JP2010048456A - Exhaust gas treatment apparatus and exhaust gas treatment method - Google Patents

Exhaust gas treatment apparatus and exhaust gas treatment method Download PDF

Info

Publication number
JP2010048456A
JP2010048456A JP2008212579A JP2008212579A JP2010048456A JP 2010048456 A JP2010048456 A JP 2010048456A JP 2008212579 A JP2008212579 A JP 2008212579A JP 2008212579 A JP2008212579 A JP 2008212579A JP 2010048456 A JP2010048456 A JP 2010048456A
Authority
JP
Japan
Prior art keywords
exhaust gas
urea water
gas
ammonia
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008212579A
Other languages
Japanese (ja)
Other versions
JP5302597B2 (en
Inventor
Hiroyuki Hikita
浩之 引田
Ryoji Samejima
良二 鮫島
Tomoko Suzuki
智子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2008212579A priority Critical patent/JP5302597B2/en
Publication of JP2010048456A publication Critical patent/JP2010048456A/en
Application granted granted Critical
Publication of JP5302597B2 publication Critical patent/JP5302597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment apparatus and an exhaust gas treatment method reducing cost for catalyst denitration and increasing exhaust heat recovery efficiency while preventing sulfuric acid corrosion. <P>SOLUTION: The exhaust gas treatment apparatus is provided with: a waste heat boiler 3 for recovering heat of exhaust gas discharged from a combustion furnace 1; a urea water spraying device 2A for spraying urea water to exhaust gas in a temperature region of 400-700°C by heat recovery by the waste heat boiler 3; a low-temperature heat recovery device 4 for further recovering heat from low-temperature exhaust gas with heat recovered by the waste heat boiler 3 and sprayed with urea water; a dust collecting facility 6 for collecting dust in the exhaust gas with heat recovered by the low-temperature heat recovery device 4; and a catalyst denitration tower 8 for performing catalyst denitration of the exhaust gas with dust removed therefrom by the dust collecting facility 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排ガス処理装置及び排ガス処理方法に関し、詳しくは、都市ごみや産業廃棄物等を焼却する焼却炉、ガス化溶融炉に付設されるガス燃焼炉、発電や温水利用等に使用される燃焼ボイラの火炉等の燃焼炉から排出される排ガスを化学的に処理する排ガス処理装置及び排ガス処理方法に関する。   TECHNICAL FIELD The present invention relates to an exhaust gas treatment apparatus and an exhaust gas treatment method, and more specifically, is used for incinerators for incinerating municipal waste, industrial waste, etc., gas combustion furnaces attached to gasification melting furnaces, power generation, hot water use, etc. The present invention relates to an exhaust gas treatment apparatus and an exhaust gas treatment method for chemically treating exhaust gas discharged from a combustion furnace such as a furnace of a combustion boiler.

従来、例えばごみ焼却炉等の燃焼炉から排出される排ガス中の窒素酸化物(NOX)を除去する方法として、無触媒脱硝法と触媒脱硝法とが知られている。 Conventionally, for example, a non-catalytic denitration method and a catalytic denitration method are known as methods for removing nitrogen oxides (NO x ) in exhaust gas discharged from a combustion furnace such as a waste incinerator.

無触媒脱硝法では、尿素を水に溶かした尿素水を燃焼炉の燃焼室内に噴霧することにより、窒素酸化物を分解する。尿素水を噴霧する燃焼室内の温度は、高温であるほど窒素酸化物の除去効率が高いとされる。そのため、尿素水は、750〜950℃の範囲の炉内領域に噴霧され、この場合、30%程度の窒素酸化物除去効率が期待できる。過剰な尿素水の噴霧は、塩化アンモニウムを発生させる原因となり、煙突から紫煙を発生させる。   In the non-catalytic denitration method, nitrogen oxides are decomposed by spraying urea water in which urea is dissolved in water into the combustion chamber of the combustion furnace. The higher the temperature in the combustion chamber in which the urea water is sprayed, the higher the nitrogen oxide removal efficiency. Therefore, urea water is sprayed on the in-furnace region in the range of 750 to 950 ° C. In this case, nitrogen oxide removal efficiency of about 30% can be expected. Excess urea spraying causes ammonium chloride to be generated, generating purple smoke from the chimney.

触媒脱硝法では、触媒表面上において、燃焼排ガス中の窒素酸化物をアンモニアの存在下で窒素ガスに分解する。触媒脱硝法では、95%程度の除去効率が期待できるが、触媒が非常に高価であることに加え、アンモニアを気化させて触媒脱硝塔の上流で吹き込む必要があるため、危険物であるアンモニアを貯留する貯留槽や、アンモニアを気化させるための設備などが必要となり、構成設備が複雑かつ高価なものになる。   In the catalyst denitration method, nitrogen oxides in combustion exhaust gas are decomposed into nitrogen gas in the presence of ammonia on the catalyst surface. In the catalytic denitration method, a removal efficiency of about 95% can be expected. However, in addition to the fact that the catalyst is very expensive, it is necessary to vaporize ammonia and blow it upstream of the catalyst denitration tower. A storage tank for storage, equipment for vaporizing ammonia, and the like are required, and the constituent equipment becomes complicated and expensive.

図3は、従来のごみ焼却施設を示す概略図である。ごみ焼却炉1には、炉内に尿素水を噴霧するための尿素水貯水槽2が付設されている。ごみ焼却炉1で発生する燃焼排ガスは、ボイラ3及び低温熱回収器4の一種であるエコノマイザ4aで排熱を回収された後、減温塔5、集塵装置の一種であるバグフィルタ6、再加熱器7、触媒脱硝設備を構成する触媒脱硝塔8、誘引通風器9を通じて煙突10から放出される。脱気器11は、ボイラ3への給水中に溶存している酸素、炭酸ガスを除去するものである。減温塔5は、バグフィルタ6の濾布材質の耐熱温度(250℃以下)まで排ガスの温度を下げる。バグフィルタ6の手前の煙道に、消石灰とともに特殊反応助剤を噴霧する乾式排ガス処理装置12が設置され、濾布の目詰まり防止とともに、HCl、SOxの中和促進が行われる。また、触媒脱硝塔8内にアンモニアガスを送るため、アンモニア気化装置13及びアンモニア貯留槽14が設置されている。なお、触媒脱硝塔8の触媒は、ダスト、硫黄酸化物(SOx)、アルカリ金属の堆積によって劣化するため、触媒脱硝塔8は、バグフィルタ6及び乾式排ガス処理装置の下流側に設置される。再加熱器7は、触媒反応の生じやすい温度に燃焼排ガスの温度を高める。   FIG. 3 is a schematic view showing a conventional waste incineration facility. The waste incinerator 1 is provided with a urea water storage tank 2 for spraying urea water in the furnace. Combustion exhaust gas generated in the waste incinerator 1 is recovered from exhaust heat by an economizer 4a which is a kind of boiler 3 and a low-temperature heat recovery unit 4, and then a temperature reducing tower 5, a bag filter 6 which is a kind of dust collector, It is emitted from the chimney 10 through the reheater 7, the catalyst denitration tower 8 constituting the catalyst denitration equipment, and the induction ventilator 9. The deaerator 11 removes oxygen and carbon dioxide dissolved in the water supplied to the boiler 3. The temperature reducing tower 5 lowers the temperature of the exhaust gas to the heat resistant temperature (250 ° C. or lower) of the filter cloth material of the bag filter 6. A dry exhaust gas treatment device 12 that sprays a special reaction aid together with slaked lime is installed in the flue before the bag filter 6 to prevent clogging of the filter cloth and promote neutralization of HCl and SOx. Further, an ammonia vaporizer 13 and an ammonia storage tank 14 are installed to send ammonia gas into the catalyst denitration tower 8. Since the catalyst of the catalyst denitration tower 8 is deteriorated by the deposition of dust, sulfur oxide (SOx), and alkali metal, the catalyst denitration tower 8 is installed on the downstream side of the bag filter 6 and the dry exhaust gas treatment apparatus. The reheater 7 raises the temperature of the combustion exhaust gas to a temperature at which a catalytic reaction is likely to occur.

触媒脱硝は上記したようにコスト高であるため、このコストを低減するため、尿素水を焼却炉内の上段に噴霧し、尿素の加水分解によりアンモニアを生成せしめ、生成したアンモニアの一部によりごみ焼却炉内で無触媒反応を起こさせ、ついで、ごみ焼却炉内の未反応アンモニアを用いて、ごみ焼却炉の下流側に接続された触媒脱硝塔内で触媒脱硝反応させることにより、触媒脱硝塔の入口におけるアンモニアの注入を不要にした排ガス脱硝方法が提案されている(特許文献1)。
特開平6−269634号公報
Since catalyst denitration is expensive as described above, in order to reduce this cost, urea water is sprayed on the upper stage in the incinerator, ammonia is generated by hydrolysis of urea, and waste is generated by a part of the generated ammonia. A catalytic denitrification tower is caused by causing a non-catalytic reaction in the incinerator and then performing a catalytic denitration reaction in a catalytic denitration tower connected to the downstream side of the waste incinerator using unreacted ammonia in the waste incinerator. There has been proposed an exhaust gas denitration method that eliminates the need for ammonia injection at the inlet (Patent Document 1).
JP-A-6-269634

しかしながら、アンモニアは、600℃付近から徐々に酸化分解してアンモニア由来の窒素酸化物を発生させ、この窒素酸化物は、800℃をピークとして1000℃程度まで発生することが報告されている(高橋康光、他6名「希薄燃焼法によるディーゼルエンジンの脱臭・分解装置としての適用」岐阜県保険環境研究所 所報 平成18年、第14号)。   However, ammonia is gradually oxidized and decomposed from around 600 ° C. to generate ammonia-derived nitrogen oxides, which are reported to generate up to about 1000 ° C. with a peak at 800 ° C. (Takahashi). Yasumitsu and 6 others "Application as a deodorizing and decomposing device for diesel engines by lean combustion method" Gifu Prefectural Insurance Environmental Research Institute, 2006, No. 14).

一般にごみ焼却炉等における炉内温度は800℃以上であるため、高温の炉内へ尿素水を噴霧した場合には、アンモニアが熱分解していまい、下流に設置された触媒脱硝塔での脱硝が不十分になることがある。   In general, the temperature in a furnace such as a waste incinerator is 800 ° C or higher, so when urea water is sprayed into a high-temperature furnace, ammonia is not thermally decomposed, and denitration in a catalytic denitration tower installed downstream. May become insufficient.

また、燃焼排ガス中の窒素酸化物や硫黄酸化物等の発生量は、ごみの性質や炉負荷等によって変動し、ごみ焼却炉内での未反応アンモニア濃度を制御できないため、触媒脱硝塔において安定した脱硝ができないことがある。   In addition, the amount of nitrogen oxides and sulfur oxides generated in the combustion exhaust gas varies depending on the nature of the waste and the furnace load, and the unreacted ammonia concentration in the waste incinerator cannot be controlled. Denitration may not be possible.

さらに、都市ごみ焼却施設等の大型の施設では、排熱回収ボイラによって排熱を回収する場合が多いが、この種の排熱回収ボイラは、熱回収効率を高めるために、ボイラ出口における燃焼ガスの顕熱を利用してボイラに送る給水を予熱する低温熱回収器を備えることが多い。排熱回収ボイラの排熱回収効率を向上させるためには、給水温度を低くすることが考えられるが、いわゆる硫酸腐食(低温腐食)を考慮しなければならない。この硫酸腐食は、ごみ中の硫黄分が燃焼して生じる硫黄酸化物(SO)が排ガス中の水分と反応して硫酸となることによって発生する。ごみの燃焼によって生じる硫黄酸化物は大半がSOであるが、わずかにSOも含まれており、このSOが数ppm含まれているだけでも硫酸露点が120〜130℃となる。そのため、エコノマイザ等の低温熱回収器の給水管等が硫酸腐食の影響を受けないように、排熱回収ボイラへの給水温度は140℃以上に設定される。すなわち、排ガスに含まれるSO3が排ガス中の水分と反応して硫酸となってエコノマイザの給水管等を腐食させる低温腐食を防止するため、排熱回収ボイラへの給水温度は硫酸露点温度である140℃以下にすることができず、その結果、排熱回収効率を高めることができなかった。 Further, in large facilities such as municipal waste incineration facilities, exhaust heat is often recovered by an exhaust heat recovery boiler. This type of exhaust heat recovery boiler is a combustion gas at the boiler outlet in order to increase heat recovery efficiency. Often, it is equipped with a low-temperature heat recovery unit that preheats the feed water that is sent to the boiler using the sensible heat. In order to improve the exhaust heat recovery efficiency of the exhaust heat recovery boiler, it is conceivable to lower the feed water temperature, but so-called sulfuric acid corrosion (low temperature corrosion) must be considered. The sulfuric acid corrosion is generated by the sulfur oxides sulfur content in waste occurs by burning (SO 3) is sulfuric acid reacts with the moisture in the exhaust gas. Sulfur oxides produced by the combustion of waste is mostly SO 2, are slightly SO 3 also includes, sulfuric acid dew point alone this SO 3 is contained several ppm is 120 to 130 ° C.. For this reason, the feed water temperature to the exhaust heat recovery boiler is set to 140 ° C. or higher so that the feed pipe of a low-temperature heat recovery device such as an economizer is not affected by sulfuric acid corrosion. That is, in order to prevent low temperature corrosion that SO 3 contained in the exhaust gas reacts with moisture in the exhaust gas to become sulfuric acid and corrodes the economizer water supply pipe etc., the feed water temperature to the exhaust heat recovery boiler is the sulfuric acid dew point temperature As a result, the exhaust heat recovery efficiency could not be increased.

そこで本発明は、触媒脱硝におけるコストを低減するとともに安定した脱硝を行うことができる排ガス処理装置及び排ガス処理方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust gas treatment apparatus and an exhaust gas treatment method capable of reducing the cost in catalyst denitration and performing stable denitration.

また、本発明は、硫酸腐食を防止しつつ排熱回収効率を高めることができる、排ガス処理装置及び排ガス処理方法を提供することを目的とする。   It is another object of the present invention to provide an exhaust gas treatment apparatus and an exhaust gas treatment method that can improve exhaust heat recovery efficiency while preventing sulfuric acid corrosion.

上記目的を達成するため、本発明に係る排ガス処理装置は、燃焼炉から排出された排ガスを冷却するガス冷却設備と、該ガス冷却設備によって400〜700℃の温度域にある排ガスに尿素水を噴霧するための尿素水噴霧装置と、尿素水を噴霧された排ガス中の塵を集塵する集塵設備と、該集塵設備によって塵を除去された排ガスを触媒脱硝する触媒脱硝設備と、を有することを特徴とする。   In order to achieve the above object, an exhaust gas treatment apparatus according to the present invention includes a gas cooling facility for cooling exhaust gas discharged from a combustion furnace, and urea water to exhaust gas in a temperature range of 400 to 700 ° C. by the gas cooling facility. A urea water spray device for spraying, a dust collection facility for collecting dust in exhaust gas sprayed with urea water, and a catalyst denitration facility for catalytic denitration of exhaust gas from which dust has been removed by the dust collection facility, It is characterized by having.

また、本発明に係る排ガス処理装置は、燃焼炉から排出された排ガスの熱を回収する排熱ボイラと、前記排熱ボイラによる熱回収によって400〜700℃の温度域にある排ガスに尿素水を噴霧するための尿素水噴霧装置と、前記排熱ボイラによって熱回収されるとともに尿素水を噴霧された低温排ガスから更に熱を回収する低温熱回収器と、を有することを特徴とする。この場合において、前記低温熱回収器によって熱回収された排ガス中の塵を集塵する集塵設備と、該集塵設備によって塵を除去された排ガスを触媒脱硝する触媒脱硝設備と、を更に有することが好ましい。   Moreover, the exhaust gas treatment apparatus according to the present invention is a waste heat boiler that recovers heat of exhaust gas discharged from a combustion furnace, and urea water is added to exhaust gas in a temperature range of 400 to 700 ° C. by heat recovery by the exhaust heat boiler. A urea water spraying device for spraying, and a low-temperature heat recovery device for recovering heat from the low-temperature exhaust gas sprayed with urea water while being recovered by the exhaust heat boiler. In this case, it further includes a dust collection facility that collects dust in the exhaust gas heat-recovered by the low-temperature heat recovery unit, and a catalyst denitration facility that performs catalyst denitration of the exhaust gas from which the dust has been removed by the dust collection facility. It is preferable.

さらに、尿素水噴霧装置の下流位置において排ガス中のアンモニアガス濃度を検出するための検出部と、前記検出部の検出結果に基づいて、前記尿素水噴霧装置による尿素水の噴霧量を制御する制御部と、を更に有することが好ましい。   Furthermore, a control unit for detecting the ammonia gas concentration in the exhaust gas at a downstream position of the urea water spray device, and a control for controlling the spray amount of the urea water by the urea water spray device based on the detection result of the detection unit It is preferable to further have a part.

また、本発明に係る排ガス処理方法は、燃焼炉から排出され窒素酸化物を含む排ガスを400℃〜700℃に冷却し、400〜700℃に冷却された排ガスに尿素水を噴霧してアンモニアガスを発生させ、発生したアンモニアガスによって排ガスを触媒脱硝することにより排ガス中の窒素酸化物濃度を低減させることを特徴とする。   Moreover, the exhaust gas treatment method according to the present invention is a method for cooling an exhaust gas exhausted from a combustion furnace to 400 ° C. to 700 ° C. and spraying urea water onto the exhaust gas cooled to 400 to 700 ° C. And the concentration of nitrogen oxides in the exhaust gas is reduced by catalytic denitration of the exhaust gas with the generated ammonia gas.

また、本発明に係る排ガス処理方法は、燃焼炉から排出され硫黄酸化物を含む排ガスを400℃〜700℃に冷却し、400〜700℃に冷却された排ガスに尿素水を噴霧してアンモニアガスを発生させ、発生したアンモニアガスで排ガス中のSO3を中和させることにより、硫酸腐食を防止することを特徴とする。 Moreover, the exhaust gas treatment method according to the present invention is a method for cooling an exhaust gas containing sulfur oxides discharged from a combustion furnace to 400 ° C. to 700 ° C., spraying urea water on the exhaust gas cooled to 400 to 700 ° C. And sulfuric acid corrosion is prevented by neutralizing SO 3 in the exhaust gas with the generated ammonia gas.

また、本発明に係る排ガス処理方法は、燃焼炉から排出され窒素酸化物及び硫黄酸化物を含む排ガスを400℃〜700℃に冷却し、400〜700℃に冷却された排ガスに尿素水を噴霧してアンモニアガスを発生させ、発生したアンモニアガスで排ガス中のSO3を中和させることにより硫酸腐食を防止するとともに、SOと反応せずに残ったアンモニアガスによって排ガスを触媒脱硝することにより排ガス中の窒素酸化物濃度を低減させることを特徴とする。 In the exhaust gas treatment method according to the present invention, exhaust gas discharged from a combustion furnace and containing nitrogen oxides and sulfur oxides is cooled to 400 ° C to 700 ° C, and urea water is sprayed on the exhaust gas cooled to 400 to 700 ° C. In this way, ammonia gas is generated, and sulfuric acid corrosion is prevented by neutralizing SO 3 in the exhaust gas with the generated ammonia gas, and exhaust gas is catalytically denitrated with the ammonia gas remaining without reacting with SO 3. It is characterized by reducing the nitrogen oxide concentration in the exhaust gas.

前記排ガス処理方法において、尿素水を噴霧された排ガス中のアンモニアガス濃度を検出し、該アンモニアガス濃度の検出結果に基づいて、尿素水の噴霧量を制御することが好ましい。   In the exhaust gas treatment method, it is preferable that the ammonia gas concentration in the exhaust gas sprayed with urea water is detected and the spray amount of urea water is controlled based on the detection result of the ammonia gas concentration.

本発明によれば、ごみ焼却炉等の炉から排出された後に温度を400℃〜700℃に低下させた排ガス中に尿素水を吹き込むことによって、アンモニアガスを発生させる。アンモニアガスは、400℃〜600℃の範囲では殆ど熱分解しない。アンモニアガスは、600℃付近から徐々に熱分解し始めるが、600℃〜700℃の範囲で熱分解する割合は少ないので、高い生成率でアンモニアガスが得られる。従って、触媒脱硝反応において安定した触媒脱硝が可能となる。   According to the present invention, ammonia gas is generated by blowing urea water into exhaust gas whose temperature has been lowered to 400 ° C. to 700 ° C. after being discharged from a furnace such as a waste incinerator. The ammonia gas hardly thermally decomposes in the range of 400 ° C to 600 ° C. Ammonia gas begins to thermally decompose gradually from around 600 ° C., but since the rate of thermal decomposition in the range of 600 ° C. to 700 ° C. is small, ammonia gas can be obtained with a high production rate. Therefore, stable catalyst denitration is possible in the catalyst denitration reaction.

発生したアンモニアガスは、排ガス中に硫黄酸化物が含まれている場合には、250℃〜400℃の温度領域で排ガス中のSO3と反応して硫酸アンモニウムを生成させる。その結果、排熱ボイラ及び低温熱回収器を備える排ガス系統では、排ガス中のSO3が、エコノマイザ等の低温熱回収器に至るまでに大幅に除去され、排ガス中の硫酸露点温度を低下させることができる。排ガスは、ボイラによる熱回収および尿素水の蒸発によって、250℃〜400℃に温度が低下する。従って、この温度領域において前記した如く排ガス中のSO3が除去されて硫酸露点温度が下がるので、エコノマイザに導入されるボイラ給水等の低温熱回収器における温度を140℃より低く設定し、排熱回収能力を高めることができる。 The generated ammonia gas reacts with SO 3 in the exhaust gas in a temperature range of 250 ° C. to 400 ° C. to generate ammonium sulfate when the sulfur oxide is contained in the exhaust gas. As a result, in an exhaust gas system equipped with an exhaust heat boiler and a low-temperature heat recovery device, SO 3 in the exhaust gas is significantly removed before reaching the low-temperature heat recovery device such as an economizer, and the sulfuric acid dew point temperature in the exhaust gas is lowered. Can do. The temperature of the exhaust gas is lowered to 250 ° C. to 400 ° C. due to heat recovery by the boiler and evaporation of urea water. Accordingly, as described above, SO 3 in the exhaust gas is removed in this temperature range and the sulfuric acid dew point temperature is lowered. Therefore, the temperature in the low-temperature heat recovery device such as boiler feed water introduced into the economizer is set lower than 140 ° C. The collection capacity can be increased.

また、エコノマイザに導入されるボイラ給水等の低温熱回収器における温度を下げることにより、低温熱回収器を通過した排ガスの温度を低下させることができ、それによって、バグフィルタ等の集塵装置の保護を目的として設置されるガス減温塔を省略するかあるいは小型化することが可能となる。   Moreover, the temperature of the exhaust gas that has passed through the low-temperature heat recovery device can be reduced by lowering the temperature in the low-temperature heat recovery device such as boiler feed water introduced into the economizer, and thereby, the dust collector such as a bag filter can be reduced. It is possible to omit or reduce the size of the gas cooling tower installed for the purpose of protection.

また、排ガス中のSOと未反応のアンモニアガスによって排ガスを触媒脱硝することにより、アンモニア気化装置及びアンモニア貯留槽を設置不要とすることができ、コスト削減が可能となる。 Further, by catalytic denitration of the exhaust gas with SO 3 in the exhaust gas and unreacted ammonia gas, installation of an ammonia vaporization device and an ammonia storage tank can be eliminated, and costs can be reduced.

さらに、尿素水噴霧により生じるアンモニアガスの濃度を検出して、尿素水の噴霧量を制御することで、触媒脱硝塔の触媒量に応じた所望濃度のアンモニアガスを安定供給することが可能となり、また、ゴミの性質や炉負荷等に応じてSOXの発生量が変動しても、SOを確実に除去できるとともに、過剰なアンモニアガスの発生を防止することができる。 Furthermore, by detecting the concentration of ammonia gas generated by the urea water spray and controlling the spray amount of the urea water, it becomes possible to stably supply ammonia gas at a desired concentration according to the catalyst amount of the catalyst denitrification tower, In addition, even if the amount of SO X generated varies depending on the nature of the garbage, the furnace load, etc., SO 3 can be removed reliably and the generation of excess ammonia gas can be prevented.

本発明の実施形態について、以下、図面を参照して説明する。なお、図3の従来装置を含め、全図及び全実施例において、同様の構成部分には同符号を付した。まず、本発明に係る排ガス処理装置の第1実施形態として、第1実施形態の排ガス処理装置を含むごみ焼却施設について、図1を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in all drawings and all the embodiments including the conventional apparatus of FIG. 3, the same components are denoted by the same reference numerals. First, as a first embodiment of an exhaust gas treatment apparatus according to the present invention, a waste incineration facility including the exhaust gas treatment apparatus of the first embodiment will be described with reference to FIG.

図1に示すごみ焼却施設は、燃焼炉の一種であるごみ焼却炉1、ボイラ3、低温熱回収器4、脱気器11、乾式排ガス処理装置12、集塵装置の一種であるバグフィルタ6、再加熱器7、触媒脱硝設備を構成する触媒脱硝塔8、誘引通風器9、煙突10などを備え、それらが直接もしくは煙道等を介して接続されている。低温熱回収器4は、ボイラ3から出る排ガスの熱量を回収する機器であり、エコノマイザ4a、脱気器用ヒータ4b、あるいは、空気加熱器(図示せず)等を含む。   The waste incineration facility shown in FIG. 1 includes a waste incinerator 1, which is a kind of combustion furnace, a boiler 3, a low temperature heat recovery device 4, a deaerator 11, a dry exhaust gas treatment device 12, and a bag filter 6 which is a kind of dust collector. , A reheater 7, a catalyst denitration tower 8 constituting a catalyst denitration facility, an induction ventilator 9, a chimney 10 and the like are connected directly or via a flue or the like. The low-temperature heat recovery device 4 is a device that recovers the amount of heat of the exhaust gas emitted from the boiler 3, and includes an economizer 4a, a deaerator heater 4b, an air heater (not shown), and the like.

図示例のごみ焼却炉1は、ストーカー式のごみ焼却炉であり、炉内に燃焼室1aを備えている。燃焼室1aの上部に排ガス出口1bが設けられ、排ガスは、誘引通風器9の作用によって誘引され、図1の点線の矢印に沿って流れる。   The illustrated incinerator 1 is a stalker-type incinerator and includes a combustion chamber 1a in the furnace. An exhaust gas outlet 1b is provided in the upper part of the combustion chamber 1a, and the exhaust gas is attracted by the action of the induction ventilator 9 and flows along the dotted arrow in FIG.

図1に示されたボイラ3は、ごみ焼却炉1と一体型であり、輻射伝熱部、ドラム3a、及び、ドラム3aに連通する水管3bで構成される接触伝熱部3B、等を備える水管式ボイラが例示されている。ごみ焼却炉1の排ガス出口1bから接触伝熱部3Bに至る煙道20は、図示しない蒸発管及びフィンによる水冷壁によって、公知の輻射伝熱部が形成されている。   The boiler 3 shown in FIG. 1 is integrated with the waste incinerator 1 and includes a radiant heat transfer section, a drum 3a, a contact heat transfer section 3B composed of a water pipe 3b communicating with the drum 3a, and the like. A water tube boiler is illustrated. In the flue 20 extending from the exhaust gas outlet 1b of the garbage incinerator 1 to the contact heat transfer section 3B, a known radiant heat transfer section is formed by a water cooling wall using an evaporation pipe and fins (not shown).

ごみ焼却炉1の内部(燃焼室1a)は800〜1000℃程度である。ゴミ焼却炉1から排出された排ガスは、ボイラ3内で熱を奪われ、ボイラ3の入り口付近で700℃程度であり、ボイラ3の出口付近では400℃程度となる。   The inside of the waste incinerator 1 (combustion chamber 1a) is about 800 to 1000 ° C. The exhaust gas discharged from the waste incinerator 1 is deprived of heat in the boiler 3, and is about 700 ° C. near the entrance of the boiler 3, and is about 400 ° C. near the exit of the boiler 3.

排ガスが400〜700℃の範囲となる領域に、尿素水を排ガス中に噴霧するための尿素水噴霧装置2Aが設置されている。尿素水噴霧装置2Aは、尿素水を貯留する尿素水貯留槽2aと、尿素水を図示しないポンプによって所定箇所へ導く導管2bと、導管2bの先端に取り付けられたスプレーノズル2cとを備えることができる。尿素水の噴霧部位は、排ガスが400〜700℃の範囲となる領域に、一カ所または複数箇所設けられる。   A urea water spray device 2A for spraying urea water into the exhaust gas is installed in a region where the exhaust gas is in the range of 400 to 700 ° C. The urea water spray device 2A includes a urea water storage tank 2a that stores urea water, a conduit 2b that guides urea water to a predetermined location by a pump (not shown), and a spray nozzle 2c that is attached to the tip of the conduit 2b. it can. One or a plurality of urea water spraying portions are provided in a region where the exhaust gas is in the range of 400 to 700 ° C.

400℃〜700℃の排ガスに噴霧された尿素水は、アンモニアガスを発生させる。アンモニアは、400℃〜600℃の範囲では殆ど熱分解しない。また、600℃付近から徐々に熱分解し始めて窒素酸化物を発生させ、800℃をピークとして1000℃程度まで窒素酸化物を発生させるが、600℃〜700℃の範囲ではアンモニアが熱分解する割合は非常に少なく700℃を超えたあたりから急激にアンモニアの熱分解が進行するため、600℃〜700℃の排ガスに尿素水を吹き込んだ場合にも高い生成率でアンモニアガスが得られる。なお、尿素水は、400℃〜600℃の排ガスに噴霧するようにしても良い。   The urea water sprayed on the exhaust gas at 400 ° C. to 700 ° C. generates ammonia gas. Ammonia hardly thermally decomposes in the range of 400 ° C to 600 ° C. In addition, it gradually begins to thermally decompose from around 600 ° C. to generate nitrogen oxide, and nitrogen oxide is generated up to about 1000 ° C. with a peak at 800 ° C. Since the thermal decomposition of ammonia proceeds rapidly from around 700 ° C., ammonia gas can be obtained at a high production rate even when urea water is blown into the exhaust gas at 600 ° C. to 700 ° C. In addition, you may make it spray urea water on the exhaust gas of 400 to 600 degreeC.

ボイラ3に熱を奪われ、尿素水の蒸発により気化熱を奪われた排ガスは、250〜400℃程度に冷却される。こうしてボイラ3を通過した排ガスは、低温熱回収器4に至るまでに、250〜400℃まで温度が低下する。そして、250〜400℃の温度範囲で排ガス中のSO3と、尿素水由来のアンモニアガスとが反応することにより硫酸アンモニウムが生成され、その結果、硫酸露点低下の原因となる排ガス中のSO3は減少する。 The exhaust gas that has been deprived of heat by the boiler 3 and deprived of vaporization heat by the evaporation of urea water is cooled to about 250 to 400 ° C. Thus, the temperature of the exhaust gas that has passed through the boiler 3 decreases to 250 to 400 ° C. before reaching the low-temperature heat recovery unit 4. Then, the SO 3 in the exhaust gas in the temperature range of 250 to 400 ° C., is generated ammonium sulfate by reaction with ammonia gas from the urea water, as a result, SO 3 in the exhaust gas which causes acid dew point drops Decrease.

ボイラ3の上流に尿素水を吹き込まない場合、低温熱回収器4の入口付近のSO3濃度は17ppm(乾燥状態)であったが、一定量の尿素水を吹き込んだ場合には、SO3濃度が2ppm(乾燥状態)となり、約90%のSO3を低減できることが実験的に確認されている。 When urea water was not blown upstream of the boiler 3, the SO 3 concentration near the inlet of the low-temperature heat recovery device 4 was 17 ppm (dry state), but when a certain amount of urea water was blown, the SO 3 concentration Has been experimentally confirmed to be about 2% (dry state), and can reduce about 90% of SO 3 .

なお、排ガス中のSO濃度を100ppm、SO3の割合(SO3/(SO2+SO3))を3%、尿素水噴霧によるSO除去率を90%、排ガス中の水分含有率を15vol%とすると、硫酸露点温度は110℃となる。従って、エコノマイザ4aや脱気器用ヒータ4bの給水温度等、低温熱回収器4の熱媒温度を140℃より低くすることが可能となり、従来に比較して熱回収能力を向上させることが可能となる。 The SO X concentration in the exhaust gas is 100 ppm, the SO 3 ratio (SO 3 / (SO 2 + SO 3 )) is 3%, the SO 3 removal rate by urea water spray is 90%, and the moisture content in the exhaust gas is 15 vol. %, The sulfuric acid dew point temperature is 110 ° C. Accordingly, the heat medium temperature of the low-temperature heat recovery device 4 such as the water supply temperature of the economizer 4a and the deaerator heater 4b can be lowered below 140 ° C., and the heat recovery capability can be improved as compared with the conventional case. Become.

さらに、エコノマイザ4aの出口付近の排ガス温度は、従来では220℃程度となるように設計されていたが、本発明においては、たとえば、ボイラ3の給水温度を120℃に制御し、エコノマイザ4aの伝熱面積を増やすことで排ガス温度を170℃に低下させることができる。その結果、バグフィルタ6の保護を目的としていた減温塔(図3の符合5を参照)を図示例の如く省略するか、或いは小型化することが可能となる。   Further, the exhaust gas temperature in the vicinity of the outlet of the economizer 4a has been conventionally designed to be about 220 ° C. However, in the present invention, for example, the feed water temperature of the boiler 3 is controlled to 120 ° C. to transmit the economizer 4a. The exhaust gas temperature can be lowered to 170 ° C. by increasing the heat area. As a result, the temperature reducing tower (see reference numeral 5 in FIG. 3) for the purpose of protecting the bag filter 6 can be omitted as shown in FIG.

さらに、SO3と反応しなかった尿素水由来のアンモニアガスは、下流のバグフィルタ6を通過し、触媒脱硝塔8での脱硝反応に使用するためのアンモニアとして作用し得る。その結果、触媒脱硝塔8にアンモニアガスを供給するためのアンモニア気化設備(図3の符合13参照)やアンモニア貯槽(図3の符合14参照)等のアンモニア供給装置一式が、図示例の如く不要となるか、あるいは、小型化が可能となる。 Furthermore, the ammonia gas derived from urea water that has not reacted with SO 3 passes through the downstream bag filter 6 and can act as ammonia for use in the denitration reaction in the catalyst denitration tower 8. As a result, a set of ammonia supply devices such as an ammonia vaporization facility (see reference numeral 13 in FIG. 3) and an ammonia storage tank (see reference numeral 14 in FIG. 3) for supplying ammonia gas to the catalyst denitration tower 8 are not required as in the illustrated example. Or miniaturization is possible.

次に、本発明の第2実施形態について、図2を参照して説明する。図2は、第2実施形態の排ガス処理装置を含むごみ焼却施設を示す概略図である。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic view showing a waste incineration facility including the exhaust gas treatment apparatus of the second embodiment.

第2実施形態は、排ガス中のアンモニアガス濃度を検出するための検出部21と、検出部21の検出結果に基づいて、尿素水噴霧装置2Aによる尿素水の噴霧量を制御する制御部22と、を備える点が上記第1実施形態と相違し、その他の構成は、上記第1実施形態と同様である。   The second embodiment includes a detection unit 21 for detecting the ammonia gas concentration in the exhaust gas, and a control unit 22 for controlling the spray amount of urea water by the urea water spray device 2A based on the detection result of the detection unit 21. These are different from the first embodiment, and other configurations are the same as those of the first embodiment.

検出部21は、図示例では、排ガス中のSOと反応前のアンモニア濃度が測定可能な位置であるボイラ3の出口位置21(a)と、SOと反応後の残存アンモニアガスのアンモニア濃度が測定可能な位置であるエコノマイザ4aの出口位置21(b)とに配置されている。 In the illustrated example, the detection unit 21 includes an outlet position 21 (a) of the boiler 3 where SO 3 in the exhaust gas and the ammonia concentration before reaction can be measured, and the ammonia concentration of the remaining ammonia gas after the reaction with SO 3. Are arranged at the exit position 21 (b) of the economizer 4a, which is a measurable position.

ごみの燃焼によって発生するSOX等の量は、ごみの性質や炉負荷等に応じて変動するため、尿素水噴霧装置2Aから噴霧する尿素水の量によっては、排ガス中のSOと反応しなかったアンモニアガスが過度に発生する可能性がある。排ガス中のSOと反応しなかったアンモニアガスは、バグフィルタ6で補修される飛灰に含有され、刺激臭の発生原因となる。また、排ガス中にアンモニアが過度に含まれると煙突から紫煙を発生させる。 Since the amount of SO X and the like generated by the combustion of garbage varies depending on the nature of the waste, the furnace load, etc., it reacts with SO 3 in the exhaust gas depending on the amount of urea water sprayed from the urea water spray device 2A. There is a possibility that excessive ammonia gas may be generated. Ammonia gas that has not reacted with SO 3 in the exhaust gas is contained in the fly ash repaired by the bag filter 6, and causes an irritating odor. Further, if ammonia is excessively contained in the exhaust gas, purple smoke is generated from the chimney.

ボイラ3の出口位置21(a)では尿素水噴霧により発生したアンモニアガスの濃度を検出し、エコノマイザ4aの出口位置21(b)では、SOとの中和反応により消費されて残存したアンモニアガスの濃度を検出する。これらの検出結果から、触媒脱硝塔8の触媒量に応じて必要なアンモニア濃度になるように演算し、尿素水の噴射量を制御することで、未反応アンモニアによる問題を解消し得る。 At the outlet position 21 (a) of the boiler 3, the concentration of ammonia gas generated by spraying urea water is detected, and at the outlet position 21 (b) of the economizer 4a, the remaining ammonia gas is consumed by the neutralization reaction with SO 3. The concentration of is detected. From these detection results, the problem due to unreacted ammonia can be solved by calculating the required ammonia concentration according to the catalyst amount of the catalyst denitration tower 8 and controlling the injection amount of urea water.

アンモニアガス濃度の検出部21は、たとえば、半導体レーザー式アンモニア濃度計を採用することができ、制御部22は、たとえば、検出部21の検出値信号を受けて、予め記録された制御プログラムに従い、触媒脱硝塔8において必要なアンモニア濃度となるように尿素水噴霧量を演算し、電磁弁等の流量制御手段2dをPID制御等により開閉制御することにより、尿素水噴霧装置2Aの噴霧量を制御することで、紫煙の発生等を防止することができる。   The ammonia gas concentration detection unit 21 may employ, for example, a semiconductor laser ammonia concentration meter, and the control unit 22 receives, for example, a detection value signal from the detection unit 21 and follows a control program recorded in advance. The urea water spray amount is calculated in the catalyst denitration tower 8 so that the necessary ammonia concentration is obtained, and the spray amount of the urea water spray device 2A is controlled by opening and closing the flow rate control means 2d such as a solenoid valve by PID control or the like. By doing so, generation | occurrence | production of purple smoke etc. can be prevented.

本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更が可能である。たとえば、上記実施形態において、ごみ焼却炉1は、ストーカー式であるが、これに限定されないし、ボイラ3の形式、配置等も図示例に限定されない。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the said embodiment, although the waste incinerator 1 is a stalker type, it is not limited to this, The form, arrangement | positioning, etc. of the boiler 3 are not limited to the example of illustration.

また、アンモニアガスの濃度計は、図示例の個数及び配置に限定されず、たとえば、位置21(b)に設けずに位置21(a)にのみ設けることもできるし、あるいは、脱気器用ヒータ4bの直後、触媒脱硝塔8の直前や直後に設けることもできる。   Further, the concentration meter of ammonia gas is not limited to the number and arrangement in the illustrated example. For example, the ammonia gas concentration meter can be provided only at the position 21 (a) without being provided at the position 21 (b), or the heater for the deaerator. It can also be provided immediately after 4b, immediately before or immediately after the catalyst denitration tower 8.

さらに、上記実施形態ではごみ焼却設備に適用した例を示したが、これに限らず、本発明は、窒素酸化物及び/又は硫黄酸化物を含む排ガスを処理する装置及び方法に広く適用可能であり、たとえば、ガス化溶融炉に付設されるガス燃焼炉、発電や温水利用等に使用される燃焼ボイラの火炉等の燃焼炉から排出される排ガスの処理に適用可能である。   Furthermore, although the example applied to the waste incineration facility is shown in the above embodiment, the present invention is not limited to this, and the present invention can be widely applied to apparatuses and methods for treating exhaust gas containing nitrogen oxides and / or sulfur oxides. For example, the present invention can be applied to treatment of exhaust gas discharged from a combustion furnace such as a gas combustion furnace attached to a gasification melting furnace, a furnace of a combustion boiler used for power generation, hot water use, or the like.

また、燃焼炉から排出された高温の排ガスを冷却する設備として、ボイラや低温熱回収器に代えて、他のガス冷却設備、たとえば、公知の水噴射式冷却設備を備えることもできる。ボイラや低温熱回収器を備えない場合、尿素水噴霧によるアンモニア濃度の制御は、ガス冷却設備の下流位置に配置した検出部によってアンモニア濃度を検出し、その検出値が予め定めた触媒脱硝塔の触媒量に応じたアンモニア濃度になるように、尿素水噴射量を制御することができる。   In addition, as a facility for cooling the high-temperature exhaust gas discharged from the combustion furnace, other gas cooling facilities, for example, a known water jet cooling facility can be provided instead of the boiler or the low-temperature heat recovery device. When a boiler or a low-temperature heat recovery device is not provided, the ammonia concentration control by spraying urea water is performed by detecting the ammonia concentration by a detection unit disposed at a downstream position of the gas cooling facility, and the detected value of the catalyst denitration tower is determined in advance. The urea water injection amount can be controlled so that the ammonia concentration corresponds to the catalyst amount.

本発明に係る排ガス処理装置の第1実施形態を含むごみ焼却施設を示す概略図である。1 is a schematic view showing a waste incineration facility including a first embodiment of an exhaust gas treatment apparatus according to the present invention. 本発明に係る排ガス処理装置の第2実施形態を含むごみ焼却施設を示す概略図である。It is the schematic which shows the waste incineration facility containing 2nd Embodiment of the waste gas processing apparatus which concerns on this invention. 従来のごみ焼却施設を示す概略図である。It is the schematic which shows the conventional refuse incineration facility.

符号の説明Explanation of symbols

1 燃焼炉(ごみ焼却炉)
2A 尿素水噴霧装置
3 ボイラ
4 低温熱回収器
6 集塵設備(バグフィルタ)
7 再加熱器
8 触媒脱硝塔
9 誘引通風器
10 煙突
11 脱気器
12 乾式排ガス処理装置
13 アンモニア気化装置
14 アンモニア貯留槽
1 Combustion furnace (garbage incinerator)
2A Urea water spray device
3 Boiler 4 Low-temperature heat recovery device 6 Dust collection equipment (bug filter)
7 Reheater 8 Catalytic denitration tower 9 Induction ventilator 10 Chimney 11 Deaerator 12 Dry exhaust gas treatment device 13 Ammonia vaporizer 14 Ammonia storage tank

Claims (8)

燃焼炉から排出された排ガスを冷却するガス冷却設備と、該ガス冷却設備によって400〜700℃の温度域にある排ガスに尿素水を噴霧するための尿素水噴霧装置と、尿素水を噴霧された排ガス中の塵を集塵する集塵設備と、該集塵設備によって塵を除去された排ガスを触媒脱硝する触媒脱硝設備と、を有することを特徴とする排ガス処理装置。 A gas cooling facility for cooling the exhaust gas discharged from the combustion furnace, a urea water spraying device for spraying urea water onto the exhaust gas in the temperature range of 400 to 700 ° C., and the urea water being sprayed by the gas cooling facility An exhaust gas treatment apparatus comprising: a dust collection facility that collects dust in exhaust gas; and a catalyst denitration facility that performs catalyst denitration on exhaust gas from which dust has been removed by the dust collection facility. 燃焼炉から排出された排ガスの熱を回収する排熱ボイラと、前記排熱ボイラによる熱回収によって400〜700℃の温度域にある排ガスに尿素水を噴霧するための尿素水噴霧装置と、前記排熱ボイラによって熱回収されるとともに尿素水を噴霧された低温排ガスから更に熱を回収する低温熱回収器と、を有することを特徴とする排ガス処理装置。 An exhaust heat boiler that recovers the heat of the exhaust gas discharged from the combustion furnace, a urea water spray device for spraying urea water to the exhaust gas in a temperature range of 400 to 700 ° C. by heat recovery by the exhaust heat boiler, An exhaust gas treatment apparatus comprising: a low-temperature heat recovery unit that recovers heat from a low-temperature exhaust gas sprayed with urea water while being heat-recovered by an exhaust heat boiler. 前記低温熱回収器によって熱回収された排ガス中の塵を集塵する集塵設備と、該集塵設備によって塵を除去された排ガスを触媒脱硝する触媒脱硝設備と、を更に有することを特徴とする請求項2に記載の排ガス処理装置。 It further comprises a dust collection facility for collecting dust in the exhaust gas heat recovered by the low-temperature heat recovery device, and a catalyst denitration facility for catalytic denitration of the exhaust gas from which dust has been removed by the dust collection facility. The exhaust gas treatment apparatus according to claim 2. 前記尿素水噴霧装置の下流位置において排ガス中のアンモニアガス濃度を検出するための検出部と、
前記検出部の検出結果に基づいて、前記尿素水噴霧装置による尿素水の噴霧量を制御する制御部と、
を更に有することを特徴とする請求項1〜3の何れかに記載の排ガス処理装置。
A detection unit for detecting the ammonia gas concentration in the exhaust gas at a downstream position of the urea water spray device;
Based on the detection result of the detection unit, a control unit for controlling the spray amount of urea water by the urea water spray device;
The exhaust gas treatment apparatus according to claim 1, further comprising:
燃焼炉から排出され窒素酸化物を含む排ガスを400℃〜700℃に冷却し、400〜700℃に冷却された排ガスに尿素水を噴霧してアンモニアガスを発生させ、発生したアンモニアガスによって排ガスを触媒脱硝することにより排ガス中の窒素酸化物濃度を低減させることを特徴とする、排ガス処理方法。 The exhaust gas discharged from the combustion furnace and containing nitrogen oxides is cooled to 400 ° C to 700 ° C, urea gas is sprayed on the exhaust gas cooled to 400 to 700 ° C to generate ammonia gas, and the exhaust gas is generated by the generated ammonia gas. An exhaust gas treatment method comprising reducing the concentration of nitrogen oxides in exhaust gas by catalytic denitration. 燃焼炉から排出され硫黄酸化物を含む排ガスを400℃〜700℃に冷却し、400〜700℃に冷却された排ガスに尿素水を噴霧してアンモニアガスを発生させ、発生したアンモニアガスで排ガス中のSO3を中和させることにより、硫酸腐食を防止することを特徴とする、排ガス処理方法。 The exhaust gas discharged from the combustion furnace and containing sulfur oxides is cooled to 400 ° C. to 700 ° C., and urea gas is sprayed on the exhaust gas cooled to 400 to 700 ° C. to generate ammonia gas. An exhaust gas treatment method characterized in that sulfuric acid corrosion is prevented by neutralizing SO 3 . 燃焼炉から排出され窒素酸化物及び硫黄酸化物を含む排ガスを400℃〜700℃に冷却し、400〜700℃に冷却された排ガスに尿素水を噴霧してアンモニアガスを発生させ、発生したアンモニアガスで排ガス中のSO3を中和させることにより硫酸腐食を防止するとともに、SOと反応せずに残ったアンモニアガスによって排ガスを触媒脱硝することにより排ガス中の窒素酸化物濃度を低減させることを特徴とする、排ガス処理方法。 The exhaust gas containing nitrogen oxides and sulfur oxides discharged from the combustion furnace is cooled to 400 ° C. to 700 ° C., urea gas is sprayed on the exhaust gas cooled to 400 to 700 ° C. to generate ammonia gas, and the generated ammonia Sulfuric acid corrosion is prevented by neutralizing SO 3 in the exhaust gas with gas, and the concentration of nitrogen oxides in the exhaust gas is reduced by catalytic denitration of the exhaust gas with ammonia gas remaining without reacting with SO 3 An exhaust gas treatment method characterized by the above. 尿素水を噴霧された排ガス中のアンモニアガス濃度を検出し、該アンモニアガス濃度の検出結果に基づいて、尿素水の噴霧量を制御することを特徴とする請求項5〜7の何れかに記載の排ガス処理方法。 The ammonia gas concentration in the exhaust gas sprayed with urea water is detected, and the spray amount of urea water is controlled based on the detection result of the ammonia gas concentration. Exhaust gas treatment method.
JP2008212579A 2008-08-21 2008-08-21 Exhaust gas treatment apparatus and exhaust gas treatment method Active JP5302597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212579A JP5302597B2 (en) 2008-08-21 2008-08-21 Exhaust gas treatment apparatus and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212579A JP5302597B2 (en) 2008-08-21 2008-08-21 Exhaust gas treatment apparatus and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2010048456A true JP2010048456A (en) 2010-03-04
JP5302597B2 JP5302597B2 (en) 2013-10-02

Family

ID=42065688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212579A Active JP5302597B2 (en) 2008-08-21 2008-08-21 Exhaust gas treatment apparatus and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP5302597B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297442A (en) * 2011-07-21 2011-12-28 中能兴科(北京)节能科技股份有限公司 Heat accumulating type temperature-reducing and dust-removing system and method
CN103272453A (en) * 2013-05-22 2013-09-04 绍兴市立新印染有限公司 Energy saving and emission reduction type printing and dyeing three-waste treatment system and process thereof
CN103464431A (en) * 2013-09-04 2013-12-25 中国大唐集团环境技术有限公司 Deashing device of smoke SCR urea denitration equipment
JP2014013102A (en) * 2012-07-04 2014-01-23 Takuma Co Ltd Device and method for treating combustion exhaust gas in refuse incineration treatment facility
CN103691315A (en) * 2013-12-25 2014-04-02 北京建筑材料科学研究总院有限公司 Heating type cement kiln low-temperature selective catalytic reduction denitration system
CN103807865A (en) * 2014-02-27 2014-05-21 江苏双良新能源装备有限公司 Two-section type gas boiler smoke heat energy recovery system with water spraying chamber
JP2014129914A (en) * 2012-12-28 2014-07-10 Kawasaki Heavy Ind Ltd Boiler with corrosion suppression device and corrosion suppression method of boiler
CN103968672A (en) * 2014-05-10 2014-08-06 蚌埠玻璃工业设计研究院 Heat exchanging device for glass kiln waste heat power generation denitration system
CN104006673A (en) * 2014-06-09 2014-08-27 鞍钢股份有限公司 Desulfurization and denitrification system and method for sintering flue gas
JP2014184423A (en) * 2013-02-19 2014-10-02 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Exhaust gas treatment method and exhaust gas treatment system
CN104117257A (en) * 2014-06-28 2014-10-29 李而宏 Boiler residual heat dedusting and purifying device
CN104289086A (en) * 2014-11-05 2015-01-21 浙江浙大海元环境科技有限公司 Method and device for removing high-concentration dust in flue gas of glass kiln
CN105003928A (en) * 2015-06-14 2015-10-28 黄志强 Waste gas processing device suitable for semiconductor manufacturing process
JP2015230149A (en) * 2014-06-06 2015-12-21 三菱日立パワーシステムズ株式会社 Boiler system and power generation plant with the same
CN105222145A (en) * 2015-09-07 2016-01-06 中国科学院过程工程研究所 A kind of waste-heat recovery device for ash-laden gas and technique
CN105247286A (en) * 2013-05-23 2016-01-13 电源开发株式会社 Fossil-fuel power plant and fossil-fuel power plant operation method
JP5859101B1 (en) * 2014-11-27 2016-02-10 株式会社タクマ Urea hydrolysis apparatus and catalyst regeneration method for urea hydrolysis apparatus
WO2016088407A1 (en) * 2014-12-05 2016-06-09 三菱重工業株式会社 Exhaust gas treatment device
CN105841175A (en) * 2016-03-30 2016-08-10 浙江菲达环保科技股份有限公司 Smoke collaborative treatment method based on ultra-low temperature electric deduster
CN106051778A (en) * 2016-06-29 2016-10-26 张宝生 Airtight diversified environment-friendly incineration device
CN106610019A (en) * 2016-12-19 2017-05-03 航天凯天环保科技股份有限公司 A small-scale garbage burning device and application of an exhaust gas purification system thereof
JP2018080852A (en) * 2016-11-14 2018-05-24 三菱日立パワーシステムズ株式会社 Exhaust heat recovery boiler and manufacturing method for the same
CN108413413A (en) * 2018-04-28 2018-08-17 江苏新东风化工科技有限公司 A kind of acrylic acid and esters waste oil processing system and method
CN108654374A (en) * 2018-07-24 2018-10-16 宁波国电龙高科环境工程技术有限公司 A kind of ultra-clean Processing tecchnics system of flue gas
CN109442427A (en) * 2018-12-10 2019-03-08 青岛皇冠五金有限公司 The processing unit and processing method of a kind of mental package object surface hazardous waste
CN110215814A (en) * 2019-06-25 2019-09-10 武汉淡蓝环保科技开发有限公司 A kind of flue gases of cock oven desulphurization denitration and heat recovery integrated apparatus
CN113587130A (en) * 2021-07-26 2021-11-02 宁波众茂杭州湾热电有限公司 Hot water recirculation system for flue gas waste heat recovery
EP4113006A3 (en) * 2021-06-10 2023-07-12 dezentec GmbH Fine dust separation device for small firing installations

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106705101A (en) * 2015-08-26 2017-05-24 盐城市瓯华化学工业有限公司 Waste heat recovering device for chemical production
CN107224820B (en) * 2017-05-22 2019-11-12 加拿大艾浦莱斯有限公司 A kind of cleaning treatment system and processing method for syngas combustion tail gas after Biohazard Waste burning or gasification
CN108826337A (en) * 2018-05-09 2018-11-16 武汉烽火兴业节能环保科技有限公司 A kind of boiler smoke-gas residual-heat recovering device
CN109045995B (en) * 2018-09-19 2021-02-12 北京巨亚国际环境科技股份有限公司 Deep dry desulfurization and denitrification method for biomass boiler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269634A (en) * 1993-03-17 1994-09-27 Kawasaki Heavy Ind Ltd Waste gas denitrification method in garbage incinarator
JPH08332349A (en) * 1995-06-07 1996-12-17 Babcock Hitachi Kk Denitration apparatus for exhaust gas from incinerator
JPH10118456A (en) * 1996-10-24 1998-05-12 Babcock Hitachi Kk Method and apparatus for treating exhaust gas
JPH11527A (en) * 1997-06-12 1999-01-06 Chichibu Onoda Cement Corp Denitrification control method
JP2001241603A (en) * 2000-02-28 2001-09-07 Miura Co Ltd Denitration device for boiler
JP2004223388A (en) * 2003-01-22 2004-08-12 Mitsubishi Heavy Ind Ltd Flue gas treating method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269634A (en) * 1993-03-17 1994-09-27 Kawasaki Heavy Ind Ltd Waste gas denitrification method in garbage incinarator
JPH08332349A (en) * 1995-06-07 1996-12-17 Babcock Hitachi Kk Denitration apparatus for exhaust gas from incinerator
JPH10118456A (en) * 1996-10-24 1998-05-12 Babcock Hitachi Kk Method and apparatus for treating exhaust gas
JPH11527A (en) * 1997-06-12 1999-01-06 Chichibu Onoda Cement Corp Denitrification control method
JP2001241603A (en) * 2000-02-28 2001-09-07 Miura Co Ltd Denitration device for boiler
JP2004223388A (en) * 2003-01-22 2004-08-12 Mitsubishi Heavy Ind Ltd Flue gas treating method and apparatus

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297442A (en) * 2011-07-21 2011-12-28 中能兴科(北京)节能科技股份有限公司 Heat accumulating type temperature-reducing and dust-removing system and method
JP2014013102A (en) * 2012-07-04 2014-01-23 Takuma Co Ltd Device and method for treating combustion exhaust gas in refuse incineration treatment facility
JP2014129914A (en) * 2012-12-28 2014-07-10 Kawasaki Heavy Ind Ltd Boiler with corrosion suppression device and corrosion suppression method of boiler
JP2014184423A (en) * 2013-02-19 2014-10-02 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Exhaust gas treatment method and exhaust gas treatment system
CN103272453A (en) * 2013-05-22 2013-09-04 绍兴市立新印染有限公司 Energy saving and emission reduction type printing and dyeing three-waste treatment system and process thereof
US9927117B2 (en) 2013-05-23 2018-03-27 Electric Power Development Co., Ltd. Fossil-fuel power plant and fossil-fuel power plant operation method
CN105247286A (en) * 2013-05-23 2016-01-13 电源开发株式会社 Fossil-fuel power plant and fossil-fuel power plant operation method
CN103464431A (en) * 2013-09-04 2013-12-25 中国大唐集团环境技术有限公司 Deashing device of smoke SCR urea denitration equipment
CN103464431B (en) * 2013-09-04 2015-05-13 中国大唐集团环境技术有限公司 Deashing device of smoke SCR urea denitration equipment
CN103691315A (en) * 2013-12-25 2014-04-02 北京建筑材料科学研究总院有限公司 Heating type cement kiln low-temperature selective catalytic reduction denitration system
CN103807865A (en) * 2014-02-27 2014-05-21 江苏双良新能源装备有限公司 Two-section type gas boiler smoke heat energy recovery system with water spraying chamber
CN103968672B (en) * 2014-05-10 2015-08-26 蚌埠玻璃工业设计研究院 A kind of heat-exchanger rig for glass kiln residual heat generating denitrating system
CN103968672A (en) * 2014-05-10 2014-08-06 蚌埠玻璃工业设计研究院 Heat exchanging device for glass kiln waste heat power generation denitration system
US9851101B2 (en) 2014-06-06 2017-12-26 Mitsubishi Hitachi Power Systems, Ltd. Boiler system and power plant including the same
JP2015230149A (en) * 2014-06-06 2015-12-21 三菱日立パワーシステムズ株式会社 Boiler system and power generation plant with the same
CN104006673A (en) * 2014-06-09 2014-08-27 鞍钢股份有限公司 Desulfurization and denitrification system and method for sintering flue gas
CN104117257B (en) * 2014-06-28 2016-05-04 李而宏 A kind of boiler afterheat dust removing purifier
CN104117257A (en) * 2014-06-28 2014-10-29 李而宏 Boiler residual heat dedusting and purifying device
CN104289086A (en) * 2014-11-05 2015-01-21 浙江浙大海元环境科技有限公司 Method and device for removing high-concentration dust in flue gas of glass kiln
JP2016101537A (en) * 2014-11-27 2016-06-02 株式会社タクマ Urea hydrolyzer and catalyst regeneration method for urea hydrolyzer
JP5859101B1 (en) * 2014-11-27 2016-02-10 株式会社タクマ Urea hydrolysis apparatus and catalyst regeneration method for urea hydrolysis apparatus
WO2016088407A1 (en) * 2014-12-05 2016-06-09 三菱重工業株式会社 Exhaust gas treatment device
JP2016107209A (en) * 2014-12-05 2016-06-20 三菱重工業株式会社 Exhaust gas treatment equipment
CN105003928A (en) * 2015-06-14 2015-10-28 黄志强 Waste gas processing device suitable for semiconductor manufacturing process
CN105003928B (en) * 2015-06-14 2017-10-24 安徽富芯微电子有限公司 A kind of emission-control equipment suitable for semiconductor fabrication process
CN105222145A (en) * 2015-09-07 2016-01-06 中国科学院过程工程研究所 A kind of waste-heat recovery device for ash-laden gas and technique
CN105841175A (en) * 2016-03-30 2016-08-10 浙江菲达环保科技股份有限公司 Smoke collaborative treatment method based on ultra-low temperature electric deduster
CN106051778A (en) * 2016-06-29 2016-10-26 张宝生 Airtight diversified environment-friendly incineration device
JP2018080852A (en) * 2016-11-14 2018-05-24 三菱日立パワーシステムズ株式会社 Exhaust heat recovery boiler and manufacturing method for the same
CN106610019A (en) * 2016-12-19 2017-05-03 航天凯天环保科技股份有限公司 A small-scale garbage burning device and application of an exhaust gas purification system thereof
CN108413413A (en) * 2018-04-28 2018-08-17 江苏新东风化工科技有限公司 A kind of acrylic acid and esters waste oil processing system and method
CN108654374A (en) * 2018-07-24 2018-10-16 宁波国电龙高科环境工程技术有限公司 A kind of ultra-clean Processing tecchnics system of flue gas
CN109442427A (en) * 2018-12-10 2019-03-08 青岛皇冠五金有限公司 The processing unit and processing method of a kind of mental package object surface hazardous waste
CN110215814A (en) * 2019-06-25 2019-09-10 武汉淡蓝环保科技开发有限公司 A kind of flue gases of cock oven desulphurization denitration and heat recovery integrated apparatus
EP4113006A3 (en) * 2021-06-10 2023-07-12 dezentec GmbH Fine dust separation device for small firing installations
CN113587130A (en) * 2021-07-26 2021-11-02 宁波众茂杭州湾热电有限公司 Hot water recirculation system for flue gas waste heat recovery
CN113587130B (en) * 2021-07-26 2024-06-04 宁波众茂杭州湾热电有限公司 Hot water recycling system for flue gas waste heat recovery

Also Published As

Publication number Publication date
JP5302597B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5302597B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
US8808652B2 (en) Biomass boiler SCR NOx and CO reduction system
US7622092B2 (en) Method and device for removing mercury
JP5484689B2 (en) Exhaust gas treatment system and method for removing mercury in exhaust gas
JP6090766B2 (en) Combustion exhaust gas treatment apparatus and treatment method for waste incineration treatment facility
KR20170124093A (en) Wet flue gas desulfurization system with zero waste water liquid discharge
JP5462067B2 (en) Operation method of waste incineration plant
WO2004023040A1 (en) Exhaust smoke-processing system
EP1399695B1 (en) Flue gas purification device for an incinerator
CN113864789A (en) Incineration system for treating sulfur-containing, nitrogen-containing and salt-containing waste liquid
JP2014128775A (en) Exhaust gas treatment equipment and gas turbine power generation system using the same
JP5537195B2 (en) Waste heat recovery system for stoker-type incinerator
KR20180132194A (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
US20110308436A1 (en) System and Method for Improved Heat Recovery from Flue Gases with High SO3 Concentrations
JP5281871B2 (en) Boiler plant
JP5426863B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP6062463B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2013072571A (en) Exhaust gas treating system
US10197272B2 (en) Process and apparatus for reducing acid plume
JP6458298B2 (en) Incineration equipment
JP2000262854A (en) Method and apparatus for treating exhaust gas
JP2011012875A (en) Method and device for suppressing generation of hydrogen chloride gas in waste gasification melting furnace
JP2002224532A (en) Flue gas treatment method and system therefor
JP4150736B2 (en) Temperature reduction method for melting furnace exhaust gas
JP2006026525A (en) Exhaust gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250