JP2014074515A - Non-catalytic denitrification method - Google Patents

Non-catalytic denitrification method Download PDF

Info

Publication number
JP2014074515A
JP2014074515A JP2012220972A JP2012220972A JP2014074515A JP 2014074515 A JP2014074515 A JP 2014074515A JP 2012220972 A JP2012220972 A JP 2012220972A JP 2012220972 A JP2012220972 A JP 2012220972A JP 2014074515 A JP2014074515 A JP 2014074515A
Authority
JP
Japan
Prior art keywords
reducing agent
supply nozzle
exhaust gas
combustion exhaust
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012220972A
Other languages
Japanese (ja)
Inventor
Michitaka Furubayashi
通孝 古林
Hanako Ito
華子 伊藤
Yuji Shiraishi
裕司 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2012220972A priority Critical patent/JP2014074515A/en
Priority to CN201310452380.8A priority patent/CN103706240A/en
Publication of JP2014074515A publication Critical patent/JP2014074515A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-catalytic denitrification method and non-catalytic denitrification equipment capable of efficiently performing decomposition of nitrogen oxides (NOx) contained in combustion exhaust gas and always obtaining a high denitrification rate while suppressing leak ammonia concentration.SOLUTION: In a non-catalytic denitrification method, reductant and carrying medium are blown from a reductant blowing nozzle 21 into a combustion exhaust gas in the temperature range of 750 to 1000°C in a boiler 10 of an incinerator 3 and nitrogen oxides in exhaust gas are reduced and removed. Therein, at least one reductant agitation gas selected from among a group consisting of air, exhaust gas of incinerator after flow and vapor is blown into the combustion exhaust gas in the temperature range of 750 to 1000°C in the boiler 10 of the incinerator from a reductant agitation gas supply nozzle 22. The reductant agitation gas supply nozzle 22 is preferably installed within the range of 500 mm of the downstream side of combustion exhaust gas flow from 300 mm of the upstream side of the combustion exhaust gas flow around the reductant supply nozzle 21.

Description

本発明は、燃焼排ガス中に含まれる窒素酸化物(NOx)の分解を効率よく行うことができる無触媒脱硝方法に関する。   The present invention relates to a non-catalytic denitration method capable of efficiently decomposing nitrogen oxides (NOx) contained in combustion exhaust gas.

従来、燃焼により排出される排ガス中の窒素酸化物(NOx)の除去にアンモニア水、および分解によってアンモニアを発生する尿素水を用いる無触媒脱硝法が利用されている。   Conventionally, a non-catalytic denitration method using ammonia water and urea water that generates ammonia by decomposition is used to remove nitrogen oxides (NOx) in exhaust gas discharged by combustion.

燃焼排ガス中に含まれる窒素酸化物を分解する無触媒脱硝法では、還元剤であるアンモニア水や尿素水を吹き込む位置のガス温度は、アンモニアの反応効率、熱による分解により800 〜950℃程度が最適である。しかしながら、還元剤を吹込む計画点に対し、高負荷運転時にはボイラ内のガス温度が上昇する。また、低負荷運転時にはボイラ内のガス温度が低下する。その結果、脱硝効率が低下することになる。   In the non-catalytic denitration method for decomposing nitrogen oxides contained in combustion exhaust gas, the gas temperature at the position where ammonia water or urea water as a reducing agent is blown is about 800 to 950 ° C. due to ammonia reaction efficiency and heat decomposition. Is optimal. However, the gas temperature in the boiler rises at the time of high load operation with respect to the planned point where the reducing agent is injected. Moreover, the gas temperature in a boiler falls at the time of low load operation. As a result, the denitration efficiency is reduced.

下記の特許文献1には、ボイラ内ガスの無触媒脱硝方法および無触媒脱硝装置が開示されており、ボイラ内ガスを、脱硝剤として尿素水あるいはアンモニア水を使用して脱硝する無触媒脱硝方法において、ボイラ内にボイラ内のガス温度が異なる複数箇所に配設された、ボイラ内に脱硝剤を吹き込む脱硝剤吹き込みノズルのうち、運転負荷状況に対して、アンモニアの反応効率が最大となる位置にある脱硝剤吹き込みノズルに切り替えてボイラ内に脱硝剤を吹き込むことが記載され、特に、ボイラ内に脱硝剤を吹き込む脱硝剤吹き込みノズルが、ボイラ内のガス温度が800〜950℃のうち最高温度の箇所に配置されている脱硝剤吹き込みノズルであることが記載されている。   The following Patent Document 1 discloses a non-catalytic denitration method and a non-catalytic denitration device for boiler gas, and a non-catalytic denitration method for denitrating boiler gas using urea water or ammonia water as a denitration agent. In the denitration agent blowing nozzle that is disposed in the boiler at a plurality of locations where the gas temperature in the boiler is different and blows the denitration agent into the boiler, the position where the ammonia reaction efficiency is the maximum for the operating load situation It is described that a denitration agent blowing nozzle is blown into the boiler by switching to a denitration agent blowing nozzle in the boiler. It is described that it is a denitration agent blowing nozzle arranged at the location.

特開2006−64291号公報JP 2006-64291 A

しかしながら、上記特許文献1に記載の還元剤吹き込みノズルでは、還元剤として尿素水あるいはアンモニア水がボイラ内において充分に分散されておらず、排ガス中の窒素酸化物の除去を効率的に実現することが出来ないという問題があった。   However, in the reducing agent blowing nozzle described in Patent Document 1, urea water or ammonia water is not sufficiently dispersed in the boiler as the reducing agent, and efficient removal of nitrogen oxides in the exhaust gas is realized. There was a problem that was not possible.

すなわち、これまでの無触媒脱硝方法では、無触媒脱硝触媒方法の向上を図るために、還元剤であるアンモニアまたは尿素の供給量を増やすと、煙突から排出される排ガス中のリークアンモニア濃度が上昇し、例えばリークアンモニア濃度が10ppmを超えると、アンモニア由来の白煙が発生してしまうという問題があった。このため、これまでの無触媒脱硝法では、リークアンモニア濃度を5ppm以下、脱硝率は65%程度に留まっていた。   That is, in the conventional non-catalytic denitration method, in order to improve the non-catalytic denitration catalyst method, increasing the supply amount of ammonia or urea as a reducing agent increases the concentration of leaked ammonia in the exhaust gas discharged from the chimney. However, for example, when the leak ammonia concentration exceeds 10 ppm, there is a problem that white smoke derived from ammonia is generated. For this reason, in the conventional non-catalytic denitration method, the leak ammonia concentration is 5 ppm or less and the denitration rate is only about 65%.

本発明の目的は、上記の従来技術の問題を解決し、燃焼排ガス中に含まれる窒素酸化物(NOx)の分解を効率よく行うことができ、リークアンモニア濃度を抑えつつ常に高い脱硝率を得る無触媒脱硝方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, efficiently decompose nitrogen oxide (NOx) contained in combustion exhaust gas, and always obtain a high denitration rate while suppressing the leak ammonia concentration. It is to provide a non-catalytic denitration method.

請求項1に記載の発明は、焼却炉のボイラの750〜1000℃の温度域の燃焼排ガス内に還元剤供給ノズルから還元剤及び同伴媒体を吹き込み、排ガス中の窒素酸化物を還元除去する無触媒脱硝方法であって、焼却炉のボイラの750〜1000℃の温度域の燃焼排ガス内に、空気、焼却炉後流の排ガス、および蒸気よりなる群の中から選ばれた少なくとも1つの還元剤攪拌用気体を、還元剤攪拌用気体供給ノズルから吹き込むことを特徴としている。   According to the first aspect of the present invention, the reducing agent and the entrained medium are blown from the reducing agent supply nozzle into the combustion exhaust gas in the temperature range of 750 to 1000 ° C. of the boiler of the incinerator to reduce and remove nitrogen oxides in the exhaust gas. A catalytic denitration method comprising at least one reducing agent selected from the group consisting of air, exhaust gas downstream of an incinerator, and steam in a combustion exhaust gas in a temperature range of 750 to 1000 ° C of an incinerator boiler The stirring gas is blown from the reducing agent stirring gas supply nozzle.

請求項2に記載の発明は、請求項1に記載の無触媒脱硝方法であって、還元剤供給ノズルが、焼却炉のボイラの左右側壁および前壁のうちの少なくとも2つの壁に設置されており、かつ還元剤攪拌用気体供給ノズルが還元剤供給ノズルと同一壁面に設置されていることを特徴としている。   The invention according to claim 2 is the non-catalytic denitration method according to claim 1, wherein the reducing agent supply nozzle is installed on at least two of the left and right side walls and the front wall of the boiler of the incinerator. And the reducing agent stirring gas supply nozzle is installed on the same wall surface as the reducing agent supply nozzle.

請求項3に記載の発明は、請求項1または2に記載の無触媒脱硝方法であって、還元剤攪拌用気体供給ノズルが、還元剤供給ノズルを中心として燃焼排ガス流の上流側300mmから燃焼排ガス流の下流側500mmの範囲内に設置されていることを特徴としている。   A third aspect of the present invention is the non-catalytic denitration method according to the first or second aspect, wherein the reducing agent stirring gas supply nozzle burns from 300 mm upstream of the combustion exhaust gas flow centering on the reducing agent supply nozzle. It is characterized by being installed within a range of 500 mm downstream of the exhaust gas flow.

請求項4に記載の発明は、請求項1〜3のうちのいずれか一項に記載の無触媒脱硝方法であって、還元剤供給ノズルが、還元剤攪拌用気体供給ノズルに対して燃焼排ガス流の上流側に設置され、還元剤供給ノズルの吹込み方向が、燃焼排ガス流に対して直角方向に向けられるとともに、還元剤攪拌用気体供給ノズルの吹込み方向が、燃焼排ガス流に対して直角方向に向けられていることを特徴としている。   Invention of Claim 4 is a non-catalyst denitration method as described in any one of Claims 1-3, Comprising: A reducing agent supply nozzle is a combustion exhaust gas with respect to the gas supply nozzle for reducing agent stirring. The reductant supply nozzle is blown in the direction perpendicular to the flue gas flow, and the reductant stirring gas supply nozzle is blown in the flow direction with respect to the flue gas flow. It is characterized by being directed at a right angle.

請求項5に記載の発明は、請求項1〜3のうちのいずれか一項に記載の無触媒脱硝方法であって、還元剤供給ノズルが、還元剤攪拌用気体供給ノズルに対して燃焼排ガス流の上流側に設置され、還元剤供給ノズルの吹込み方向が、燃焼排ガス流に対して直角方向に向けられるとともに、還元剤攪拌用気体供給ノズルの吹込み方向が、燃焼排ガス流の上流側に向けられていることを特徴としている。   Invention of Claim 5 is a non-catalyst denitration method as described in any one of Claims 1-3, Comprising: A reducing agent supply nozzle is a combustion exhaust gas with respect to the gas supply nozzle for reducing agent stirring. The reductant supply nozzle is blown in the direction perpendicular to the flue gas flow, and the reductant stirring gas supply nozzle is blown in the upstream of the flue gas flow. It is characterized by being directed to.

請求項6に記載の発明は、請求項5に記載の無触媒脱硝方法であって、還元剤攪拌用気体供給ノズルの吹込み方向が、燃焼排ガス流に対して直角方向から燃焼排ガス流の上流側に30°の角度範囲内の方向に向けられていることを特徴としている。   The invention according to claim 6 is the non-catalytic denitration method according to claim 5, wherein the blowing direction of the reducing agent stirring gas supply nozzle is upstream of the combustion exhaust gas flow from the direction perpendicular to the combustion exhaust gas flow. It is characterized by being directed in a direction within an angle range of 30 ° to the side.

本発明の無触媒脱硝方法によれば、還元剤を効果的に分散させることができ、リークアンモニア濃度を抑えつつ高い脱硝率を得ることができるという効果を奏する。   According to the non-catalytic denitration method of the present invention, it is possible to effectively disperse the reducing agent, and it is possible to obtain a high denitration rate while suppressing the leak ammonia concentration.

本発明の無触媒脱硝方法を実施する無触媒脱硝装置の一例を示す概略側面図である。It is a schematic side view which shows an example of the non-catalytic denitration apparatus which implements the non-catalytic denitration method of this invention. 図1の無触媒脱硝装置においてノズルの位置を示す要部拡大水平断面図である。It is a principal part expanded horizontal sectional view which shows the position of a nozzle in the non-catalyst denitration apparatus of FIG. 同無触媒脱硝装置においてノズルの吹込み方向の1つの例を示す要部拡大垂直断面図である。It is a principal part expanded vertical sectional view which shows one example of the blowing direction of a nozzle in the same non-catalyst denitration apparatus. 同無触媒脱硝装置においてノズルの吹込み方向の他の例を示す要部拡大垂直断面図である。It is a principal part expanded vertical sectional view which shows the other example of the blowing direction of a nozzle in the non-catalyst denitration apparatus. 本発明の実施例と比較例における評価開始面からの距離とσの関係を示すグラフである。It is a graph which shows the distance from the evaluation start surface in the Example and comparative example of this invention, and the relationship of (sigma). 本発明の実施例と比較例における左右側壁近傍での壁方向速度の99%信頼区間の上限値を示すグラフである。It is a graph which shows the upper limit of the 99% confidence interval of the wall direction speed in the vicinity of the left and right side walls in the examples and comparative examples of the present invention.

つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。   Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

この明細書において、前後および左右は、図2を基準とし、前とは図2の左側、後とは同右側をいい、左とは同図の上側、右とは同下側をいうものとする。   In this specification, front and rear and left and right are based on FIG. 2, the front means the left side of FIG. 2, the rear means the same right side, the left means the upper side of the figure, and the right means the lower side. To do.

図1は、本発明の無触媒脱硝方法を実施する無触媒脱硝装置の一例を示す概略側面図である。   FIG. 1 is a schematic side view showing an example of a non-catalytic denitration apparatus for carrying out the non-catalytic denitration method of the present invention.

同図において、焼却炉(3)から排出された燃焼排ガスから熱回収を行うボイラ(10)は、焼却炉(3)の上方に連続する第1ボイラ(1)と、これに仕切り壁を挟んで逆U字形状に連なる第2ボイラ(2)などによって構成されている。還元剤供給ノズル(21)は、ボイラ(10)の左右側壁の上端寄り部分に、複数箇所に設置されている。そして、図1に示す本発明の実施形態では、燃焼室負荷に合わせてボイラ(10)内の燃焼排ガスの最適温度位置が変化するため、還元剤供給ノズル(21)は、第1ボイラ(1)から第2ボイラ(2)に連なる上端寄りのターン部分において3つのレベル域(a)〜(c)に設定されている。   In the figure, a boiler (10) for recovering heat from combustion exhaust gas discharged from an incinerator (3) has a first boiler (1) continuous above the incinerator (3) and a partition wall between them. The second boiler (2) and the like connected in an inverted U shape. The reducing agent supply nozzle (21) is installed at a plurality of locations near the upper ends of the left and right side walls of the boiler (10). And in embodiment of this invention shown in FIG. 1, since the optimal temperature position of the combustion exhaust gas in a boiler (10) changes according to combustion chamber load, a reducing agent supply nozzle (21) is a 1st boiler (1 ) To the second boiler (2), three level regions (a) to (c) are set in the turn portion near the upper end.

そして、これら3つのレベル域(a)〜(c)において、無触媒脱硝法に最適な温度域である750〜1000℃に設置している還元剤供給ノズル(21)を選択して、ボイラ(10)内に還元剤を吹き込む。最適な温度域は、特に800〜950℃に位置している還元剤供給ノズル(21)を選択することが好ましい。   In these three level regions (a) to (c), the reducing agent supply nozzle (21) installed at 750 to 1000 ° C., which is the optimum temperature range for the non-catalytic denitration method, is selected, and the boiler ( 10) A reducing agent is blown into the inside. It is preferable to select the reducing agent supply nozzle (21) which is located at an optimum temperature range of 800 to 950 ° C.

還元剤としては、アンモニア、アンモニア希釈水、尿素希釈水等を用いることができる。そして、還元剤の分散性を高めるために還元剤供給ノズル(21)から噴出される還元剤の同伴媒体として、蒸気、または空気を用いる。なお、図示は省略したが、ボイラ(10)の適性箇所に複数の熱電対が差し込まれて設置されており、温度計測が行われている。   As the reducing agent, ammonia, ammonia diluted water, urea diluted water or the like can be used. And in order to improve the dispersibility of a reducing agent, a vapor | steam or air is used as an accompanying medium of the reducing agent ejected from a reducing agent supply nozzle (21). In addition, although illustration was abbreviate | omitted, the several thermocouple was inserted and installed in the suitable location of a boiler (10), and temperature measurement is performed.

本発明による無触媒脱硝方法は、焼却炉のボイラの750〜1000℃の温度域の燃焼排ガス内に還元剤供給ノズル(21)から還元剤及び同伴媒体を吹き込み、排ガス中の窒素酸化物を還元除去する無触媒脱硝方法であって、焼却炉のボイラの750〜1000℃の温度域の燃焼排ガス内に、空気、焼却炉後流の排ガス、および蒸気よりなる群の中から選ばれた少なくとも1つの還元剤攪拌用気体を、還元剤攪拌用気体供給ノズル(22)から噴射することを特徴としている。   In the non-catalytic denitration method according to the present invention, the reducing agent and the accompanying medium are blown from the reducing agent supply nozzle (21) into the combustion exhaust gas in the temperature range of 750 to 1000 ° C. of the boiler of the incinerator to reduce nitrogen oxides in the exhaust gas. A non-catalytic denitration method for removing at least one selected from the group consisting of air, exhaust gas downstream of an incinerator, and steam in a combustion exhaust gas in a temperature range of 750 to 1000 ° C. of an incinerator boiler One reducing agent stirring gas is injected from the reducing agent stirring gas supply nozzle (22).

また、還元剤攪拌用気体は圧縮して用いることが好ましい。還元剤攪拌用気体を圧縮して噴射することで、焼却炉のボイラ温度の低下を抑えつつ、効率的に撹拌を行うことができるからである。   Moreover, it is preferable to compress and use the reducing agent stirring gas. This is because, by compressing and injecting the reducing agent stirring gas, stirring can be performed efficiently while suppressing a decrease in the boiler temperature of the incinerator.

ここで、焼却炉(3)後流の燃焼排ガスとは、一般的には燃焼炉の後段に配置するバグフィルタ(図示略)にて集塵した後の集塵後の燃焼排ガスを指す。   Here, the combustion exhaust gas in the downstream of the incinerator (3) generally refers to the combustion exhaust gas after dust collection after being collected by a bag filter (not shown) arranged at the rear stage of the combustion furnace.

また、還元剤同伴媒体の供給量を1とした場合,還元剤攪拌用気体の供給量は0.5〜2.0倍の範囲内であることが好ましい。これは還元剤分散効率の高い同伴媒体の供給量を多くし過ぎると、還元剤が燃焼炉ボイラの壁面に衝突して炉壁耐火材の損傷を招く恐れがあるからである。   When the supply amount of the reducing agent-entrained medium is 1, the supply amount of the reducing agent stirring gas is preferably in the range of 0.5 to 2.0 times. This is because if the supply amount of the entrained medium having a high reducing agent dispersion efficiency is increased too much, the reducing agent may collide with the wall surface of the combustion furnace boiler and cause damage to the furnace wall refractory material.

さらに、図2〜図4に示すように、本発明による無触媒脱硝方法は、還元剤供給ノズル(21)が焼却炉のボイラの左右側壁に設置しており、かつ還元剤攪拌用気体供給ノズル(22)が還元剤供給ノズル(21)と同一壁面に設置されていることを特徴としている。   Furthermore, as shown in FIGS. 2 to 4, in the non-catalytic denitration method according to the present invention, the reducing agent supply nozzle (21) is installed on the left and right side walls of the boiler of the incinerator, and the reducing agent stirring gas supply nozzle. (22) is installed on the same wall surface as the reducing agent supply nozzle (21).

なお、本発明による無触媒脱硝方法は、図示のものに限定されず、還元剤供給ノズル(21)は、焼却炉のボイラの左右側壁および前壁のうちの少なくとも2つの壁に設置されており、かつ還元剤攪拌用気体供給ノズル(22)が還元剤供給ノズル(21)と同一壁面に設置されておればよい。   The non-catalytic denitration method according to the present invention is not limited to the illustrated one, and the reducing agent supply nozzle (21) is installed on at least two of the left and right side walls and the front wall of the boiler of the incinerator. And the reducing agent stirring gas supply nozzle (22) should just be installed in the same wall surface as the reducing agent supply nozzle (21).

さらに、本発明による無触媒脱硝方法では、還元剤攪拌用気体供給ノズル(22)が、還元剤供給ノズル(21)を中心として燃焼排ガス流の上流側300mmから、燃焼排ガス流の下流側500mmの範囲内に設置されていることを特徴とする。その理由は、還元剤攪拌用気体供給ノズル(22)の位置がボイラ(10)の左右側壁に設置された還元剤供給ノズル(21)からあまりにも離れている場合は、還元剤を最適温度において効率的に分散させることが出来ないためである。   Furthermore, in the non-catalytic denitration method according to the present invention, the reducing agent agitation gas supply nozzle (22) has a center of the reducing agent supply nozzle (21) from the upstream 300 mm of the combustion exhaust gas flow to the downstream 500 mm of the combustion exhaust gas flow. It is installed within the range. The reason is that if the position of the reducing agent stirring gas supply nozzle (22) is too far from the reducing agent supply nozzle (21) installed on the left and right side walls of the boiler (10), the reducing agent is kept at the optimum temperature. This is because it cannot be dispersed efficiently.

そして、図3に示すように、還元剤供給ノズル(21)が、還元剤攪拌用気体供給ノズル(22)に対して燃焼排ガス流の上流側に設置され、還元剤供給ノズル(21)の吹込み方向が、燃焼排ガス流に対して直角方向に向けられるとともに、還元剤攪拌用気体供給ノズル(22)の吹込み方向が、燃焼排ガス流に対して直角方向に向けることによって実施される。   Then, as shown in FIG. 3, the reducing agent supply nozzle (21) is installed on the upstream side of the combustion exhaust gas flow with respect to the reducing agent stirring gas supply nozzle (22), and the reducing agent supply nozzle (21) is blown. The injection direction is oriented in a direction perpendicular to the combustion exhaust gas flow, and the blowing direction of the reducing agent stirring gas supply nozzle (22) is oriented in a direction perpendicular to the combustion exhaust gas flow.

また、図4に示すように、還元剤供給ノズル(21)が、還元剤攪拌用気体供給ノズル(22)に対して燃焼排ガス流の上流側に設置され、還元剤供給ノズル(21)の吹込み方向が、燃焼排ガス流に対して直角方向に向けられるとともに、還元剤攪拌用気体供給ノズル(22)の吹込み方向が、燃焼排ガス流の上流側に向けることによっても実施される。   Also, as shown in FIG. 4, the reducing agent supply nozzle (21) is installed upstream of the combustion exhaust gas flow with respect to the reducing agent stirring gas supply nozzle (22), and the reducing agent supply nozzle (21) The injection direction is directed in a direction perpendicular to the combustion exhaust gas flow, and the blowing direction of the reducing agent stirring gas supply nozzle (22) is directed to the upstream side of the combustion exhaust gas flow.

ここで、還元剤攪拌用気体供給ノズル(22)の吹込み方向が、燃焼排ガス流に対して直角方向から燃焼排ガス流の上流側に30°の角度範囲内の方向に向けられていることが好ましい。これは還元剤攪拌用気体によって、燃焼ガス流の主流部である煙道中央付近において、還元剤を分散させるためである。   Here, the blowing direction of the reducing agent stirring gas supply nozzle (22) is directed from the direction perpendicular to the flue gas flow to the upstream side of the flue gas flow in a direction within an angle range of 30 °. preferable. This is because the reducing agent is dispersed in the vicinity of the center of the flue, which is the main part of the combustion gas flow, by the reducing agent stirring gas.

なお、還元剤攪拌用気体供給ノズル(22)は、還元剤供給ノズル(21)を基準として燃焼排ガス流の下流側20〜300mm、好ましくは50〜150mmの範囲内に設置されていることが好ましい。   In addition, it is preferable that the reducing agent stirring gas supply nozzle (22) is installed within a range of 20 to 300 mm, preferably 50 to 150 mm, downstream of the combustion exhaust gas flow with reference to the reducing agent supply nozzle (21). .

還元剤攪拌用気体供給ノズル(22)から吹き込む還元剤攪拌用気体には,還元剤供給ノズル(21)から吹き込む還元剤の噴流を後押しするような効果がある。すなわち、還元剤攪拌用気体の増減によって還元剤の噴流の勢いを調整することができる。還元剤供給ノズル(21)は還元剤攪拌用気体供給ノズル(22)の近くに設ける方がよく、また還元剤攪拌用気体供給ノズル(22)を用いる場合でも還元剤供給ノズル(21)の口径は小さくしない方が望ましい。   The reducing agent stirring gas blown from the reducing agent stirring gas supply nozzle (22) has an effect of boosting the jet of the reducing agent blown from the reducing agent supply nozzle (21). That is, the momentum of the reducing agent jet can be adjusted by increasing or decreasing the reducing agent stirring gas. It is better to provide the reducing agent supply nozzle (21) near the reducing agent stirring gas supply nozzle (22). Even when the reducing agent stirring gas supply nozzle (22) is used, the diameter of the reducing agent supply nozzle (21) is good. It is better not to make it smaller.

なお、本発明において、還元剤攪拌用気体は、空気、焼却炉後流の排ガス、または蒸気であることが好ましい。しかしながら、これらの還元剤攪拌用気体が焼却炉ボイラ(10)内に吹き込まれることで、焼却炉ボイラ(10)の温度が下がることは好ましくない。   In the present invention, the reducing agent stirring gas is preferably air, exhaust gas after the incinerator, or steam. However, it is not preferable that the temperature of the incinerator boiler (10) is lowered by blowing the reducing agent stirring gas into the incinerator boiler (10).

従って、還元剤攪拌用気体は、焼却炉ボイラ(10)内に吹き込む前に加熱することも出来る。   Therefore, the reducing agent stirring gas can be heated before being blown into the incinerator boiler (10).

つぎに、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

(実施例1)
図1に示す無触媒脱硝装置により、本発明の無触媒脱硝方法を実施した。ごみ焼却炉(3)から排出された燃焼排ガスから熱回収を行うボイラ(10)は、ごみ焼却炉(3)上方に連続する第1ボイラ(1)と、これに仕切り壁を挟んで逆U字形状に連なる第2ボイラ(2)とによって構成されている。
Example 1
The non-catalytic denitration method of the present invention was carried out using the non-catalytic denitration apparatus shown in FIG. The boiler (10) for recovering heat from the combustion exhaust gas discharged from the waste incinerator (3) includes a first boiler (1) continuous above the waste incinerator (3) and a reverse U with a partition wall interposed therebetween. It is comprised by the 2nd boiler (2) which continues in a letter shape.

還元剤供給ノズル(21)は、ボイラ(10)の左右側壁の第1ボイラ(1)から第2ボイラ(2)に連なる上端寄りのターン部分において3つのレベル域(a)〜(c)に設定されている。そして、各レベル域(a)〜(c)には還元剤供給ノズル(21)が設置されている。   The reducing agent supply nozzle (21) is divided into three level regions (a) to (c) in the turn portion near the upper end connected to the second boiler (2) from the first boiler (1) on the left and right side walls of the boiler (10). Is set. And the reducing agent supply nozzle (21) is installed in each level area (a)-(c).

無触媒脱硝法に最適な温度域である750〜1000℃に設置している還元剤供給ノズル(21)を選択して、ボイラ(10)内に還元剤を吹き込む。最適な温度域は、特に800〜950℃に位置している還元剤供給ノズル(21)を選択する。   A reducing agent supply nozzle (21) installed at 750 to 1000 ° C., which is an optimum temperature range for the non-catalytic denitration method, is selected, and the reducing agent is blown into the boiler (10). For the optimum temperature range, a reducing agent supply nozzle (21) located at 800 to 950 ° C. is selected.

この実施例1では、還元剤としてアンモニア(NH)、及び同伴媒体として蒸気を用いた。また、レベル域(a)に設置されている還元剤供給ノズル(21)と還元剤攪拌用気体供給ノズル(22)を利用した。そして、還元剤分散気体としては、蒸気を用いた。 In Example 1, ammonia (NH 3 ) was used as the reducing agent, and steam was used as the entraining medium. Moreover, the reducing agent supply nozzle (21) and the reducing agent stirring gas supply nozzle (22) installed in the level region (a) were used. And steam was used as the reducing agent dispersion gas.

還元剤としてのアンモニアの同伴媒体蒸気供給量を1.0とした時、還元剤攪拌用気体供給ノズル(22)の蒸気供給量は1.02倍であった。   When the vapor supply amount of the entrained medium of ammonia as the reducing agent was 1.0, the vapor supply amount of the reducing agent stirring gas supply nozzle (22) was 1.02 times.

なお、還元剤供給ノズル(21)と還元剤攪拌用気体供給ノズル(22)は同一口径のノズルを使用した。   The reducing agent supply nozzle (21) and the reducing agent stirring gas supply nozzle (22) were nozzles having the same diameter.

図2と図3に示すように、同じレベル域(a)の燃焼排ガスに対して同一水平面上に位置する4本の還元剤供給ノズル(21)は、同じレベル域の燃焼排ガスに対して同一水平面上に位置する4本の還元剤攪拌用気体供給ノズル(22)に対して燃焼排ガス流の上流側に設置され、還元剤供給ノズル(21)の吹込み方向が燃焼排ガス流に対して水平方向(すなわち、燃焼排ガス流に対して直角方向)に向けられるとともに、還元剤攪拌用気体供給ノズル(22)の吹込み方向が燃焼排ガス流に対して水平方向(すなわち、燃焼排ガス流に対して直角方向)に向けられて、平面よりみて千鳥配列に設置されている。   As shown in FIGS. 2 and 3, the four reducing agent supply nozzles (21) located on the same horizontal plane with respect to the combustion exhaust gas in the same level region (a) are the same with respect to the combustion exhaust gas in the same level region. Installed on the upstream side of the combustion exhaust gas flow with respect to the four reducing agent stirring gas supply nozzles (22) positioned on the horizontal plane, the blowing direction of the reducing agent supply nozzle (21) is horizontal to the combustion exhaust gas flow. And the blowing direction of the reducing agent stirring gas supply nozzle (22) is horizontal with respect to the combustion exhaust gas flow (that is, with respect to the combustion exhaust gas flow). It is installed in a staggered arrangement as viewed from the plane.

また、図3に示すように、この実施例1では、還元剤攪拌用気体供給ノズル(22)の位置を、ボイラ(10)の左右側壁にそれぞれ設置された各還元剤供給ノズル(21)から燃焼排ガスの下流側に100mm離れた位置とした。   Moreover, as shown in FIG. 3, in this Example 1, the position of the reducing agent stirring gas supply nozzle (22) is changed from each reducing agent supply nozzle (21) installed on the left and right side walls of the boiler (10). The position was 100 mm away from the downstream side of the combustion exhaust gas.

(実施例2)
実施例2では、還元剤としてアンモニア(NH)、及び同伴媒体として蒸気を用いた。また、還元剤分散気体として蒸気を用いた。
(Example 2)
In Example 2, ammonia (NH 3 ) was used as the reducing agent, and steam was used as the entraining medium. Steam was used as the reducing agent dispersion gas.

還元剤としてのアンモニアの同伴媒体蒸気供給量を1.0とした時、還元剤攪拌用気体供給ノズル(22)の蒸気供給量は1.02倍であった。   When the vapor supply amount of the entrained medium of ammonia as the reducing agent was 1.0, the vapor supply amount of the reducing agent stirring gas supply nozzle (22) was 1.02 times.

なお、還元剤供給ノズル(21)と還元剤攪拌用気体供給ノズル(22)は同一の口径のノズルを使用した。   The reducing agent supply nozzle (21) and the reducing agent stirring gas supply nozzle (22) were nozzles having the same diameter.

図2と図4に示すように、同じレベル域(a)の燃焼排ガスに対して同一水平面上に位置する4本の還元剤供給ノズル(21)は、同じレベル域の燃焼排ガスに対して同一水平面上に位置する4本の還元剤攪拌用気体供給ノズル(22)に対して燃焼排ガス流の上流側に設置され、還元剤供給ノズル(21)の吹込み方向が燃焼排ガス流に対して水平方向(すなわち、燃焼排ガス流に対して直角方向)に向けられるとともに、還元剤攪拌用気体供給ノズル(22)の吹込み方向が、燃焼排ガス流に対して水平方向から燃焼排ガス流の上流側に(すなわち、燃焼排ガス流に対して直角方向から燃焼排ガス流の上流側に)、3.8°傾けられている。   As shown in FIGS. 2 and 4, the four reducing agent supply nozzles (21) located on the same horizontal plane with respect to the combustion exhaust gas in the same level region (a) are the same with respect to the combustion exhaust gas in the same level region. Installed on the upstream side of the combustion exhaust gas flow with respect to the four reducing agent stirring gas supply nozzles (22) positioned on the horizontal plane, the blowing direction of the reducing agent supply nozzle (21) is horizontal to the combustion exhaust gas flow. And the blowing direction of the reducing agent stirring gas supply nozzle (22) from the horizontal direction to the upstream side of the combustion exhaust gas flow with respect to the combustion exhaust gas flow. (Ie, from the direction perpendicular to the flue gas flow to the upstream side of the flue gas flow) is tilted 3.8 °.

また、図4に示すように、この実施例2では、還元剤攪拌用気体供給ノズル(22)の位置を、ボイラ(10)の左右側壁にそれぞれ設置された各還元剤供給ノズル(21)から燃焼排ガスの下流側に100mm離れた位置とした。   Moreover, as shown in FIG. 4, in this Example 2, the position of the reducing agent stirring gas supply nozzle (22) is changed from each reducing agent supply nozzle (21) installed on the left and right side walls of the boiler (10). The position was 100 mm away from the downstream side of the combustion exhaust gas.

(比較例1)
比較のために、上記実施例1の場合と同様に、無触媒脱硝方法を実施するが、上記実施例1の場合と異なる点は、還元剤としてアンモニア及び同伴媒体として蒸気を用いたのみで、還元剤攪拌用気体供給ノズル(22)からの還元剤攪拌用気体の吹込みを行わなかった点にある。なお、実施例1の還元剤供給ノズル(21)と同一口径のノズルを使用した。
(Comparative Example 1)
For comparison, a non-catalytic denitration method is carried out in the same manner as in Example 1, except that ammonia is used as the reducing agent and steam is used as the entraining medium. The reducing agent stirring gas is not blown from the reducing agent stirring gas supply nozzle (22). A nozzle having the same diameter as the reducing agent supply nozzle (21) of Example 1 was used.

(比較例2)
比較のために、上記実施例1の場合と同様に、無触媒脱硝方法を実施するが、上記実施例1の場合と異なる点は、実施例1の還元剤供給ノズル(21)の1.33倍の口径のノズルを使用して実施例1の同伴媒体として蒸気を1.80倍とした点と、還元剤攪拌用気体供給ノズル(22)からの還元剤攪拌用気体の吹込みを行わなかった点にある。
(Comparative Example 2)
For comparison, the non-catalytic denitration method is carried out in the same manner as in the case of Example 1 described above. The difference from the case of Example 1 is that 1.33 of the reducing agent supply nozzle (21) of Example 1 is different. The point that the steam was 1.80 times as a companion medium of Example 1 using a nozzle having a double diameter, and the reducing agent stirring gas was not blown from the reducing agent stirring gas supply nozzle (22). There is in point.

下記の表1に、実施例1と2、および比較例1と2におけるアンモニア(NH)同伴蒸気および攪拌用蒸気の供給条件をまとめて示した。

Figure 2014074515
Table 1 below collectively shows the supply conditions of ammonia (NH 3 ) -entrained steam and stirring steam in Examples 1 and 2 and Comparative Examples 1 and 2.
Figure 2014074515

(評価)
つぎに、実施例1と2、および比較例1と2における還元剤の拡散状況は、下記式(1)から算出した評価面における還元剤濃度の標準偏差σを用いて評価した。

Figure 2014074515
(Evaluation)
Next, the diffusion conditions of the reducing agent in Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated using the standard deviation σ of the reducing agent concentration on the evaluation surface calculated from the following formula (1).
Figure 2014074515

ここで、nは各評価面のセル数 、Aiはセルiの面積[m]、Aは各評価面の面積[m]、Ciはセルiの還元剤濃度(質量分率)[−]、Cは各評価面の平均還元剤濃度(質量分率)[−]である。 Here, n is the number of cells in each evaluation surface, Ai area of cell i [m 2], A is the area of the evaluation surface [m 2], Ci is the concentration of the reducing agent of the cell i (mass fraction) [- ], C is the average reducing agent concentration (mass fraction) [−] of each evaluation surface.

なお、攪拌用蒸気を燃焼排ガスに対して水平方向に供給した条件については、還元剤供給ノズル位置を評価開始面とし、攪拌用蒸気を上流側に供給した条件については、還元剤が供給位置から上流側へ沈み込むため、還元剤の上流側最小速度が0となる位置を評価開始面とした。   In addition, for the condition in which the stirring steam is supplied to the combustion exhaust gas in the horizontal direction, the reducing agent supply nozzle position is the evaluation start surface, and for the condition in which the stirring steam is supplied upstream, the reducing agent is removed from the supply position. In order to sink to the upstream side, the position where the upstream minimum velocity of the reducing agent becomes 0 was defined as the evaluation start surface.

そして、図5に、実施例1と2、および比較例1と2における評価開始面からの距離と還元剤濃度の標準偏差σの関係を示した。   FIG. 5 shows the relationship between the distance from the evaluation start surface and the standard deviation σ of the reducing agent concentration in Examples 1 and 2 and Comparative Examples 1 and 2.

図5に示すように、実施例1と実施例2は、比較例2には及ばなかったものの比較例1の還元剤濃度の標準偏差σより小さくなり、攪拌用蒸気による還元剤拡散性向上の効果は確認した。また攪拌用蒸気には,還元剤の噴流を後押しするような効果があり、すなわち攪拌用蒸気の増減によって還元剤の噴流の勢いを調整することができる。   As shown in FIG. 5, Example 1 and Example 2 were smaller than the standard deviation σ of the reducing agent concentration of Comparative Example 1 that did not reach Comparative Example 2, and improved the reducing agent diffusibility by the steam for stirring. The effect was confirmed. Further, the stirring steam has an effect of boosting the reducing agent jet, that is, the momentum of the reducing agent jet can be adjusted by increasing or decreasing the stirring steam.

また、図6に、実施例1と2、および比較例2における左右側壁近傍における壁方向速度の99%信頼区間の上限値を示した。   FIG. 6 shows the upper limit value of the 99% confidence interval of the wall direction speed in the vicinity of the left and right side walls in Examples 1 and 2 and Comparative Example 2.

図6に示すように、比較例2の壁方向速度は2m/s程度であり、実施例1や実施例2に比べて速い。このように壁方向速度が速いと、燃焼量負荷の変動に伴って燃焼排ガス量が増減する際に、蒸気が壁面に衝突して炉壁耐火材の損傷を招く恐れがある。したがって、燃焼負荷の変動に対応しつつ還元剤拡散性を向上させるためには、実施例1や実施例2のように攪拌用気体を供給することが望ましいといえる。   As shown in FIG. 6, the wall direction speed of Comparative Example 2 is about 2 m / s, which is faster than those of Example 1 and Example 2. When the speed in the wall direction is high in this way, when the amount of flue gas increases or decreases with fluctuations in the combustion load, steam may collide with the wall surface and cause damage to the furnace wall refractory material. Therefore, it can be said that it is desirable to supply the stirring gas as in Example 1 or Example 2 in order to improve the reducing agent diffusibility while responding to fluctuations in the combustion load.

以上のことから、本発明の実施例1と2による無触媒脱硝方法によれば、蒸気が壁面に衝突して炉壁耐火材の損傷を招く恐れがないまま、還元剤を効果的に分散させることができ、リークアンモニア濃度を抑えつつ高い脱硝率を得ることができるということが分かった。   From the above, according to the non-catalytic denitration method according to Examples 1 and 2 of the present invention, the reducing agent is effectively dispersed without causing the steam to collide with the wall surface and causing damage to the furnace wall refractory material. It was found that a high denitration rate can be obtained while suppressing the leak ammonia concentration.

1:第1ボイラ
2:第2ボイラ
3:焼却炉
10:ボイラ
21:還元剤供給ノズル
22:還元剤攪拌用気体供給ノズル
1: 1st boiler 2: 2nd boiler 3: Incinerator 10: Boiler 21: Reductant supply nozzle 22: Gas supply nozzle for reducing agent stirring

Claims (6)

焼却炉のボイラの750〜1000℃の温度域の燃焼排ガス内に還元剤供給ノズルから還元剤及び同伴媒体を吹き込み、排ガス中の窒素酸化物を還元除去する無触媒脱硝方法であって、焼却炉のボイラの750〜1000℃の温度域の燃焼排ガス内に、空気、焼却炉後流の排ガス、および蒸気よりなる群の中から選ばれた少なくとも1つの還元剤攪拌用気体を、還元剤攪拌用気体供給ノズルから吹き込むことを特徴とする、無触媒脱硝方法。   A non-catalytic denitration method for reducing and removing nitrogen oxides in exhaust gas by blowing a reducing agent and an accompanying medium from a reducing agent supply nozzle into combustion exhaust gas in a temperature range of 750 to 1000 ° C. of an incinerator boiler. At least one reducing agent stirring gas selected from the group consisting of air, exhaust gas downstream of the incinerator, and steam is used for reducing agent stirring in the combustion exhaust gas in the temperature range of 750 to 1000 ° C. A non-catalytic denitration method characterized by blowing from a gas supply nozzle. 還元剤供給ノズルが、焼却炉のボイラの左右側壁および前壁のうちの少なくとも2つの壁に設置されており、かつ還元剤攪拌用気体供給ノズルが、還元剤供給ノズルと同一壁面に設置されていることを特徴とする、請求項1に記載の無触媒脱硝方法。   The reducing agent supply nozzle is installed on at least two of the left and right side walls and the front wall of the incinerator boiler, and the reducing agent stirring gas supply nozzle is installed on the same wall as the reducing agent supply nozzle. The non-catalytic denitration method according to claim 1, wherein: 還元剤攪拌用気体供給ノズルが、還元剤供給ノズルを中心として燃焼排ガス流の上流側300mmから、燃焼排ガス流の下流側500mmの範囲内に設置されていることを特徴とする、請求項1または2に記載の無触媒脱硝方法。   The reducing agent agitating gas supply nozzle is installed within a range of 300 mm upstream of the combustion exhaust gas flow and 500 mm downstream of the combustion exhaust gas flow centering on the reducing agent supply nozzle. 3. The non-catalytic denitration method according to 2. 還元剤供給ノズルが、還元剤攪拌用気体供給ノズルに対して燃焼排ガス流の上流側に設置され、還元剤供給ノズルの吹込み方向が、燃焼排ガス流に対して直角方向に向けられるとともに、還元剤攪拌用気体供給ノズルの吹込み方向が、燃焼排ガス流に対して直角方向に向けられていることを特徴とする、請求項1〜3のうちのいずれか一項に記載の無触媒脱硝方法。   The reducing agent supply nozzle is installed on the upstream side of the combustion exhaust gas flow with respect to the reducing agent agitating gas supply nozzle. The non-catalytic denitration method according to any one of claims 1 to 3, wherein the blowing direction of the agent stirring gas supply nozzle is directed in a direction perpendicular to the combustion exhaust gas flow. . 還元剤供給ノズルが、還元剤攪拌用気体供給ノズルに対して燃焼排ガス流の上流側に設置され、還元剤供給ノズルの吹込み方向が、燃焼排ガス流に対して直角方向に向けられるとともに、還元剤攪拌用気体供給ノズルの吹込み方向が、燃焼排ガス流の上流側に向けられていることを特徴とする、請求項1〜3のうちのいずれか一項に記載の無触媒脱硝方法。   The reducing agent supply nozzle is installed on the upstream side of the combustion exhaust gas flow with respect to the reducing agent agitating gas supply nozzle. The non-catalytic denitration method according to any one of claims 1 to 3, wherein the blowing direction of the agent stirring gas supply nozzle is directed upstream of the combustion exhaust gas flow. 還元剤攪拌用気体供給ノズルの吹込み方向が、燃焼排ガス流に対して直角方向から燃焼排ガス流の上流側に30°の角度範囲内の方向に向けられていることを特徴とする、請求項5に記載の無触媒脱硝方法   The blowing direction of the reducing agent stirring gas supply nozzle is directed in a direction within a 30 ° angle range from a direction perpendicular to the flue gas flow to an upstream side of the flue gas flow. The non-catalytic denitration method according to claim 5
JP2012220972A 2012-10-03 2012-10-03 Non-catalytic denitrification method Pending JP2014074515A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012220972A JP2014074515A (en) 2012-10-03 2012-10-03 Non-catalytic denitrification method
CN201310452380.8A CN103706240A (en) 2012-10-03 2013-09-27 Catalyst-free denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012220972A JP2014074515A (en) 2012-10-03 2012-10-03 Non-catalytic denitrification method

Publications (1)

Publication Number Publication Date
JP2014074515A true JP2014074515A (en) 2014-04-24

Family

ID=50399800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012220972A Pending JP2014074515A (en) 2012-10-03 2012-10-03 Non-catalytic denitrification method

Country Status (2)

Country Link
JP (1) JP2014074515A (en)
CN (1) CN103706240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386064B2 (en) 2014-09-12 2019-08-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Stoker-type incinerator
JP2020034172A (en) * 2018-08-27 2020-03-05 株式会社アクトリー Denitration method of combustion exhaust

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413461A (en) * 1977-07-04 1979-01-31 Mitsubishi Heavy Ind Ltd Treating method for combustion exhaust gas
JPS55112913A (en) * 1979-02-26 1980-09-01 Mitsubishi Heavy Ind Ltd Low nox combustion system
JPS62169917A (en) * 1986-01-22 1987-07-27 Ishikawajima Harima Heavy Ind Co Ltd Non-catalyst denitrating method for fluidized bed furnace
US5746144A (en) * 1996-06-03 1998-05-05 Duquesne Light Company Method and apparatus for nox reduction by upper furnace injection of coal water slurry
JPH11270814A (en) * 1998-03-24 1999-10-05 Hitachi Zosen Corp Method and device for denitrating exhaust gas in gasification incineration system
US6030204A (en) * 1998-03-09 2000-02-29 Duquesne Light Company Method for NOx reduction by upper furnace injection of solutions of fixed nitrogen in water
US6213032B1 (en) * 1999-08-30 2001-04-10 Energy Systems Associates Use of oil water emulsion as a reburn fuel
US6357367B1 (en) * 2000-07-18 2002-03-19 Energy Systems Associates Method for NOx reduction by upper furnace injection of biofuel water slurry
US20040244367A1 (en) * 2003-06-05 2004-12-09 Swanson Larry William Multi-compartment overfire air and N-agent injection system and method for nitrogen oxide reduction in flue gas
JP2006064291A (en) * 2004-08-26 2006-03-09 Nippon Steel Corp Non-catalytic denitrification method and non-catalytic denitrification device for in-boiler gas
JP2008057906A (en) * 2006-09-01 2008-03-13 Takehito Fukutomi Low pollution incinerating device
JP2012093013A (en) * 2010-10-26 2012-05-17 Babcock Hitachi Kk Boiler
JP2012180989A (en) * 2011-03-02 2012-09-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Waste incineration plant

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413461A (en) * 1977-07-04 1979-01-31 Mitsubishi Heavy Ind Ltd Treating method for combustion exhaust gas
JPS55112913A (en) * 1979-02-26 1980-09-01 Mitsubishi Heavy Ind Ltd Low nox combustion system
JPS62169917A (en) * 1986-01-22 1987-07-27 Ishikawajima Harima Heavy Ind Co Ltd Non-catalyst denitrating method for fluidized bed furnace
US5746144A (en) * 1996-06-03 1998-05-05 Duquesne Light Company Method and apparatus for nox reduction by upper furnace injection of coal water slurry
US6030204A (en) * 1998-03-09 2000-02-29 Duquesne Light Company Method for NOx reduction by upper furnace injection of solutions of fixed nitrogen in water
JPH11270814A (en) * 1998-03-24 1999-10-05 Hitachi Zosen Corp Method and device for denitrating exhaust gas in gasification incineration system
US6213032B1 (en) * 1999-08-30 2001-04-10 Energy Systems Associates Use of oil water emulsion as a reburn fuel
US6357367B1 (en) * 2000-07-18 2002-03-19 Energy Systems Associates Method for NOx reduction by upper furnace injection of biofuel water slurry
US20040244367A1 (en) * 2003-06-05 2004-12-09 Swanson Larry William Multi-compartment overfire air and N-agent injection system and method for nitrogen oxide reduction in flue gas
JP2004361078A (en) * 2003-06-05 2004-12-24 General Electric Co <Ge> Multiplex compartment type over fire air for reducing nitrogen oxide in flue gas, n-agent injection system and method
JP2006064291A (en) * 2004-08-26 2006-03-09 Nippon Steel Corp Non-catalytic denitrification method and non-catalytic denitrification device for in-boiler gas
JP2008057906A (en) * 2006-09-01 2008-03-13 Takehito Fukutomi Low pollution incinerating device
JP2012093013A (en) * 2010-10-26 2012-05-17 Babcock Hitachi Kk Boiler
JP2012180989A (en) * 2011-03-02 2012-09-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Waste incineration plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386064B2 (en) 2014-09-12 2019-08-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Stoker-type incinerator
JP2020034172A (en) * 2018-08-27 2020-03-05 株式会社アクトリー Denitration method of combustion exhaust

Also Published As

Publication number Publication date
CN103706240A (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US8808652B2 (en) Biomass boiler SCR NOx and CO reduction system
JP5523807B2 (en) Exhaust gas treatment equipment
CN106268270B (en) Chain grate-rotary kiln denitration system
CN105148709B (en) A kind of flue gas processing method
CN106996702A (en) A kind of agglomeration for iron mine flue gas segmentation enrichment and UTILIZATION OF VESIDUAL HEAT IN emission reduction SOxAnd NOxMethod
CN106669418A (en) Device and method for comprehensively carrying out desulfurization, denitration and dioxin removing on steel sintering flue gas
CN106705091A (en) System and method for slowing down deactivation of SCR catalyst and blocking of air preheater
CN102357339A (en) Efficient denitrifying device of circular fluidized bed boiler
CN110354677A (en) It is a kind of sintering, pelletizing head flue gas emission purification system
CN204724003U (en) The cleaning system of denitration of boiler smoke
CN210206404U (en) Desulfurization, denitrification and dust removal integrated device for industrial kiln
JP2014074515A (en) Non-catalytic denitrification method
JP2009219999A (en) Flue gas treatment apparatus
KR20070019924A (en) Nozzle arrangement method and exhaust processing equipment of selective non-catalytic reduction
CN106310933A (en) Flue gas denitration system for coal water slurry boiler and method for denitrating flue gas
WO2017024664A1 (en) Sncr denitrification system and waste incinerator
CN202289834U (en) High-efficiency denitration device for circulating fluidized bed boiler
JP2013072571A (en) Exhaust gas treating system
WO2019168059A1 (en) Exhaust gas treatment device
CN202387369U (en) High-efficiency denitration device for pulverized coal boiler
CN203281209U (en) Flue gas denitration system by adopting SNCR and SCR combination method for coal-fired boiler
CN206897678U (en) Boiler SCR denitrating flue gas urea liquid spray gun
JP2010054083A (en) Denitration device
CN102553420B (en) High-efficiency denitrifying device for pulverized coal boiler
CN112495151A (en) Method for eliminating blue smoke plume of chimney of coal-fired boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228