JPH08178212A - Structure of furnace wall of fluidized-bed boiler - Google Patents

Structure of furnace wall of fluidized-bed boiler

Info

Publication number
JPH08178212A
JPH08178212A JP32835494A JP32835494A JPH08178212A JP H08178212 A JPH08178212 A JP H08178212A JP 32835494 A JP32835494 A JP 32835494A JP 32835494 A JP32835494 A JP 32835494A JP H08178212 A JPH08178212 A JP H08178212A
Authority
JP
Japan
Prior art keywords
furnace
water
water cooling
refractory material
cooling wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32835494A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshizawa
伸幸 吉沢
Takashi Iseda
敬 伊勢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP32835494A priority Critical patent/JPH08178212A/en
Publication of JPH08178212A publication Critical patent/JPH08178212A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To suppress wear of a water-cooled wall which is due to falling particulates by providing a flow-straightening means for particulates close to the upper end of a refractory material with which the water-cooled wall is lined in part. CONSTITUTION: Coal burns at high temperatures while combustion air fluidizes it together with a bed material comprising such as ash or limestone, throughout a furnace. Particulates of the bed material etc., flying about from the furnace, are returned to the furnace and circulate. Water-cooled wall 2, forming the side wall of the furnace and lined in part with a refractory material 21, keeps the temperature inside the furnace at prescribed points so as to reduce NOX, etc. Each of flow-straightening plates 23 is formed in a rectangle and is fixed by welding or the like to the water- cooled wall 2, specifically at a boundary between the wall part 2b and a water tube 2a, in a manner of being held at right angles to the water-cooled wall 2 and with the lower end in contact with the upper end of the refractory material 21. The flow- straightening plate 23 suppresses the fall of particulates by flowing down on the periphery of the water tube 2a. Particulates which impinge upon the upper end of the refractory material 21 move away from the periphery of the water tube 2a and guided down into the furnace. Falling particulates that hit the water tube 2a decrease and wear of the water-cooled wall 2 is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流動層ボイラの炉壁構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace wall structure of a fluidized bed boiler.

【0002】[0002]

【従来の技術】固体燃料を効率よく燃焼させるボイラの
一つとして循環流動層ボイラがある。循環流動層ボイラ
は、図4に示すように、水冷壁で形成された火炉4内で
石炭等の燃料を空気分散板3からの燃焼空気により灰や
石灰石等からなるベッド材と共に流動化させながら燃焼
させ、発電用蒸気タービン等に供給する蒸気などを発生
させるものであり、火炉4から飛散したベッド材や未燃
分等の固形分をサイクロン5で捕捉し、これを火炉4内
の空気分散板3上に戻すものである。この流動層ボイラ
1では、側壁(水冷壁)2の一部例えば流動(燃焼)が
激しい部分(火炉下方)に耐火材21を内張りして、火
炉4内の温度を所定の温度(約 850〜900℃例えば 900
℃)に維持することでNOxの低減やSOxの低減を図
っている。これは、硫黄分を火炉4内に投入した石灰石
と反応させて脱硫処理するため、脱硫反応を起こさせる
最適温度に火炉4内を維持する必要があるからであり、
この脱硫反応とNOxの低減を図れる最適温度範囲が例
えば約 850〜900 ℃である。
2. Description of the Related Art A circulating fluidized bed boiler is one of the boilers that efficiently burns solid fuel. As shown in FIG. 4, the circulating fluidized bed boiler fluidizes a fuel such as coal in a furnace 4 formed of a water cooling wall by a combustion air from an air dispersion plate 3 together with a bed material such as ash or limestone. It is used to generate steam, etc. that is burned to be supplied to a steam turbine for power generation, etc., solid materials such as bed material and unburned matter scattered from the furnace 4 are captured by the cyclone 5, and this is dispersed in the furnace 4. It is to be put back on the plate 3. In this fluidized bed boiler 1, a refractory material 21 is lined in a part of the side wall (water cooling wall) 2, for example, in a part where the flow (combustion) is intense (downward of the furnace), and the temperature in the furnace 4 is kept at a predetermined temperature (about 850 ~ 900 ° C, for example 900
By maintaining the temperature at (° C), NOx and SOx are reduced. This is because the sulfur content is reacted with the limestone charged into the furnace 4 for desulfurization treatment, and therefore the inside of the furnace 4 needs to be maintained at the optimum temperature for causing the desulfurization reaction.
The optimum temperature range in which the desulfurization reaction and NOx can be reduced is, for example, about 850 to 900 ° C.

【0003】[0003]

【発明が解決しようとする課題】ところで、前述の循環
流動層ボイラでは、燃料やベッド材を流動化させている
と、水冷壁付近で壁に沿うように粒子が下降する。この
ように粒子が下降すると、図6に示すように水冷壁2に
耐火材21が内張りされて出張って段状になっているた
め、下降粒子が耐火材21の上端部に衝突してその一部
が水冷壁2の水管2aの耐火材21上端部との際の周面
を沿って流れる。このときに水冷壁2の水管2aの周面
に粒子が角度をもって衝突するので、摩耗が生じる。こ
のため、水冷壁2の耐火材21上端部近傍(粒子が衝突
する部分)に耐摩耗材を溶射するが、このように溶射を
施工しても水管2aの周面を沿って粒子が流れるため、
溶射材または水管2aが摩耗を起こす虞がある。すなわ
ち、耐摩耗材を溶射しても、定期検査時に溶射の補修と
耐火材21の積増を要する場合がある。これを頻繁に繰
り返すと耐火材21の打設面積も大きく変ってくるので
性能面も変化してくる。
In the circulating fluidized bed boiler described above, when the fuel and the bed material are fluidized, the particles descend near the water cooling wall along the wall. When the particles descend in this manner, the refractory material 21 is lined on the water cooling wall 2 as shown in FIG. The part flows along the peripheral surface of the water pipe 2a of the water cooling wall 2 at the upper end of the refractory material 21. At this time, particles collide with the peripheral surface of the water pipe 2a of the water cooling wall 2 at an angle, and thus wear occurs. Therefore, the wear-resistant material is sprayed in the vicinity of the upper end of the refractory material 21 of the water cooling wall 2 (the portion where the particles collide), but even if the spraying is performed in this way, the particles flow along the peripheral surface of the water pipe 2a,
The thermal spray material or the water pipe 2a may be worn. That is, even if the wear resistant material is sprayed, there are cases where repair of the sprayed material and addition of the refractory material 21 are required during the periodic inspection. If this is repeated frequently, the casting area of the refractory material 21 also changes greatly, and the performance also changes.

【0004】そこで、本発明は、このような事情を考慮
してなされたものであり、その目的は、水冷壁の摩耗を
抑制する流動層ボイラの炉壁構造を提供することにあ
る。
Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a furnace wall structure of a fluidized bed boiler which suppresses wear of a water cooling wall.

【0005】[0005]

【課題を解決するための手段】本発明の流動層ボイラの
炉壁構造は、燃料を燃焼空気でベッド材と共に流動化さ
せながら燃焼させる火炉の側壁を水冷壁で形成し、その
水冷壁の一部に耐火材を内張りした流動層ボイラの炉壁
構造において、前記水冷壁の耐火材上端部近傍に、下降
粒子が水管の周面を沿って流れるのを抑制する粒子整流
手段を設けたものである。前記粒子整流手段は、水冷壁
に直角に設けられた整流板であるか、又は水冷壁の水管
にその周方向に所定の間隔を隔てて設けられた整流板で
あることが好ましい。
According to the furnace wall structure of a fluidized bed boiler of the present invention, the side wall of a furnace for combusting fuel while fluidizing it with combustion air together with the bed material is formed by a water cooling wall, and one of the water cooling walls is formed. In a furnace wall structure of a fluidized bed boiler in which a refractory material is lined in the part, in the vicinity of the upper end portion of the refractory material of the water cooling wall, a particle rectifying means for suppressing descending particles from flowing along the peripheral surface of the water pipe is provided. is there. The particle rectifying means is preferably a rectifying plate provided at a right angle to the water cooling wall, or a rectifying plate provided on the water pipe of the water cooling wall at a predetermined interval in the circumferential direction.

【0006】[0006]

【作用】水冷壁に粒子整流手段例えば整流板を設けるこ
とで、ベッド材等の粒子が下降する際に、耐火材の上端
部に衝突しても水冷壁の水管の周面を沿うことなく下降
するので、下降粒子による水冷壁の摩耗が抑制される。
By providing particle rectifying means, for example, a rectifying plate, on the water cooling wall, when particles such as bed material descend, even if they collide with the upper end of the refractory material, they do not descend along the peripheral surface of the water pipe of the water cooling wall. Therefore, the wear of the water cooling wall due to the descending particles is suppressed.

【0007】[0007]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0008】図4は循環流動層ボイラの一例を示す構成
図である。図4において、1は循環流動層ボイラを示
す。循環流動層ボイラ1は、図5に示すようにSTB等
により成形された水冷壁2によって断面矩形状に形成さ
れると共に内部下方には空気分散板3が設けられた火炉
4と、火炉4の上端後部に接続されたサイクロン5と、
サイクロン5からの排ガスの熱の一部を回収する伝熱部
6と、サイクロン5で分離された粒子を火炉4の分散板
3上に戻す循環路(J−バルブ)7とから主に構成され
ている。
FIG. 4 is a block diagram showing an example of a circulating fluidized bed boiler. In FIG. 4, reference numeral 1 denotes a circulating fluidized bed boiler. As shown in FIG. 5, the circulating fluidized bed boiler 1 is formed with a water cooling wall 2 formed of STB or the like into a rectangular cross section, and a furnace 4 in which an air dispersion plate 3 is provided below the inside of the furnace 4, and a furnace 4 of the furnace 4. Cyclone 5 connected to the rear of the upper end,
The heat transfer part 6 recovers part of the heat of the exhaust gas from the cyclone 5, and the circulation path (J-valve) 7 that returns the particles separated by the cyclone 5 onto the dispersion plate 3 of the furnace 4. ing.

【0009】火炉4の下部には、押込通風機(FDF)
8、空気予熱機9及び調節弁10を有する空気ライン1
1が接続されている。空気ライン11には調節弁12を
有し前記J−バルブ7に接続される補助空気ライン13
が接続され、循環粒子がJ−バルブ7内でつまらないよ
うになっている。また、空気ライン11には、調節弁1
4を有し火炉4の中央部に接続される二次空気ライン1
5が接続され、燃焼空気が空気ライン11及び二次空気
ライン15の2系統から火炉4に供給されてNOxの抑
制が図られる。火炉4の下方には、燃料例えば石炭を空
気分散板3上に供給する燃料ライン16が接続され、こ
の燃料ライン16からの石炭が空気ライン11からの燃
焼空気によりベッド材(灰や石灰石等からなるベッド
材)と共に火炉4全体で流動化されながら高温下で燃焼
し、この燃焼熱の一部が水冷壁2に回収されると共に、
火炉4から飛散したベッド材等の粒子がサイクロン5及
びJ−バルブ7を介して火炉4に戻され循環する。サイ
クロン5からの排ガスは、伝熱部6を介して冷却されて
から排ガスライン17に流入し、前記空気予熱機9でさ
らに冷却、集塵機(例えばバグフィルタ)18で脱塵さ
れた後、誘引通風機(IDF)19を介して煙突20か
ら大気に開放される。
At the bottom of the furnace 4, a forced draft fan (FDF) is installed.
8, air line 1 with air preheater 9 and control valve 10
1 is connected. The air line 11 has a control valve 12 and an auxiliary air line 13 connected to the J-valve 7.
Are connected so that circulating particles are not boring in the J-valve 7. In addition, the air line 11 has a control valve 1
Secondary air line 1 which has 4 and is connected to the central part of the furnace 4.
5 is connected, and combustion air is supplied to the furnace 4 from the two systems of the air line 11 and the secondary air line 15 to suppress NOx. Below the furnace 4, a fuel line 16 for supplying fuel such as coal onto the air dispersion plate 3 is connected, and coal from this fuel line 16 is converted into bed material (from ash or limestone by combustion air from the air line 11). Bed material) and is combusted at a high temperature while being fluidized in the entire furnace 4, and part of this combustion heat is recovered by the water cooling wall 2,
Particles such as bed material scattered from the furnace 4 are returned to the furnace 4 through the cyclone 5 and the J-valve 7 and circulate. The exhaust gas from the cyclone 5 is cooled through the heat transfer section 6 and then flows into the exhaust gas line 17, further cooled by the air preheater 9 and dedusted by the dust collector (for example, bag filter) 18, and then attracted draft The chimney 20 is opened to the atmosphere via the machine (IDF) 19.

【0010】火炉4の側壁である水冷壁2の一部(例え
ば流動(燃焼)が激しい部分(火炉4下方))には図1
に示すように耐火材21が内張りされている。すなわ
ち、水冷壁2の内側の一部が耐火材21で覆われて耐火
材21が出張って段状になっている。このように、水冷
壁2の一部を耐火材21で覆うことにより火炉4内の温
度を所定の温度(約 850〜900 ℃例えば 900℃)に維持
してNOxの低減やSOxの低減を図っている。
FIG. 1 shows a part of the water cooling wall 2 which is a side wall of the furnace 4 (for example, a part where the flow (combustion) is intense (below the furnace 4)).
The refractory material 21 is lined as shown in FIG. That is, a part of the inside of the water cooling wall 2 is covered with the refractory material 21, and the refractory material 21 travels to form a step. Thus, by covering a part of the water cooling wall 2 with the refractory material 21, the temperature inside the furnace 4 is maintained at a predetermined temperature (about 850 to 900 ° C, for example 900 ° C) to reduce NOx and SOx. ing.

【0011】水冷壁2の耐火材21上端部近傍には、下
降粒子が水管2aの周面を沿って流れるのを抑制する、
すなわち粒子が水管2aの周面を沿うことなく下降する
ように案内する粒子整流手段22である整流板23が設
けられている。整流板23は、矩形状に形成され、水冷
壁2に対して直角になると共に下端面が耐火材21の上
端面と接触するように水冷壁2の壁部2bと水管2aと
の際に溶接等により固着されている。尚、図1では分か
り易いように整流板23を水冷壁2に2つしか固着して
いないが、全部の水冷壁2の壁部2bの水管2aとの際
に整流板23を固着する。整流板23は、下降粒子が水
管2aの周面を沿って流れるのを抑制することができる
ならばその大きさ・形状は任意に決められ、例えば形状
は三角形や多角形や半円状に形成してもよい。
In the vicinity of the upper end of the refractory material 21 of the water cooling wall 2, it is possible to prevent the descending particles from flowing along the peripheral surface of the water pipe 2a.
That is, there is provided a flow straightening plate 23 which is a particle straightening means 22 for guiding the particles so as to descend without going along the peripheral surface of the water pipe 2a. The straightening vane 23 is formed in a rectangular shape, is perpendicular to the water cooling wall 2, and is welded at the time of the wall portion 2b of the water cooling wall 2 and the water pipe 2a so that the lower end surface contacts the upper end surface of the refractory material 21. It is fixed by etc. Although only two straightening vanes 23 are fixed to the water cooling wall 2 for easy understanding in FIG. 1, the straightening vanes 23 are fixed to the water pipes 2a of the wall portions 2b of all the water cooling walls 2. The size and shape of the current plate 23 may be arbitrarily determined as long as it can prevent the descending particles from flowing along the peripheral surface of the water pipe 2a. For example, the shape of the current plate 23 is triangular, polygonal, or semicircular. You may.

【0012】このように、水冷壁2の耐火材21上端部
近傍に整流板23を設けることにより、水冷壁2の近傍
をベッド材等の粒子が下降し、これが耐火材21の上端
面に衝突しても整流板23によって水冷壁2の水管2a
の周面を沿うのが抑制される。すなわち、耐火材21の
上端面に衝突した粒子は水管2aの周面を沿うことなく
火炉4内へと降下するように案内されるので、下降粒子
が水冷壁2の水管2aに角度をもって衝突することが少
なくなり、水冷壁2の摩耗が抑制される。
As described above, by providing the straightening plate 23 near the upper end of the refractory material 21 of the water cooling wall 2, particles such as bed material descend in the vicinity of the water cooling wall 2 and collide with the upper end surface of the refractory material 21. Even with the straightening vane 23, the water pipe 2a of the water cooling wall 2
Is suppressed along the peripheral surface of. That is, since the particles that have collided with the upper end surface of the refractory material 21 are guided so as to fall into the furnace 4 without following the peripheral surface of the water pipe 2a, the descending particles collide with the water pipe 2a of the water cooling wall 2 at an angle. And the wear of the water cooling wall 2 is suppressed.

【0013】図2及び図3は整流板の他の実施例を示す
図であり、この実施例は図2及び図3に示すように整流
板25を水冷壁2の水管2aに複数設けた例である。整
流板25は、矩形状に形成され、水冷壁2の水管2aの
周面に径方向外方に沿ってかつ下端面が耐火材21の上
端面と接触するように溶接等により固着されている。こ
の整流板25は水管2aにその周方向に所定の間隔を隔
てて複数図示例では3つ固着されている。
2 and 3 are views showing another embodiment of the straightening vanes. In this embodiment, a plurality of straightening vanes 25 are provided on the water pipe 2a of the water cooling wall 2 as shown in FIGS. Is. The current plate 25 is formed in a rectangular shape, and is fixed to the circumferential surface of the water pipe 2a of the water cooling wall 2 along the radially outer side by welding or the like so that the lower end surface contacts the upper end surface of the refractory material 21. . In the illustrated example, three rectifying plates 25 are fixed to the water pipe 2a at predetermined intervals in the circumferential direction.

【0014】このように、水冷壁2の水管2aの耐火材
21上端部近傍に整流板25を3つ設けることにより、
水冷壁2の近傍をベッド材等の粒子が下降し、これが耐
火材21の上端面に衝突しても整流板25によって水冷
壁2の水管2aの周面を沿うのが抑制される。すなわ
ち、耐火材21の上端面に衝突した粒子は水管2aの周
面を沿うことなく火炉4内へと降下するように案内され
るので、下降粒子が水冷壁2の水管2aに衝突すること
が少なくなり、水冷壁2の摩耗が抑制される。
As described above, by providing three straightening vanes 25 near the upper end of the refractory material 21 of the water pipe 2a of the water cooling wall 2,
Even if particles such as a bed material descend in the vicinity of the water cooling wall 2 and collide with the upper end surface of the refractory material 21, the flow straightening plate 25 prevents the water cooling wall 2 from following the circumferential surface of the water pipe 2a. That is, the particles that have collided with the upper end surface of the refractory material 21 are guided so as to descend into the furnace 4 without following the peripheral surface of the water pipe 2 a, so that the descending particles may collide with the water pipe 2 a of the water cooling wall 2. The amount of water cooling is reduced and wear of the water cooling wall 2 is suppressed.

【0015】従って、水冷壁2に整流板23,25を設
けることで、下降粒子による水冷壁2の摩耗を抑制する
ことができ、メンテナンスの頻度が少なくなり、コスト
削減につながる。また、水冷壁2に整流板23,25を
溶接等により固着するだけであるので、構造、製作が簡
単であり、耐火材21の施行場所を任意に選べると共
に、改造等、既設ボイラへの適用が可能である。
Therefore, by providing the current plate 23, 25 on the water cooling wall 2, it is possible to suppress the wear of the water cooling wall 2 due to the descending particles, reduce the frequency of maintenance, and lead to cost reduction. Further, since the flow straightening plates 23, 25 are simply fixed to the water cooling wall 2 by welding or the like, the structure and the manufacturing are simple, and the place where the refractory material 21 is applied can be arbitrarily selected, and the refractory material can be applied to the existing boiler such as modification. Is possible.

【0016】[0016]

【発明の効果】以上要するに本発明によれば、粒子の下
降による水冷壁の摩耗を抑制できるという優れた効果を
奏する。
In summary, according to the present invention, the excellent effect that the wear of the water cooling wall due to the descending of particles can be suppressed is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す斜視図である。FIG. 2 is a perspective view showing another embodiment of the present invention.

【図3】図2中のA−A線矢視図である。3 is a view taken along the line AA in FIG.

【図4】循環流動層ボイラの一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a circulating fluidized bed boiler.

【図5】水冷壁の一例を示す概略斜視図である。FIG. 5 is a schematic perspective view showing an example of a water cooling wall.

【図6】従来の一例を示す斜視図である。FIG. 6 is a perspective view showing a conventional example.

【符号の説明】[Explanation of symbols]

2 水冷壁 2a 水管 4 火炉 21 耐火材 22 粒子整流手段 2 water cooling wall 2a water tube 4 furnace 21 refractory material 22 particle rectifying means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料を燃焼空気でベッド材と共に流動化
させながら燃焼させる火炉の側壁を水冷壁で形成し、そ
の水冷壁の一部に耐火材を内張りした流動層ボイラの炉
壁構造において、前記水冷壁の耐火材上端部近傍に、下
降粒子が水管の周面を沿って流れるのを抑制する粒子整
流手段を設けたことを特徴とする流動層ボイラの炉壁構
造。
1. A furnace wall structure of a fluidized bed boiler in which a side wall of a furnace for combusting a fuel with combustion air while fluidizing it with a bed material is formed by a water cooling wall, and a refractory material is lined in a part of the water cooling wall, A furnace wall structure for a fluidized bed boiler, comprising particle rectifying means for suppressing descending particles from flowing along the peripheral surface of a water pipe near the upper end of the refractory material of the water cooling wall.
【請求項2】 前記粒子整流手段が、前記水冷壁に直角
に設けられた整流板である請求項1記載の流動層ボイラ
の炉壁構造。
2. The furnace wall structure for a fluidized bed boiler according to claim 1, wherein the particle rectifying means is a rectifying plate provided at a right angle to the water cooling wall.
【請求項3】 前記粒子整流手段が、前記水冷壁の水管
にその周方向に所定の間隔を隔てて設けられた整流板で
ある請求項1記載の流動層ボイラの炉壁構造。
3. The furnace wall structure for a fluidized bed boiler according to claim 1, wherein the particle rectifying means is a rectifying plate provided on the water pipe of the water cooling wall at a predetermined interval in a circumferential direction thereof.
JP32835494A 1994-12-28 1994-12-28 Structure of furnace wall of fluidized-bed boiler Pending JPH08178212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32835494A JPH08178212A (en) 1994-12-28 1994-12-28 Structure of furnace wall of fluidized-bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32835494A JPH08178212A (en) 1994-12-28 1994-12-28 Structure of furnace wall of fluidized-bed boiler

Publications (1)

Publication Number Publication Date
JPH08178212A true JPH08178212A (en) 1996-07-12

Family

ID=18209314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32835494A Pending JPH08178212A (en) 1994-12-28 1994-12-28 Structure of furnace wall of fluidized-bed boiler

Country Status (1)

Country Link
JP (1) JPH08178212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529365A (en) * 2009-06-12 2012-11-22 フォスター ホイーラー エナージア オサケ ユキチュア Fluidized bed reactor
CN103185337A (en) * 2013-04-02 2013-07-03 刘少光 Anti-abrasion and attrition-reducible circulating fluidized bed boiler
CN112283741A (en) * 2020-10-30 2021-01-29 陕西能源赵石畔煤电有限公司 Device for preventing corrosion of water cooled wall of high-sulfur coal million units boiler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529365A (en) * 2009-06-12 2012-11-22 フォスター ホイーラー エナージア オサケ ユキチュア Fluidized bed reactor
JP2014240747A (en) * 2009-06-12 2014-12-25 フォスター ホイーラー エナージア オサケ ユキチュア Fluidized bed reactor
US8992841B2 (en) 2009-06-12 2015-03-31 Foster Wheeler Energia Oy Fluidized bed reactor
CN103185337A (en) * 2013-04-02 2013-07-03 刘少光 Anti-abrasion and attrition-reducible circulating fluidized bed boiler
CN112283741A (en) * 2020-10-30 2021-01-29 陕西能源赵石畔煤电有限公司 Device for preventing corrosion of water cooled wall of high-sulfur coal million units boiler

Similar Documents

Publication Publication Date Title
KR100661117B1 (en) Circulating fluidized bed boiler
JPH0618610B2 (en) NOx reduction method in flue gas
JPH08503540A (en) Method and apparatus for operating a circulating fluidized bed system
CN208186326U (en) A kind of adherent wind system of boiler for preventing water wall high temperature corrosion
US4715809A (en) Fluidized bed having modified surfaces in the heat extractor
US5954000A (en) Fluid bed ash cooler
CN106152116B (en) A kind of wear-resistance circulation fluidized bed boiler combustion chamber water-cooling wall
JP3562013B2 (en) Furnace wall structure of fluidized bed boiler
JPH08178212A (en) Structure of furnace wall of fluidized-bed boiler
JP2541020Y2 (en) Inner surface structure of fluidized bed formation part of circulating fluidized bed device
JPH10122534A (en) Furnace wall structure of circulating fluidized bed combustion furnace
JP2978019B2 (en) Heat transfer surface arrangement structure in combustion chamber of circulating fluidized bed device
JPH0355407A (en) Heat recovery method for circulating fluidized bed
JPH0229374Y2 (en)
JPS6122114A (en) Fluidized bed incinerator
JP2572750Y2 (en) Structure of Heat Transfer Surface in Combustion Chamber of Circulating Fluidized Bed Device
JP2554657Y2 (en) Internal wall structure in the combustion chamber of a circulating fluidized bed device
CN106051744A (en) W-shaped flame direct-current burner pulverized coal composite furnace with fluidized bed
JP2001029843A (en) Device for classifying particle
JPH087224Y2 (en) Fluidized bed waste incinerator
JPS6245445B2 (en)
JPH0972502A (en) Furnace wall structure for fluidized-bed boiler
JPS62196513A (en) Fluidized bed boiler equipment
JPH06281108A (en) Method for mixed combustion of low calorific value gas/in circulation fludized bed type boiler
CN106122951A (en) A kind of W type flame vortex burner coal dust composite furnace with fluid bed