WO2019168059A1 - Exhaust gas treatment device - Google Patents

Exhaust gas treatment device Download PDF

Info

Publication number
WO2019168059A1
WO2019168059A1 PCT/JP2019/007658 JP2019007658W WO2019168059A1 WO 2019168059 A1 WO2019168059 A1 WO 2019168059A1 JP 2019007658 W JP2019007658 W JP 2019007658W WO 2019168059 A1 WO2019168059 A1 WO 2019168059A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
exhaust gas
hopper
horizontal
vertical
Prior art date
Application number
PCT/JP2019/007658
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 幸久
勝美 矢野
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201980015852.9A priority Critical patent/CN111818986A/en
Publication of WO2019168059A1 publication Critical patent/WO2019168059A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes

Definitions

  • the present invention relates to an exhaust gas treatment device that reduces nitrogen oxides in exhaust gas discharged from a coal fired boiler using a denitration device.
  • a denitration device that injects a reducing agent (for example, ammonia) into the exhaust gas and reduces NOx to N 2 with a denitration catalyst 2.
  • a reducing agent for example, ammonia
  • An exhaust gas treatment apparatus that is generally employed and guides exhaust gas discharged from a coal fired boiler to a denitration apparatus via a horizontal duct and a vertical duct is known.
  • ash particles dust or ash generated by coal combustion
  • Patent Document 1 includes a horizontal duct connected to an exhaust gas outlet of a coal fired boiler, a vertical duct connected to the horizontal duct, and a hopper provided at a lower portion of a connection portion between the horizontal duct and the vertical duct.
  • An exhaust gas treatment device is described. Ash particles (dust or ash generated by combustion) in the exhaust gas flowing through the horizontal duct are collected by a hopper.
  • a collision plate for collecting large-sized ash particles that are unevenly distributed in the lower part of the horizontal duct and entrained in the exhaust gas is provided at the upper end opening of the hopper, and the ash in the exhaust gas is provided on the collision plate. It is described that particles collide and fall into a hopper.
  • the exhaust gas contains many ash particles with a large particle size (100 ⁇ m or more).
  • the collection rate of ash particles having a large particle diameter by the hopper is improved by providing the collision plate described in Patent Document 1, and the wear of the denitration catalyst of the denitration device is suppressed. be able to.
  • a collision plate must be provided so as to cross the upper end opening of the hopper, which may increase the flow resistance of exhaust gas.
  • reinforcement for suppressing vibration noise may be necessary.
  • an object of the present invention is to provide an exhaust gas treatment apparatus capable of improving the collection rate of ash particles having a large particle size while suppressing an increase in exhaust gas flow resistance.
  • the present invention is an exhaust gas treatment device for reducing nitrogen oxides in exhaust gas discharged from a coal fired boiler by a denitration device, and includes a duct and a hopper.
  • the duct has a horizontal duct extending in a substantially horizontal direction and a vertical duct extending in a substantially vertical direction.
  • the front end of the horizontal duct communicates with the exhaust gas outlet of the coal fired boiler, and the rear end of the horizontal duct communicates with the lower end of the vertical duct.
  • the duct divides the space in the duct that guides the exhaust gas discharged from the coal fired boiler from the horizontal duct to the upper side of the vertical duct to the denitration apparatus.
  • the hopper is provided below the vertical duct, and communicates with the space in the duct through the hopper upper end opening.
  • the exhaust gas treatment apparatus includes a plurality of screen-type collision plates.
  • the plurality of screen-like collision plates are fixed to and raised from the front edge of the hopper upper end opening and fixed to the bottom surface of the duct that divides the space under the duct, and in a state of being separated from each other, Line up along the crossing direction.
  • the vertical direction of the screen-like collision plate with respect to the bottom surface of the duct is preferably substantially vertical, and the bottom surface of the duct
  • the projection amount (projection height) of the screen-like collision plate from the top is preferably 10 to 15% of the width in the height direction of the horizontal duct.
  • the position of the screen-like collision plate is preferably the rear side (the hopper upper end opening side) of the duct bottom surface in the front-rear direction, and more preferably 1 to 1.5 m from the front end edge of the hopper upper end opening. is there.
  • the screen-type collision plate is provided on the bottom surface of the duct, so that the ash particles having a large particle size unevenly distributed in the lower part of the horizontal duct and entrained in the exhaust gas are caused to collide with the screen-type collision plate. It is possible to improve the collection rate of ash particles having a large particle size while suppressing an increase in the flow resistance of exhaust gas.
  • the exhaust gas treatment apparatus includes an inclined collision plate.
  • the inclined collision plate extends continuously upward from the rear end edge of the hopper upper end opening and is fixed to the rear surface of the duct that defines the rear of the duct internal space, and extends inclined downward from the rear surface.
  • the protruding amount of the inclined collision plate from the rear surface of the duct is determined by the depth of the vertical duct (front and 5 to 15% of the distance to the rear surface is preferable.
  • the inclined collision plate is provided on the rear surface of the duct, so that the ash particles having a large particle size unevenly distributed in the lower part of the horizontal duct and accompanying the exhaust gas are caused to collide with the lower surface of the inclined collision plate to It is possible to improve the collection rate of ash particles having a large particle size while suppressing an increase in the flow resistance of exhaust gas.
  • a third aspect of the present invention is the exhaust gas treatment apparatus according to the first or second aspect, and includes a plurality of guide vanes and an inclined collision surface.
  • the plurality of guide vanes are disposed in the duct interior space above the hopper, are fixed to the duct and overlap each other in a state of being separated from each other, and guide the exhaust gas flowing from the horizontal duct to the vertical duct vertically upward.
  • the inclined collision surface is fixedly provided at an end portion on the horizontal duct side of the lowermost guide vane among the plurality of guide vanes, and extends obliquely rearward and downward.
  • the ash particles with a large particle size that are unevenly distributed in the lower part of the horizontal duct and entrained in the exhaust gas collide with the inclined collision surface by a simple configuration in which the inclined collision surface is fixedly provided on the lowermost guide vane. It can be made to collect by a hopper, and the collection rate of a large particle size ash particle further improves.
  • the present invention it is possible to improve the collection rate of ash particles having a large particle size while suppressing an increase in the flow resistance of exhaust gas, and to suppress wear of the denitration catalyst due to the ash particles having a large particle size.
  • FIG. 1 is an overall configuration diagram of an exhaust gas treatment apparatus according to a first embodiment of the present invention. It is a principal part enlarged view of FIG. It is a perspective view of the screen-shaped collision board of FIG. It is an enlarged view of the screen-shaped collision board of FIG.
  • FIG. 3 is an enlarged view of the inclined collision plate in FIG. 2.
  • FIG. 4 is a diagram showing a flow of ash particles having a large particle diameter according to Example 3. It is a figure which shows the guide vane protector which concerns on 2nd Embodiment of this invention. It is a figure which shows the modification of a guide vane protector.
  • the coal fired boiler 1 includes a burner 4 that burns coal 2 pulverized by a pulverizer (not shown) such as a mill with a combustion gas 3.
  • a pulverizer such as a mill with a combustion gas 3.
  • a plurality of heat recovery heat transfer tubes 5 through which water flows are provided in the furnace and the exhaust gas flow path of the coal fired boiler 1, and in the exhaust gas flow path on the downstream side of the coal fired boiler 1, a heat recovery heat transfer tube is provided.
  • One economizer (a economizer) 6 is provided.
  • the coal fired boiler 1 generates steam for driving a power generation turbine (not shown).
  • the exhaust gas outlet 7 of the coal fired boiler 1 is provided on the boiler side wall below the economizer 6, and the front end (upstream end) of the horizontal duct 8 is connected to the exhaust gas outlet 7 in a communicating state.
  • the horizontal duct 8 has a rectangular cylindrical shape extending substantially horizontally, and the rear end (downstream end) of the horizontal duct 8 is connected to the vertical duct 9 in a communicating state.
  • the vertical duct 9 has a rectangular cylindrical shape extending in a substantially vertical direction, and the upper end of the vertical duct 9 is connected to the inlet duct 10 a of the denitration apparatus 10.
  • the horizontal duct 8 and the vertical duct 9 constitute a duct 17, and the duct 17 distributes exhaust gas generated by burning coal in the coal fired boiler 1 from the exhaust gas outlet 7 to the upper side of the vertical duct 9 through the horizontal duct 8.
  • a duct internal space 18 that leads to the top of the denitration apparatus 10 is defined.
  • the denitration apparatus 10 is filled with a denitration catalyst 10b, and ammonia is injected as a reducing agent from an ammonia supply nozzle 10c provided in the middle of the vertical duct 9. Thereby, the denitration apparatus 10 reduces and discharges nitrogen oxides (NOx) contained in the exhaust gas.
  • the exhaust gas from which NOx discharged from the denitration device 10 is removed is discharged from the chimney 14 into the atmosphere via the air heater 11 that heats the combustion gas, the dust collector 12, and the desulfurization device 13.
  • a rear hopper (hopper) 15 communicating with the duct internal space 18 (horizontal duct 8 and vertical duct 9) through a rectangular hopper upper end opening 19 is provided substantially vertically below the vertical duct 9.
  • the upstream inner surface of the rear hopper 15 is inclined rearward and downward from the front edge of the hopper upper end opening 19.
  • a front hopper 16 communicating with the inside of the boiler and the horizontal duct 8 is provided below the coal fired boiler 1. In the front hopper 16 and the rear hopper 15, ash particles in the exhaust gas fall and are collected.
  • the upstream space that extends rearward substantially horizontally from the exhaust gas outlet 7 (see FIG. 1) in the duct internal space 18 has a ceiling surface 22, a bottom surface 23, and a pair of side surfaces 24 (FIG. 2).
  • the downstream space which is partitioned by only one side and extends substantially vertically upward from the rear end of the upstream space is a front surface 25, a rear surface 26 and a pair of side surfaces 27 (only one is illustrated in FIG. 2). ).
  • the bottom surface 23 that defines the lower side of the upstream space of the duct internal space 18 extends continuously forward from the front end edge 20 of the hopper upper end opening 19, and the rear surface 26 that defines the rear side of the downstream space of the duct internal space 18 is
  • the hopper upper end opening 19 extends upward continuously from the rear end edge 21.
  • a plurality of (four in the example of FIG. 2) guide vanes 28 are provided in the duct space 18 above the rear hopper 15 (hopper upper end opening 19).
  • the guide vanes 28 are curved plate-like bodies that are curved so as to bulge rearward and downward from the vicinity of the rear end of the horizontal duct 8 and extend rearward and upward, and are disposed so as to overlap each other while being separated from each other.
  • a bar-like or tubular guide fixing member 29 is fixed to the upper and lower edges of each guide vane 28 by welding, and both ends of each guide fixing member 29 are connected to a pair of side surfaces 24 on the upstream side of the duct 17 or on the downstream side.
  • the pair of side surfaces 27 are fixed by welding.
  • the guide vane 28 is provided over substantially the entire region in the length direction (duct width direction) of the guide fixing member 29.
  • the guide vanes 28 are each fixed to the duct 17 above the rear hopper 15 and guide the exhaust gas flowing from the horizontal duct 8 to the vertical duct 9 vertically upward.
  • a plurality of (three in this embodiment) screen-type collision plates 31 having a rectangular flat plate shape are provided on the bottom surface 23 of the duct 17.
  • the bottom surface 23 on which the screen-like collision plate 31 is provided may be the bottom surface of the horizontal duct 8, or may be the bottom surface on the vertical duct 9 side in the connection portion between the horizontal duct 8 and the vertical duct 9.
  • the plurality of screen-like collision plates 31 are fixed to the bottom surface 23 of the duct 17 and stand up, and are arranged in a line along the direction intersecting with the exhaust gas flow direction (front-rear direction) while being separated from each other.
  • the screen-like collision plates 31 of the present embodiment are arranged in a straight line along a direction substantially orthogonal to the exhaust gas flow direction.
  • the screen-like collision plate 31 is formed by welding a rod-like or tubular collision plate fixing member 32 to the bottom surface 23 (welding portion 33) and welding the screen-like collision plate 31 to the front side of the collision plate fixing member 32 (welding portion 34). To the bottom surface 23.
  • the number of the screen-like collision plates 31 is not limited to three and is arbitrary.
  • the screen-like collision plate 31 stands substantially perpendicular to the bottom surface 23, and the bottom surface 23
  • the protruding amount (projecting height) H1 of the screen-like collision plate 31 from 10 is set to 10 to 15% of the width in the height direction of the horizontal duct 8 (the vertical distance from the bottom surface 23 to the ceiling surface 22) H2.
  • the front-side position L1 of the screen-like collision plate 31 is the rear side (the hopper upper end opening 19 side) of the bottom surface 23 in the front-rear direction, and is 1 to 1.5 m from the front end edge 20 of the hopper upper end opening 19. Is set to
  • the projection height H1 of the screen-like collision plate 31 is preferably in the above range.
  • the screen-like collision plates 31 located at both ends of the plurality of screen-like collision plates 31 are arranged apart from the side surface 24 of the duct 17. This is because, when the screen-like collision plate 31 is in contact with the side surface 24, the ash particles stay between the screen-like collision plate 31 and the side surface 24, thereby providing a flow resistance of the exhaust gas.
  • a rectangular flat inclined collision plate 36 is fixed to the lower portion of the rear surface 26 of the duct 17 (lower portion of the rear surface of the vertical duct 9).
  • the inclined collision plate 36 is formed by welding a rod-like or tubular collision plate fixing member 37 to the rear surface 26 (welding portion 38) and welding the inclined collision plate 36 to the rear surface 26 and the collision plate fixing member 37 (welding portion 39). Fixed to the rear face 26.
  • the inclined collision plate 36 is disposed over the substantially entire area in the duct width direction behind the guide vane 28 and extends from the rear surface 26 to be inclined forward and downward.
  • the protruding amount L3 of the inclined collision plate 36 from the rear surface 26 of the duct 17 is the vertical duct 9. Is set to 5 to 15% of L4 (distance between front surface 25 and rear surface 26) L4.
  • the inclined collision plate 36A that protrudes substantially horizontally accumulates ash particles on the upper surface, and it is necessary to reinforce the vibration of the inclined collision plate 36A caused by the upward flow.
  • the inclined collision plate 36B that is excessively inclined and has a small protrusion amount from the rear surface 26 the ash particles are difficult to contact the inclined collision plate 36B. It is preferable to incline toward.
  • the screen-like collision plates 31 are arranged in one row.
  • the screen-like collision plates 31 may be arranged in a plurality of rows (two rows in the example of FIG. 6) in a staggered manner. Good.
  • the flat inclined collision plates 36 are arranged in one stage.
  • the inclined collision plates 36 are arranged in a plurality of stages at different heights (2 in the example of FIG. 7A).
  • the protruding amount of the inclined collision plate 36 from the rear surface 26 may be different between the respective stages (for example, in the case of two stages, the upper stage and the lower stage).
  • FIG.7 (b) it is good also as the curved collision plate-shaped inclined collision board 40 from which an upper surface becomes convex.
  • the coal fired boiler 1 In the operation of the coal fired boiler 1, the coal fired boiler 1 is supplied with coal 2 and combustion gas (air) 3 to the burner 4 to burn the coal.
  • the heat generated by the combustion reaction of coal heats the water flowing through the heat recovery heat transfer pipe 5, the economizer 6 and the like to generate steam, and the turbine generator generates power.
  • the exhaust gas contains a large amount of ash having a particle size (diameter) of 100 ⁇ m or more.
  • the exhaust gas generated by is discharged from the exhaust gas outlet 7.
  • the ash particles having a large particle size (diameter of 100 ⁇ m or more) in the discharged exhaust gas sink to the bottom of the horizontal duct 8 while flowing through the horizontal duct 8, and flow unevenly at the bottom.
  • a part of the large ash particles unevenly distributed in the lower part of the horizontal duct 8 and entrained in the exhaust gas collide with the screen-like collision plate 31 rising from the bottom surface 23 of the duct 17 upstream of the rear hopper 15.
  • the flow velocity decreases and falls to the rear hopper 15.
  • the ash particles having a large particle size in the exhaust gas are efficiently collected by the rear hopper 15 by the screen-type collision plate 31 and the inclined collision plate 36, and most of the ash particles are removed from the exhaust gas.
  • the exhaust gas from which most of the ash particles having a large particle size have been removed is supplied with ammonia from the ammonia supply nozzle 10c and then guided to the denitration catalyst 10b. NOx in the exhaust gas is reduced while passing through the denitration catalyst 10b. It is decomposed into nitrogen and water. As described above, since most of the ash particles having a large particle size in the exhaust gas are removed before passing through the denitration catalyst 10b, wear of the denitration catalyst 10b can be suppressed.
  • the exhaust gas that has passed through the denitration catalyst 10b is subjected to heat exchange with the combustion air by the air heater 11 to become a low temperature, ash particles are removed by the dust collector 12, and sulfur oxides are removed by the desulfurizer 13, and then the chimney 14 is released into the atmosphere.
  • the front hopper 16 is expressed as the hopper 1
  • the rear hopper 15 is expressed as the hopper 2.
  • FIG. 8 to 11 show the collection ratio (collection rate%) of ash particles for each particle diameter (37 ⁇ m, 65 ⁇ m, 115 ⁇ m, 200 ⁇ m, 360 ⁇ m) by the front hopper (hopper 1) 16 and the rear hopper (hopper 2) 15. It is the result obtained by analysis.
  • FIG. 8 (Comparative Example 1) shows that when both the screen-like collision plate 31 and the inclined collision plate 36 are not provided, FIG. 9 (Example 1) does not provide the inclined collision plate 36, and one row of screen-like collisions.
  • FIG. 10 Embodiment 2 is not provided with the screen-like collision plate 31, but when the flat plate-shaped inclined collision plate 36 is provided, FIG. 11 (Embodiment 3) is one row.
  • FIG. 12 shows the flow of exhaust gas from the exhaust gas outlet 7 to the denitration catalyst 10b in Example 3 (provided with one row of partitioning collision plates 31 and a flat plate-shaped inclined collision plate 36).
  • FIG. 13 shows the result of analyzing the flow of ash particles having a large particle size (360 ⁇ m) from the exhaust gas outlet 7 to the denitration catalyst 10b in Example 3.
  • the collection rate of the large ash particles by the rear hopper 15 is improved by providing the screen-like collision plate 31 and the inclined collision plate 36, and only the screen-like collision plate 31 or the inclined collision. It can be seen that the collection rate is improved even when only the plate 36 is provided. 12 and 13 that the ash particles having a large particle size can be well collected by the rear hopper 15 while suppressing the disturbance of the flow of exhaust gas (increase in the flow resistance).
  • an inclined collision surface 41 is added to the first embodiment, and other configurations are the same as those in the first embodiment, and therefore, the description overlapping with the first embodiment is omitted.
  • the guide vane 28 is disposed at the lower end portion (the end portion on the horizontal duct 8 side) of the guide vane 28 over substantially the entire area in the duct width direction and covers the front and lower sides of the guide fixing member 29.
  • the protector 42 is fixed.
  • the guide vane protector 42 is a plate member having an L-shaped cross section, and is inclined in a rearward and downward direction from a flat plate-shaped protector front plate portion 43 that is inclined forward and downward in front of the guide fixing member 29 and a lower end edge of the protector front plate portion 43. And a flat plate-like protector lower plate portion 44 extending integrally.
  • the protector lower plate portion 44 is fixed to the guide vane 28 via the support 45.
  • the protector lower plate portion 44 of the guide vane protector 42 fixed to the lowermost guide vane 28A (see FIG. 2) among the plurality of guide vanes 28 is provided with a protector extension extending rearward and downward beyond the joint position with the support 45.
  • a portion 46 is provided.
  • the lower surface (front surface) of the protector lower plate portion 44 including the protector extension 46 constitutes an inclined collision surface 41 that is fixedly provided at the lower end portion of the lowermost guide vane 28A and is inclined rearward and downward.
  • the shape of the guide vane protector 42 is not limited to the above, and other shapes (for example, as shown in FIG. 15, a semicircular arc shaped protector front plate portion 47 curved along the front outer surface of the guide fixing member 29 and Further, it may be a J-shaped cross section integrally including a flat plate-like protector lower plate portion 44 extending obliquely downward and rearward from the lower end edge of the protector front plate portion 47.
  • the large particle size is unevenly distributed in the lower part of the horizontal duct 8 and is accompanied by the exhaust gas.
  • the ash particles can be collided with the inclined collision surface 41 and collected by the rear hopper 15, and the collection rate of the large ash particles is further improved.
  • this invention is not limited to the above-mentioned embodiment and modification which were demonstrated as an example, If it is the range which does not deviate from the technical idea which concerns on this invention also except the above-mentioned embodiment etc. Various changes can be made according to the design and the like.

Abstract

The front end of a horizontal duct 8 communicates with an exhaust gas outlet of a coil-fired boiler, and the back end of the horizontal duct 8 communicates with the bottom end of a vertical duct 9. A duct 17 defines a duct inner space 18 which allows exhaust gas emitted from the coil-fired boiler to flow from the horizontal duct 8 to the top of the vertical duct 9, guiding the exhaust gas into a denitration device. A hopper 15 is provided below the vertical duct 9, and communicates with the duct internal space 18 through a hopper upper end opening 19. Multiple screen collision plates 31 extend forwards continuously from the front edge 20 of the hopper upper end opening 19, and are erected on and fixed to the bottom surface 23 of the duct 17 which defines the bottom of the duct inner space 18; in a state separated from each other, the screen collision plates 31 are arranged linearly along a direction crossing the direction of flow of the exhaust gas.

Description

排ガス処理装置Exhaust gas treatment equipment
 本発明は、石炭焚ボイラから排出される排ガス中の窒素酸化物を脱硝装置によって還元する排ガス処理装置に関する。 The present invention relates to an exhaust gas treatment device that reduces nitrogen oxides in exhaust gas discharged from a coal fired boiler using a denitration device.
 石炭焚火力発電用ボイラの燃焼排ガス中の窒素酸化物(NOx)を除去するために、排ガス中に還元剤(例えば、アンモニア)を注入し、脱硝触媒でNOxをNに還元する脱硝装置が一般に採用され、石炭焚ボイラから排出される排ガスを、水平ダクトと垂直ダクトとを介して脱硝装置に導く排ガス処理装置が公知である。また、石炭の燃焼によって生成される粉塵又は灰分(以下、灰粒子と総称する。)が排ガスとともに脱硝装置まで飛来すると、触媒層に堆積して排ガスの流通を阻害するおそれがあることから、排ガス中の灰粒子を脱硝装置の上流で捕集する排ガス処理装置が提案されている。 In order to remove nitrogen oxide (NOx) in combustion exhaust gas from a coal-fired power generation boiler, a denitration device that injects a reducing agent (for example, ammonia) into the exhaust gas and reduces NOx to N 2 with a denitration catalyst 2. Description of the Related Art An exhaust gas treatment apparatus that is generally employed and guides exhaust gas discharged from a coal fired boiler to a denitration apparatus via a horizontal duct and a vertical duct is known. In addition, if dust or ash generated by coal combustion (hereinafter collectively referred to as ash particles) fly to the denitration device together with the exhaust gas, it may accumulate on the catalyst layer and hinder the flow of the exhaust gas. There has been proposed an exhaust gas treatment device that collects ash particles therein upstream of a denitration device.
 例えば、特許文献1には、石炭焚ボイラの排ガス出口に接続された水平ダクトと、水平ダクトに接続された垂直ダクトと、水平ダクトと垂直ダクトの接続部の下部に設けられたホッパとを有する排ガス処理装置が記載されている。水平ダクトを流れる排ガス中の灰粒子(燃焼によって生成される粉塵又は灰分)は、ホッパによって捕集される。 For example, Patent Document 1 includes a horizontal duct connected to an exhaust gas outlet of a coal fired boiler, a vertical duct connected to the horizontal duct, and a hopper provided at a lower portion of a connection portion between the horizontal duct and the vertical duct. An exhaust gas treatment device is described. Ash particles (dust or ash generated by combustion) in the exhaust gas flowing through the horizontal duct are collected by a hopper.
 さらに、同文献には、水平ダクトの下部に偏在して排ガスに同伴される大粒径の灰粒子を捕集するための衝突板をホッパの上端開口部に設け、衝突板に排ガス中の灰粒子を衝突させてホッパ内に落下させることが記載されている。 Further, in the same document, a collision plate for collecting large-sized ash particles that are unevenly distributed in the lower part of the horizontal duct and entrained in the exhaust gas is provided at the upper end opening of the hopper, and the ash in the exhaust gas is provided on the collision plate. It is described that particles collide and fall into a hopper.
特開2016-198701号公報JP 2016-198701 A
 例えば、インド産の石炭のように灰分が多い石炭を使用すると、排ガス中には大粒径(100μm以上)の灰粒子が多く含まれる。このように灰分が多い石炭を用いる場合、特許文献1に記載の衝突板を設けることによりホッパによる大粒径の灰粒子の捕集率を向上させて、脱硝装置の脱硝触媒の摩耗を抑制することができる。 For example, when coal with a large amount of ash, such as Indian coal, is used, the exhaust gas contains many ash particles with a large particle size (100 μm or more). When using coal with a large amount of ash in this way, the collection rate of ash particles having a large particle diameter by the hopper is improved by providing the collision plate described in Patent Document 1, and the wear of the denitration catalyst of the denitration device is suppressed. be able to.
 しかし、特許文献1の装置では、ホッパの上端開口部を横断するように衝突板を設けなければならず、排ガスの流通抵抗の増大を招くおそれがある。また、振動音の抑制等のための補強が必要となる場合がある。 However, in the apparatus of Patent Document 1, a collision plate must be provided so as to cross the upper end opening of the hopper, which may increase the flow resistance of exhaust gas. In addition, reinforcement for suppressing vibration noise may be necessary.
 そこで本発明は、排ガスの流通抵抗の増大を抑制しつつ、大粒径の灰粒子の捕集率を向上させることが可能な排ガス処理装置の提供を目的とする。 Therefore, an object of the present invention is to provide an exhaust gas treatment apparatus capable of improving the collection rate of ash particles having a large particle size while suppressing an increase in exhaust gas flow resistance.
 上記目的を達成すべく、本発明は、石炭焚ボイラから排出される排ガス中の窒素酸化物を脱硝装置によって還元する排ガス処理装置であって、ダクトと、ホッパとを備える。ダクトは、略水平方向に延びる水平ダクトと略鉛直方向に延びる垂直ダクトとを有する。水平ダクトの前端は、石炭焚ボイラの排ガス出口に連通し、水平ダクトの後端は、垂直ダクトの下端に連通する。ダクトは、石炭焚ボイラから排出される排ガスを水平ダクトから垂直ダクトの上方へ流通させて脱硝装置に導くダクト内空間を区画する。ホッパは、垂直ダクトの下方に設けられ、ホッパ上端開口を介してダクト内空間と連通する。 In order to achieve the above object, the present invention is an exhaust gas treatment device for reducing nitrogen oxides in exhaust gas discharged from a coal fired boiler by a denitration device, and includes a duct and a hopper. The duct has a horizontal duct extending in a substantially horizontal direction and a vertical duct extending in a substantially vertical direction. The front end of the horizontal duct communicates with the exhaust gas outlet of the coal fired boiler, and the rear end of the horizontal duct communicates with the lower end of the vertical duct. The duct divides the space in the duct that guides the exhaust gas discharged from the coal fired boiler from the horizontal duct to the upper side of the vertical duct to the denitration apparatus. The hopper is provided below the vertical duct, and communicates with the space in the duct through the hopper upper end opening.
 本発明の第1の態様の排ガス処理装置は、複数の衝立状衝突板を備える。複数の衝立状衝突板は、ホッパ上端開口の前端縁から連続して前方に延びてダクト内空間の下方を区画するダクトの底面に固定されて起立し、互いに離間した状態で排ガスの流通方向と交叉する方向に沿って線状に並ぶ。 The exhaust gas treatment apparatus according to the first aspect of the present invention includes a plurality of screen-type collision plates. The plurality of screen-like collision plates are fixed to and raised from the front edge of the hopper upper end opening and fixed to the bottom surface of the duct that divides the space under the duct, and in a state of being separated from each other, Line up along the crossing direction.
 排ガスの流通抵抗の増大を抑制しつつ、大粒径の灰粒子の捕集率を向上させるためには、ダクトの底面に対する衝立状衝突板の起立方向は略垂直が好適であり、ダクトの底面からの衝立状衝突板の突出量(突出高さ)は、水平ダクトの高さ方向の幅の10~15%が好適である。また、衝立状衝突板の位置は、ダクトの底面のうち前後方向の中央よりも後側(ホッパ上端開口側)が好適であり、ホッパ上端開口の前端縁から1~1.5mがさらに好適である。 In order to improve the collection rate of ash particles having a large particle size while suppressing an increase in the flow resistance of exhaust gas, the vertical direction of the screen-like collision plate with respect to the bottom surface of the duct is preferably substantially vertical, and the bottom surface of the duct The projection amount (projection height) of the screen-like collision plate from the top is preferably 10 to 15% of the width in the height direction of the horizontal duct. Further, the position of the screen-like collision plate is preferably the rear side (the hopper upper end opening side) of the duct bottom surface in the front-rear direction, and more preferably 1 to 1.5 m from the front end edge of the hopper upper end opening. is there.
 上記構成では、ダクトの底面に衝立状衝突板を設けるという簡易な構成により、水平ダクトの下部に偏在して排ガスに同伴される大粒径の灰粒子を、衝立状衝突板に衝突させてホッパに捕集することができ、排ガスの流通抵抗の増大を抑制しつつ、大粒径の灰粒子の捕集率を向上させることができる。 In the above-described configuration, the screen-type collision plate is provided on the bottom surface of the duct, so that the ash particles having a large particle size unevenly distributed in the lower part of the horizontal duct and entrained in the exhaust gas are caused to collide with the screen-type collision plate. It is possible to improve the collection rate of ash particles having a large particle size while suppressing an increase in the flow resistance of exhaust gas.
 本発明の第2の態様の排ガス処理装置は、傾斜衝突板を備える。傾斜衝突板は、ホッパ上端開口の後端縁から連続して上方に延びてダクト内空間の後方を区画するダクトの後面に固定され、後面から前下方へ傾斜して延びる。 The exhaust gas treatment apparatus according to the second aspect of the present invention includes an inclined collision plate. The inclined collision plate extends continuously upward from the rear end edge of the hopper upper end opening and is fixed to the rear surface of the duct that defines the rear of the duct internal space, and extends inclined downward from the rear surface.
 排ガスの流通抵抗の増大を抑制しつつ、大粒径の灰粒子の捕集率を向上させるためには、ダクトの後面からの傾斜衝突板の突出量は、垂直ダクトの奥行長さ(前面と後面との距離)の5~15%が好適である。 In order to improve the collection rate of ash particles with a large particle size while suppressing an increase in the flow resistance of the exhaust gas, the protruding amount of the inclined collision plate from the rear surface of the duct is determined by the depth of the vertical duct (front and 5 to 15% of the distance to the rear surface is preferable.
 上記構成では、ダクトの後面に傾斜衝突板を設けるという簡易な構成により、水平ダクトの下部に偏在して排ガスに同伴される大粒径の灰粒子を、傾斜衝突板の下面に衝突させてホッパに捕集することができ、排ガスの流通抵抗の増大を抑制しつつ、大粒径の灰粒子の捕集率を向上させることができる。 In the above configuration, the inclined collision plate is provided on the rear surface of the duct, so that the ash particles having a large particle size unevenly distributed in the lower part of the horizontal duct and accompanying the exhaust gas are caused to collide with the lower surface of the inclined collision plate to It is possible to improve the collection rate of ash particles having a large particle size while suppressing an increase in the flow resistance of exhaust gas.
 本発明の第3の態様は、第1又は第2の態様の排ガス処理装置であって、複数のガイドベーンと、傾斜衝突面とを備える。複数のガイドベーンは、ホッパの上方のダクト内空間に配置され、ダクトに固定されて互いに離間した状態で上下に重なり、水平ダクトから垂直ダクトへ流入する排ガスを鉛直上方へ導く。傾斜衝突面は、複数のガイドベーンのうち最下のガイドベーンの水平ダクト側の端部に固定的に設けられて、後下方へ傾斜して延びる。 A third aspect of the present invention is the exhaust gas treatment apparatus according to the first or second aspect, and includes a plurality of guide vanes and an inclined collision surface. The plurality of guide vanes are disposed in the duct interior space above the hopper, are fixed to the duct and overlap each other in a state of being separated from each other, and guide the exhaust gas flowing from the horizontal duct to the vertical duct vertically upward. The inclined collision surface is fixedly provided at an end portion on the horizontal duct side of the lowermost guide vane among the plurality of guide vanes, and extends obliquely rearward and downward.
 上記構成では、最下のガイドベーンに傾斜衝突面を固定的に設けるという簡易な構成により、水平ダクトの下部に偏在して排ガスに同伴される大粒径の灰粒子を、傾斜衝突面に衝突させてホッパに捕集することができ、大粒径の灰粒子の捕集率がさらに向上する。 In the above configuration, the ash particles with a large particle size that are unevenly distributed in the lower part of the horizontal duct and entrained in the exhaust gas collide with the inclined collision surface by a simple configuration in which the inclined collision surface is fixedly provided on the lowermost guide vane. It can be made to collect by a hopper, and the collection rate of a large particle size ash particle further improves.
 本発明によれば、排ガスの流通抵抗の増大を抑制しつつ、大粒径の灰粒子の捕集率を向上させて、大粒径の灰粒子による脱硝触媒の摩耗を抑制することができる。 According to the present invention, it is possible to improve the collection rate of ash particles having a large particle size while suppressing an increase in the flow resistance of exhaust gas, and to suppress wear of the denitration catalyst due to the ash particles having a large particle size.
本発明の第1実施形態に係る排ガス処理装置の全体構成図である。1 is an overall configuration diagram of an exhaust gas treatment apparatus according to a first embodiment of the present invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 図2の衝立状衝突板の斜視図である。It is a perspective view of the screen-shaped collision board of FIG. 図2の衝立状衝突板の拡大図である。It is an enlarged view of the screen-shaped collision board of FIG. 図2の傾斜衝突板の拡大図である。FIG. 3 is an enlarged view of the inclined collision plate in FIG. 2. 衝立状衝突板の変形例を示す図である。It is a figure which shows the modification of a screen-shaped collision board. 傾斜衝突板の変形例を示す図であり、(a)は2段に配置した例を、(b)は湾曲板状とした例をそれぞれ示す。It is a figure which shows the modification of an inclination collision board, (a) shows the example arrange | positioned in two steps, (b) shows the example made into the curved-plate shape, respectively. 比較例の灰粒子の回収割合を示す図である。It is a figure which shows the collection | recovery ratio of the ash particle of a comparative example. 第1実施例の灰粒子の回収割合を示す図である。It is a figure which shows the collection | recovery ratio of the ash particle of 1st Example. 第2実施例の灰粒子の回収割合を示す図である。It is a figure which shows the collection | recovery ratio of the ash particle of 2nd Example. 第3実施例の灰粒子の回収割合を示す図である。It is a figure which shows the collection | recovery ratio of the ash particle of 3rd Example. 実施例3の排ガスの流れを示す図である。It is a figure which shows the flow of the waste gas of Example 3. 実施例3の大粒径の灰粒子の流れを示す図である。FIG. 4 is a diagram showing a flow of ash particles having a large particle diameter according to Example 3. 本発明の第2実施形態に係るガイドベーンプロテクタを示す図である。It is a figure which shows the guide vane protector which concerns on 2nd Embodiment of this invention. ガイドベーンプロテクタの変形例を示す図である。It is a figure which shows the modification of a guide vane protector.
 本発明の第1実施形態に係る排ガス処理装置について図1~図5を参照して説明する。なお、以下では、水平ダクト8における排ガスの流通方向の上流側及び下流側(図2中の左側及び右側)を、前側及び後側として説明する。 The exhaust gas treatment apparatus according to the first embodiment of the present invention will be described with reference to FIGS. In the following description, the upstream side and the downstream side (the left side and the right side in FIG. 2) of the horizontal duct 8 in the flow direction of the exhaust gas will be described as the front side and the rear side.
 図1に示すように、石炭焚ボイラ1は、ミルなどの粉砕機(図示省略)により粉砕された石炭2を、燃焼用ガス3により燃焼するバーナ4を備えて構成される。石炭焚ボイラ1の火炉内及び排ガス流路内には、水が流通する複数の熱回収伝熱管5が設けられ、石炭焚ボイラ1の下流側の排ガス流路内には、熱回収伝熱管の1つであるエコノマイザ(節炭器)6が設けられている。これにより、石炭焚ボイラ1は発電タービン(図示省略)を駆動する蒸気を発生する。 As shown in FIG. 1, the coal fired boiler 1 includes a burner 4 that burns coal 2 pulverized by a pulverizer (not shown) such as a mill with a combustion gas 3. A plurality of heat recovery heat transfer tubes 5 through which water flows are provided in the furnace and the exhaust gas flow path of the coal fired boiler 1, and in the exhaust gas flow path on the downstream side of the coal fired boiler 1, a heat recovery heat transfer tube is provided. One economizer (a economizer) 6 is provided. As a result, the coal fired boiler 1 generates steam for driving a power generation turbine (not shown).
 エコノマイザ6の下方のボイラ側壁には、石炭焚ボイラ1の排ガス出口7が設けられ、排ガス出口7には、水平ダクト8の前端(上流端)が連通状態で接続されている。水平ダクト8は略水平に延びる矩形筒状であり、水平ダクト8の後端(下流端)は垂直ダクト9に連通状態で接続される。垂直ダクト9は略鉛直方向に延びる矩形筒状であり、垂直ダクト9の上端は脱硝装置10の入口ダクト10aに接続されている。水平ダクト8と垂直ダクト9はダクト17を構成し、ダクト17は、石炭焚ボイラ1で石炭を燃焼して発生した排ガスを、排ガス出口7から水平ダクト8を介して垂直ダクト9の上方へ流通させ脱硝装置10の頂部に導くダクト内空間18を区画する。脱硝装置10の内部には、脱硝触媒10bが充填され、垂直ダクト9の途中に設けられたアンモニア供給ノズル10cから還元剤としてアンモニアが注入される。これにより、脱硝装置10は、排ガス中に含まれる窒素酸化物(NOx)を還元して排出する。脱硝装置10から排出されるNOxが除去された排ガスは、燃焼用ガスを加熱するエアヒータ11、集塵器12、脱硫装置13を経て、煙突14から大気中に放出される。 The exhaust gas outlet 7 of the coal fired boiler 1 is provided on the boiler side wall below the economizer 6, and the front end (upstream end) of the horizontal duct 8 is connected to the exhaust gas outlet 7 in a communicating state. The horizontal duct 8 has a rectangular cylindrical shape extending substantially horizontally, and the rear end (downstream end) of the horizontal duct 8 is connected to the vertical duct 9 in a communicating state. The vertical duct 9 has a rectangular cylindrical shape extending in a substantially vertical direction, and the upper end of the vertical duct 9 is connected to the inlet duct 10 a of the denitration apparatus 10. The horizontal duct 8 and the vertical duct 9 constitute a duct 17, and the duct 17 distributes exhaust gas generated by burning coal in the coal fired boiler 1 from the exhaust gas outlet 7 to the upper side of the vertical duct 9 through the horizontal duct 8. A duct internal space 18 that leads to the top of the denitration apparatus 10 is defined. The denitration apparatus 10 is filled with a denitration catalyst 10b, and ammonia is injected as a reducing agent from an ammonia supply nozzle 10c provided in the middle of the vertical duct 9. Thereby, the denitration apparatus 10 reduces and discharges nitrogen oxides (NOx) contained in the exhaust gas. The exhaust gas from which NOx discharged from the denitration device 10 is removed is discharged from the chimney 14 into the atmosphere via the air heater 11 that heats the combustion gas, the dust collector 12, and the desulfurization device 13.
 垂直ダクト9の略鉛直下方には、矩形状のホッパ上端開口19を介してダクト内空間18(水平ダクト8及び垂直ダクト9)と連通する後ホッパ(ホッパ)15が設けられている。後ホッパ15の上流側内面は、ホッパ上端開口19の前端縁から後下方へ傾斜する。また、石炭焚ボイラ1の下方には、ボイラ内及び水平ダクト8と連通する前ホッパ16が設けられている。前ホッパ16及び後ホッパ15には、排ガス中の灰粒子が落下して捕集される。 A rear hopper (hopper) 15 communicating with the duct internal space 18 (horizontal duct 8 and vertical duct 9) through a rectangular hopper upper end opening 19 is provided substantially vertically below the vertical duct 9. The upstream inner surface of the rear hopper 15 is inclined rearward and downward from the front edge of the hopper upper end opening 19. A front hopper 16 communicating with the inside of the boiler and the horizontal duct 8 is provided below the coal fired boiler 1. In the front hopper 16 and the rear hopper 15, ash particles in the exhaust gas fall and are collected.
 図2に示すように、ダクト内空間18のうち排ガス出口7(図1参照)から略水平に後方へ延びる上流側空間は、天井面22と底面23と1対の側面24(図2には一方のみを図示)とによって区画され、上流側空間の後端から連続して略鉛直上方へ延びる下流側空間は、前面25と後面26と1対の側面27(図2には一方のみを図示)とによって区画される。ダクト内空間18の上流側空間の下方を区画する底面23は、ホッパ上端開口19の前端縁20から連続して前方に延び、ダクト内空間18の下流側空間の後方を区画する後面26は、ホッパ上端開口19の後端縁21から連続して上方に延びる。 As shown in FIG. 2, the upstream space that extends rearward substantially horizontally from the exhaust gas outlet 7 (see FIG. 1) in the duct internal space 18 has a ceiling surface 22, a bottom surface 23, and a pair of side surfaces 24 (FIG. 2). The downstream space which is partitioned by only one side and extends substantially vertically upward from the rear end of the upstream space is a front surface 25, a rear surface 26 and a pair of side surfaces 27 (only one is illustrated in FIG. 2). ). The bottom surface 23 that defines the lower side of the upstream space of the duct internal space 18 extends continuously forward from the front end edge 20 of the hopper upper end opening 19, and the rear surface 26 that defines the rear side of the downstream space of the duct internal space 18 is The hopper upper end opening 19 extends upward continuously from the rear end edge 21.
 後ホッパ15(ホッパ上端開口19)の上方のダクト内空間18には、複数(図2の例では4枚)のガイドベーン28が設けられている。ガイドベーン28は、水平ダクト8の後端近傍から後下方へ膨出するように湾曲して後上方へ延びる曲面板状体であり、互いに離間した状態で上下に重なるように配置されている。各ガイドベーン28の上下の縁部には、棒状又は管状のガイド固定部材29が溶接によって固定され、各ガイド固定部材29の両端は、ダクト17の上流側の1対の側面24又は下流側の1対の側面27に溶接によって固定されている。ガイドベーン28は、ガイド固定部材29の長さ方向(ダクト幅方向)の略全域に亘って設けられている。このように、ガイドベーン28は、各々が後ホッパ15の上方でダクト17に固定され、水平ダクト8から垂直ダクト9へ流入する排ガスを鉛直上方へ導く。 A plurality of (four in the example of FIG. 2) guide vanes 28 are provided in the duct space 18 above the rear hopper 15 (hopper upper end opening 19). The guide vanes 28 are curved plate-like bodies that are curved so as to bulge rearward and downward from the vicinity of the rear end of the horizontal duct 8 and extend rearward and upward, and are disposed so as to overlap each other while being separated from each other. A bar-like or tubular guide fixing member 29 is fixed to the upper and lower edges of each guide vane 28 by welding, and both ends of each guide fixing member 29 are connected to a pair of side surfaces 24 on the upstream side of the duct 17 or on the downstream side. The pair of side surfaces 27 are fixed by welding. The guide vane 28 is provided over substantially the entire region in the length direction (duct width direction) of the guide fixing member 29. Thus, the guide vanes 28 are each fixed to the duct 17 above the rear hopper 15 and guide the exhaust gas flowing from the horizontal duct 8 to the vertical duct 9 vertically upward.
 図2~図4に示すように、ダクト17の底面23には、複数(本実施形態では3つ)の矩形平板状の衝立状衝突板31が設けられている。衝立状衝突板31を設ける底面23は、水平ダクト8の底面であってもよく、水平ダクト8と垂直ダクト9との接続部分のうち垂直ダクト9側の底面であってもよい。 As shown in FIG. 2 to FIG. 4, a plurality of (three in this embodiment) screen-type collision plates 31 having a rectangular flat plate shape are provided on the bottom surface 23 of the duct 17. The bottom surface 23 on which the screen-like collision plate 31 is provided may be the bottom surface of the horizontal duct 8, or may be the bottom surface on the vertical duct 9 side in the connection portion between the horizontal duct 8 and the vertical duct 9.
 複数の衝立状衝突板31は、ダクト17の底面23に固定されて起立し、互いに離間した状態で排ガスの流通方向(前後方向)と交叉する方向に沿って線状に並ぶ。本実施形態の衝立状衝突板31は、排ガスの流通方向と略直交する方向に沿って直線状に並ぶ。衝立状衝突板31は、底面23に棒状又は管状の衝突板固定部材32を溶接し(溶接部33)、衝突板固定部材32の前側に衝立状衝突板31を溶接する(溶接部34)ことによって底面23に固定される。なお、衝立状衝突板31の数は、3つに限定されず任意である。 The plurality of screen-like collision plates 31 are fixed to the bottom surface 23 of the duct 17 and stand up, and are arranged in a line along the direction intersecting with the exhaust gas flow direction (front-rear direction) while being separated from each other. The screen-like collision plates 31 of the present embodiment are arranged in a straight line along a direction substantially orthogonal to the exhaust gas flow direction. The screen-like collision plate 31 is formed by welding a rod-like or tubular collision plate fixing member 32 to the bottom surface 23 (welding portion 33) and welding the screen-like collision plate 31 to the front side of the collision plate fixing member 32 (welding portion 34). To the bottom surface 23. The number of the screen-like collision plates 31 is not limited to three and is arbitrary.
 排ガスの流通抵抗の増大を抑制しつつ、後ホッパ15による大粒径の灰粒子の捕集率を向上させるため、衝立状衝突板31は、底面23に対して略垂直に起立し、底面23からの衝立状衝突板31の突出量(突出高さ)H1は、水平ダクト8の高さ方向の幅(底面23から天井面22までの鉛直方向の距離)H2の10~15%に設定され、衝立状衝突板31の前面の位置L1は、底面23のうち前後方向の中央よりも後側(ホッパ上端開口19側)であって、ホッパ上端開口19の前端縁20から1~1.5mに設定されている。 In order to improve the collection rate of ash particles having a large particle size by the rear hopper 15 while suppressing an increase in the flow resistance of the exhaust gas, the screen-like collision plate 31 stands substantially perpendicular to the bottom surface 23, and the bottom surface 23 The protruding amount (projecting height) H1 of the screen-like collision plate 31 from 10 is set to 10 to 15% of the width in the height direction of the horizontal duct 8 (the vertical distance from the bottom surface 23 to the ceiling surface 22) H2. The front-side position L1 of the screen-like collision plate 31 is the rear side (the hopper upper end opening 19 side) of the bottom surface 23 in the front-rear direction, and is 1 to 1.5 m from the front end edge 20 of the hopper upper end opening 19. Is set to
 図4に二点鎖線で示すように前下方へ傾斜した衝立状衝突板31Aでは、衝立状衝突板31Aと底面23との間の空間35に灰粒子が滞留して排ガスの流通抵抗となり易く、図4に破線で示すように後上方へ傾斜した衝立状衝突板31Bでは、後ホッパ15から離れるように衝立状衝突板31Bの上面が灰粒子を上方へ案内するため、衝立状衝突板31の起立方向は、底面23に対して略垂直が好適である。また、衝立状衝突板31の突出高さH1が過大である(高すぎる)と排ガスの流通抵抗が増大し、過小である(低すぎる)と大粒径の灰粒子の捕集効果があまり向上しないため、衝立状衝突板31の突出高さH1は上記範囲が好適である。 In the screen-like collision plate 31A inclined forward and downward as shown by a two-dot chain line in FIG. 4, ash particles are likely to stay in the space 35 between the screen-like collision plate 31A and the bottom surface 23, thereby causing a flow resistance of the exhaust gas. In the screen-like collision plate 31B inclined rearward and upward as shown by a broken line in FIG. 4, the upper surface of the screen-like collision plate 31B guides the ash particles upward away from the rear hopper 15, so The standing direction is preferably substantially perpendicular to the bottom surface 23. Further, if the protruding height H1 of the screen-like collision plate 31 is excessively high (too high), the exhaust gas flow resistance increases, and if it is excessively low (too low), the effect of collecting large-sized ash particles is greatly improved. Therefore, the projection height H1 of the screen-like collision plate 31 is preferably in the above range.
 また、複数の衝立状衝突板31のうち両端に位置する衝立状衝突板31は、ダクト17の側面24から離間して配置される。衝立状衝突板31が側面24に接触していると、衝立状衝突板31と側面24との間に灰粒子が滞留して排ガスの流通抵抗となるためである。 Further, the screen-like collision plates 31 located at both ends of the plurality of screen-like collision plates 31 are arranged apart from the side surface 24 of the duct 17. This is because, when the screen-like collision plate 31 is in contact with the side surface 24, the ash particles stay between the screen-like collision plate 31 and the side surface 24, thereby providing a flow resistance of the exhaust gas.
 図2及び図5に示すように、ダクト17の後面26の下部(垂直ダクト9の後面の下部)には、矩形平板状の傾斜衝突板36が固定されている。傾斜衝突板36は、後面26に棒状又は管状の衝突板固定部材37を溶接し(溶接部38)、後面26及び衝突板固定部材37に傾斜衝突板36を溶接する(溶接部39)ことによって後面26に固定される。傾斜衝突板36は、ガイドベーン28の後方でダクト幅方向の略全域に亘って配置され、後面26から前下方へ傾斜して延びる。 2 and 5, a rectangular flat inclined collision plate 36 is fixed to the lower portion of the rear surface 26 of the duct 17 (lower portion of the rear surface of the vertical duct 9). The inclined collision plate 36 is formed by welding a rod-like or tubular collision plate fixing member 37 to the rear surface 26 (welding portion 38) and welding the inclined collision plate 36 to the rear surface 26 and the collision plate fixing member 37 (welding portion 39). Fixed to the rear face 26. The inclined collision plate 36 is disposed over the substantially entire area in the duct width direction behind the guide vane 28 and extends from the rear surface 26 to be inclined forward and downward.
 排ガスの流通抵抗の増大を抑制しつつ、後ホッパ15による大粒径の灰粒子の捕集率を向上させるため、ダクト17の後面26からの傾斜衝突板36の突出量L3は、垂直ダクト9の奥行長さ(前面25と後面26との距離)L4の5~15%に設定されている。 In order to improve the collection rate of ash particles having a large particle size by the rear hopper 15 while suppressing an increase in the flow resistance of the exhaust gas, the protruding amount L3 of the inclined collision plate 36 from the rear surface 26 of the duct 17 is the vertical duct 9. Is set to 5 to 15% of L4 (distance between front surface 25 and rear surface 26) L4.
 図5に二点鎖線で示すように略水平に突出した傾斜衝突板36Aでは、上面に灰粒子が溜まり、上昇流による傾斜衝突板36Aの振動に対する補強が必要となり、反対に、図5に破線で示すように過度に傾斜して後面26からの突出量が小さい傾斜衝突板36Bでは、灰粒子が傾斜衝突板36Bに接触し難いため、傾斜衝突板36を上記突出量の範囲内で斜め下方へ傾斜させることが好適である。 As shown by a two-dot chain line in FIG. 5, the inclined collision plate 36A that protrudes substantially horizontally accumulates ash particles on the upper surface, and it is necessary to reinforce the vibration of the inclined collision plate 36A caused by the upward flow. In the inclined collision plate 36B that is excessively inclined and has a small protrusion amount from the rear surface 26, the ash particles are difficult to contact the inclined collision plate 36B. It is preferable to incline toward.
 なお、本実施形態では衝立状衝突板31を1列に配置したが、図6に示すように衝立状衝突板31を複数列(図6の例では2列)に千鳥状に配置してもよい。 In this embodiment, the screen-like collision plates 31 are arranged in one row. However, as shown in FIG. 6, the screen-like collision plates 31 may be arranged in a plurality of rows (two rows in the example of FIG. 6) in a staggered manner. Good.
 また、本実施形態では平板状の傾斜衝突板36を一段に配置したが、図7(a)に示すように傾斜衝突板36を異なる高さで複数段(図7(a)の例では2段)に配置してもよく、さらに後面26からの傾斜衝突板36の突出量を各段間(例えば2段の場合に上段と下段)で相違させてもよい。また、図7(b)に示すように、上面が凸となる湾曲板状の傾斜衝突板40としてもよい。 Further, in the present embodiment, the flat inclined collision plates 36 are arranged in one stage. However, as shown in FIG. 7A, the inclined collision plates 36 are arranged in a plurality of stages at different heights (2 in the example of FIG. 7A). Further, the protruding amount of the inclined collision plate 36 from the rear surface 26 may be different between the respective stages (for example, in the case of two stages, the upper stage and the lower stage). Moreover, as shown in FIG.7 (b), it is good also as the curved collision plate-shaped inclined collision board 40 from which an upper surface becomes convex.
 次に、灰分が多く、微粉砕することが困難な品質の石炭2を使用して、石炭焚ボイラ1を運転する場合を説明する。 Next, a case where the coal fired boiler 1 is operated using coal 2 having a high ash content and difficult to pulverize will be described.
 石炭焚ボイラ1の運転では、石炭焚ボイラ1に石炭2と燃焼用ガス(空気)3をバーナ4に供給して石炭を燃焼する。石炭の燃焼反応によって発生した熱により、熱回収伝熱管5やエコノマイザ6等を流通する水を加熱して蒸気を発生させ、タービン発電機により発電する。 In the operation of the coal fired boiler 1, the coal fired boiler 1 is supplied with coal 2 and combustion gas (air) 3 to the burner 4 to burn the coal. The heat generated by the combustion reaction of coal heats the water flowing through the heat recovery heat transfer pipe 5, the economizer 6 and the like to generate steam, and the turbine generator generates power.
 石炭焚ボイラ1で燃焼する石炭2は、灰分が多く、微粉砕することが困難な品質であるため、排ガスには粒径(直径)が100μm以上の灰が多量に含まれ、石炭2の燃焼により生じた排ガスは、排ガス出口7から排出される。排出された排ガス中の大粒径(直径100μm以上)の灰粒子は、水平ダクト8を流通する間に水平ダクト8の底部に沈み、底部に偏在して流れる。そして、水平ダクト8の下部に偏在して排ガスに同伴された大粒径の灰粒子の一部は、後ホッパ15の上流でダクト17の底面23から起立する衝立状衝突板31に衝突して流速が低下し、後ホッパ15に落下する。また、ダクト17の底面23上から後ホッパ15に落下せず、ガイドベーン28に案内されて垂直ダクト9内を上方へ向かう大粒径の灰粒子の一部は、傾斜衝突板36に衝突して後ホッパ15に落下する。このように、排ガス中の大粒径の灰粒子は、衝立状衝突板31及び傾斜衝突板36によって効率良く後ホッパ15に捕集され、排ガス中から大部分が除去される。 Since the coal 2 that burns in the coal fired boiler 1 has a high ash content and is difficult to pulverize, the exhaust gas contains a large amount of ash having a particle size (diameter) of 100 μm or more. The exhaust gas generated by is discharged from the exhaust gas outlet 7. The ash particles having a large particle size (diameter of 100 μm or more) in the discharged exhaust gas sink to the bottom of the horizontal duct 8 while flowing through the horizontal duct 8, and flow unevenly at the bottom. A part of the large ash particles unevenly distributed in the lower part of the horizontal duct 8 and entrained in the exhaust gas collide with the screen-like collision plate 31 rising from the bottom surface 23 of the duct 17 upstream of the rear hopper 15. The flow velocity decreases and falls to the rear hopper 15. In addition, some of the ash particles having a large particle size that do not fall from the bottom surface 23 of the duct 17 to the rear hopper 15 but are guided by the guide vanes 28 and move upward in the vertical duct 9 collide with the inclined collision plate 36. And then falls to the rear hopper 15. As described above, the ash particles having a large particle size in the exhaust gas are efficiently collected by the rear hopper 15 by the screen-type collision plate 31 and the inclined collision plate 36, and most of the ash particles are removed from the exhaust gas.
 大粒径の灰粒子の大部分が除去された排ガスは、アンモニア供給ノズル10cからアンモニアが供給された後、脱硝触媒10bに導かれ、排ガス中のNOxは、脱硝触媒10bを通過する間に還元されて窒素と水に分解される。上述のように、排ガス中の大粒径の灰粒子は、脱硝触媒10bを通過する前にその大部分が除去されているので、脱硝触媒10bの摩耗を抑制することができる。そして、脱硝触媒10bを通過した排ガスは、エアヒータ11で燃焼用空気と熱交換して低温となり、集塵器12で灰粒子が除去され、脱硫装置13で硫黄酸化物が除去された後、煙突14から大気中に放出される。 The exhaust gas from which most of the ash particles having a large particle size have been removed is supplied with ammonia from the ammonia supply nozzle 10c and then guided to the denitration catalyst 10b. NOx in the exhaust gas is reduced while passing through the denitration catalyst 10b. It is decomposed into nitrogen and water. As described above, since most of the ash particles having a large particle size in the exhaust gas are removed before passing through the denitration catalyst 10b, wear of the denitration catalyst 10b can be suppressed. The exhaust gas that has passed through the denitration catalyst 10b is subjected to heat exchange with the combustion air by the air heater 11 to become a low temperature, ash particles are removed by the dust collector 12, and sulfur oxides are removed by the desulfurizer 13, and then the chimney 14 is released into the atmosphere.
 次に、衝立状衝突板31及び傾斜衝突板36による大粒径の灰粒子の捕集効果について、図8~図13を参照して説明する。なお、図8~図11では、前ホッパ16をホッパ1と表記し、後ホッパ15をホッパ2と表記している。 Next, the effect of collecting large-sized ash particles by the screen-like collision plate 31 and the inclined collision plate 36 will be described with reference to FIGS. 8 to 11, the front hopper 16 is expressed as the hopper 1, and the rear hopper 15 is expressed as the hopper 2.
 図8~図11は、前ホッパ(ホッパ1)16と後ホッパ(ホッパ2)15による粒子径(37μm、65μm、115μm、200μm、360μm)毎の灰粒子の回収割合(捕集率%)を解析により求めた結果である。図8(比較例1)は、衝立状衝突板31及び傾斜衝突板36の双方を設けていない場合、図9(実施例1)は、傾斜衝突板36を設けず、1列の衝立状衝突板31を設けた場合、図10(実施例2)は、衝立状衝突板31を設けず、平板状1段の傾斜衝突板36を設けた場合、図11(実施例3)は、1列の衝立状衝突板31と平板状1段の傾斜衝突板36とを設けた場合の各結果である。また、図12は、実施例3(1列の衝立状衝突板31と平板状1段の傾斜衝突板36とを設けた)場合の排ガス出口7から脱硝触媒10bまでの排ガスの流れを解析した結果であり、図13は、実施例3の場合の排ガス出口7から脱硝触媒10bまでの大粒径(360μm)の灰粒子の流れを解析した結果である。 8 to 11 show the collection ratio (collection rate%) of ash particles for each particle diameter (37 μm, 65 μm, 115 μm, 200 μm, 360 μm) by the front hopper (hopper 1) 16 and the rear hopper (hopper 2) 15. It is the result obtained by analysis. FIG. 8 (Comparative Example 1) shows that when both the screen-like collision plate 31 and the inclined collision plate 36 are not provided, FIG. 9 (Example 1) does not provide the inclined collision plate 36, and one row of screen-like collisions. When the plate 31 is provided, FIG. 10 (Embodiment 2) is not provided with the screen-like collision plate 31, but when the flat plate-shaped inclined collision plate 36 is provided, FIG. 11 (Embodiment 3) is one row. These results are obtained when the screen-like collision plate 31 and the flat plate-shaped inclined collision plate 36 are provided. FIG. 12 shows the flow of exhaust gas from the exhaust gas outlet 7 to the denitration catalyst 10b in Example 3 (provided with one row of partitioning collision plates 31 and a flat plate-shaped inclined collision plate 36). FIG. 13 shows the result of analyzing the flow of ash particles having a large particle size (360 μm) from the exhaust gas outlet 7 to the denitration catalyst 10b in Example 3.
 図8~図11から、衝立状衝突板31や傾斜衝突板36を設けることによって後ホッパ15による大粒径の灰粒子の捕集率が向上すること、及び衝立状衝突板31のみ又は傾斜衝突板36のみを設けた場合であっても捕集率が向上することが判る。また、図12及び図13から、排ガスの流れの乱れ(流通抵抗の増大)を抑制しつつ、後ホッパ15によって大粒径の灰粒子を良好に捕集可能であることが判る。 From FIG. 8 to FIG. 11, the collection rate of the large ash particles by the rear hopper 15 is improved by providing the screen-like collision plate 31 and the inclined collision plate 36, and only the screen-like collision plate 31 or the inclined collision. It can be seen that the collection rate is improved even when only the plate 36 is provided. 12 and 13 that the ash particles having a large particle size can be well collected by the rear hopper 15 while suppressing the disturbance of the flow of exhaust gas (increase in the flow resistance).
 以上説明したように、本実施形態によれば、排ガスの流通抵抗の増大を抑制しつつ、大粒径の灰粒子の捕集率を向上させることができる。 As described above, according to this embodiment, it is possible to improve the collection rate of ash particles having a large particle size while suppressing an increase in the flow resistance of exhaust gas.
 なお、図1に示す実施形態では衝立状衝突板31及び傾斜衝突板36の双方を設ける場合について説明したが、これらの何れか一方のみを設けてもよい。 In the embodiment shown in FIG. 1, the case where both the partition-like collision plate 31 and the inclined collision plate 36 are provided has been described, but only one of them may be provided.
 次に、本発明の第2実施形態について、図14を参照して説明する。本実施形態は、第1実施形態に傾斜衝突面41を追加したものであり、他の構成は第1実施形態と共通するため、第1実施形態と重複する説明は省略する。 Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, an inclined collision surface 41 is added to the first embodiment, and other configurations are the same as those in the first embodiment, and therefore, the description overlapping with the first embodiment is omitted.
 図14に示すように、ガイドベーン28の下端部(水平ダクト8側の端部)には、ダクト幅方向の略全域に亘って配置されてガイド固定部材29の前方及び下方をカバーするガイドベーンプロテクタ42が固定されている。ガイドベーンプロテクタ42は、L状断面の板材であり、ガイド固定部材29の前方で前下方へ傾斜する平板状のプロテクタ前板部43と、プロテクタ前板部43の下端縁から後下方へ傾斜して延びる平板状のプロテクタ下板部44とを一体的に有する。プロテクタ下板部44は、サポート45を介してガイドベーン28に固定される。 As shown in FIG. 14, the guide vane 28 is disposed at the lower end portion (the end portion on the horizontal duct 8 side) of the guide vane 28 over substantially the entire area in the duct width direction and covers the front and lower sides of the guide fixing member 29. The protector 42 is fixed. The guide vane protector 42 is a plate member having an L-shaped cross section, and is inclined in a rearward and downward direction from a flat plate-shaped protector front plate portion 43 that is inclined forward and downward in front of the guide fixing member 29 and a lower end edge of the protector front plate portion 43. And a flat plate-like protector lower plate portion 44 extending integrally. The protector lower plate portion 44 is fixed to the guide vane 28 via the support 45.
 複数のガイドベーン28のうち最下のガイドベーン28A(図2参照)に固定されたガイドベーンプロテクタ42のプロテクタ下板部44には、サポート45との接合位置を越えて後下方へ延びるプロテクタ延長部46が設けられている。プロテクタ延長部46を含めたプロテクタ下板部44の下面(前面)は、最下のガイドベーン28Aの下端部に固定的に設けられて後下方へ傾斜して延びる傾斜衝突面41を構成する。 The protector lower plate portion 44 of the guide vane protector 42 fixed to the lowermost guide vane 28A (see FIG. 2) among the plurality of guide vanes 28 is provided with a protector extension extending rearward and downward beyond the joint position with the support 45. A portion 46 is provided. The lower surface (front surface) of the protector lower plate portion 44 including the protector extension 46 constitutes an inclined collision surface 41 that is fixedly provided at the lower end portion of the lowermost guide vane 28A and is inclined rearward and downward.
 なお、ガイドベーンプロテクタ42の形状は上記に限定されず、他の形状(例えば図15に示すように、ガイド固定部材29の前側の外面に沿って湾曲する半円弧状のプロテクタ前板部47と、プロテクタ前板部47の下端縁から後下方へ傾斜して延びる平板状のプロテクタ下板部44とを一体的に有するJ状断面)であってもよい。 The shape of the guide vane protector 42 is not limited to the above, and other shapes (for example, as shown in FIG. 15, a semicircular arc shaped protector front plate portion 47 curved along the front outer surface of the guide fixing member 29 and Further, it may be a J-shaped cross section integrally including a flat plate-like protector lower plate portion 44 extending obliquely downward and rearward from the lower end edge of the protector front plate portion 47.
 本実施形態によれば、最下のガイドベーン28Aの下端部に傾斜衝突面41を固定的に設けるという簡易な構成により、水平ダクト8の下部に偏在して排ガスに同伴される大粒径の灰粒子を、傾斜衝突面41に衝突させて後ホッパ15に捕集することができ、大粒径の灰粒子の捕集率がさらに向上する。 According to this embodiment, with a simple configuration in which the inclined collision surface 41 is fixedly provided at the lower end of the lowermost guide vane 28A, the large particle size is unevenly distributed in the lower part of the horizontal duct 8 and is accompanied by the exhaust gas. The ash particles can be collided with the inclined collision surface 41 and collected by the rear hopper 15, and the collection rate of the large ash particles is further improved.
 なお、本発明は、一例として説明した上述の実施形態及び変形例に限定されることはなく、上述の実施形態等以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 In addition, this invention is not limited to the above-mentioned embodiment and modification which were demonstrated as an example, If it is the range which does not deviate from the technical idea which concerns on this invention also except the above-mentioned embodiment etc. Various changes can be made according to the design and the like.
1:石炭焚ボイラ
2:石炭
7:排ガス出口
8:水平ダクト
9:垂直ダクト
15:後ホッパ(ホッパ)
16:前ホッパ
17:ダクト
18:ダクト内空間
19:ホッパ上端開口
20:ホッパ上端開口の前端縁
21:ホッパ上端開口の後端縁
23:ダクトの底面
26:ダクトの後面
28:ガイドベーン
28A:最下のガイドベーン
31:衝立状衝突板
36,40:傾斜衝突板
41:傾斜衝突面
1: Coal fired boiler 2: Coal 7: Exhaust gas outlet 8: Horizontal duct 9: Vertical duct 15: Rear hopper (hopper)
16: Front hopper 17: Duct 18: Duct space 19: Hopper upper end opening 20: Front end edge of hopper upper end opening 21: Rear end edge of hopper upper end opening 23: Duct bottom face 26: Duct rear face 28: Guide vane 28A: Bottom guide vane 31: screen-like collision plate 36, 40: inclined collision plate 41: inclined collision surface

Claims (3)

  1.  石炭焚ボイラから排出される排ガス中の窒素酸化物を脱硝装置によって還元する排ガス処理装置であって、
     略水平方向に延びる水平ダクトと略鉛直方向に延びる垂直ダクトとを有し、前記水平ダクトの前端が前記石炭焚ボイラの排ガス出口に連通し、前記水平ダクトの後端が前記垂直ダクトの下端に連通し、前記石炭焚ボイラから排出される排ガスを前記水平ダクトから前記垂直ダクトの上方へ流通させて前記脱硝装置に導くダクト内空間を区画するダクトと、
     前記垂直ダクトの下方に設けられ、ホッパ上端開口を介して前記ダクト内空間と連通するホッパと、
     前記ホッパ上端開口の前端縁から連続して前方に延びて前記ダクト内空間の下方を区画する前記ダクトの底面に固定されて起立し、互いに離間した状態で排ガスの流通方向と交叉する方向に沿って線状に並ぶ複数の衝立状衝突板と、を備える
     ことを特徴とする排ガス処理装置。
    An exhaust gas treatment device for reducing nitrogen oxides in exhaust gas discharged from a coal fired boiler by a denitration device,
    A horizontal duct extending in a substantially horizontal direction and a vertical duct extending in a substantially vertical direction, wherein a front end of the horizontal duct communicates with an exhaust gas outlet of the coal fired boiler, and a rear end of the horizontal duct is at a lower end of the vertical duct A duct that divides a space in the duct that communicates the exhaust gas discharged from the coal fired boiler from above the horizontal duct to above the vertical duct to guide the denitration device;
    A hopper provided below the vertical duct and communicating with the space in the duct through a hopper upper end opening;
    Continuously extending from the front edge of the upper end opening of the hopper and standing uprightly fixed to the bottom surface of the duct that defines the lower part of the duct interior space, along the direction intersecting with the flow direction of the exhaust gas while being separated from each other An exhaust gas treatment apparatus comprising: a plurality of screen-like collision plates arranged in a line.
  2.  石炭焚ボイラから排出される排ガス中の窒素酸化物を脱硝装置によって還元する排ガス処理装置であって、
     略水平方向に延びる水平ダクトと略鉛直方向に延びる垂直ダクトとを有し、前記水平ダクトの前端が前記石炭焚ボイラの排ガス出口に連通し、前記水平ダクトの後端が前記垂直ダクトの下端に連通し、前記石炭焚ボイラから排出される排ガスを前記水平ダクトから前記垂直ダクトの上方へ流通させて前記脱硝装置に導くダクト内空間を区画するダクトと、
     前記垂直ダクトの下方に設けられ、ホッパ上端開口を介して前記ダクト内空間と連通するホッパと、
     前記ホッパ上端開口の後端縁から連続して上方に延びて前記ダクト内空間の後方を区画する前記ダクトの後面に固定され、前記後面から前下方へ傾斜して延びる傾斜衝突板と、を備える
     ことを特徴とする排ガス処理装置。
    An exhaust gas treatment device for reducing nitrogen oxides in exhaust gas discharged from a coal fired boiler by a denitration device,
    A horizontal duct extending in a substantially horizontal direction and a vertical duct extending in a substantially vertical direction, wherein a front end of the horizontal duct communicates with an exhaust gas outlet of the coal fired boiler, and a rear end of the horizontal duct is at a lower end of the vertical duct A duct that divides a space in the duct that communicates the exhaust gas discharged from the coal fired boiler from above the horizontal duct to above the vertical duct to guide the denitration device;
    A hopper provided below the vertical duct and communicating with the space in the duct through a hopper upper end opening;
    An inclined collision plate that extends continuously upward from a rear end edge of the hopper upper end opening and is fixed to a rear surface of the duct that divides the rear of the duct internal space, and extends obliquely forward and downward from the rear surface. An exhaust gas treatment apparatus characterized by that.
  3.  請求項1又は請求項2に記載の排ガス処理装置であって、
     前記ホッパの上方の前記ダクト内空間に配置され、前記ダクトに固定されて互いに離間した状態で上下に重なり、前記水平ダクトから前記垂直ダクトへ流入する排ガスを鉛直上方へ導く複数のガイドベーンと、
     前記複数のガイドベーンのうち最下のガイドベーンの前記水平ダクト側の端部に固定的に設けられて、後下方へ傾斜して延びる傾斜衝突面と、を備える
     ことを特徴とする排ガス処理装置。
    The exhaust gas treatment apparatus according to claim 1 or 2,
    A plurality of guide vanes disposed in the duct space above the hopper, fixed to the duct and vertically overlapped with each other, and guiding the exhaust gas flowing from the horizontal duct to the vertical duct vertically upward;
    An exhaust gas treatment apparatus, comprising: an inclined collision surface fixedly provided at an end of the lowermost guide vane on the horizontal duct side of the plurality of guide vanes and extending obliquely rearward and downward. .
PCT/JP2019/007658 2018-02-28 2019-02-27 Exhaust gas treatment device WO2019168059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980015852.9A CN111818986A (en) 2018-02-28 2019-02-27 Exhaust gas treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018035172A JP2019147142A (en) 2018-02-28 2018-02-28 Exhaust gas treatment device
JP2018-035172 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168059A1 true WO2019168059A1 (en) 2019-09-06

Family

ID=67806209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007658 WO2019168059A1 (en) 2018-02-28 2019-02-27 Exhaust gas treatment device

Country Status (3)

Country Link
JP (1) JP2019147142A (en)
CN (1) CN111818986A (en)
WO (1) WO2019168059A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053218A1 (en) 2021-09-28 2023-04-06 三菱重工業株式会社 Denitration device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295415A (en) * 1988-09-30 1990-04-06 Babcock Hitachi Kk Waste gas denitration apparatus
JPH0525134U (en) * 1991-09-05 1993-04-02 石川島播磨重工業株式会社 Hotsupa
WO2005114053A1 (en) * 2004-05-21 2005-12-01 Alstom Technology Ltd. Method and device for the separation of dust particles
JP2013104641A (en) * 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Exhaust gas treatment device
JP2013103214A (en) * 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
EP3064833A1 (en) * 2015-03-06 2016-09-07 Doosan Heavy Industries & Construction Co., Ltd. Apparatus for collecting large particle ash in thermal power plant
JP2016198701A (en) * 2015-04-08 2016-12-01 三菱日立パワーシステムズ株式会社 Exhaust gas treatment apparatus
CN106268049A (en) * 2016-08-12 2017-01-04 东南大学 A kind of SCR denitration pre-dedusting device and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109154C2 (en) * 1981-02-05 1983-12-29 Trützschler GmbH & Co KG, 4050 Mönchengladbach Device for separating foreign bodies, in particular heavy parts such as metal, wood and cardboard parts or the like. made of cotton fiber flakes
JP2009202142A (en) * 2008-02-29 2009-09-10 Mhi Environment Engineering Co Ltd Dust removal apparatus
JP5743054B2 (en) * 2010-11-29 2015-07-01 三菱日立パワーシステムズ株式会社 Exhaust gas treatment equipment
KR101294240B1 (en) * 2011-09-30 2013-08-07 한국전력공사 The Large particle ash capture system for coal-fired power plant boiler
CN102989315A (en) * 2012-12-12 2013-03-27 山东大学 Deashing device for SCR flue gas denitration system
JP6385266B2 (en) * 2014-12-12 2018-09-05 三菱日立パワーシステムズ株式会社 Exhaust duct and boiler
JP6689523B2 (en) * 2016-02-15 2020-04-28 三菱日立パワーシステムズインダストリー株式会社 Solid particle recovery equipment and fluidized bed boiler equipment
CN105944458A (en) * 2016-05-23 2016-09-21 北京烨晶科技有限公司 Smoke dedusting device and method
JP6727960B2 (en) * 2016-07-06 2020-07-22 三菱日立パワーシステムズ株式会社 Duct structure, boiler and method for removing solid particles from gas-solid two-phase flow
CN107023985A (en) * 2017-05-16 2017-08-08 无锡市翱宇特新科技发展有限公司 A kind of high-efficient hot air furnace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295415A (en) * 1988-09-30 1990-04-06 Babcock Hitachi Kk Waste gas denitration apparatus
JPH0525134U (en) * 1991-09-05 1993-04-02 石川島播磨重工業株式会社 Hotsupa
WO2005114053A1 (en) * 2004-05-21 2005-12-01 Alstom Technology Ltd. Method and device for the separation of dust particles
JP2013104641A (en) * 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Exhaust gas treatment device
JP2013103214A (en) * 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
EP3064833A1 (en) * 2015-03-06 2016-09-07 Doosan Heavy Industries & Construction Co., Ltd. Apparatus for collecting large particle ash in thermal power plant
JP2016198701A (en) * 2015-04-08 2016-12-01 三菱日立パワーシステムズ株式会社 Exhaust gas treatment apparatus
CN106268049A (en) * 2016-08-12 2017-01-04 东南大学 A kind of SCR denitration pre-dedusting device and method

Also Published As

Publication number Publication date
CN111818986A (en) 2020-10-23
JP2019147142A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
WO2016092930A1 (en) Exhaust duct and boiler
TWI605225B (en) Steam boiler
WO2013073393A1 (en) Exhaust gas treatment device
WO2015098411A1 (en) Exhaust duct and boiler
KR102126663B1 (en) Exhaust gas treatment device
WO2019168059A1 (en) Exhaust gas treatment device
JP5762255B2 (en) Exhaust gas treatment equipment
TWI778501B (en) Denitrification device and boiler
JP7391651B2 (en) Denitrification equipment, boiler system, and installation method of denitrification equipment
JP6785046B2 (en) How to remove exhaust ducts, boilers and solid particles
KR101839624B1 (en) Apparatus for Reducing Harmful Material and Circulating Fluidized Bed Boiler having the same
JP6845711B2 (en) Boiler duct structure, method for reducing solid particles contained in boiler and solid gas two-phase flow
WO2013114722A1 (en) Exhaust gas treatment device
KR100635764B1 (en) Apparatus for preventing the heat exchange tube against erosion occurred in solid fuel fired system such as solid fuel fired incineration unit or boiler furnace using particle separation device
JP2009150608A (en) Boiler
JP5144447B2 (en) Boiler equipment
JP6814727B2 (en) boiler
JP2014074515A (en) Non-catalytic denitrification method
EP4047271A1 (en) Incineration plant
KR20220007856A (en) Fluid bed device
JPH05172301A (en) Pressurized circulating fluidized bed boiler
JP2018200139A (en) Hopper structure, air exhaustion duct, and boiler
KR20200037291A (en) Coal nozzle assembly for steam generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760107

Country of ref document: EP

Kind code of ref document: A1