JP2013072571A - Exhaust gas treating system - Google Patents

Exhaust gas treating system Download PDF

Info

Publication number
JP2013072571A
JP2013072571A JP2011210347A JP2011210347A JP2013072571A JP 2013072571 A JP2013072571 A JP 2013072571A JP 2011210347 A JP2011210347 A JP 2011210347A JP 2011210347 A JP2011210347 A JP 2011210347A JP 2013072571 A JP2013072571 A JP 2013072571A
Authority
JP
Japan
Prior art keywords
exhaust gas
recirculation
combustion furnace
boiler
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011210347A
Other languages
Japanese (ja)
Inventor
Daisuke Ayukawa
大祐 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2011210347A priority Critical patent/JP2013072571A/en
Publication of JP2013072571A publication Critical patent/JP2013072571A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas treating system omitting an exhaust gas heating device conventionally required to dispense with superheated steam or a fuel used as a heat source, inhibiting deterioration of boiler efficiency, and preventing occurrence of white smoke, while achieving a NOx removal effect equivalent to a conventional exhaust gas recirculation method and a noncatalytic denitrification method.SOLUTION: The exhaust gas treating system includes a blowing device 12 blowing ammonia or urea into a combustion furnace 2, a dust collector 9 using a part of the exhaust gas subjected to heat recovery in a boiler 3 as recirculation exhaust gas and removing ash dust contained in the recirculation exhaust gas, a recirculation catalytic denitrification device 10 performing denitrification treatment of the recirculation exhaust gas from the dust collector 9, and an exhaust gas recirculation fan 11 blowing the recirculation exhaust gas subjected to denitrification treatment in the recirculation catalytic denitrification device 10 into the combustion furnace 2.

Description

本発明は、例えば廃棄物焼却処理施設において発生するNOxが含まれた排ガスを処理する排ガス処理システムに関するものである。   The present invention relates to an exhaust gas treatment system for treating exhaust gas containing NOx generated in, for example, a waste incineration treatment facility.

<触媒脱硝法を用いた方法:方法1>
図2(a)に示されるように、従来の触媒脱硝法を用いた廃棄物焼却処理施設51Aにおいて、廃棄物は燃焼炉52で燃焼される。この燃焼炉52での廃棄物の燃焼に伴い発生する排ガスは、ボイラ53での熱交換に供されるとともに、エコノマイザ54でのボイラ53への給水の加熱に供された後に、ガス冷却塔55で所定温度まで冷却されてからバグフィルタを用いた集塵装置(BF)56に送られる。この集塵装置56でばいじんが除去された排ガスは、一旦、排ガス加熱装置(GRH)57で加熱された後に触媒脱硝装置(SCR)58に送られる。この触媒脱硝装置58で脱硝処理された排ガスは、誘引通風機(IDF)59により、煙突60を介して系外に排出される。
<Method using catalytic denitration method: Method 1>
As shown in FIG. 2A, waste is combusted in a combustion furnace 52 in a waste incineration treatment facility 51A using a conventional catalytic denitration method. The exhaust gas generated by the combustion of the waste in the combustion furnace 52 is used for heat exchange in the boiler 53 and is used for heating water supply to the boiler 53 in the economizer 54, and then the gas cooling tower 55. After being cooled down to a predetermined temperature, it is sent to a dust collector (BF) 56 using a bag filter. The exhaust gas from which the dust is removed by the dust collector 56 is once heated by the exhaust gas heating device (GRH) 57 and then sent to the catalyst denitration device (SCR) 58. The exhaust gas denitrated by the catalyst denitration device 58 is discharged out of the system through a chimney 60 by an induction fan (IDF) 59.

上記の廃棄物焼却処理施設51Aでは、燃焼炉52からの排ガスに含まれる窒素酸化物(NOx)を除去するために、排ガス加熱装置57と触媒脱硝装置58とが組み込まれる。
触媒脱硝装置58は、触媒上でアンモニア(NH)とNOxの反応を起こさせ、NOxをNとHOに分解する装置であるが、分解率は反応温度に大きく依存する。そのために、排ガス温度を200℃以上に保つ必要がある。
In the waste incineration facility 51A, an exhaust gas heating device 57 and a catalyst denitration device 58 are incorporated in order to remove nitrogen oxides (NOx) contained in the exhaust gas from the combustion furnace 52.
The catalyst denitration device 58 is a device that causes ammonia (NH 3 ) and NOx to react on the catalyst and decomposes NOx into N 2 and H 2 O. The decomposition rate greatly depends on the reaction temperature. Therefore, it is necessary to keep the exhaust gas temperature at 200 ° C. or higher.

一方、廃棄物焼却の際に発生する排ガスには、廃棄物に含まれる灰分や塩素、硫黄等に由来するばいじん、HCl、SOx等の有害物質が含まれる。そのため、集塵装置56でばいじんを除去し、アルカリ剤(消石灰が主流)を集塵装置56の上流に吹き込むことで、HCl、SOx等の酸性ガスをガス中や集塵装置56のろ布上で反応させて無害化を行っている。
ろ布の材質上(PTFE繊維やガラス繊維等が使用される)耐熱性は200℃程度までであり、また、HCl、SOx等の酸性ガスと消石灰の反応も温度依存性が高く、排ガス温度が低いほど効率的であるので、機器の腐食対策等を考慮し150℃程度の排ガス温度となるように設計される。
On the other hand, the exhaust gas generated during waste incineration includes harmful substances such as dust, HCl and SOx derived from ash, chlorine and sulfur contained in the waste. Therefore, dust is removed by the dust collector 56, and an alkaline agent (mainly slaked lime) is blown upstream of the dust collector 56, so that acidic gases such as HCl and SOx are in the gas or on the filter cloth of the dust collector 56. To make it harmless.
The heat resistance of the filter cloth material (PTFE fiber or glass fiber is used) is up to about 200 ° C, and the reaction between acidic gas such as HCl and SOx and slaked lime is highly temperature dependent, and the exhaust gas temperature is high. Since the lower the efficiency, the lower the exhaust gas temperature, which is about 150 ° C., in consideration of countermeasures against corrosion of the equipment.

廃棄物焼却処理施設51Aにおける排ガス処理システムでは、まず集塵装置56でばいじん、HCl、SOx等の酸性ガスを除去し、次いで触媒脱硝装置58でNOxを除去するシステム構成となるが、上記のように温度依存性が高いので、ガス冷却塔55や排ガス加熱装置57が図2(a)に示されるような配置とされる。   The exhaust gas treatment system in the waste incineration facility 51A has a system configuration in which acid dusts such as dust, HCl, SOx are first removed by the dust collector 56, and then NOx is removed by the catalyst denitration device 58. Therefore, the gas cooling tower 55 and the exhaust gas heating device 57 are arranged as shown in FIG.

排ガス加熱装置57は、集塵装置56からの150℃程度の排ガスを210℃にまで加熱するものであり、熱源としては、ボイラ付き廃棄物焼却処理施設51Aの場合にはボイラ53からの過熱蒸気(400℃または300℃)が使用される。なお、ボイラ53が付帯していない廃棄物焼却処理施設の場合には燃料バーナ等により加熱する。   The exhaust gas heating device 57 heats the exhaust gas of about 150 ° C. from the dust collector 56 to 210 ° C., and the heat source is superheated steam from the boiler 53 in the case of the waste incineration facility 51A with a boiler. (400 ° C. or 300 ° C.) is used. In addition, in the case of a waste incineration processing facility not accompanied by the boiler 53, it is heated by a fuel burner or the like.

<排ガス再循環法を用いた方法:方法2>
図2(b)に示されるように、従来の排ガス再循環法を用いた廃棄物焼却処理施設51Bは、主に、燃焼炉52、ボイラ53、エコノマイザ54、ガス冷却塔55、集塵装置56、誘引通風機59、煙突60および排ガス再循環ファン61により構成される。
この廃棄物焼却処理施設51Bにおいては、集塵装置56でばいじんが除去された後の200〜150℃の排ガスの一部(約20〜30%)が、再循環用排ガスとして排ガス再循環ファン61によって燃焼炉52内に吹き込まれる。この燃焼炉52内に吹き込まれた排ガスは、炉内をよく攪拌し、炉内での高温域(900℃以上)をなくし、NOxの生成を抑制する。
そして、燃焼炉52内に吹き込まれた排ガスは、炉内で燃焼排ガスと混合された後に、その燃焼排ガスと共にボイラ53、エコノマイザ54、ガス冷却塔55、集塵装置56、誘引通風機59および煙突60をそれぞれ通過して排気される。
なお、この種の排ガス再循環法にてNOxを低減するようにした技術は、例えば特許文献1にて知られている。
<Method using exhaust gas recirculation method: Method 2>
As shown in FIG. 2B, the waste incineration facility 51B using the conventional exhaust gas recirculation method mainly includes a combustion furnace 52, a boiler 53, an economizer 54, a gas cooling tower 55, and a dust collector 56. The induction fan 59, the chimney 60, and the exhaust gas recirculation fan 61 are configured.
In the waste incineration facility 51B, a part (about 20 to 30%) of the exhaust gas at 200 to 150 ° C. after the dust is removed by the dust collector 56 is used as the exhaust gas recirculation fan 61. Is blown into the combustion furnace 52. The exhaust gas blown into the combustion furnace 52 thoroughly agitates the inside of the furnace, eliminates a high temperature region (900 ° C. or higher) in the furnace, and suppresses generation of NOx.
Then, after the exhaust gas blown into the combustion furnace 52 is mixed with the combustion exhaust gas in the furnace, the boiler 53, the economizer 54, the gas cooling tower 55, the dust collector 56, the induction fan 59, and the chimney together with the combustion exhaust gas. The exhaust gas passes through each of 60.
A technique for reducing NOx by this type of exhaust gas recirculation method is known, for example, in Patent Document 1.

特開昭51−110731号公報JP-A-51-110731

<無触媒脱硝法を用いた方法:方法3>
図2(c)に示されるように、従来の無触媒脱硝法を用いた廃棄物焼却処理施設51Cは、主に、燃焼炉52、ボイラ53、エコノマイザ54、ガス冷却塔55、集塵装置56、誘引通風機59および煙突60と、アンモニアまたは尿素の吹込み装置62とを備えて構成されている。ここで、アンモニアまたは尿素を燃焼炉52内の850℃温度領域に吹き込み、NOxを還元しNとする。また、吹き込む量は、脱硝率により制御されるが、例えば脱硝率70%の場合、NH/NOxモル比で2.5程度となりNHが余剰となる。
<Method using non-catalytic denitration method: Method 3>
As shown in FIG. 2C, a waste incineration facility 51C using a conventional non-catalytic denitration method mainly includes a combustion furnace 52, a boiler 53, an economizer 54, a gas cooling tower 55, and a dust collector 56. The induction ventilator 59 and the chimney 60 and the ammonia or urea blowing device 62 are provided. Here, ammonia or urea is blown into the temperature range of 850 ° C. in the combustion furnace 52, and NOx is reduced to N 2 . The amount to be blown is controlled by the denitration rate. For example, when the denitration rate is 70%, the NH 3 / NOx molar ratio is about 2.5, and NH 3 is excessive.

<排ガス再循環法と無触媒脱硝法とを組み合わせて用いた方法:方法4>
図2(d)に示されるように、従来の排ガス再循環法と無触媒脱硝法と組み合わせて用いた廃棄物焼却処理施設51Dは、主に、燃焼炉52、ボイラ53、エコノマイザ54、ガス冷却塔55、集塵装置56、誘引通風機59および煙突60と、排ガス再循環ファン61と、アンモニアまたは尿素の吹込み装置62とを備えて構成されている。
この廃棄物焼却処理施設51Dの運転は、上記の排ガス再循環法と無触媒脱硝法との混成である。
<Method using exhaust gas recirculation method and non-catalytic denitration method in combination: Method 4>
As shown in FIG. 2D, the waste incineration treatment facility 51D used in combination with the conventional exhaust gas recirculation method and the non-catalytic denitration method is mainly composed of a combustion furnace 52, a boiler 53, an economizer 54, a gas cooling system. A tower 55, a dust collector 56, an induction fan 59 and a chimney 60, an exhaust gas recirculation fan 61, and an ammonia or urea blowing device 62 are provided.
The operation of the waste incineration facility 51D is a hybrid of the exhaust gas recirculation method and the non-catalytic denitration method.

上記の各種方法を用いた廃棄物焼却処理施設51A〜51Dでは、以下に述べるような問題点がある。   The waste incineration facilities 51A to 51D using the various methods described above have the following problems.

従来の触媒脱硝法を用いた廃棄物焼却処理施設51Aでは、排ガス加熱装置57で使用される熱源のエネルギーは損失エネルギーとなるので削減が望まれるが、触媒脱硝装置58での触媒脱硝反応は温度依存性が高いので、温度を下げることは困難である。
このため、例えば、ボイラ付きの廃棄物焼却処理施設51Aの場合(試算例の場合)、投入ごみ熱量の約5.5%が排ガス加熱に使用されて損出となる。この量は熱回収したボイラ53からの蒸気の約9%にあたる。一方、ボイラ53が付帯していない廃棄物焼却処理施設(100t/日)の場合、灯油等の燃料が60リットル/h必要となり運営費がその分上がる。
また、全ガス通過に見合う排ガス加熱装置57および触媒脱硝装置58がそれぞれ必要であり、設備費が高くなる。
In the waste incineration processing facility 51A using the conventional catalyst denitration method, the energy of the heat source used in the exhaust gas heating device 57 is lost energy, and thus reduction is desired. Because of the high dependence, it is difficult to lower the temperature.
For this reason, for example, in the case of the waste incineration treatment facility 51A with a boiler (in the case of the trial calculation example), about 5.5% of the input waste heat amount is used for exhaust gas heating and is lost. This amount corresponds to about 9% of the steam from the boiler 53 that has recovered heat. On the other hand, in the case of a waste incineration facility (100 t / day) that is not accompanied by the boiler 53, fuel such as kerosene is required at 60 liters / h, which increases the operating cost.
Further, the exhaust gas heating device 57 and the catalyst denitration device 58 that are suitable for the passage of all the gases are required, and the equipment cost becomes high.

従来の排ガス再循環法を用いた廃棄物焼却処理施設51Bでは、NOxの排出基準が厳しい場合(50ppm:O12%換算値)、適応できない。通常、排ガス再循環法を用いた方法でのNOx濃度は70ppm程度迄といわれている。
また、排ガス再循環ファン61によって燃焼炉52内に吹き込まれる再循環用排ガスの加熱熱量が熱損失となり、ボイラ効率が低下する(集塵装置56の出口温度150℃をエコノマイザ54の出口温度250℃迄過熱することになる)。例えば、再循環用排ガス量を燃焼ガスの20%とした場合、発生蒸気量が約2%低下してしまう。
また、ボイラ53やエコノマイザ54、ガス冷却塔55、集塵装置56等での通ガス量が増えるので装置の大型化を招き設備費が高くなる。
In the waste incineration treatment facility 51B using the conventional exhaust gas recirculation method, when the emission standard of NOx is strict (50 ppm: O 2 12% conversion value), it cannot be applied. Usually, the NOx concentration in the method using the exhaust gas recirculation method is said to be up to about 70 ppm.
Further, the heating heat amount of the recirculation exhaust gas blown into the combustion furnace 52 by the exhaust gas recirculation fan 61 becomes a heat loss, and the boiler efficiency is lowered (the outlet temperature 150 ° C. of the dust collector 56 is reduced to 250 ° C. of the economizer 54). Will overheat). For example, when the amount of exhaust gas for recirculation is 20% of the combustion gas, the amount of generated steam is reduced by about 2%.
Further, since the amount of gas passing through the boiler 53, the economizer 54, the gas cooling tower 55, the dust collector 56, and the like is increased, the apparatus is increased in size and the equipment cost is increased.

従来の無触媒脱硝法を用いた廃棄物焼却処理施設51Cでは、燃焼炉52内に吹き込むアンモニアまたは尿素量は脱硝率により制御されるが、例えば脱硝率70%の場合、NH/NOxモル比で2.5程度となりNHが余剰となり、リークしたアンモニアが酸性ガスと反応し、微細な粒子である塩化アンモニウムや硫化アンモニウムが生成される。この微細な粒子は、集塵装置56では除去することが難しく、煙突60から放出され、排ガスが白くにごり(「白煙」と称す。)、廃棄物焼却処理施設周辺住民からばいじん放出のクレームが発生してしまう。 In the waste incineration treatment facility 51C using the conventional non-catalytic denitration method, the amount of ammonia or urea blown into the combustion furnace 52 is controlled by the denitration rate. For example, when the denitration rate is 70%, the NH 3 / NOx molar ratio Thus, NH 3 becomes surplus, and the leaked ammonia reacts with the acid gas to produce fine particles of ammonium chloride and ammonium sulfide. These fine particles are difficult to remove by the dust collector 56, are emitted from the chimney 60, the exhaust gas becomes white (referred to as "white smoke"), and the residents around the waste incineration facility claim that soot is released. Will occur.

従来の排ガス再循環法と無触媒脱硝法と組み合わせて用いた廃棄物焼却処理施設51Dでは、上述した廃棄物焼却処理施設51Bと同様に熱回収が低下する。
また、排ガス再循環法で発生アンモニアを70ppm程度に抑制したとしても、規制値50ppmで運転管理40ppmとした場合、除去率が43%となり、リークアンモニア濃度は6ppm程度に抑えられるが、白煙は消えるか消えないかのぎりぎりの状態となる(5ppm以下が望ましい。)。
また、廃棄物焼却処理施設51Dは、上述した廃棄物焼却処理施設51Bと廃棄物焼却処理施設51Cとの構成を組み合わせたものであるから、当然に設備費が高くなる。
In the waste incineration treatment facility 51D used in combination with the conventional exhaust gas recirculation method and the non-catalytic denitration method, the heat recovery is reduced in the same manner as the waste incineration treatment facility 51B described above.
Further, even if the generated ammonia is suppressed to about 70 ppm by the exhaust gas recirculation method, when the operation control is 40 ppm with the regulation value of 50 ppm, the removal rate is 43% and the leak ammonia concentration is suppressed to about 6 ppm. It is in a state where it disappears or does not disappear (5 ppm or less is desirable).
Moreover, since the waste incineration processing facility 51D is a combination of the above-described configurations of the waste incineration processing facility 51B and the waste incineration processing facility 51C, the facility cost naturally increases.

本発明は、前述のような問題点に鑑みてなされたもので、従来の排ガス再循環法や無触媒脱硝法よりも高効率なNOx除去効果を達成しつつ、従来は必要とされていた排ガス加熱装置を省略して熱源として使用されていた過熱蒸気または燃料をなくすことができるとともに、ボイラ効率の低下を抑えることができ、しかも白煙の発生を未然に防ぐことができる排ガス処理システムを提供することを目的とするものである。   The present invention has been made in view of the above-described problems, and has achieved exhaust gas NOx removal effects that are more efficient than conventional exhaust gas recirculation methods and non-catalytic denitration methods, and has conventionally been required. Providing an exhaust gas treatment system that eliminates overheated steam or fuel that was used as a heat source by omitting the heating device, can suppress a decrease in boiler efficiency, and can prevent the generation of white smoke It is intended to do.

前記目的を達成するために、本発明による排ガス処理システムは、
廃棄物を燃焼する燃焼炉と、この燃焼炉で発生した排ガスの熱回収を行うボイラとを備える廃棄物焼却処理施設に付設される排ガス処理システムであって、
前記燃焼炉内にアンモニアまたは尿素を吹き込む吹込み装置と、
前記ボイラで熱回収した排ガスの一部を再循環用排ガスとしてその再循環用排ガスを脱硝処理する再循環用触媒脱硝装置と、
前記再循環用触媒脱硝装置にて脱硝処理された再循環用排ガスを前記燃焼炉内に吹き込む排ガス再循環ファンと、
を備えることを特徴とするものである(第1発明)。
In order to achieve the above object, an exhaust gas treatment system according to the present invention comprises:
An exhaust gas treatment system attached to a waste incineration treatment facility comprising a combustion furnace for burning waste and a boiler for recovering heat of exhaust gas generated in the combustion furnace,
A blowing device for blowing ammonia or urea into the combustion furnace;
A catalyst denitration device for recirculation that denitrates the exhaust gas for recirculation using a part of the exhaust gas heat recovered by the boiler as an exhaust gas for recirculation,
An exhaust gas recirculation fan for blowing the exhaust gas for recirculation that has been denitrated by the catalyst denitration device for recirculation into the combustion furnace;
(First invention).

本発明において、
前記再循環用触媒脱硝装置の上流に、再循環用排ガス中に含まれるばいじんを除去する集塵装置が設けられるのが好ましい(第2発明)。
In the present invention,
It is preferable that a dust collecting device for removing the dust contained in the recirculation exhaust gas is provided upstream of the recirculation catalyst denitration device (second invention).

本発明において、
前記再循環用触媒脱硝装置からの再循環用排ガスのNOx濃度が所定値となるように前記集塵装置からの再循環用排ガスに吹き込まれるアンモニアの吹込み量を制御するアンモニア吹込み量制御手段が設けられるのが好ましい(第3発明)。
In the present invention,
Ammonia injection amount control means for controlling the amount of ammonia injected into the recirculation exhaust gas from the dust collector so that the NOx concentration of the recirculation exhaust gas from the recirculation catalyst denitration device becomes a predetermined value. Is preferably provided (third invention).

本発明においては、ボイラで熱回収された排ガスの一部が再循環用排ガスとしてボイラの排ガス出口から取り出される。取り出された再循環用排ガスは、再循環用触媒脱硝装置に送られて脱硝処理された後、排ガス再循環ファンによって燃焼炉内に吹き込まれる。燃焼炉内には、アンモニアまたは尿素が吹込み装置によって吹き込まれる。
こうして、従来の排ガス再循環法や無触媒脱硝法よりも高効率なNOx除去効果を達成することができる。
また、従来の触媒脱硝法で用いられていた排ガス加熱装置(GRH)57(図2(a)参照)が不要になるので、熱源として使用されていた過熱蒸気または燃料をなくすことができる。
また、排ガス全量を脱硝処理する触媒脱硝装置(SCR)58(図2(a)参照)が不要になり、排ガスの一部(再循環用排ガス)をボイラ出口から引き抜き脱硝処理する再循環用触媒脱硝装置を設けるので、ボイラ効率の低下はない。
また、排ガス再循環効果と無触媒脱硝処理効果とにより、脱硝率を下げることができ、これによって白煙の発生を防ぐことができる。
In the present invention, a part of the exhaust gas heat recovered by the boiler is taken out from the exhaust gas outlet of the boiler as a recirculation exhaust gas. The taken-out recirculation exhaust gas is sent to a recirculation catalyst denitration device and denitrated, and then blown into the combustion furnace by an exhaust gas recirculation fan. Ammonia or urea is blown into the combustion furnace by a blowing device.
Thus, it is possible to achieve a NOx removal effect that is more efficient than the conventional exhaust gas recirculation method and non-catalytic denitration method.
Further, since the exhaust gas heating device (GRH) 57 (see FIG. 2A) used in the conventional catalytic denitration method is not required, the superheated steam or fuel used as the heat source can be eliminated.
In addition, a catalyst denitration device (SCR) 58 (see FIG. 2A) for denitrating the entire exhaust gas is not required, and a recirculation catalyst for extracting and denitrating part of the exhaust gas (recirculation exhaust gas) from the boiler outlet. Since a denitration device is provided, there is no decrease in boiler efficiency.
Further, the NOx removal rate can be lowered by the exhaust gas recirculation effect and the non-catalytic denitration treatment effect, thereby preventing the generation of white smoke.

本発明の一実施形態に係る排ガス処理システムを備えた廃棄物焼却処理施設の概略システム構成図Schematic system configuration diagram of a waste incineration treatment facility equipped with an exhaust gas treatment system according to an embodiment of the present invention 従来の排ガス処理システムを備えた廃棄物焼却処理施設の概略システム構成図Schematic system configuration diagram of a waste incineration facility equipped with a conventional exhaust gas treatment system

次に、本発明による排ガス処理システムの具体的な実施の形態について、図面を参照しつつ説明する。   Next, specific embodiments of the exhaust gas treatment system according to the present invention will be described with reference to the drawings.

図1には、本発明の一実施形態に係る排ガス処理システムを備えた廃棄物焼却処理施設の概略システム構成図が示されている。   FIG. 1 shows a schematic system configuration diagram of a waste incineration treatment facility equipped with an exhaust gas treatment system according to an embodiment of the present invention.

<廃棄物焼却処理施設の概略構成の説明>
図1に示される廃棄物焼却処理施設1において、廃棄物は燃焼炉2で燃焼される。この燃焼炉2での廃棄物の燃焼に伴い発生する排ガスは、ボイラ3での熱交換に供されるとともに、エコノマイザ4でのボイラ3への給水の加熱に供された後に、ガス冷却塔5で所定温度まで冷却されてからバグフィルタを用いた集塵装置(BF)6に送られる。この集塵装置6でばいじんが除去された排ガスは、誘引通風機(IDF)7により、煙突8を介して系外に排出される。
<Description of schematic configuration of waste incineration facility>
In the waste incineration treatment facility 1 shown in FIG. 1, the waste is burned in a combustion furnace 2. The exhaust gas generated by the combustion of the waste in the combustion furnace 2 is used for heat exchange in the boiler 3 and is also used for heating the feed water to the boiler 3 in the economizer 4, and then the gas cooling tower 5. After being cooled down to a predetermined temperature, it is sent to a dust collector (BF) 6 using a bag filter. The exhaust gas from which the dust is removed by the dust collector 6 is discharged out of the system through the chimney 8 by an induction fan (IDF) 7.

この廃棄物焼却処理施設1において、ボイラ3で熱交換に供された排ガスの一部(燃焼ガスの20〜30%、温度は300〜350℃)は、再循環用排ガスとして、耐熱性・耐薬品性に優れる高温バグフィルタを用いた集塵装置(BF)9に送られる。この集塵装置9により、再循環用排ガス中に含まれるばいじんが除去される。
集塵装置9によってばいじん除去された再循環用排ガスは、再循環用触媒脱硝装置10で脱硝処理された後、排ガス再循環ファン11によって燃焼炉2内に吹き込まれる。
また、燃焼炉2内には、吹込み装置12から規制値(50ppm)に見合うアンモニアまたは尿素が吹き込まれる。
In this waste incineration treatment facility 1, a part of the exhaust gas subjected to heat exchange in the boiler 3 (20 to 30% of combustion gas, temperature is 300 to 350 ° C.) is used as the exhaust gas for recirculation. It is sent to a dust collector (BF) 9 using a high-temperature bag filter having excellent chemical properties. The dust collector 9 removes the dust contained in the exhaust gas for recirculation.
The exhaust gas for recirculation removed by the dust collector 9 is denitrated by the catalyst denitration device 10 for recirculation, and then blown into the combustion furnace 2 by the exhaust gas recirculation fan 11.
In addition, ammonia or urea corresponding to the regulation value (50 ppm) is blown into the combustion furnace 2 from the blowing device 12.

<アンモニア吹込み量制御手段の説明>
再循環用触媒脱硝装置10は、触媒上でアンモニア(NH)とNOxの反応を起こさせ、NOxをNとHOに分解する装置である。
この再循環用触媒脱硝装置10には、その排ガス出口からの再循環用排ガスのNOx濃度が所定値となるように集塵装置9からの再循環用排ガスに吹き込まれるアンモニアの吹込み量を制御するアンモニア吹込み量制御手段13が付設されている。
このアンモニア吹込み量制御手段13は、制御弁14と制御器15とを備え、再循環用触媒脱硝装置10の排ガス出口のNOx濃度が例えば5ppmとなるように制御器15からの信号にて集塵装置9からの再循環用排ガスに吹き込まれるアンモニアの供給量を制御弁14で制御するように構成されている。
再循環用触媒脱硝装置10では、手前で吹き込まれたアンモニアにより、再循環用排ガス中のNOxは反応温度が300〜350℃と適しているため、当量比1.0で殆ど除去される。また、加熱も不必要である。
<Description of ammonia injection amount control means>
The recirculation catalyst denitration apparatus 10 is an apparatus that causes ammonia (NH 3 ) and NOx to react on the catalyst and decomposes NOx into N 2 and H 2 O.
The recirculation catalyst denitration device 10 controls the amount of ammonia blown into the recirculation exhaust gas from the dust collector 9 so that the NOx concentration of the recirculation exhaust gas from the exhaust gas outlet becomes a predetermined value. Ammonia injection amount control means 13 is attached.
The ammonia injection amount control means 13 includes a control valve 14 and a controller 15, and collects the signal from the controller 15 so that the NOx concentration at the exhaust gas outlet of the recirculation catalyst denitration device 10 becomes, for example, 5 ppm. The control valve 14 controls the supply amount of ammonia blown into the recirculation exhaust gas from the dust device 9.
In the recirculation catalyst denitration apparatus 10, NOx in the exhaust gas for recirculation is suitable for the reaction temperature of 300 to 350 ° C. due to the ammonia blown in front, so that it is almost removed at an equivalent ratio of 1.0. Further, heating is unnecessary.

<NOx収支等の説明>
表1には、100t/日の廃棄物焼却処理施設の場合(試算例:2000kcal/kg)における、排ガス温度や発生蒸気量、使用蒸気量、NOx濃度等に関して、従来の触媒脱硝法(方法1)を用いた廃棄物焼却処理施設51Aと、本実施形態の廃棄物焼却処理施設1とを比較した結果が示されている。
<Explanation of NOx balance>
Table 1 shows the conventional catalyst denitration method (method 1) regarding the exhaust gas temperature, the amount of generated steam, the amount of steam used, the NOx concentration, etc. in the case of a waste incineration facility of 100 t / day (estimated example: 2000 kcal / kg). The result of comparing the waste incineration facility 51 </ b> A using) with the waste incineration facility 1 of the present embodiment is shown.

Figure 2013072571
Figure 2013072571

本実施形態の廃棄物焼却処理施設1では、下記の結果が得られた。
排ガス再循環効果で燃焼炉2での発生NOxは70ppmとなる。
再循環用排ガス中のNOx濃度は5ppmである。
ガス量比について、燃焼ガス:再循環用排ガスを10:2とすると(排ガス再循環比約20%)、混合希釈効果でNOx濃度は(10×70+2×5)/12≒59ppmとなる。
排ガスのNOx規制値を50ppm、運転管理を40ppmとすると、燃焼炉2に対するアンモニア吹き込みでの除去率は(59−40)×100/59≒32%となり、無触媒脱硝設備実験による除去率、当量比、リークアンモニア線図(図示せず)より、当量比は1.0、リークアンモニアは4ppmとなる。白煙は出ないし脱硝率に余裕がある。
In the waste incineration facility 1 of the present embodiment, the following results were obtained.
The NOx generated in the combustion furnace 2 is 70 ppm due to the exhaust gas recirculation effect.
The NOx concentration in the exhaust gas for recirculation is 5 ppm.
Assuming that the combustion gas: recirculation exhaust gas is 10: 2 (exhaust gas recirculation ratio of about 20%), the NOx concentration is (10 × 70 + 2 × 5) / 12≈59 ppm due to the mixed dilution effect. .
If the NOx regulation value of exhaust gas is 50 ppm and the operation control is 40 ppm, the removal rate by injecting ammonia into the combustion furnace 2 is (59-40) × 100 / 59≈32%, and the removal rate and equivalent by non-catalytic denitration equipment experiment From the ratio and leak ammonia diagram (not shown), the equivalent ratio is 1.0 and the leak ammonia is 4 ppm. White smoke does not come out and there is a margin in the denitration rate.

表2には、蒸気消費の有無や発電量、NOx(50ppm)規制対応の可否、白煙の有無、設備費等に関して、従来法(方法1〜方法4)を用いた廃棄物焼却処理施設51A〜51Dと、本実施形態の廃棄物焼却処理施設1とを比較した結果が示されている。   Table 2 shows the waste incineration facility 51A using the conventional method (method 1 to method 4) regarding the presence or absence of steam consumption, the amount of power generation, the availability of NOx (50 ppm) regulations, the presence or absence of white smoke, equipment costs, etc. The result which compared -51D and the waste incineration processing facility 1 of this embodiment is shown.

Figure 2013072571
Figure 2013072571

<作用効果の説明>
本実施形態の廃棄物焼却処理施設1によれば、従来の排ガス再循環法や無触媒脱硝法と同等のNOx除去効果を達成することができるのは勿論のこと、更に以下の(1)〜(7)のような作用効果を得ることができる。
<Description of effects>
According to the waste incineration treatment facility 1 of the present embodiment, the NOx removal effect equivalent to that of the conventional exhaust gas recirculation method and non-catalytic denitration method can be achieved, and the following (1) to (1) to The effect as in (7) can be obtained.

(1)従来施設(51A:図2(a)参照)で使用されていたNOx規制値50ppmで排ガス全量を処理する排ガス加熱装置(GRH)57が不要になるので、蒸気消費量がなくなり、その分だけ発電量が増加する。
(2)従来施設(51A:図2(a)参照)で使用されていた排ガス全量を脱硝処理する触媒脱硝装置(SCR)58が不要になり、排ガスの一部(再循環用排ガス)を脱硝処理する再循環用触媒脱硝装置10に置き換えられ、排ガス再循環量が燃焼ガス量の20〜30%とされるので、再循環用触媒脱硝装置10が従来施設(51A:図2(a)参照)で使用されていた触媒脱硝装置58の処理能力の20〜30%のものでよく、装置の小型化を図ることができる。また、排ガス再循環ファン11によって燃焼炉2内に吹き込まれる再循環用排ガスの加熱熱量をなくすことができ、ボイラ効率の低下がない。なお、集塵装置6に加えて集塵装置9が別途必要になるが、通過ガス量が少ないため、小型の装置を採用することができ、全体としては設備費が安くなる。
(3)再循環用排ガスが燃焼炉52から集塵装置56まで通過する従来施設(51B:図2(b)参照)に対して、本実施形態の廃棄物焼却処理施設1においては、再循環用排ガスの通過が燃焼炉2からボイラ3までとされているので、エコノマイザ4以降の機器の小型化を図ることができ、設備費が安くなる。
(4)再循環用触媒脱硝装置10での脱硝処理が300〜350℃の温度域で実施されるため、1当量で100%近い中和反応が得られる。また、燃料炉2内での無触媒脱硝も脱硝率が低いことにより、1当量の吹き込みでよく、無駄なアンモニアの吹き込みがなく、薬剤費を低減することができる。
(5)再循環用触媒脱硝装置10での脱硝処理が300〜350℃の温度域で実施されるため、SOxからの被毒がなく、長寿命化を図ることができ、維持管理費を低減することができる。
(6)再循環用触媒脱硝装置10での脱硝処理が300〜350℃の温度域で実施されることでダイオキシン類も分解されるので、最終の集塵装置6での活性炭吹込みでのダイオキシン類の除去量が減り、活性炭消費量を低減することができる。
(7)排ガス再循環効果と無触媒脱硝処理効果とにより、脱硝率を下げることができ、これによって白煙の発生を防ぐことができる。
(8)再循環用触媒脱硝装置10の上流に、再循環用排ガス中に含まれるばいじんを除去する集塵装置9が設けられるので、廃棄物中の灰分が多い場合でも再循環用触媒脱硝装置10での脱硝処理を効率良く実施することができる。
(1) Since the exhaust gas heating device (GRH) 57 that treats the entire amount of exhaust gas at the NOx regulation value of 50 ppm used in the conventional facility (51A: see FIG. 2 (a)) becomes unnecessary, the steam consumption is eliminated. Power generation increases by the amount.
(2) The catalyst denitration device (SCR) 58 that denitrates all exhaust gas used in the conventional facility (51A: see Fig. 2 (a)) is no longer necessary, and part of the exhaust gas (exhaust gas for recirculation) is denitrated. Since the exhaust gas recirculation amount is set to 20 to 30% of the combustion gas amount, the recirculation catalyst denitration device 10 is replaced with a conventional facility (51A: FIG. 2A). 20 to 30% of the processing capacity of the catalyst denitration device 58 used in the above), and the size of the device can be reduced. In addition, the heating heat quantity of the recirculation exhaust gas blown into the combustion furnace 2 by the exhaust gas recirculation fan 11 can be eliminated, and the boiler efficiency does not decrease. In addition, although the dust collector 9 is separately required in addition to the dust collector 6, since a passing gas amount is small, a small device can be adopted, and the equipment cost is reduced as a whole.
(3) In contrast to the conventional facility (51B: see FIG. 2B) in which the exhaust gas for recirculation passes from the combustion furnace 52 to the dust collector 56, the waste incineration facility 1 of the present embodiment is recirculated. Since the exhaust gas is passed from the combustion furnace 2 to the boiler 3, the equipment after the economizer 4 can be reduced in size, and the equipment cost is reduced.
(4) Since the denitration process in the recirculation catalyst denitration apparatus 10 is carried out in the temperature range of 300 to 350 ° C., a neutralization reaction close to 100% can be obtained with one equivalent. Further, the non-catalytic denitration in the fuel furnace 2 also has a low denitration rate, so that it is possible to blow one equivalent, there is no wasteful ammonia blowing, and the chemical cost can be reduced.
(5) Since the denitration treatment in the recirculation catalyst denitration apparatus 10 is performed in the temperature range of 300 to 350 ° C., there is no poisoning from SOx, and it is possible to extend the life and reduce the maintenance cost. can do.
(6) Dioxins are also decomposed by performing the denitration treatment in the recirculation catalyst denitration apparatus 10 in the temperature range of 300 to 350 ° C. Therefore, dioxins in the final dust collector 6 by blowing activated carbon As a result, the amount of activated carbon consumed can be reduced and the activated carbon consumption can be reduced.
(7) Due to the exhaust gas recirculation effect and the non-catalytic denitration treatment effect, the denitration rate can be lowered, thereby preventing the generation of white smoke.
(8) Since the dust collecting device 9 for removing the dust contained in the recirculation exhaust gas is provided upstream of the recirculation catalyst denitration device 10, the recirculation catalyst denitration device even when there is a large amount of ash in the waste. 10 can be efficiently carried out.

以上、本発明の排ガス処理システムについて、一実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   The exhaust gas treatment system of the present invention has been described based on one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the configuration is appropriately changed without departing from the gist thereof. Is something that can be done.

本発明の排ガス処理システムは、従来の排ガス再循環法や無触媒脱硝法と同等のNOx除去効果を達成しつつ、従来は必要とされていた排ガス加熱装置を省略して熱源として使用されていた過熱蒸気または燃料をなくすことができるとともに、ボイラ効率の低下を抑えることができ、しかも白煙の発生を未然に防ぐことができるという特性を有していることから、廃棄物焼却処理施設における排ガスの処理の用途に好適に用いることができる。   The exhaust gas treatment system of the present invention achieves the same NOx removal effect as the conventional exhaust gas recirculation method and non-catalytic denitration method, and has been used as a heat source by omitting the conventionally required exhaust gas heating device. Exhaust gas in waste incineration facilities, because it has the characteristics that it can eliminate superheated steam or fuel, can suppress the decrease in boiler efficiency, and can prevent the generation of white smoke. It can use suitably for the use of the process of.

1 廃棄物焼却処理施設
2 燃焼炉
3 ボイラ
4 エコノマイザ
5 ガス冷却塔
6 集塵装置
7 誘引通風機
8 煙突
9 集塵装置
10 再循環用触媒脱硝装置
11 排ガス再循環ファン
12 吹込み装置
13 アンモニア吹込み量制御手段
14 制御弁
15 制御器
DESCRIPTION OF SYMBOLS 1 Waste incineration processing facility 2 Combustion furnace 3 Boiler 4 Economizer 5 Gas cooling tower 6 Dust collector 7 Induction fan 8 Chimney 9 Dust collector 10 Recirculation catalyst denitration device 11 Exhaust gas recirculation fan 12 Blowing device 13 Ammonia blowing Amount control means 14 Control valve 15 Controller

Claims (3)

廃棄物を燃焼する燃焼炉と、この燃焼炉で発生した排ガスの熱回収を行うボイラとを備える廃棄物焼却処理施設に付設される排ガス処理システムであって、
前記燃焼炉内にアンモニアまたは尿素を吹き込む吹込み装置と、
前記ボイラで熱回収した排ガスの一部を再循環用排ガスとしてその再循環用排ガスを脱硝処理する再循環用触媒脱硝装置と、
前記再循環用触媒脱硝装置にて脱硝処理された再循環用排ガスを前記燃焼炉内に吹き込む排ガス再循環ファンと、
を備えることを特徴とする排ガス処理システム。
An exhaust gas treatment system attached to a waste incineration treatment facility comprising a combustion furnace for burning waste and a boiler for recovering heat of exhaust gas generated in the combustion furnace,
A blowing device for blowing ammonia or urea into the combustion furnace;
A catalyst denitration device for recirculation that denitrates the exhaust gas for recirculation using a part of the exhaust gas heat recovered by the boiler as an exhaust gas for recirculation,
An exhaust gas recirculation fan for blowing the exhaust gas for recirculation that has been denitrated by the catalyst denitration device for recirculation into the combustion furnace;
An exhaust gas treatment system comprising:
前記再循環用触媒脱硝装置の上流に、再循環用排ガス中に含まれるばいじんを除去する集塵装置が設けられる請求項1に記載の排ガス処理システム。   The exhaust gas treatment system according to claim 1, wherein a dust collecting device for removing the dust contained in the recirculation exhaust gas is provided upstream of the recirculation catalyst denitration device. 前記再循環用触媒脱硝装置からの再循環用排ガスのNOx濃度が所定値となるように前記集塵装置からの再循環用排ガスに吹き込まれるアンモニアの吹込み量を制御するアンモニア吹込み量制御手段が設けられる請求項1または2に記載の排ガス処理システム。   Ammonia injection amount control means for controlling the amount of ammonia injected into the recirculation exhaust gas from the dust collector so that the NOx concentration of the recirculation exhaust gas from the recirculation catalyst denitration device becomes a predetermined value. The exhaust gas treatment system according to claim 1 or 2, wherein
JP2011210347A 2011-09-27 2011-09-27 Exhaust gas treating system Pending JP2013072571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011210347A JP2013072571A (en) 2011-09-27 2011-09-27 Exhaust gas treating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011210347A JP2013072571A (en) 2011-09-27 2011-09-27 Exhaust gas treating system

Publications (1)

Publication Number Publication Date
JP2013072571A true JP2013072571A (en) 2013-04-22

Family

ID=48477222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011210347A Pending JP2013072571A (en) 2011-09-27 2011-09-27 Exhaust gas treating system

Country Status (1)

Country Link
JP (1) JP2013072571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026614B1 (en) * 2015-09-29 2016-11-16 株式会社プランテック Waste incinerator exhaust gas treatment equipment
CN109052526A (en) * 2018-08-28 2018-12-21 盛发环保科技(厦门)有限公司 Flue gas disappears white coupling high temperature bypass flue evaporation high slat-containing wastewater Zero discharging system
CN110215853A (en) * 2018-03-02 2019-09-10 中国石油天然气股份有限公司 A kind of method and system preparing urea for vehicle aqueous solution
CN112742201A (en) * 2021-02-06 2021-05-04 江苏品德环保科技有限公司 Method and system for purifying waste incineration flue gas

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439222A (en) * 1977-09-02 1979-03-26 Babcock Hitachi Kk Process and apparatus of recycling exhaust gas
JPS5522386A (en) * 1978-08-08 1980-02-18 Mitsubishi Heavy Ind Ltd Reduction of nox in combustion exhaust gas
JPS60168538A (en) * 1983-11-10 1985-09-02 カット―テック ゲゼルシャフト フュア カタリサトルテヒニク エムベーハー Catalyst for combustion and conversion of gas and higher hydrocarbon,nitrogen oxide reducing apparatus and exhaust gas post-burning apparatus equipped with said catalyst
JPH05200252A (en) * 1991-08-30 1993-08-10 Osaka Gas Co Ltd Combustion method of natural gas and combustor for natural gas
US6071377A (en) * 1995-12-13 2000-06-06 Kvaerner Pulping Ab Process for obtaining flue gases with low content of NOx in a black liquor recovery boiler
JP2001090920A (en) * 1999-08-12 2001-04-03 Abb Schweiz Ag Method for heat-treating solid article
JP2002028449A (en) * 2000-07-14 2002-01-29 Babcock Hitachi Kk Method for controlling ammonia injection into catalytic denitrification equipment
JP2004084981A (en) * 2002-08-23 2004-03-18 Jfe Engineering Kk Waste incinerator
US20080202397A1 (en) * 2007-02-23 2008-08-28 Torbov T Steve Process for reduction of sulfur compounds and nitrogen compounds in the exhaust gases of combustion devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439222A (en) * 1977-09-02 1979-03-26 Babcock Hitachi Kk Process and apparatus of recycling exhaust gas
JPS5522386A (en) * 1978-08-08 1980-02-18 Mitsubishi Heavy Ind Ltd Reduction of nox in combustion exhaust gas
JPS60168538A (en) * 1983-11-10 1985-09-02 カット―テック ゲゼルシャフト フュア カタリサトルテヒニク エムベーハー Catalyst for combustion and conversion of gas and higher hydrocarbon,nitrogen oxide reducing apparatus and exhaust gas post-burning apparatus equipped with said catalyst
JPH05200252A (en) * 1991-08-30 1993-08-10 Osaka Gas Co Ltd Combustion method of natural gas and combustor for natural gas
US6071377A (en) * 1995-12-13 2000-06-06 Kvaerner Pulping Ab Process for obtaining flue gases with low content of NOx in a black liquor recovery boiler
JP2001090920A (en) * 1999-08-12 2001-04-03 Abb Schweiz Ag Method for heat-treating solid article
JP2002028449A (en) * 2000-07-14 2002-01-29 Babcock Hitachi Kk Method for controlling ammonia injection into catalytic denitrification equipment
JP2004084981A (en) * 2002-08-23 2004-03-18 Jfe Engineering Kk Waste incinerator
US20080202397A1 (en) * 2007-02-23 2008-08-28 Torbov T Steve Process for reduction of sulfur compounds and nitrogen compounds in the exhaust gases of combustion devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026614B1 (en) * 2015-09-29 2016-11-16 株式会社プランテック Waste incinerator exhaust gas treatment equipment
CN110215853A (en) * 2018-03-02 2019-09-10 中国石油天然气股份有限公司 A kind of method and system preparing urea for vehicle aqueous solution
CN109052526A (en) * 2018-08-28 2018-12-21 盛发环保科技(厦门)有限公司 Flue gas disappears white coupling high temperature bypass flue evaporation high slat-containing wastewater Zero discharging system
CN112742201A (en) * 2021-02-06 2021-05-04 江苏品德环保科技有限公司 Method and system for purifying waste incineration flue gas

Similar Documents

Publication Publication Date Title
JP5068935B2 (en) Method and system for removing NOx and mercury emissions from coal combustion
US8211391B2 (en) Biomass boiler SCR NOx and CO reduction system
JP3924150B2 (en) Gas combustion treatment method and apparatus
JP2010048456A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN106996702B (en) A kind of agglomeration for iron mine flue gas segmentation enrichment and UTILIZATION OF VESIDUAL HEAT IN emission reduction SOxAnd NOxMethod
JP5961514B2 (en) Fly ash circulation type exhaust gas treatment method
WO2015186818A1 (en) Boiler system and electric power generation plant provided with same
JP2009262081A (en) System for treating discharge gas and method of removing mercury from discharge gas
JP2012101158A (en) Exhaust gas treating method and apparatus
CN107131770B (en) A kind of agglomeration for iron mine waste heat recycling collaboration emission reduction SOxAnd NOxMethod
JP2014013102A (en) Device and method for treating combustion exhaust gas in refuse incineration treatment facility
CN113864789A (en) Incineration system for treating sulfur-containing, nitrogen-containing and salt-containing waste liquid
CN107737527A (en) Marine exhaust dedusting denitrification integral system
KR101495087B1 (en) Combustion system
JP2013072571A (en) Exhaust gas treating system
JP5284251B2 (en) Oxy-combustion exhaust gas treatment device and method of operating the exhaust gas treatment device
CN112755744A (en) Flue gas purification method in hazardous waste incineration process
JP2012213744A (en) Apparatus and method for treating exhaust gas and coal upgrading process facility
US7703403B2 (en) System and method for recomposing ammonia from fly ash
CN109054906B (en) Biomass gasification combustion and denitration integrated system and process
JP2013142481A (en) Method and apparatus for denitration in incinerator
JP2004036983A (en) Method and device for treating ammonia containing gas
KR101525929B1 (en) The method and device for disposing of waste gas
JP5791429B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP5016240B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117