JP5426863B2 - Exhaust gas treatment method and exhaust gas treatment apparatus - Google Patents

Exhaust gas treatment method and exhaust gas treatment apparatus Download PDF

Info

Publication number
JP5426863B2
JP5426863B2 JP2008274087A JP2008274087A JP5426863B2 JP 5426863 B2 JP5426863 B2 JP 5426863B2 JP 2008274087 A JP2008274087 A JP 2008274087A JP 2008274087 A JP2008274087 A JP 2008274087A JP 5426863 B2 JP5426863 B2 JP 5426863B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat recovery
exhaust
urea water
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008274087A
Other languages
Japanese (ja)
Other versions
JP2010099603A (en
Inventor
智子 鈴木
良二 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2008274087A priority Critical patent/JP5426863B2/en
Publication of JP2010099603A publication Critical patent/JP2010099603A/en
Application granted granted Critical
Publication of JP5426863B2 publication Critical patent/JP5426863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、焼却炉等から排出される燃焼排ガスを処理する方法及び装置に係り、詳しくは、都市ごみや産業廃棄物等を焼却する焼却炉、ガス化溶融炉に付設されるガス燃焼炉、あるいは、発電や温水利用等に使用される燃焼ボイラの火炉等の燃焼炉から排出される排ガスを化学的に処理する排ガス処理装置及び排ガス処理方法に関する。   The present invention relates to a method and apparatus for treating combustion exhaust gas discharged from an incinerator or the like, and more specifically, an incinerator for incinerating municipal waste or industrial waste, a gas combustion furnace attached to a gasification melting furnace, Alternatively, the present invention relates to an exhaust gas treatment apparatus and an exhaust gas treatment method for chemically treating exhaust gas discharged from a combustion furnace such as a furnace of a combustion boiler used for power generation or use of hot water.

従来、ごみ焼却炉等から排出される排ガス中の窒素酸化物(NOX)を除去する方法として、無触媒脱硝法と触媒脱硝法とが知られている。 As a method of removing nitrogen oxides in an exhaust gas discharged from waste incinerators or the like (NO X), the non-catalytic denitration method and catalyst denitration method it is known.

無触媒脱硝法では、アンモニア水もしくは尿素水を燃焼炉の燃焼室内に噴霧することにより、窒素酸化物を分解する。尿素水を噴霧する燃焼室内の温度は、高温であるほど窒素酸化物の除去効率が高いとされる。そのため、尿素水は、750〜950℃の範囲の炉内領域に噴霧され、この場合、30%程度の窒素酸化物除去効率が期待できる。過剰な尿素水の噴霧は、塩化アンモニウムを発生させる原因となり、煙突から紫煙を発生させる。   In the non-catalytic denitration method, nitrogen oxides are decomposed by spraying ammonia water or urea water into the combustion chamber of the combustion furnace. The higher the temperature in the combustion chamber in which the urea water is sprayed, the higher the nitrogen oxide removal efficiency. Therefore, urea water is sprayed on the in-furnace region in the range of 750 to 950 ° C. In this case, nitrogen oxide removal efficiency of about 30% can be expected. Excess urea spraying causes ammonium chloride to be generated, generating purple smoke from the chimney.

触媒脱硝法では、触媒表面上において、燃焼排ガス中の窒素酸化物をアンモニアの存在下で窒素ガスに分解する。触媒脱硝法では、95%程度の除去効率が期待できるが、触媒が非常に高価であることに加え、アンモニアを気化させて触媒脱硝塔の上流で吹き込む必要があるため、劇物に指定されているアンモニアを貯留する貯留槽や、アンモニアを気化させるための設備などが必要となり、構成設備が複雑かつ高価なものになる。   In the catalyst denitration method, nitrogen oxides in combustion exhaust gas are decomposed into nitrogen gas in the presence of ammonia on the catalyst surface. In the catalytic denitration method, a removal efficiency of about 95% can be expected, but in addition to being very expensive, it is necessary to vaporize ammonia and blow it upstream of the catalytic denitration tower, so it is designated as a deleterious substance. A storage tank for storing ammonia and facilities for vaporizing ammonia are required, and the constituent facilities are complicated and expensive.

図2は、従来のごみ焼却施設の排ガス処理装置の一例を概略的に示すブロック図である。ごみ焼却炉1で発生する排ガスは、排熱回収ボイラ2、及び低温熱回収器の一種であるエコノマイザ3で排熱を回収された後、減温塔4、集塵装置5の一種であるバグフィルタ、再加熱器6、触媒脱硝装置7、誘引通風機8を通じて煙突9から放出される。減温塔4は、集塵装置5の濾布材質等の耐熱温度(例えば250℃以下)まで排ガスの温度を下げる。また、触媒脱硝装置7内にアンモニアガスを送るため、アンモニア注入装置10が設置されている。アンモニア注入装置は、図示しないが、アンモニア水貯留槽、アンモニア気化装置等を備えている。なお、触媒脱硝装置7の触媒は、ダスト、硫黄酸化物(SOx)、アルカリ金属の堆積によって劣化するため、触媒脱硝装置7は、集塵装置5の下流側に設置される。再加熱器6は、触媒反応の生じやすい温度に燃焼排ガスの温度を高める。   FIG. 2 is a block diagram schematically showing an example of an exhaust gas treatment apparatus of a conventional waste incineration facility. The exhaust gas generated in the waste incinerator 1 is recovered from exhaust heat by an exhaust heat recovery boiler 2 and an economizer 3 that is a kind of low-temperature heat recovery device, and then a bug that is a kind of a temperature reducing tower 4 and a dust collector 5. It is emitted from the chimney 9 through the filter, the reheater 6, the catalyst denitration device 7, and the induction fan 8. The temperature reducing tower 4 lowers the temperature of the exhaust gas to a heat resistant temperature (for example, 250 ° C. or less) such as a filter cloth material of the dust collector 5. An ammonia injection device 10 is installed to send ammonia gas into the catalyst denitration device 7. Although not shown, the ammonia injection device includes an ammonia water storage tank, an ammonia vaporizer, and the like. In addition, since the catalyst of the catalyst denitration device 7 is deteriorated by the deposition of dust, sulfur oxide (SOx), and alkali metal, the catalyst denitration device 7 is installed on the downstream side of the dust collector 5. The reheater 6 raises the temperature of the combustion exhaust gas to a temperature at which a catalytic reaction is likely to occur.

触媒脱硝は上記したようにコスト高であり、このコストを低減するため、尿素水を焼却炉内の上段に噴霧し、尿素の加水分解によりアンモニアを生成せしめ、生成したアンモニアの一部によりごみ焼却炉内で無触媒反応を起こさせ、ついで、ごみ焼却炉内の未反応アンモニアを用いて、ごみ焼却炉の下流側に接続された触媒脱硝塔内で触媒脱硝反応させることにより、触媒脱硝塔の入口におけるアンモニアの注入を不要にした排ガス脱硝方法が提案されている(特許文献1)。
特開平6−269634号公報
As described above, catalytic denitration is expensive, and in order to reduce this cost, urea water is sprayed on the upper stage in the incinerator, ammonia is generated by hydrolysis of urea, and waste is incinerated by part of the generated ammonia. The catalyst denitration tower is allowed to undergo a non-catalytic reaction in the furnace, and then the unreacted ammonia in the waste incinerator is used to perform a catalyst denitration reaction in a catalyst denitration tower connected to the downstream side of the waste incinerator. An exhaust gas denitration method that eliminates the need for ammonia injection at the inlet has been proposed (Patent Document 1).
JP-A-6-269634

しかしながら、アンモニアは、600℃付近から徐々に酸化分解してアンモニア由来の窒素酸化物を発生させ、この窒素酸化物は、800℃をピークとして1000℃程度まで発生することが報告されている(高橋康光、他6名「希薄燃焼法によるディーゼルエンジンの脱臭・分解装置としての適用」岐阜県保険環境研究所 所報 平成18年、第14号)。   However, ammonia is gradually oxidized and decomposed from around 600 ° C. to generate ammonia-derived nitrogen oxides, which are reported to generate up to about 1000 ° C. with a peak at 800 ° C. (Takahashi). Yasumitsu and 6 others "Application as a deodorizing and decomposing device for diesel engines by lean combustion method" Gifu Prefectural Insurance Environmental Research Institute, 2006, No. 14).

一般にごみ焼却炉等における炉内温度は800℃以上であるため、高温の炉内へ尿素水を噴霧した場合には、アンモニアが熱分解していまい、下流に設置された触媒脱硝塔での脱硝が不十分になることがある。   In general, the temperature in a furnace such as a waste incinerator is 800 ° C or higher, so when urea water is sprayed into a high-temperature furnace, ammonia is not thermally decomposed, and denitration in a catalytic denitration tower installed downstream. May become insufficient.

また、燃焼排ガス中の窒素酸化物や硫黄酸化物等の発生量は、ごみの性質や炉負荷等によって変動し、ごみ焼却炉内での未反応アンモニア濃度を制御できないため、触媒脱硝塔において安定した脱硝ができないことがある。   In addition, the amount of nitrogen oxides and sulfur oxides generated in the combustion exhaust gas varies depending on the nature of the waste and the furnace load, and the unreacted ammonia concentration in the waste incinerator cannot be controlled. Denitration may not be possible.

さらに、都市ごみ焼却施設等の大型の施設では、排熱回収ボイラによって排熱を回収する場合が多いが、この種の排熱回収ボイラは、熱回収効率を高めるために、ボイラ出口における燃焼ガスの顕熱を利用してボイラに送る給水を予熱する低温熱回収器を備えることが多い。排熱回収ボイラの排熱回収効率を向上させるためには、給水温度を低くすることが考えられるが、いわゆる硫酸腐食(低温腐食)を考慮しなければならない。この硫酸腐食は、ごみ中の硫黄分が燃焼して生じる硫黄酸化物(SO)が排ガス中の水分と反応して硫酸となることによって発生する。ごみの燃焼によって生じる硫黄酸化物は大半がSOであるが、わずかにSOも含まれており、このSOが数ppm含まれているだけでも硫酸露点が120〜130℃となる。そのため、エコノマイザ等の低温熱回収器の給水管等が硫酸腐食の影響を受けないように、排熱回収ボイラへの給水温度は140℃以上に設定される。すなわち、排ガスに含まれるSO3が排ガス中の水分と反応して硫酸となってエコノマイザの給水管等を腐食させる低温腐食を防止するため、排熱回収ボイラへの給水温度は硫酸露点温度である140℃以下にすることができず、その結果、排熱回収効率を高めることができなかった。 Further, in large facilities such as municipal waste incineration facilities, exhaust heat is often recovered by an exhaust heat recovery boiler. This type of exhaust heat recovery boiler is a combustion gas at the boiler outlet in order to increase heat recovery efficiency. Often, it is equipped with a low-temperature heat recovery unit that preheats the feed water sent to the boiler using the sensible heat of In order to improve the exhaust heat recovery efficiency of the exhaust heat recovery boiler, it is conceivable to lower the feed water temperature, but so-called sulfuric acid corrosion (low temperature corrosion) must be considered. This sulfuric acid corrosion occurs when sulfur oxide (SO 3 ) generated by combustion of sulfur in the garbage reacts with moisture in the exhaust gas to become sulfuric acid. Most of the sulfur oxides produced by the combustion of garbage are SO 2 , but a slight amount of SO 3 is also contained, and even if this SO 3 is contained in several ppm, the sulfuric acid dew point is 120 to 130 ° C. For this reason, the feed water temperature to the exhaust heat recovery boiler is set to 140 ° C. or higher so that the feed pipe of a low-temperature heat recovery device such as an economizer is not affected by sulfuric acid corrosion. That is, in order to prevent low temperature corrosion that SO 3 contained in the exhaust gas reacts with moisture in the exhaust gas to become sulfuric acid and corrodes the economizer water supply pipe etc., the feed water temperature to the exhaust heat recovery boiler is the sulfuric acid dew point temperature As a result, the exhaust heat recovery efficiency could not be increased.

そこで本発明は、安全且つ安定した脱硝を行うことができ、さらには、排熱回収効率を高めることができる排ガス処理方法及び排ガス処理装置を提供することを主たる目的とする。   Therefore, a main object of the present invention is to provide an exhaust gas treatment method and an exhaust gas treatment apparatus that can perform safe and stable denitration and can further improve exhaust heat recovery efficiency.

上記目的を達成するため、本発明に斯かる排ガス処理方法は、排ガス処理において、排ガスの排熱を排熱回収ボイラにより回収する排熱回収工程と、前記排熱回収ボイラ出口における排ガスの顕熱を利用して該排熱回収ボイラに送る給水を低温熱回収器により予熱する低温熱回収工程と、前記低温熱回収工程後の排ガスを集塵装置により除塵する工程と、除塵後の処理されるべき排ガスの一部を引き抜く工程と、引き抜いた排ガスに尿素水を噴霧して尿素水の熱分解によりアンモニアを生成させる工程と、生成したアンモニアを含む排ガスを脱硝触媒に供給する工程と、生成したアンモニアを含む排ガスの一部を前記低温熱回収器の上流位置において前記排熱回収ボイラによって排熱回収された排ガスに吹き込んで、該排ガス中のSO を前記尿素水の熱分解により生成したアンモニアと反応させて硫酸アンモニウムを生成させ、排ガス中のSO 濃度を低減させる工程と、を含むことを特徴とする In order to achieve the above object, an exhaust gas treatment method according to the present invention includes an exhaust heat recovery step of recovering exhaust heat of exhaust gas by an exhaust heat recovery boiler in exhaust gas treatment, and sensible heat of exhaust gas at the exhaust heat recovery boiler outlet. A low-temperature heat recovery step of preheating the feed water sent to the exhaust heat recovery boiler using a low-temperature heat recovery unit, a step of removing dust by the dust collector after the low-temperature heat recovery step, and a process after dust removal a step of withdrawing the portion of the exhaust gas to the step of generating ammonia by thermal decomposition of urea water by spraying urea water into withdrawing exhaust gas, and supplying the exhaust gas containing the produced ammonia denitration catalyst, to produce A part of the exhaust gas containing ammonia is blown into the exhaust gas recovered by the exhaust heat recovery boiler at the upstream position of the low-temperature heat recovery unit, so that SO 3 in the exhaust gas is pre- heated. A step of reacting with ammonia produced by thermal decomposition of urea water to produce ammonium sulfate and reducing the concentration of SO 3 in the exhaust gas.

また、窒素酸化物を処理されるべき除塵後の排ガスの一部を引き抜く前記工程において、除塵後に再加熱された排ガスの一部を引き抜いても良い。 Further, in the step of extracting a part of exhaust gas after dust removal to be treated with nitrogen oxides, a part of the exhaust gas reheated after dust removal may be extracted.

また、上記目的を達成するため、本発明に係る排ガス処理装置は、排熱回収ボイラと、該排熱回収ボイラ出口における排ガスの顕熱を利用して該排熱回収ボイラに送る給水を予熱する低温熱回収器と、前記排熱回収ボイラ及び低温熱回収器による熱回収後の排ガスを除塵する除塵装置と、排ガスを脱硝触媒により脱硝する触媒脱硝装置と、除塵後の排ガスの一部を引き抜くガス引抜きラインと、前記ガス引抜きラインによって引き抜かれた排ガスに尿素水を噴霧する尿素水噴霧設備と、前記尿素水噴霧設備によって排ガス中に噴霧混合された尿素水を熱分解させてアンモニアを生成させる混合反応部と、前記混合反応部において生成したアンモニアを含む排ガスを前記触媒脱硝装置に供給する触媒用供給ラインと、前記混合反応部において生成したアンモニアを含む排ガスの一部を前記低温熱回収器の上流位置において前記排熱回収ボイラによって排熱回収された排ガスに吹き込む硫酸ガス除去用供給ラインと、を有することを特徴とする。 In order to achieve the above object, the exhaust gas treatment apparatus according to the present invention preheats the exhaust heat recovery boiler and the water supplied to the exhaust heat recovery boiler using the sensible heat of the exhaust gas at the exhaust heat recovery boiler outlet. A low-temperature heat recovery device, a dust removal device that removes exhaust gas after heat recovery by the exhaust heat recovery boiler and the low-temperature heat recovery device, a catalyst denitration device that denitrates the exhaust gas with a denitration catalyst, and a part of the exhaust gas after dust removal is extracted A gas extraction line, a urea water spray facility for spraying urea water onto the exhaust gas extracted by the gas extraction line, and urea water sprayed and mixed in the exhaust gas by the urea water spray facility are thermally decomposed to generate ammonia. and mixing the reaction unit, the catalyst feed line for supplying exhaust gas to the catalytic denitration device containing ammonia generated in the mixing reaction unit, living in the mixing reaction unit And having to supply a sulfuric acid gas removal line blown into the exhaust heat recovered exhaust gas by the exhaust heat recovery boiler part at a position upstream of said cold heat recovery unit of the exhaust gas containing ammonia, a.

前記排ガス処理装置において、窒素酸化物を処理すべき排ガスを再加熱する再加熱器が更に備えられ、前記ガス引抜きラインは、前記再加熱器下流の煙道に接続されていることが好ましい。 In the exhaust gas treatment apparatus, it is preferable that a reheater for reheating exhaust gas to be treated with nitrogen oxide is further provided, and the gas extraction line is connected to a flue downstream of the reheater.

本発明によれば、処理されるべき排ガスの一部を引き抜き、尿素水を噴霧し熱分解によりアンモニアを生成し、生成したアンモニアを脱硝触媒へ供給するので、安全且つ安定してアンモニアを生成し、触媒脱硝することができる。   According to the present invention, a part of the exhaust gas to be treated is drawn out, sprayed with urea water to generate ammonia by thermal decomposition, and the generated ammonia is supplied to the denitration catalyst, so that ammonia is generated safely and stably. Catalyst denitration can be performed.

また、排ガス中の窒素酸化物濃度や硫黄酸化物濃度を検出し、尿素水噴霧量や、生成したアンモニアの吹き込み量を制御することで、リークアンモニア濃度を所望値以下に高精度に制御することができる。   In addition, by detecting the nitrogen oxide concentration and sulfur oxide concentration in the exhaust gas, and controlling the urea water spray amount and the amount of ammonia generated, the leak ammonia concentration can be controlled to a desired value or less with high accuracy. Can do.

本発明を実施するための最良の形態について、図1を参照して説明する。   The best mode for carrying out the present invention will be described with reference to FIG.

図1は、本発明に係る排ガス処理装置及び排ガス処理方法の一実施形態を概略的に示すブロック図である。図示例の実施形態は、ごみ焼却炉1から排出される排ガスを処理する。   FIG. 1 is a block diagram schematically showing an embodiment of an exhaust gas treatment apparatus and an exhaust gas treatment method according to the present invention. In the illustrated embodiment, the exhaust gas discharged from the waste incinerator 1 is treated.

図1に示す排ガス処理装置は、ごみ焼却炉1で発生する排ガスから排熱を回収する排熱回収ボイラ2、排熱回収ボイラ2で熱回収された低温排ガスから更に排熱を回収する低温熱回収器の一種であるエコノマイザ3、エコノマイザ3で排熱を回収された排ガスを減温する減温塔4、減温塔4で減温した排ガスを集塵する集塵装置5の一種であるバグフィルタ、集塵装置5で集塵した排ガスを再加熱する再加熱器6、再加熱した排ガスを触媒脱硝する触媒脱硝装置7、排ガスを誘引して排出する誘引通風機8、および、排ガスを排出する煙突9を備え、これらが煙道で繋がれている点は、図2に示す従来装置と同様である。   The exhaust gas treatment apparatus shown in FIG. 1 is an exhaust heat recovery boiler 2 that recovers exhaust heat from exhaust gas generated in a waste incinerator 1, and low temperature heat that further recovers exhaust heat from low temperature exhaust gas recovered by the exhaust heat recovery boiler 2. The economizer 3 that is a type of collector, the temperature reducing tower 4 that reduces the exhaust gas whose exhaust heat has been recovered by the economizer 3, and the bug that is a type of the dust collector 5 that collects the exhaust gas that has been reduced by the temperature reducing tower 4 A filter, a reheater 6 for reheating the exhaust gas collected by the dust collector 5, a catalyst denitration device 7 for denitrating the reheated exhaust gas, an induction fan 8 for attracting and discharging the exhaust gas, and exhausting the exhaust gas The chimney 9 is connected to each other through a flue and is the same as the conventional apparatus shown in FIG.

ごみ焼却炉1の内部は、一般に800〜1000℃程度の燃焼雰囲気となる。ゴミ焼却炉1から排出された排ガスは、排熱回収ボイラ2内で熱を奪われ、排熱回収ボイラ2の出口付近では250〜400℃程度となる。排熱回収ボイラ2を出た排ガスは、エコノマイザ3でさらに熱を回収された後、減温塔4において集塵装置5であるバグフィルタで受け入れ可能な温度まで減温され、集塵装置5で集塵される。バグフィルタのような集塵装置5は、濾布材質の耐熱性の問題から排ガス温度を250℃以下に抑える必要がある。集塵装置5で煤塵を除去された排ガスは、再加熱器6によって、触媒脱硝装置7で効率よく触媒脱硝反応する温度(200〜230℃)に再加熱される。   The interior of the waste incinerator 1 is generally a combustion atmosphere of about 800 to 1000 ° C. The exhaust gas discharged from the waste incinerator 1 is deprived of heat in the exhaust heat recovery boiler 2, and is about 250 to 400 ° C. near the outlet of the exhaust heat recovery boiler 2. The exhaust gas that has exited the exhaust heat recovery boiler 2 is further recovered by the economizer 3 and then reduced to a temperature that can be accepted by the bag filter that is the dust collector 5 in the temperature reducing tower 4. Dust is collected. The dust collector 5 such as a bag filter needs to suppress the exhaust gas temperature to 250 ° C. or less because of the heat resistance problem of the filter cloth material. The exhaust gas from which the dust is removed by the dust collector 5 is reheated by the reheater 6 to a temperature (200 to 230 ° C.) at which the catalyst denitration device 7 efficiently performs the catalyst denitration reaction.

図1に示す排ガス処理装置は、再加熱器6と触媒脱硝装置7とを繋ぐ煙道67に、排ガスの一部を引き抜くためのガス引抜きライン11の一端が接続されている。ガス引抜きライン11は、誘引通風機12が介在させられ、煙道67を通り再加熱器6から触媒脱硝装置7に供給される排ガスの一部を引き抜くことができる。ガス引抜きライン11が引き抜く量は、例えば、煙道67を流れる排ガスの5%程度とすることができる。   In the exhaust gas treatment apparatus shown in FIG. 1, one end of a gas extraction line 11 for extracting a part of the exhaust gas is connected to a flue 67 connecting the reheater 6 and the catalyst denitration apparatus 7. In the gas extraction line 11, the induction fan 12 is interposed, and a part of the exhaust gas supplied from the reheater 6 to the catalyst denitration device 7 through the flue 67 can be extracted. The amount that the gas extraction line 11 is extracted can be, for example, about 5% of the exhaust gas flowing through the flue 67.

ガス引抜きライン11には、ガス引抜きライン11内を流れる排ガスに尿素水を噴霧するための尿素水噴霧設備13が接続されている。   Connected to the gas extraction line 11 is a urea water spray facility 13 for spraying urea water onto the exhaust gas flowing in the gas extraction line 11.

尿素水噴霧設備13は、図示しないが、尿素水貯槽、ポンプ、噴霧ノズル等を備えることができる。ガス引抜きライン11内の排ガスは200〜230℃あり、この温度域にある排ガスに尿素水が噴霧されると、排ガス中で尿素水は蒸発する。なお、図示例では、尿素水噴霧設備13の尿素水供給管13aは、ガス引抜きライン11に接続されているように図示されているが、例えば、混合反応部14を構成する反応容器内に直接尿素水を噴霧する構成とすることもできる。   Although not illustrated, the urea water spray facility 13 can include a urea water storage tank, a pump, a spray nozzle, and the like. The exhaust gas in the gas extraction line 11 has a temperature of 200 to 230 ° C. When the urea water is sprayed on the exhaust gas in this temperature range, the urea water evaporates in the exhaust gas. In the illustrated example, the urea water supply pipe 13 a of the urea water spray facility 13 is illustrated as being connected to the gas extraction line 11, but for example, directly in the reaction vessel constituting the mixing reaction unit 14. It can also be set as the structure which sprays urea water.

ガス引抜きライン11の他端は、混合反応部14の流入部に接続されている。混合反応部14では、尿素水噴霧設備13によってガス引抜きライン11を流れる排ガス中に噴霧混合された尿素水を熱分解させてアンモニアを生成させる。   The other end of the gas extraction line 11 is connected to the inflow part of the mixing reaction part 14. In the mixing reaction unit 14, the urea water sprayed and mixed in the exhaust gas flowing through the gas extraction line 11 by the urea water spray facility 13 is thermally decomposed to generate ammonia.

混合反応部14は、噴霧された尿素水をアンモニアに分解するのに充分な滞留時間を確保できる構造のものであれば良く、ドラム缶状の容器構造をした反応容器を用いることもできるし、あるいは、ガス引抜きライン11を構成する配管の尿素噴射位置より下流の配管部分によって構成することもできる。例えば、ガス引抜きライン11を流れる排ガスが200℃程度である場合には、排ガス中の尿素水が熱分解してアンモニアを生成するために必要な反応時間は約2秒以上であり、したがってこの場合には、混合反応部14は、排ガスが流入してから流出するまで2秒以上かかる構造のものとされる。   The mixing reaction section 14 may be of any structure that can secure a sufficient residence time to decompose the sprayed urea water into ammonia, and a reaction container having a drum-like container structure can be used. It can also be configured by a pipe portion downstream from the urea injection position of the pipe constituting the gas extraction line 11. For example, when the exhaust gas flowing through the gas extraction line 11 is about 200 ° C., the reaction time required for the urea water in the exhaust gas to be thermally decomposed to produce ammonia is about 2 seconds or more. In this case, the mixing reaction unit 14 has a structure that takes 2 seconds or more until the exhaust gas flows in and out.

尿素水が熱分解する反応時間を短縮するために、混合反応部14は、加熱器15を備えることができる。この加熱器15によって、例えば、混合反応部14内を400℃程度迄加熱しても良く、これにより尿素水の熱分解に必要な反応時間は、大幅に短縮される。   In order to shorten the reaction time during which the urea water is thermally decomposed, the mixing reaction unit 14 can include a heater 15. For example, the inside of the mixing reaction unit 14 may be heated to about 400 ° C. by the heater 15, and thereby the reaction time required for the thermal decomposition of urea water is greatly shortened.

混合反応部14において生成したアンモニアを含む排ガスを触媒脱硝装置7に供給させる触媒用供給ライン16が備えられている。触媒用供給ライン16は、一端が混合反応部14に接続され、他端が煙道67に接続されている。触媒用供給ライン16には、排ガス流路断面積を制御可能なダンパー17が介在されている。なお、触媒用供給ライン16の他端は、図示例では煙道67に接続されているが、煙道67を介さず触媒脱硝装置7に直接供給する構成とすることもできる。   A catalyst supply line 16 for supplying the exhaust gas containing ammonia generated in the mixing reaction section 14 to the catalyst denitration device 7 is provided. One end of the catalyst supply line 16 is connected to the mixing reaction unit 14, and the other end is connected to the flue 67. A damper 17 capable of controlling the cross-sectional area of the exhaust gas passage is interposed in the catalyst supply line 16. The other end of the catalyst supply line 16 is connected to the flue 67 in the illustrated example, but may be configured to supply directly to the catalyst denitration device 7 without passing through the flue 67.

また、本発明に係る排ガス処理装置は、混合反応部14において生成したアンモニアを含む排ガスの一部を、エコノマイザ3の上流位置において、排熱回収ボイラ2によって排熱回収された排ガスに吹き込んで、排ガス中のSOを、混合反応部14で生成したアンモニアと反応させて硫酸アンモニウムを生成させ、排ガス中のSO濃度を低減させる硫酸ガス除去用供給ライン18を備えることができる。 Moreover, the exhaust gas treatment apparatus according to the present invention blows a part of the exhaust gas containing ammonia generated in the mixing reaction unit 14 into the exhaust gas recovered by the exhaust heat recovery boiler 2 at the upstream position of the economizer 3, A sulfuric acid gas removal supply line 18 that reacts SO 3 in the exhaust gas with ammonia generated in the mixing reaction unit 14 to generate ammonium sulfate and reduces the SO 3 concentration in the exhaust gas can be provided.

排熱回収ボイラ2に熱を奪われ250〜400℃程度の温度範囲にある排ガス中のSOは、アンモニアガスと反応することにより硫酸アンモニウムを生成し、その結果、排ガス中のSOは減少する。なお、この温度域では、無触媒脱硝反応は生じず、アンモニアガスは、NOxを分解できないため、SOと選択的に反応する。 The SO 3 in the exhaust gas deprived of heat by the exhaust heat recovery boiler 2 and in the temperature range of about 250 to 400 ° C. generates ammonium sulfate by reacting with ammonia gas, and as a result, SO 3 in the exhaust gas decreases. . In this temperature range, no non-catalytic denitration reaction occurs and ammonia gas cannot selectively decompose NOx, and thus reacts selectively with SO 3 .

硫酸ガス除去用供給ライン18は、一端が触媒用供給ライン16に接続され、他端が排熱回収ボイラ2とエコノマイザ3とを繋ぐ煙道23に接続されている。図示例においては、硫酸ガス除去用供給ライン18は煙道23に接続されているが、排ガス温度が250〜400℃程度の範囲にあれば、排熱回収ボイラ2の内部に、生成されたアンモニアを含む排ガスを供給するように、排熱回収ボイラ2に硫酸ガス除去用供給ライン18を接続することもできる。なお、硫酸ガス除去用供給ライン18には、流量制御のためのダンパー19が介在され得る。   The sulfuric acid gas removal supply line 18 has one end connected to the catalyst supply line 16 and the other end connected to a flue 23 connecting the exhaust heat recovery boiler 2 and the economizer 3. In the illustrated example, the sulfuric acid gas removal supply line 18 is connected to the flue 23, but if the exhaust gas temperature is in the range of about 250 to 400 ° C., the generated ammonia is generated inside the exhaust heat recovery boiler 2. The sulfuric acid gas removal supply line 18 can also be connected to the exhaust heat recovery boiler 2 so as to supply exhaust gas containing. A damper 19 for controlling the flow rate may be interposed in the sulfuric acid gas removal supply line 18.

排ガス処理装置は、排ガス中の窒素酸化物(NOx)濃度を検出する窒素酸化物濃度検出器20と、窒素酸化物濃度検出器20の検出結果に応じて、尿素水噴霧設備13の尿素水噴霧量を制御する制御部21と、を備えることができる。   The exhaust gas treatment device includes a nitrogen oxide concentration detector 20 that detects the nitrogen oxide (NOx) concentration in the exhaust gas, and urea water spray of the urea water spray facility 13 according to the detection result of the nitrogen oxide concentration detector 20. And a control unit 21 for controlling the amount.

窒素酸化物濃度検出器20は、例えば図1に示すように、集塵装置5と再加熱器6とを接続する煙道56を流れる排ガス中の窒素酸化物濃度を検出することができる。窒素酸化物濃度検出器20によって検出された濃度信号が制御部21に送られ、制御部21は、尿素水噴霧設備13の尿素水噴霧量を制御する。   For example, as shown in FIG. 1, the nitrogen oxide concentration detector 20 can detect the concentration of nitrogen oxides in the exhaust gas flowing through the flue 56 connecting the dust collector 5 and the reheater 6. The concentration signal detected by the nitrogen oxide concentration detector 20 is sent to the control unit 21, and the control unit 21 controls the urea water spray amount of the urea water spray facility 13.

また、排ガス中の硫黄酸化物(SO)濃度を検出する硫黄酸化物濃度検出器22と、硫黄酸化物濃度検出器22の検出結果に応じて、硫酸ガス除去用供給ライン18の供給量を制御する制御部21と、を備えている。硫黄酸化物濃度検出器22は、例えば、集塵装置5と再加熱器6とを接続する煙道20を流れる排ガス中の硫黄酸化物濃度を検出することができ、公知のSOガスセンサー等を利用することができる。 Further, the sulfur oxide concentration detector 22 that detects the sulfur oxide (SO X ) concentration in the exhaust gas, and the supply amount of the sulfuric acid gas removal supply line 18 according to the detection result of the sulfur oxide concentration detector 22 And a control unit 21 for controlling. The sulfur oxide concentration detector 22 can detect the concentration of sulfur oxide in the exhaust gas flowing through the flue 20 connecting the dust collector 5 and the reheater 6, for example, a known SO 3 gas sensor or the like. Can be used.

触媒脱硝装置7の触媒表面上において、排ガス中の窒素酸化物をアンモニアの存在下で窒素ガスに分解する反応式は、以下となる。   The reaction formula for decomposing nitrogen oxides in the exhaust gas into nitrogen gas in the presence of ammonia on the catalyst surface of the catalyst denitration device 7 is as follows.

4NO+4NH+O→4NO+6HO ・・・(1)
NO+NO+2NH→2N+3HO ・・・(2)
上式(1)、(2)は、理論的には100%に近い反応である。上式より、触媒脱硝反応に使用するアンモニア量は、減少したNOx量と同程度である。したがって、例えば、図1に示すように、生成したアンモニアを含む排ガスを注入する位置(図では、触媒用供給ライン16が煙道67に接続される位置)の上流位置(図では集塵装置5と再加熱器6との間)で、焼却炉等の負荷変動による排ガス中のNOx濃度を窒素酸化物濃度検出器20により検出し、制御部21が、この検出信号を受けて、NOx量相当のアンモニアを生成するように、尿素水噴霧設備13の尿素水噴霧量を制御弁13bにより制御する。なお、制御部21は、硫酸ガス除去用供給ライン18に生成したアンモニアを含む排ガスの一部を送る場合には、硫酸ガス除去用供給ライン18に送る分を尿素水噴霧設備13の尿素噴霧量に加算する。制御部21は、尿素水噴霧量の制御に加えて、ダンパー17の開度を制御するようにしてもよい。排ガスの流量と検出されたNOx濃度(ppm)とから、減少されるべきNOxの量(モル/分)を求めることができる。
4NO + 4NH 3 + O 2 → 4NO 2 + 6H 2 O (1)
NO 2 + NO + 2NH 3 → 2N 2 + 3H 2 O (2)
The above formulas (1) and (2) are theoretically close to 100%. From the above equation, the amount of ammonia used for the catalytic denitration reaction is comparable to the reduced amount of NOx. Therefore, for example, as shown in FIG. 1, the upstream position (in the figure, the dust collecting device 5) of the position where the exhaust gas containing the generated ammonia is injected (in the figure, the position where the catalyst supply line 16 is connected to the flue 67). And the reheater 6), the NOx concentration in the exhaust gas due to the load fluctuation of the incinerator or the like is detected by the nitrogen oxide concentration detector 20, and the control unit 21 receives this detection signal and corresponds to the NOx amount. The urea water spray amount of the urea water spray facility 13 is controlled by the control valve 13b so as to generate ammonia. When the control unit 21 sends a part of the generated exhaust gas containing ammonia to the sulfuric acid gas removal supply line 18, the amount of urea sprayed to the sulfuric acid gas removal supply line 13 is sent to the sulfuric acid gas removal supply line 18. Add to. The control unit 21 may control the opening degree of the damper 17 in addition to the control of the urea water spray amount. From the exhaust gas flow rate and the detected NOx concentration (ppm), the amount of NOx to be reduced (mol / min) can be determined.

また、制御部21は、図示例のように集塵装置5の出口付近のSO濃度を硫黄酸化物濃度検出器22によって検出し、検出されるSO濃度を0ppmに近づけるように、PID制御等のフィードバック制御により、ダンパー19の開度を制御することができる。 Further, the control unit 21 detects the SO 3 concentration in the vicinity of the outlet of the dust collector 5 by the sulfur oxide concentration detector 22 as shown in the illustrated example, and performs PID control so that the detected SO 3 concentration approaches 0 ppm. The opening degree of the damper 19 can be controlled by such feedback control.

排ガス中のSOが減少することで、硫酸露点温度が低下するため、硫酸腐食に対する安全性が高まる。また、エコノマイザ3等の低温熱回収器を備える場合には、硫酸露点温度が低下した分だけ熱媒温度を低く設定することが可能となり、熱回収能力を向上させることが可能となる。さらに、エコノマイザ3の出口付近の排ガス温度を低下させることにより、集塵装置5の保護を目的としていた減温塔4を小型化あるいは省略することも可能となる。なお、硫酸ガス除去用供給ライン18を通じて集塵装置5の上流の排ガスに供給されるアンモニアの量は、従来の無触媒脱硝と比較した場合、その量が少量であるため、捕集灰へのアンモニア移行量が低減され、アンモニア臭を抑制し得る。 By reducing SO 3 in the exhaust gas, the sulfuric acid dew point temperature is lowered, so that safety against sulfuric acid corrosion is enhanced. In addition, when a low-temperature heat recovery device such as the economizer 3 is provided, it is possible to set the heat medium temperature as low as the sulfuric acid dew point temperature is lowered, and it is possible to improve the heat recovery capability. Furthermore, by reducing the exhaust gas temperature in the vicinity of the outlet of the economizer 3, it is possible to downsize or omit the temperature reducing tower 4 intended to protect the dust collector 5. It should be noted that the amount of ammonia supplied to the exhaust gas upstream of the dust collector 5 through the sulfuric acid gas removal supply line 18 is small compared to the conventional non-catalytic denitration, so Ammonia transfer amount is reduced, and ammonia odor can be suppressed.

リークアンモニアを例えば、触媒脱硝装置7の下流位置において、レーザーアンモニア濃度計等のアンモニア濃度検出器(図示せず。)により検出し、その検出値を制御部21に送り、制御部21は、窒素酸化物濃度検出器20及び硫黄酸化物濃度検出器22からの検出値に基づいて、尿素噴霧量、生成したアンモニアの吹き込み量を制御するに際し、リークアンモニア濃度を参照して、リークアンモニア濃度が10ppmを超えないように制御することもできる。   For example, leak ammonia is detected by an ammonia concentration detector (not shown) such as a laser ammonia concentration meter at a downstream position of the catalyst denitration device 7, and the detected value is sent to the control unit 21. Based on the detection values from the oxide concentration detector 20 and the sulfur oxide concentration detector 22, when controlling the urea spray amount and the amount of ammonia generated, the leak ammonia concentration is referred to and the leak ammonia concentration is 10 ppm. It is also possible to control so as not to exceed.

本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更態様を採用することができる。   The present invention is not limited to the above embodiment, and various modifications can be employed without departing from the spirit of the present invention.

例えば、排ガス処理に於いては、集塵装置としてバグフィルタの他に、セラミックフィルターのように高温対応型の集塵装置がある。排ガス処理に高温対応型の集塵装置を採用している場合は、200〜230℃程度の排ガスを集塵することができるので、上記実施形態で示した減温塔や再加熱器を省くことができ、集塵装置を通過した排ガスを再加熱することなくその一部を引き抜いて尿素水を噴霧すれば尿素水の熱分解によりアンモニアを生成することができるので、そのアンモニアを含む排ガスを脱硝触媒に供給することができる。従って、排ガス処理における集塵装置の種類に依らず、尿素水の熱分解に必要な温度域(好ましくは200〜230℃)にある排ガスの一部を引き抜き、引き抜いた排ガスに尿素水を噴霧して、尿素水の熱分解により生成したアンモニアを脱硝触媒に供給すればよい。   For example, in exhaust gas treatment, in addition to a bag filter as a dust collector, there is a high temperature compatible dust collector such as a ceramic filter. When a high-temperature-compatible dust collector is used for exhaust gas treatment, exhaust gas at about 200 to 230 ° C. can be collected, so the temperature reducing tower and reheater shown in the above embodiment can be omitted. If the exhaust gas that has passed through the dust collector is partly extracted and sprayed with urea water without reheating, ammonia can be generated by thermal decomposition of the urea water. The catalyst can be supplied. Therefore, regardless of the type of dust collector in the exhaust gas treatment, a part of the exhaust gas in the temperature range (preferably 200 to 230 ° C.) required for the thermal decomposition of urea water is extracted, and urea water is sprayed on the extracted exhaust gas. Then, ammonia generated by thermal decomposition of urea water may be supplied to the denitration catalyst.

本発明に係る排ガス処理装置の一実施例を示すブロック図である。It is a block diagram which shows one Example of the waste gas processing apparatus which concerns on this invention. 従来の排ガス処理装置を示すブロック図である。It is a block diagram which shows the conventional waste gas processing apparatus.

符号の説明Explanation of symbols

1 焼却炉
2 排熱回収ボイラ
3 エコノマイザ(低温熱回収器)
4 減温塔
5 集塵装置
6 再加熱器
7 触媒脱硝装置
8 誘引通風機
9 煙突
11 ガス引抜きライン
13 尿素水噴霧設備
14 混合反応部
15 加熱器
16 触媒用供給ライン
18 硫酸ガス除去用供給ライン
1 Incinerator 2 Waste heat recovery boiler 3 Economizer (low temperature heat recovery device)
4 Heat-reducing tower 5 Dust collector 6 Reheater 7 Catalyst denitration device 8 Induction fan 9 Chimney 11 Gas extraction line 13 Urea water spray facility 14 Mixing reaction section 15 Heater 16 Catalyst supply line 18 Sulfuric acid gas removal supply line

Claims (4)

排ガス処理において、排ガスの排熱を排熱回収ボイラにより回収する排熱回収工程と、前記排熱回収ボイラ出口における排ガスの顕熱を利用して該排熱回収ボイラに送る給水を低温熱回収器により予熱する低温熱回収工程と、前記低温熱回収工程後の排ガスを集塵装置により除塵する工程と、窒素酸化物を処理されるべき除塵後の排ガスの一部を引き抜く工程と、引き抜いた排ガスに尿素水を噴霧して尿素水の熱分解によりアンモニアを生成させる工程と、生成したアンモニアを含む排ガスを脱硝触媒に供給する工程と、生成したアンモニアを含む排ガスの一部を前記低温熱回収器の上流位置において前記排熱回収ボイラによって排熱回収された排ガスに吹き込んで、該排ガス中のSO を前記尿素水の熱分解により生成したアンモニアと反応させて硫酸アンモニウムを生成させ、排ガス中のSO 濃度を低減させる工程と、を含むことを特徴とする排ガス処理方法。 In exhaust gas treatment, an exhaust heat recovery process for recovering exhaust heat of exhaust gas by an exhaust heat recovery boiler and a low-temperature heat recovery unit for supplying water to the exhaust heat recovery boiler using sensible heat of exhaust gas at the exhaust heat recovery boiler outlet A low-temperature heat recovery step for preheating by the step, a step for removing the exhaust gas after the low-temperature heat recovery step by a dust collector, a step for extracting a part of the exhaust gas after dust removal to be treated with nitrogen oxides, and the extracted exhaust gas A step of spraying urea water to produce ammonia by thermal decomposition of urea water, a step of supplying the generated exhaust gas containing ammonia to the denitration catalyst, and a part of the generated exhaust gas containing ammonia in the low-temperature heat recovery device The exhaust gas recovered by exhaust heat recovery by the exhaust heat recovery boiler is blown into an upstream position of the exhaust gas, and SO 3 in the exhaust gas is reacted with ammonia generated by thermal decomposition of the urea water. And a step of generating ammonium sulfate to reduce the SO 3 concentration in the exhaust gas. 窒素酸化物を処理されるべき除塵後の排ガスの一部を引き抜く前記工程は、除塵後に再加熱された排ガスの一部を引き抜くことを特徴とする請求項1に記載の排ガス処理方法。 2. The exhaust gas treatment method according to claim 1, wherein in the step of extracting a part of exhaust gas after dust removal to be treated with nitrogen oxides, a part of the exhaust gas reheated after dust removal is extracted. 排熱回収ボイラと、該排熱回収ボイラ出口における排ガスの顕熱を利用して該排熱回収ボイラに送る給水を予熱する低温熱回収器と、前記排熱回収ボイラ及び低温熱回収器による熱回収後の排ガスを除塵する除塵装置と、排ガスを脱硝触媒により脱硝する触媒脱硝装置と、除塵後の排ガスの一部を引き抜くガス引抜きラインと、前記ガス引抜きラインによって引き抜かれた排ガスに尿素水を噴霧する尿素水噴霧設備と、前記尿素水噴霧設備によって排ガス中に噴霧混合された尿素水を熱分解させてアンモニアを生成させる混合反応部と、前記混合反応部において生成したアンモニアを含む排ガスを前記触媒脱硝装置に供給する触媒用供給ラインと、前記混合反応部において生成したアンモニアを含む排ガスの一部を前記低温熱回収器の上流位置において前記排熱回収ボイラによって排熱回収された排ガスに吹き込む硫酸ガス除去用供給ラインと、を有することを特徴とする、排ガス処理装置。 An exhaust heat recovery boiler, a low temperature heat recovery device that preheats feed water to be sent to the exhaust heat recovery boiler using sensible heat of exhaust gas at the exhaust heat recovery boiler outlet, and heat generated by the exhaust heat recovery boiler and the low temperature heat recovery device A dust removal device that removes the exhaust gas after recovery, a catalyst denitration device that denitrates the exhaust gas using a denitration catalyst , a gas extraction line that extracts a part of the exhaust gas after dust removal, and urea water that is extracted to the exhaust gas extracted by the gas extraction line A urea water spray facility for spraying, a mixing reaction section for thermally decomposing urea water spray-mixed in exhaust gas by the urea water spray facility to generate ammonia, and an exhaust gas containing ammonia generated in the mixing reaction section a catalyst supply line for supplying to the catalytic denitration device, upstream position of said cold heat recovery unit a portion of the exhaust gas containing ammonia formed in the mixing reaction unit And having a supply line for sulfate gas removal blown into the exhaust heat recovered exhaust gas by the exhaust heat recovery boiler in the exhaust gas treatment apparatus. 窒素酸化物を処理すべき排ガスを再加熱する再加熱器が更に備えられ、前記ガス引抜きラインは、前記再加熱器下流の煙道に接続されていることを特徴とする請求項に記載の排ガス処理装置。 Reheater is further provided to reheat the exhaust gas to be treated with nitrogen oxides, the gas withdrawal line, according to claim 3, characterized in that said connected to reheater downstream of the flue Exhaust gas treatment equipment.
JP2008274087A 2008-10-24 2008-10-24 Exhaust gas treatment method and exhaust gas treatment apparatus Active JP5426863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274087A JP5426863B2 (en) 2008-10-24 2008-10-24 Exhaust gas treatment method and exhaust gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274087A JP5426863B2 (en) 2008-10-24 2008-10-24 Exhaust gas treatment method and exhaust gas treatment apparatus

Publications (2)

Publication Number Publication Date
JP2010099603A JP2010099603A (en) 2010-05-06
JP5426863B2 true JP5426863B2 (en) 2014-02-26

Family

ID=42290719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274087A Active JP5426863B2 (en) 2008-10-24 2008-10-24 Exhaust gas treatment method and exhaust gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP5426863B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411513B1 (en) 2013-01-11 2014-06-24 삼성중공업 주식회사 Air conditioning system using economizer
JP6104036B2 (en) * 2013-02-19 2017-03-29 三菱重工環境・化学エンジニアリング株式会社 Exhaust gas treatment method and exhaust gas treatment system
JP5859101B1 (en) * 2014-11-27 2016-02-10 株式会社タクマ Urea hydrolysis apparatus and catalyst regeneration method for urea hydrolysis apparatus
JP6026614B1 (en) * 2015-09-29 2016-11-16 株式会社プランテック Waste incinerator exhaust gas treatment equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058230A1 (en) * 1998-05-11 1999-11-18 Siemens Aktiengesellschaft Method and device for selective catalytic reduction of nitrogen oxides in a gaseous medium containing oxygen
JP2002068735A (en) * 2000-08-24 2002-03-08 Mitsubishi Heavy Ind Ltd Method for producing ammonia and method for treating exhaust gas
CA2397923C (en) * 2000-12-01 2007-08-07 Fuel Tech Inc. Selective catalytic reduction of no, enabled by side stream urea decomposition
JP2003126648A (en) * 2001-10-22 2003-05-07 Ishikawajima Harima Heavy Ind Co Ltd Method for injecting ammonia in combustion gas and apparatus thereof
JP4262522B2 (en) * 2003-05-28 2009-05-13 株式会社日立ハイテクノロジーズ Exhaust gas treatment device for engine and exhaust gas treatment method
JP4381881B2 (en) * 2004-05-13 2009-12-09 バブコック日立株式会社 Flue gas denitration device and starting method thereof
JP4716325B2 (en) * 2006-04-11 2011-07-06 バブコック日立株式会社 Flue gas denitration device and operation method thereof

Also Published As

Publication number Publication date
JP2010099603A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5302597B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP4719171B2 (en) Exhaust gas treatment apparatus and method
KR19990022115A (en) Fluid gas scrubbing and waste heat recovery systems
JP5462067B2 (en) Operation method of waste incineration plant
JP6090766B2 (en) Combustion exhaust gas treatment apparatus and treatment method for waste incineration treatment facility
KR101312994B1 (en) Scr de-nox system for reducing yellow plume and nox under low temperature operating condition
JP5859101B1 (en) Urea hydrolysis apparatus and catalyst regeneration method for urea hydrolysis apparatus
JP5426863B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
TWI744523B (en) Method and system for the removal of noxious compounds from flue-gas
CN113864789A (en) Incineration system for treating sulfur-containing, nitrogen-containing and salt-containing waste liquid
KR101165646B1 (en) Energy reducing system of nox reducing apparatus using waste-heat and steam type gas heater
JP6026614B1 (en) Waste incinerator exhaust gas treatment equipment
JP4681460B2 (en) Gasification combined power generation facility
CN109316941A (en) The equipment for denitrifying flue gas and its method of denitration of ozone combination urea combination SNCR
CN109173704A (en) A kind of selective-catalytic-reduction denitrified reactor
JP2013072571A (en) Exhaust gas treating system
KR101433611B1 (en) SCR De-Nox Equipment for removing yellow plume
KR102442180B1 (en) A catalyst-integrated dust collector that simultaneously processes the denitrification and de-dusting functions in the cement kiln or steel mill sintering furnace process
JP5791429B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP5967809B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
KR102116352B1 (en) System and method for simultaneous NOx and N2O removal process using reducing agent
JP6458298B2 (en) Incineration equipment
JP2000262854A (en) Method and apparatus for treating exhaust gas
KR100587490B1 (en) Treatment apparatus of incineration flue gas
JP2000000434A (en) Denitration apparatus and denitration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250