置が大きくなるためである。その結果、旋回流が発達しやすくなり、大径灰の飛散率が増加する。 As the duct enlargement ratio (d / Y) / (e / Z) increases, the scattering rate of large-diameter ash increases, as shown in FIG. This is because the separation position of the flow of the combustion exhaust gas G exists near the inlet of the second duct portion 18, and when the duct expansion ratio becomes large, the separation position and the swirl formed at the inlet wake side of the second duct portion 18 This is because the center position of the flow becomes large. As a result, the swirling flow is likely to develop, and the scattering rate of large-diameter ash increases.

ダクト拡大比を小さくするためには、(e/Z)を大きくすることが考えられる。しかし、第1ダクト部17の鉛直方向(z軸方向)高さZが小さいと、ダクトの断面形状が扁平になり、流路抵抗が増加する。また、第2垂直煙道部14の水平方向(x軸方向)奥行きeが大きいと、第2垂直煙道部14内の燃焼排ガスGの流速が低下して、一定の流速、例えば10m/s以上を維持できず偏流が生じやすくなる。 In order to reduce the duct enlargement ratio, it is conceivable to increase (e / Z). However, if the height Z of the first duct portion 17 in the vertical direction (z-axis direction) is small, the cross-sectional shape of the duct becomes flat and the flow path resistance increases. Further, when the horizontal direction (x-axis direction) depth e of the second vertical flue portion 14 is large, the flow velocity of the combustion exhaust gas G in the second vertical flue portion 14 decreases, and a constant flow velocity, for example, 10 m / s. The above cannot be maintained and drift is likely to occur.

そこで、第2ダクト部18の第1ダクト部17に対する水平方向(y軸方向)幅の増加分dは、脱硝装置4の脱硝触媒のサイズに基づいて、ダクト拡大比(d/Y)/(e/Z)を設定する。ダクト拡大比(d/Y)/(e/Z)は、存在する脱硝触媒のサイズの実績より、0.15≦(d/Y)/(e/Z)とすることが好ましい。 Therefore, the increase d in the horizontal direction (y-axis direction) width of the second duct portion 18 with respect to the first duct portion 17 is the duct enlargement ratio (d / Y) / (based on the size of the denitration catalyst of the denitration device 4. e / Z) is set. The duct expansion ratio (d / Y) / (e / Z) is preferably 0.15 ≦ (d / Y) / (e / Z) based on the actual size of the existing denitration catalyst.

また、(e/Z)は、上述したとおり制限されることから、各係数の個々の変化範囲を実機の適用範囲で考慮すると、(d/Y)/(e/Z)≦0.3とすることが好ましい。 Further, since (e / Z) is limited as described above, considering the individual change range of each coefficient in the applicable range of the actual machine, (d / Y) / (e / Z) ≤ 0.3. It is preferable to do so.

第2ダクト部18の第1ダクト部17に対する水平方向(y軸方向)幅の増加分dを設けたことで、第2ダクト部18の入口部の位置は、第2ダクト部の出口部よりも(d/tanθj)分だけ燃焼排ガスGの流れ方向上流側に存在する。ここで、角度(拡大角)θjは、第1ダクト部17の鉛直方向に設けられた側壁17a(本実施形態ではx軸方向)とのなす角度である。 By providing an increase d in the horizontal direction (y-axis direction) width of the second duct portion 18 with respect to the first duct portion 17, the position of the inlet portion of the second duct portion 18 is from the outlet portion of the second duct portion. Also (d / tan θj) exists on the upstream side in the flow direction of the combustion exhaust gas G. Here, the angle (enlargement angle) θj is an angle formed by the side wall 17a (in the present embodiment, the x-axis direction) provided in the vertical direction of the first duct portion 17.

第2ダクト部18の鉛直方向に設けられた側壁18aは、第1ダクト部17の鉛直方向に設けられた側壁17aとのなす角度(拡大角)θjが0°よりも大きく45°よりも小さい角度、又は、70°よりも大きく90°よりも小さい角度であることが好ましい。 The side wall 18a provided in the vertical direction of the second duct portion 18 has an angle (enlargement angle) θj formed with the side wall 17a provided in the vertical direction of the first duct portion 17 greater than 0 ° and smaller than 45 °. It is preferably an angle, or an angle greater than 70 ° and less than 90 °.

第2水平煙道部13において、水平方向(y軸方向)両側のダクト壁面では、燃焼排ガスGの流速が遅くかつ圧力が高く、ダクト中央では、燃焼排ガスGの流速が速くかつ圧力が低い。その結果、流路断面積が拡大する第2ダクト部18入口よりも下流側の第2垂直煙道部14内部において、ダクト壁面の近傍で、燃焼排ガスGの流速差によって旋回流が発生する。 In the second horizontal flue portion 13, the flow velocity of the combustion exhaust gas G is slow and the pressure is high on the duct wall surfaces on both sides in the horizontal direction (y-axis direction), and the flow velocity of the combustion exhaust gas G is high and the pressure is low at the center of the duct. As a result, in the inside of the second vertical flue portion 14 on the downstream side of the inlet of the second duct portion 18 where the cross-sectional area of the flow path is expanded, a swirling flow is generated near the duct wall surface due to the difference in the flow velocity of the combustion exhaust gas G.

図9及び図10で示される増加分dを固定した場合のシミュレーション結果によると、燃焼排ガスGの流れの剥離位置は、第2ダクト部18の入口付近に存在し、拡大角θjが変化しても、第2垂直煙道部14内部における旋回流の中心位置はほとんど変化しない。図6に示すように、拡大角θjが大きくなり、θj=55°のとき、大径灰の飛散率が最大となる。これは、剥離位置と旋回流の中心位置が大きくなり、旋回流が発達しやすくなるためと考えられる。 According to the simulation results when the increase d shown in FIGS. 9 and 10 is fixed, the separation position of the flow of the combustion exhaust gas G exists near the inlet of the second duct portion 18, and the enlargement angle θj changes. However, the central position of the swirling flow inside the second vertical flue portion 14 hardly changes. As shown in FIG. 6, the enlargement angle θj becomes large, and when θj = 55 °, the scattering rate of the large-diameter ash becomes maximum. It is considered that this is because the peeling position and the center position of the swirling flow become large, and the swirling flow easily develops.

θj=55°を中心に角度を大小方向へ変化させると、大径灰の飛散率は低下する。そこで、拡大角θjは、45°≦θj≦70°を除いた範囲とすることで、大径灰の飛散率を低減できる。 When the angle is changed in the large and small directions around θj = 55 °, the scattering rate of the large-diameter ash decreases. Therefore, by setting the enlargement angle θj to a range excluding 45 ° ≦ θj ≦ 70 °, the scattering rate of large-diameter ash can be reduced.

拡大角θjが70°よりも大きく90°よりも小さい範囲では、燃焼排ガスGの流れの剥離位置、すなわち、第2ダクト部18入口が、燃焼排ガスGの流れ方向下流側に位置する。そのため、剥離位置と旋回流の中心との距離が小さくなり、旋回流の外径も小さくなることから、旋回流が発達しにくい。また、第2ダクト部18入口から出口までの距離(d/tanθj)も短くなり、流路断面積が拡大されている部分が狭くなる。その結果、拡大角θjが70°よりも大きく90°よりも小さい範囲では、大径灰の飛散率が小さくなる。 In the range where the enlargement angle θj is larger than 70 ° and smaller than 90 °, the separation position of the flow of the combustion exhaust gas G, that is, the inlet of the second duct portion 18 is located on the downstream side in the flow direction of the combustion exhaust gas G. Therefore, the distance between the peeling position and the center of the swirling flow becomes small, and the outer diameter of the swirling flow also becomes small, so that the swirling flow is difficult to develop. Further, the distance (d / tanθj) from the inlet to the outlet of the second duct portion 18 is also shortened, and the portion where the cross-sectional area of the flow path is expanded is narrowed. As a result, in the range where the enlargement angle θj is larger than 70 ° and smaller than 90 °, the scattering rate of the large-diameter ash becomes small.

拡大角θjが0°よりも大きく45°よりも小さい範囲では、燃焼排ガスGの流れの剥離位置、すなわち、第2ダクト部18入口が、燃焼排ガスGの流れ方向上流側に位置する。そのため、剥離位置と旋回流の中心との距離が大きくなり、旋回流の外径も大きくなることが推定される。しかし、実際には、流路断面積が緩やかに拡大しているため、燃焼排ガスGの流れの剥離が生じない。その結果、拡大角θjが0°よりも大きく45°よりも小さい範囲では、ほとんど旋回流が発生せず、大径灰の飛散率が小さくなる。なお、第2垂直煙道部14の下方の第2ホッパー30において小さい旋回流が発生するが、大径灰の飛散率の増加にはほとんど寄与してないと考えられる。 In the range where the enlargement angle θj is larger than 0 ° and smaller than 45 °, the separation position of the flow of the combustion exhaust gas G, that is, the inlet of the second duct portion 18 is located on the upstream side in the flow direction of the combustion exhaust gas G. Therefore, it is estimated that the distance between the peeling position and the center of the swirling flow becomes large, and the outer diameter of the swirling flow also becomes large. However, in reality, since the cross-sectional area of the flow path is gradually expanding, the flow of the combustion exhaust gas G does not separate. As a result, in the range where the enlargement angle θj is larger than 0 ° and smaller than 45 °, almost no swirling flow is generated, and the scattering rate of the large-diameter ash becomes small. Although a small swirling flow is generated in the second hopper 30 below the second vertical flue portion 14, it is considered that it hardly contributes to the increase in the scattering rate of the large-diameter ash.

なお、拡大角θjが0°よりも大きく35°よりも小さい範囲では、大径灰の飛散率を更に低減できる。また、ダクトの材料費・製作費を低減できる。 In the range where the enlargement angle θj is larger than 0 ° and smaller than 35 °, the scattering rate of large-diameter ash can be further reduced. In addition, the material cost and manufacturing cost of the duct can be reduced.

第2水平煙道部13には、図2及び図4に示すように、第1ダクト部17に接続される第3ダクト部19が設けられてもよい。第3ダクト部19では、第1ダクト部17における燃焼排ガスGの流れ方向(本実施形態ではx軸方向)に対し、燃焼排ガスGの流れ方向が偏向角θkだけ斜行して、燃焼排ガスGの流れのx軸方向の中心線をy軸方向へ移動するものである。第3ダクト部19は、例えば、燃焼排ガスGの流れ方向上流側の第1ダクト部17と下流側の第1ダクト部17の間に設けられる。第3ダクト部19の流路断面積は、ほぼ一定である。 As shown in FIGS. 2 and 4, the second horizontal flue portion 13 may be provided with a third duct portion 19 connected to the first duct portion 17. In the third duct portion 19, the flow direction of the combustion exhaust gas G is skewed by the deflection angle θk with respect to the flow direction of the combustion exhaust gas G in the first duct portion 17 (in the present embodiment, the x-axis direction), and the combustion exhaust gas G The center line of the flow in the x-axis direction is moved in the y-axis direction. The third duct portion 19 is provided between, for example, the first duct portion 17 on the upstream side in the flow direction of the combustion exhaust gas G and the first duct portion 17 on the downstream side. The flow path cross-sectional area of the third duct portion 19 is substantially constant.

第3ダクト部19は、第2水平煙道部13の配置位置や、脱硝装置4の配置位置(第1ダクト部17の中心線に対して水平面内の垂直方向(本実施形態ではy軸方向)の配置に伴う位置関係)の都合によって、第1ダクト部17に対してなす角、すなわち偏向角θkが設けられて設置される。 The third duct portion 19 is the arrangement position of the second horizontal flue portion 13 and the arrangement position of the denitration device 4 (perpendicular direction in the horizontal plane with respect to the center line of the first duct portion 17 (y-axis direction in the present embodiment). ), That is, a deflection angle θk is provided and installed with respect to the first duct portion 17.

第3ダクト部19の出口から第1ダクト部17を経て第2ダクト部18の入口までの距離をfとし、第1ダクト部17の水平方向(y軸方向)幅Yとの関係を無次元化して、拡大前直線部f/Yと定義する。 Let f be the distance from the outlet of the third duct portion 19 to the inlet of the second duct portion 18 via the first duct portion 17, and the relationship with the horizontal (y-axis direction) width Y of the first duct portion 17 is dimensionless. It is defined as the expansion front straight line portion f / Y.

本実施形態における拡大前直線部f/Yは、0.25以上とすることが好ましく、0.25以上かつ0.5以下とすることが更に好ましい。 The expansion front linear portion f / Y in the present embodiment is preferably 0.25 or more, and more preferably 0.25 or more and 0.5 or less.

拡大前直線部f/Yは、0.25となるとき、図7に示すように、大径灰の飛散率が低減し、低減効果が最大となる。 When the expansion front straight line portion f / Y is 0.25, as shown in FIG. 7, the scattering rate of the large-diameter ash is reduced and the reduction effect is maximized.

これは、第3ダクト部19の燃焼排ガスGの出口位置から、ある程度の燃焼排ガスGの整流区間が設けられているためである。これにより、第3ダクト部19が第1ダクト部17における燃焼排ガスGの流れ方向(本実施形態ではx軸方向)に対して斜行していることによる燃焼排ガスGの流れの剥離が、後流側の旋回流に与える影響が少なくなる。 This is because a rectifying section of the combustion exhaust gas G is provided to some extent from the outlet position of the combustion exhaust gas G of the third duct portion 19. As a result, the third duct portion 19 is oblique with respect to the flow direction of the combustion exhaust gas G in the first duct portion 17 (in the present embodiment, the x-axis direction), so that the flow of the combustion exhaust gas G is separated later. The effect on the swirling flow on the flow side is reduced.

また、拡大前直線部f/Yは0.5を超えると、第1ダクト部17の水平方向(y軸方向)幅Yに対する第1ダクト部17の水平方向(x軸方向)奥行fが長くなり、ダクト材料やコストが増加する。そのため、拡大前直線部f/Yが0.5を超えるように設定することは好ましくない。 Further, when the expansion front straight line portion f / Y exceeds 0.5, the horizontal direction (x-axis direction) depth f of the first duct portion 17 with respect to the horizontal direction (y-axis direction) width Y of the first duct portion 17 becomes long. This will increase duct materials and costs. Therefore, it is not preferable to set the linear portion f / Y before expansion to exceed 0.5.

第3ダクト部19の鉛直方向に設けられた側壁19aは、第1ダクト部17の鉛直方向に設けられた側壁17aとのなす角度(偏向角θk)が0°よりも大きく30°以下であることが好ましい。 The side wall 19a provided in the vertical direction of the third duct portion 19 has an angle (deflection angle θk) formed by the side wall 17a provided in the vertical direction of the first duct portion 17 greater than 0 ° and 30 ° or less. Is preferable.

第3ダクト部19において、水平方向(y軸方向)両側のダクト壁面(本実施形態ではx軸方向)では、燃焼排ガスGの流速の差が生じる。その結果、偏向方向側の燃焼排ガスGの流速が遅くかつ圧力が高い。図8に示すように、偏向角θkが30°を超える場合、燃焼排ガスGの流れが偏るため、第3ダクト部19出口から燃焼排ガスGの剥離が発生し、後流側に循環渦が形成される。その結果、循環渦が、第2垂直煙道部14内部における旋回流を増大させ、大径灰の飛散率が増加する。 In the third duct portion 19, there is a difference in the flow velocity of the combustion exhaust gas G on the duct wall surfaces (x-axis direction in the present embodiment) on both sides in the horizontal direction (y-axis direction). As a result, the flow velocity of the combustion exhaust gas G on the deflection direction side is slow and the pressure is high. As shown in FIG. 8, when the deflection angle θk exceeds 30 °, the flow of the combustion exhaust gas G is biased, so that the combustion exhaust gas G is separated from the outlet of the third duct portion 19 and a circulation vortex is formed on the wake side. Will be done. As a result, the circulating vortex increases the swirling flow inside the second vertical flue portion 14, and the scattering rate of the large-diameter ash increases.

図8に示すように、偏向角θkが20°近傍では、偏向方向側の燃焼排ガスGの流速が加速され、ダクト中央側との流速の差が小さくなる。その結果、第2垂直煙道部14内部における旋回流が小さくなり、大径灰の飛散率が低下する。 As shown in FIG. 8, when the deflection angle θk is in the vicinity of 20 °, the flow velocity of the combustion exhaust gas G on the deflection direction side is accelerated, and the difference in the flow velocity from the center side of the duct becomes small. As a result, the swirling flow inside the second vertical flue portion 14 becomes small, and the scattering rate of the large-diameter ash decreases.

以上、本実施形態によれば、第2ダクト部18の鉛直方向に設けられた側壁18aは、第1ダクト部17の鉛直方向に設けられた側壁17aとのなす角度(拡大角)θjが0°よりも大きく45°よりも小さい角度、又は、70°よりも大きく90°よりも小さい角度である。これにより、燃焼排ガスGが第2垂直煙道部14へ流れ込む際の旋回流の発生を抑制できる。したがって、第2垂直煙道部14内部での旋回流の発生が抑制され、脱硝装置4への大径灰の飛散量を低減できる。 As described above, according to the present embodiment, the side wall 18a provided in the vertical direction of the second duct portion 18 has an angle (enlargement angle) θj of 0 with the side wall 17a provided in the vertical direction of the first duct portion 17. An angle greater than ° and less than 45 °, or an angle greater than 70 ° and less than 90 °. As a result, it is possible to suppress the generation of a swirling flow when the combustion exhaust gas G flows into the second vertical flue portion 14. Therefore, the generation of a swirling flow inside the second vertical flue portion 14 can be suppressed, and the amount of large-diameter ash scattered to the denitration device 4 can be reduced.

また、第3ダクト部19の鉛直方向に設けられた側壁19aは、第1ダクト部17の鉛直方向に設けられた側壁17aとのなす角度(偏向角θk)が0°よりも大きく30°以下である。これにより、第2垂直煙道部14内部での燃焼排ガスGの旋回流の発生が抑制され、脱硝装置4への大径灰の飛散量を低減できる。 Further, the side wall 19a provided in the vertical direction of the third duct portion 19 has an angle (deflection angle θk) formed by the side wall 17a provided in the vertical direction of the first duct portion 17 greater than 0 ° and 30 ° or less. Is. As a result, the generation of a swirling flow of the combustion exhaust gas G inside the second vertical flue portion 14 can be suppressed, and the amount of large-diameter ash scattered to the denitration device 4 can be reduced.

したがって、第2水平煙道部13から第2垂直煙道部14までに燃焼排ガスGの旋回流で大径灰が飛散して燃焼排ガスGの流れ方向下流側へ搬送される確率が低くなる。これにより、第2ホッパー30における大径灰の捕集率が向上し、煙道10の下流側にある脱硝装置4への大径灰の搬送が抑制されるため、脱硝装置4の脱硝触媒での大径灰の堆積を低減することが可能となる。 Therefore, the probability that the large-diameter ash is scattered by the swirling flow of the combustion exhaust gas G from the second horizontal flue portion 13 to the second vertical flue portion 14 and is transported to the downstream side in the flow direction of the combustion exhaust gas G is low. As a result, the collection rate of the large-diameter ash in the second hopper 30 is improved, and the transfer of the large-diameter ash to the denitration device 4 on the downstream side of the flue 10 is suppressed. It is possible to reduce the accumulation of large-diameter ash.

なお、上記実施形態において、固気二相流に含まれる固体粒子を、石炭焚きボイラ1の火炉2から排出される燃焼排ガスに含まれる石炭灰として説明したが、本実施形態のダクト構造を採用したダクトは、例えば固体粒子として、煤、鉄粉、ディーゼル排気微粒子及び未燃粒子などを含む各種の固気二相流を流す装置に対しても適用可能である。 In the above embodiment, the solid particles contained in the solid-gas two-phase flow have been described as coal ash contained in the combustion exhaust gas discharged from the furnace 2 of the coal-fired boiler 1, but the duct structure of the present embodiment is adopted. The formed duct can also be applied to a device for flowing various solid air two-phase flows including soot, iron powder, diesel exhaust particles, unburned particles and the like as solid particles, for example.

また、本明細書中において、「鉛直方向」、「水平方向」との文言を用いているが、必ずしも絶対的な「鉛直方向」、「水平方向」のみに限定する意図はなく、一般的な概念における「縦方向(上下方向)」、「横方向」の範疇を含んでいる。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
In addition, although the terms "vertical direction" and "horizontal direction" are used in this specification, they are not necessarily limited to the absolute "vertical direction" and "horizontal direction", and are general. It includes the categories of "vertical direction (vertical direction)" and "horizontal direction" in the concept.
The present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the gist thereof.

1 :石炭焚きボイラ
2 :火炉
4 :脱硝装置
10 :煙道
11 :第1水平煙道部
12 :第1垂直煙道部
13 :第2水平煙道部
13e :終端部
14 :第2垂直煙道部
15 :第3水平煙道部
16 :第3垂直煙道部
17 :第1ダクト部
18 :第2ダクト部
19 :第3ダクト部
20 :第1ホッパー
30 :第2ホッパー
100 :石炭焚きボイラ
102 :火炉
110 :煙道
111 :第1水平煙道部
112 :第1垂直煙道部
113 :第2水平煙道部
114 :第2垂直煙道部
115 :第3水平煙道部
116 :第3垂直煙道部
120 :第1ホッパー
130 :第2ホッパー
140 :脱硝装置
150 :大径灰
1: Coal-fired boiler 2: Fire furnace 4: Denitration device 10: Flue 11: 1st horizontal flue 12: 1st vertical flue 13: 2nd horizontal flue 13e: Terminal 14: 2nd vertical smoke Road section 15: Third horizontal flue section 16: Third vertical flue section 17: First duct section 18: Second duct section 19: Third duct section 20: First hopper 30: Second hopper 100: Coal-fired Boiler 102: Fire furnace 110: Flue 111: 1st horizontal flue 112: 1st vertical flue 113: 2nd horizontal flue 114: 2nd vertical flue 115: 3rd horizontal flue 116: Third vertical flue 120: First hopper 130: Second hopper 140: Denitration device 150: Large diameter ash

Claims (7)

ボイラ内の燃焼排ガスによる気流の下流側に設けられ、前記気流が水平方向に流れる横方向ダクトと、
前記横方向ダクトにおいて前記気流の流れ方向下流側の終端部に連続して設けられ、前記気流が鉛直方向上方に向かって流れる縦方向ダクトと、
を備え、
前記横方向ダクトは、流れ方向に沿って流路断面積が一定である第1ダクト部と、前記第1ダクト部の下流側に接続され、下流側に向かって流路断面積が拡大する第2ダクト部を有し、
前記第2ダクト部の鉛直方向に設けられた側壁は、前記第1ダクト部の鉛直方向に設けられた側壁とのなす角度が0°よりも大きく45°よりも小さい角度、又は、70°よりも大きく90°よりも小さい角度であるボイラ用ダクト構造。
A lateral duct provided on the downstream side of the airflow generated by the combustion exhaust gas in the boiler and through which the airflow flows in the horizontal direction,
In the lateral duct, a vertical duct which is continuously provided at the end portion on the downstream side in the flow direction of the air flow and in which the air flow flows upward in the vertical direction,
With
The lateral duct is connected to a first duct portion having a constant flow path cross-sectional area along the flow direction and a downstream side of the first duct portion, and the flow path cross-sectional area expands toward the downstream side. Has 2 ducts
The side wall provided in the vertical direction of the second duct portion has an angle formed by the side wall provided in the vertical direction of the first duct portion of more than 0 ° and less than 45 °, or more than 70 °. Duct structure for boilers that is large and has an angle smaller than 90 °.
前記第2ダクト部の鉛直方向に設けられた側壁は、前記第1ダクト部の鉛直方向に設けられた側壁とのなす角度が0°よりも大きく35°よりも小さい角度である請求項1に記載のボイラ用ダクト構造。 According to claim 1, the side wall provided in the vertical direction of the second duct portion has an angle formed by the side wall provided in the vertical direction of the first duct portion of more than 0 ° and less than 35 °. Described boiler duct structure. 前記第1ダクト部の水平方向幅Y、前記第1ダクト部の鉛直方向高さZ、前記第2ダクト部の前記第1ダクト部に対する水平方向幅の増加分d、及び、前記縦方向ダクトの水平方向奥行き長さeで表されるダクト拡大比(d/Y)/(e/Z)が、
0.15≦(d/Y)/(e/Z)≦0.3
にある請求項1又は2に記載のボイラ用ダクト構造。
The horizontal width Y of the first duct portion, the vertical height Z of the first duct portion, the increase d of the horizontal width of the second duct portion with respect to the first duct portion, and the vertical duct portion. The duct enlargement ratio (d / Y) / (e / Z) represented by the horizontal depth length e is
0.15 ≤ (d / Y) / (e / Z) ≤ 0.3
The boiler duct structure according to claim 1 or 2.
前記横方向ダクトは、前記第1ダクト部に接続され、前記第1ダクト部における前記気流の流れ方向に対し、前記気流の流れ方向が斜行する第3ダクト部を更に有し、
前記第3ダクト部の鉛直方向に設けられた側壁は、前記第1ダクト部の鉛直方向に設けられた側壁とのなす角度が0°よりも大きく30°以下である請求項1から3のいずれか1項に記載のボイラ用ダクト構造。
The lateral duct is connected to the first duct portion, and further has a third duct portion in which the flow direction of the air flow is oblique to the flow direction of the air flow in the first duct portion.
Any of claims 1 to 3, wherein the side wall provided in the vertical direction of the third duct portion has an angle formed by an angle of more than 0 ° and 30 ° or less with the side wall provided in the vertical direction of the first duct portion. The duct structure for the boiler according to item 1.
前記第2ダクト部入口部から前記第3ダクト部出口部までの距離f、及び、前記第1ダクト部の水平方向幅Yの関係が、
0.25≦f/Y
で表される請求項4に記載のボイラ用ダクト構造。
The relationship between the distance f from the entrance portion of the second duct portion to the outlet portion of the third duct portion and the horizontal width Y of the first duct portion is as follows.
0.25 ≤ f / Y
The boiler duct structure according to claim 4, which is represented by.
請求項1から5のいずれか1項に記載のボイラ用ダクト構造を備えるボイラ。 A boiler having a boiler duct structure according to any one of claims 1 to 5. ボイラ内の燃焼排ガスによる気流の下流側に設けられ、前記気流が水平方向に流れる横方向ダクトと、前記横方向ダクトにおいて前記気流の流れ方向下流側の終端部に連続して設けられ、前記気流が鉛直方向上方に向かって流れる縦方向ダクトとを備え、前記横方向ダクトは、流れ方向に沿って流路断面積が一定である第1ダクト部と、前記第1ダクト部の下流側に接続され、下流側に向かって流路断面積が拡大する第2ダクト部を有し、前記第2ダクト部の鉛直方向に設けられた側壁は、前記第1ダクト部の鉛直方向に設けられた側壁とのなす角度が0°よりも大きく45°よりも小さい角度、又は、70°よりも大きく90°よりも小さい角度であるボイラ用ダクト構造を備えるダクトに対し、
前記気流として固体粒子を含む固気二相流を流すことで、前記気流中から前記固体粒子の搬送を抑制することを特徴とする固気二相流に含まれる固体粒子の低減方法。
The airflow is provided on the downstream side of the airflow caused by the combustion exhaust gas in the boiler, and is continuously provided at the lateral duct through which the airflow flows in the horizontal direction and at the end of the lateral duct on the downstream side in the flow direction of the airflow. Is provided with a vertical duct that flows upward in the vertical direction, and the horizontal duct is connected to a first duct portion having a constant flow path cross-sectional area along the flow direction and a downstream side of the first duct portion. It has a second duct portion whose flow path cross-sectional area expands toward the downstream side, and the side wall provided in the vertical direction of the second duct portion is a side wall provided in the vertical direction of the first duct portion. For a duct having a duct structure for a boiler in which the angle between the two is greater than 0 ° and less than 45 °, or greater than 70 ° and less than 90 °.
A method for reducing solid particles contained in a solid-gas two-phase flow, which comprises suppressing the transport of the solid particles from the airflow by flowing a solid-air two-phase flow containing the solid particles as the airflow.
JP2017035466A 2017-02-27 2017-02-27 Boiler duct structure, method for reducing solid particles contained in boiler and solid gas two-phase flow Active JP6845711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017035466A JP6845711B2 (en) 2017-02-27 2017-02-27 Boiler duct structure, method for reducing solid particles contained in boiler and solid gas two-phase flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017035466A JP6845711B2 (en) 2017-02-27 2017-02-27 Boiler duct structure, method for reducing solid particles contained in boiler and solid gas two-phase flow

Publications (2)

Publication Number Publication Date
JP2018141581A JP2018141581A (en) 2018-09-13
JP6845711B2 true JP6845711B2 (en) 2021-03-24

Family

ID=63527890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017035466A Active JP6845711B2 (en) 2017-02-27 2017-02-27 Boiler duct structure, method for reducing solid particles contained in boiler and solid gas two-phase flow

Country Status (1)

Country Link
JP (1) JP6845711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137621B (en) * 2020-10-14 2022-02-08 山东大学 Flue distributor utilizing heat pipe for temperature equalization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536485Y2 (en) * 1988-05-19 1993-09-16
JP2002005425A (en) * 2000-06-23 2002-01-09 Mitsubishi Heavy Ind Ltd Smoke discharging device and assembling method of flow regulating plate for the same

Also Published As

Publication number Publication date
JP2018141581A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
TWI541474B (en) Pipe wall construction
US20130188440A1 (en) Gas mixing arrangement
WO2014041919A1 (en) Coke dry quenching facility
JP6385266B2 (en) Exhaust duct and boiler
KR102126663B1 (en) Exhaust gas treatment device
JPH034803B2 (en)
JP5972857B2 (en) Exhaust duct and boiler
JP6845711B2 (en) Boiler duct structure, method for reducing solid particles contained in boiler and solid gas two-phase flow
CN203043834U (en) Device for removing NOx through smoke recycling and ammonia agent jetting
JP2010264400A (en) Denitrification apparatus
JP2010125378A (en) System for cleaning combustion gas of coal fired boiler and operation method for the same
TWI691679B (en) Solid fuel burner and combustion device
WO2019168059A1 (en) Exhaust gas treatment device
TWI778501B (en) Denitrification device and boiler
JP6601981B2 (en) Multipass boiler
WO2020153404A1 (en) Solid fuel burner
JP6727960B2 (en) Duct structure, boiler and method for removing solid particles from gas-solid two-phase flow
JP2014074515A (en) Non-catalytic denitrification method
Borsuk et al. Numerical methods in processes of design and operation in pneumatic conveying systems
JPH0538028Y2 (en)
JP5144447B2 (en) Boiler equipment
JP2007192452A (en) Boiler device
JPH08178212A (en) Structure of furnace wall of fluidized-bed boiler
JPH0646102U (en) Inner surface structure of fluidized bed forming part of circulating fluidized bed apparatus.

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210226

R150 Certificate of patent or registration of utility model

Ref document number: 6845711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150