JP6844306B2 - 電気光学装置、および電気光学装置の駆動方法 - Google Patents

電気光学装置、および電気光学装置の駆動方法 Download PDF

Info

Publication number
JP6844306B2
JP6844306B2 JP2017033034A JP2017033034A JP6844306B2 JP 6844306 B2 JP6844306 B2 JP 6844306B2 JP 2017033034 A JP2017033034 A JP 2017033034A JP 2017033034 A JP2017033034 A JP 2017033034A JP 6844306 B2 JP6844306 B2 JP 6844306B2
Authority
JP
Japan
Prior art keywords
potential
electrode
ion trap
electro
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017033034A
Other languages
English (en)
Other versions
JP2018138942A (ja
Inventor
雅一 西田
雅一 西田
広之 及川
広之 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2017033034A priority Critical patent/JP6844306B2/ja
Publication of JP2018138942A publication Critical patent/JP2018138942A/ja
Application granted granted Critical
Publication of JP6844306B2 publication Critical patent/JP6844306B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、電気光学物質を用いた電気光学装置に関し、特に電気光学物質に含まれるイオン性不純物に起因する表示品質の低下を回避する技術に関する。
この種の電気光学装置の一例としては、電気光学物質として液晶を用いた液晶表示装置が挙げられる。液晶装置においては、製造過程で液晶層中に混入したイオン性不純物や、光照射等による部材の劣化によって生じたイオン性不純物が、表示品質の低下を引き起こすことが知られている。これらのイオン性不純物は通電により移動し、表示領域に濃度分布を形成する。イオン性不純物の濃度が高い領域では、液晶層の保持率が低下し、輝度が低下する結果、シミやムラとなって視認されるからである。
製造過程においてイオン性不純物を全く混入させないことや、部材の劣化に起因するイオン性不純物の発生を回避することは困難である。そこで、非表示領域に電極を設け、その電極にイオン性不純物を吸着させることで表示領域へのイオン性不純物の拡散を防止することが提案されており、その一例としては特許文献1および特許文献2に開示の技術が挙げられる。
特開平8−201830号公報 特許4923866号
しかし、特許文献1および特許文献2に開示の技術では、素子基板側と対向基板側とでイオン性不純物の引き寄せ量が異なり、一方の基板側ではイオン性不純物が表示領域外に移動するどころか、むしろ表示領域内へ移動することが判った。つまり、従来の技術では、電気光学装置の表示品質の低下を確実に回避できるわけではない。
本発明は、上記従来技術の問題点に鑑み成されたものであり、電気光学物質に含まれるイオン性不純物に起因する電気光学装置の表示品質の低下を確実に回避できるようにする技術を提供することを目的とする。
上記課題を解決するために本件の参考発明に係る電気光学装置は、電気光学物質を挟持する第1基板および第2基板と、第1基板において表示領域の外側に配置された第1イオントラップ電極と、第2基板において第1イオントラップ電極と向き合う位置に配置された第2イオントラップ電極と、第1イオントラップ電極に第1駆動信号を供給する第1供給部と、第2イオントラップ電極に第2駆動信号を供給する第2供給部と、を備え、第1供給部および第2供給部は、表示領域において第1基板側に位置するイオンに対する引き寄せ量と第2基板側に位置するイオンに対する引き寄せ量とが略同じになるように、第1駆動信号および第2駆動信号を供給することを特徴とする。
本件の参考発明に係る電気光学装置における上記第1基板は素子基板に対応し、上記第2基板は対向基板に対応する。この態様の電気光学装置によれば、第1基板と第2基板により挟持された電気光学物質の第1基板側と第2基板側、すなわち素子基板側と対向基板側とでイオン(イオン性不純物)の引き寄せ量が略同じになり、一方の基板側ではイオン性不純物が表示領域内へ移動するといった事態の発生が回避され、イオン性不純物に起因する表示品質の低下を確実に回避できる。なお、「イオンの引き寄せ量」とは、電気光学物質内でのイオンの位置の変動量のことを言い、電気光学物質における電荷分布を計測することで実測可能である。また、「素子基板側と対向基板側とでイオンの引き寄せ量が略同じ」とは、各々の引き寄せ量の実測値に含まれる測定誤差を無視すれば同じ、という意味である。
また、本発明の一態様による電気光学装置は、画素電極と第1イオントラップ電極とを備える第1基板(すなわち、素子基板)と、画素電極に向き合う共通電極と第1イオントラップ電極に向き合う第2イオントラップ電極とを備える第2基板(すなわち、対向基板)と、第1基板と第2基板とにより挟持される電気光学物質と、第1の電位と当該第1の電位よりも低い第2の電位とを、予め定められた第1の時間ずつ交互に画素電極に与える一方、共通電極を第1の電位と第2の電位の中間電位である第3の電位に維持する第1駆動制御部と、第1の電位と第2の電位のうちの一方の電位と第3の電位とで定まる電位範囲内の電位である第4の電位と第3の電位とを、予め定められた第2の時間ずつ交互に第1イオントラップ電極に与えるとともに、第4の電位を第1イオントラップ電極に与えている間は第3の電位を前記第2イオントラップ電極に与え、第3の電位を第1イオントラップ電極に与えている間は第4の電位を第2イオントラップ電極に与える第2駆動制御部と、を有することを特徴とする。
詳細については後述するが、この態様の電気光学装置によれば、画素電極から第1イオントラップ電極へ向かう方向の電位勾配(画素電極の電位から第1イオントラップ電極の電位を減算して得られる電位差に応じた電位勾配)の時間平均と、共通電極から第2イオントラップ電極へ向かう方向の電位勾配(共通電極の電位から第2イオントラップ電極の電位を減算して得られる電位差に応じた電位勾配)の時間平均とが同じになる。表示領域から非表示領域へのイオン性不純物の引き寄せ量は、理論上は表示領域と非表示領域との間の電位勾配に応じて算出される。前述したように、素子基板側の上記電位勾配の時間平均と対向基板側の上記電位勾配の時間平均は同じであるから、素子基板側と対向基板側とでイオン性不純物の引き寄せ量の時間平均は理論上同じになる。したがって、この態様の電気光学装置によれば、一方の基板側ではイオン性不純物が表示領域内へ移動するといった事態の発生が回避され、イオン性不純物に起因する表示品質の低下を確実に回避できる。
第1の時間の時間長と第2の時間の時間長は異なっていても良いし、同じであっても良い。前者の態様であれば、第2の時間の方を第1の時間よりも長くすることが考えられる。第1イオントラップ電極および第2イオントラップ電極の駆動(すなわち、電位の切り換え)に要する電力消費を抑えつつ、素子基板側と対向基板側とでイオン性不純物の引き寄せ量を同じにすることができるからである。また、後者の態様、すなわち、第1の時間の時間長と第2の時間の時間長が同じである場合には、画素電極への第1の電位の印加開始タイミングと、第3の電位と第4の電位のうちの高い方の電位の第1イオントラップ電極への印加開始タイミングとが異なっていても良いし、揃っていても良い。両タイミングが異なる態様の具体例としては、画素電極への第1の電位の印加開始タイミングと、第3の電位と第4の電位のうちの高い方の電位の第1イオントラップ電極への印加開始タイミングの時間差が第1駆動制御部による駆動周期(第1の時間の時間長の2倍の時間長)の1/M(Mは2以上の自然数)である態様、すなわち、画素電極および共通電極の駆動周期と第1および第2イオントラップ電極の駆動周期が1/M周期だけずれている(360°/Mだけ位相がずれている)態様が考えられる。
別の好ましい態様においては、第4の電位は、第1の電位と第2の電位のうちの一方の電位と第3の電位との間の電位であることを特徴とする。イオン性不純物の引き寄せ量だけに着目すれば、第4の電位と第3の電位の電位差が大きい方が好ましいが、表示領域への漏れ光を極力抑えるという観点からは第4の電位と第3の電位の電位差は、液晶応答を発生させない範囲に収まっていることが好ましい。
また、上記課題を解決するために本件の参考発明に係る電気光学装置の駆動方法は、電気光学物質を挟持する第1基板および第2基板と、第1基板において表示領域の外側に配置された第1イオントラップ電極と、第2基板において第1イオントラップ電極と向き合う位置に配置された第2イオントラップ電極と、を備える電気光学装置の駆動方法であって、表示領域において第1基板側に位置するイオンに対する引き寄せ量と第2基板側に位置するイオンに対する引き寄せ量とが略同じになるように、第1イオントラップ電極および第2イオントラップ電極を駆動することを特徴とする。本件の参考発明に係る駆動方法によっても、イオン性不純物に起因する表示品質の低下を確実に回避することができる。

また、上記課題を解決するために本発明の一態様による電気光学装置の駆動方法は、画素電極と第1イオントラップ電極とを備える第1基板と、画素電極に向き合う共通電極と第1イオントラップ電極に向き合う第2イオントラップ電極と、を備える第2基板と、により電気光学物質を挟持してなる電気光学装置の駆動方法であって、第1の電位と当該第1の電位よりも低い第2の電位とを、予め定められた第1の時間ずつ交互に画素電極に与える一方、共通電極を第1の電位と前記第2の電位の中間電位である第3の電位に維持し、第1の電位と第2の電位のうちの一方の電位と第3の電位とで定まる電位範囲内の電位である第4の電位と当該第3の電位とを、予め定められた第2の時間ずつ交互に第1イオントラップ電極に与えるとともに、第4の電位を第1イオントラップ電極に与えている間は第3の電位を第2イオントラップ電極に与え、第3の電位を第1イオントラップ電極に与えている間は第4の電位を第2イオントラップ電極に与えることを特徴とする。この態様の駆動方法によっても、イオン性不純物に起因する表示品質の低下を確実に回避することができる。
本発明の第1実施形態に係る電気光学装装置に含まれる素子基板10および対向基板20の構成例を示す図である。 同電気光学装置の部分断面図である。 同電気光学装置の構成例を示す図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 本発明の第2実施形態に係る電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陰イオン)の収集の様子を表す模式図である。 本発明の第3実施形態に係る電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陰イオン)の収集の様子を表す模式図である。 本発明の第4実施形態に係る電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陰イオン)の収集の様子を表す模式図である。 本発明の第5実施形態に係る電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陰イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陰イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陰イオン)の収集の様子を表す模式図である。 本発明の第6実施形態に係る電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陰イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 同電気光学装置の駆動方法、およびこの駆動方法によるイオン性不純物(陽イオン)の収集の様子を表す模式図である。 本発明の第7実施形態に係る電気光学装置において第1イオントラップ電極120および第2イオントラップ電極220に与えられる電位を説明するための図である。 本発明の電気光学装置1000を適用したパソコン2000の構成を示す斜視図である。 同電気光学装置1000を適用した携帯電話機3000の構成を示す斜視図である。 同電気光学装置1000を適用した情報携帯端末4000の構成を示す斜視図である。
以下図面を参照しつつ本発明の実施形態を説明する。
<第1実施形態>
図1は、本発明の一実施形態による電気光学装置に含まれる素子基板10(第1基板)と対向基板20(第2基板)の構成例を示す図である。より詳細に説明すると、図1(A)は素子基板10の平面図であり、図1(B)は対向基板20の平面図である。図1(A)および図1(B)に示すように、素子基板10と対向基板20は同じ大きさかつ矩形状の平面形状を有する。図1(A)に示すように、素子基板10には、画素電極110が中央に設けられており、画素電極110を取り囲むように第1イオントラップ電極120が設けられている。同様に、対向基板20には、共通電極210が中央に設けられており、共通電極210を取り囲むように第2イオントラップ電極220が設けられている。
本実施形態では、素子基板10と対向基板20の間に液晶30を挟持することで液晶セルが構成される。このとき、図2に示すように、画素電極110と共通電極210が互いに向き合い、第1イオントラップ電極120と第2イオントラップ電極220が互いに向き合う。この液晶セルは、有効画素を配した表示領域と、その外側の非表示領域とに区分けされる。図2に示すように、表示領域とは、画素電極110および共通電極210に対応する領域であり、非表示領域とは、第1イオントラップ電極120および第2イオントラップ電極220に対応する領域である。
図3は、本実施形態の電気光学装置の構成例を示す模式図である。図3に示すように、本実施形態の電気光学装置は、素子基板10、対向基板20および液晶30の他に、第1駆動制御部41と第2駆動制御部42を有する。第1駆動制御部41は、画素電極110および共通電極210の駆動制御を行う。より詳細に説明すると、第1駆動制御部41は、第1の電位(本実施形態では、12.5V)と当該第1の電位よりも低い第2の電位(本実施形態では、2.5V)とを予め定められた第1の時間ずつ交互に画素電極110に印加するとともに、共通電極210を上記第1の電位と上記第2の電位の中間電位である第3の電位(すなわち、7.5V)に維持する処理を行う。これにより、表示領域には最大±5Vの交流電圧が印可される。以下では、画素電極110に第1の電位を与えている状態(すなわち、画素電極110の電位>共通電極210の電位である状態)を「表示領域の正極印加状態」と呼び、画素電極110に第2の電位を与えている状態(すなわち、画素電極110の電位<共通電極210の電位である状態)を「表示領域の負極印加状態」と呼ぶ。
本実施形態の電気光学装置では、非表示領域に対応する第1イオントラップ電極120および第2イオントラップ電極220に表示領域とは異なる交流電圧を印可することで、イオン性不純物を非表示領域に集積させることができ、第2駆動制御部42はそのためのものである。第2駆動制御部42は、第1イオントラップ電極120および第2イオントラップ電極220の駆動制御を行う。図3に示すように、第2駆動制御部42は、第1イオントラップ電極120に第1駆動信号を供給する第1供給部42aと第2イオントラップ電極220に第2駆動信号を供給する第2供給部42bとを含む。
第2駆動制御部42を第1駆動制御部41とは別個に設けたことで、本実施形態では、画素電極110とは別個独立に第1イオントラップ電極120に任意の電位を印可することができる。第2イオントラップ電極220についても同様に、共通電極210とは別個独立に任意の電位を印可することができる。つまり、本実施形態では、表示領域に対応する画素電極110および共通電極210、非表示領域に対応する第1イオントラップ電極120および第2イオントラップ電極220の4種類の電極に、それぞれ任意の電位を印可することができる。
より詳細に説明すると、第1供給部42aおよび第2供給部42bは、表示領域において素子基板10側に位置するイオンに対する引き寄せ量と対向基板20側に位置するイオン(液晶30中のイオン性不純物)に対する引き寄せ量とが理論上同じになるように、第1駆動信号および第2駆動信号を供給する。具体的には、第2駆動制御部42は、前述の第1の電位と同第2の電位のうちの一方の電位と第3の電位とで定まる電位範囲内の電位である第4の電位と当該第3の電位とを、予め定められた第2の時間ずつ交互に第1イオントラップ電極120に与える。また、第2駆動制御部42は、第4の電位を第1イオントラップ電極120に与えている間は第3の電位を第2イオントラップ電極220に与え、第3の電位を第1イオントラップ電極120に与えている間は第4の電位を第2イオントラップ電極220に与える。以下では、第1イオントラップ電極120の電位>第2イオントラップ電極220の電位である状態を「非表示領域の正極印加状態」と呼び、第1イオントラップ電極120の電位<第2イオントラップ電極220の電位である状態を「非表示領域の負極印加状態」と呼ぶ。
第4の電位は、収集対象のイオン性不純物の極性に応じて定められる。具体的には、収集対象のイオン性不純物が陽イオンである場合には、第4の電位は、第2の電位と第3の電位とで定まる電位範囲内で定められる。逆に、収集対象のイオン性不純物が陰イオンである場合には、第4の電位は、第1の電位と第3の電位とで定まる電位範囲内で定められる。本実施形態では、集積対象のイオン性不純物は陽イオンであり、上記第4の電位は上記第2の電位と同じ値(すなわち、2.5V)に設定されている。また、本実施形態では、第1の時間の時間長と第2の時間の時間長は同じ、すなわち、第1駆動制御部41による表示領域の電極の駆動周波数と第2駆動制御部42による非表示領域の電極の駆動周波数は同じである。また、画素電極110への第1の電位の印加開始タイミングと、第3の電位と第4の電位のうちの高い方(本実施形態では、第3の電位)の第1イオントラップ電極120への印加開始タイミングとが揃っている。つまり、第1駆動制御部41による表示領域の駆動周期と第2駆動制御部42による非表示領域の駆動周期は、位相が揃っている。
図4は、本実施形態の電気光学装置の駆動方法およびこの駆動方法により実現されるイオン性不純物集積の様子を説明するための模式図である。図4(A)は、表示領域の正極印加状態(図4では、「+field」という文言で表示領域が正極印加状態であることを表記:図5〜図19についても同様)を示す模式図である。これに対して、図4(B)は、表示領域の負極印加状態(図4では、「−field」という文言で表示領域が負極印加状態であることを表記:図5〜図19についても同様)を示す模式図である。
第1駆動制御部41による駆動周期と第2駆動制御部42による駆動周期の位相が揃っており、両者の駆動周波数も同じであるため、表示領域が正極印可状態である場合(図4(A)参照)には、第1イオントラップ電極120には第4の電位(2.5V)と第3の電位(7.5V)のうちの高い方、すなわち後者が印加され、第2イオントラップ電極220には前者(2.5V)が印加される。つまり、非表示領域も正極印加状態となる。この状況下では、素子基板10側では画素電極110から第1イオントラップ電極120に向かう方向に両電極の電位差12.5V−7.5V=5.0V分の電位勾配が発生し、イオン性不純物は電位が低くなる方向(矢印410Bで示すように表示領域から非表示領域へ向かう方向)へ移動する。同様に、対向基板20側では共通電極210から第2イオントラップ電極220に向かう方向に両電極の電位差7.5V−2.5V=5.0V分の電位勾配が発生し、イオン性不純物は矢印410Aの示す方向、すなわち表示領域から非表示領域へ移動する。
表示領域が負極印可状態である場合(図4(B)参照)には、第1イオントラップ電極120には第4の電位(2.5V)が印加され、第2イオントラップ電極220には第3の電位(7.5V)が印加される。つまり、非表示領域も負極印加状態となる。この状況下では、素子基板10側と対向基板20側の何れにおいても、表示領域と非表示領域との間で電位勾配は発生せず(図4(B)参照)、イオン性不純物の移動は発生しない(図4(B)では点線で表現:他の図においても同様)。なお、表示領域の負極印加時には、画素によっては画素電極110の電圧値が2.5Vにならない場合もあるが、その場合でも電圧値は2.5Vと7.5Vの間の電圧値となるので、イオン性不純物の移動は画素電極110側から第1イオントラップ電極120側への移動しか発生しない。
表示領域の正極印可時に素子基板10側で発生する電位勾配と対向基板20側で発生する電位勾配は同じであるため、表示領域への正極印可→負極印加→正極印可・・・を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。このように本実施形態によれば、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量を略同じ(測定誤差を加味すれば同じ値)にすることが可能になり、イオン性不純物に起因する表示品質の低下を確実に回避することが可能になる。
<第2実施形態>
上記第1実施形態では、収集対象のイオン性不純物が陽イオンである場合について説明したが、本実施形態における収集対象のイオン性不純物は陰イオンであり、この点が第1実施形態と異なる。本実施形態の電気光学装置の構成は第1実施形態の電気光学装置の構成(図3参照)と同じであるため、詳細な説明は省略する(後述する第3〜第6実施形態についても同様)。前述したように、収集対象のイオン性不純物が陰イオンである場合は、第4の電位を、第1の電位と第3の電位に応じて定まる電位範囲内で定めれば良く、本実施形態では第4の電位は第1の電位と同じ値(すなわち、12.5V)に設定されている。以下、図5を参照しつつ、本実施形態の電気光学装置の駆動方法および本実施形態におけるイオン性不純物収集の様子を説明する。なお、本実施形態では、前述の第1実施形態と同様に、第1駆動制御部41による電極の駆動周波数と第2駆動制御部42による電極の駆動周波数は同じであり、また、第1駆動制御部41による駆動周期と第2駆動制御部42による駆動周期の位相も揃っている。
図5は、本実施形態におけるイオン性不純物集積の様子を説明するための模式図である。第1駆動制御部41による電極の駆動周期と第2駆動制御部42による電極の駆動周期の位相が揃っており、両者の駆動周波数も同じであるため、表示領域が正極状態である場合(図5(A)参照)には、非表示領域も正極印加状態とされる。つまり、第1イオントラップ電極120には第4の電位(12.5V)と第3の電位(7.5V)のうちの高い方、すなわち前者が印加され、第2イオントラップ電極220には後者(2.5V)が印加される。この状態では、素子基板10側と対向基板20側の何れにおいても、表示領域と非表示領域との間の電位勾配は発生せず、イオン性不純物の移動は発生しない。
表示領域が負極印可状態に切り替えられると、これに同期して非表示領域の負極印加状態に切り替えられる(図5(B)参照)。つまり、第1イオントラップ電極120には第3の電位(7.5V)が印加され、第2イオントラップ電極220には第4の電位(12.5V)が印加される。この状況下では、素子基板10側では画素電極110から第1イオントラップ電極120に向かう方向に両電極の電位差2.5V−7.5V=−5.0V分の電位勾配が発生し、イオン性不純物は電位が高くなる方向へ(矢印510Bで示すように表示領域から非表示領域へ向かう方向)へ移動する。同様に、対向基板20側では共通電極210から第2イオントラップ電極220に向かう方向に両電極の電位差7.5V−12.5V=−5.0V分の電位勾配が発生し、イオン性不純物は矢印510Aの示す方向、すなわち表示領域から非表示領域へ移動する。
本実施形態においても、表示領域の正極印可時に素子基板10側に発生する電位勾配と対向基板20側に発生する電位勾配は同じである。このため、表示領域への正極印可→負極印加→正極印可・・・を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。このように、収集対象のイオン性不純物が陰イオンである場合も、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量を略同じにすることが可能になり、イオン性不純物に起因する表示品質の低下を確実に回避することが可能になる。
<第3実施形態>
上記第1および第2実施形態では、第1駆動制御部41による電極の駆動周波数と第2駆動制御部42による電極の駆動周波数とが同じであった。しかし、第1駆動制御部41による電極の駆動周波数と第2駆動制御部42による電極の駆動周波数とが異なっていても良い(換言すれば、前述した第1の時間の時間長と第2の時間の時間長が異なっていても良い)。本実施形態では、第1駆動制御部41と第2駆動制御部42は共に正極印加状態から電極の駆動を開始するものの、第2駆動制御部42による電極の駆動周波数が第1駆動制御部41による電極の駆動周波数の1/2である点、すなわち、前者の駆動周期が後者の駆動周期の2倍である点が第1および第2実施形態と異なる。以下、図6および図7を参照しつつ、本実施形態におけるイオン性不純物収集の様子を説明する。
図6は、収集対象のイオン性不純物が陽イオンである場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図6に示す例では、収集対象のイオン性不純物が陽イオンであるため、第1実施形態と同様に第4の電位は第2の電位と同じ値(2.5V)に設定されている。本実施形態では、第2駆動制御部42による駆動周波数が第1駆動制御部41による駆動周波数の1/2倍であるため、図6(A)および図6(B)に示すように、表示領域への電位印加状態が正極印加→負極印加と遷移しても、非表示領域は正極印加状態に維持される。その後、表示領域が再度正極印加状態へ遷移するタイミングで非表示領域は負極印加状態へ遷移し(図6(C)参照)、表示領域が負極印加状態へ遷移しても非表示領域は負極印加状態に維持される(図6(D)参照)。その後さらに表示領域が正極印加状態へ遷移すると、非表示領域も正極印加状態へ遷移し、図6(A)の状態に戻る。
本実施形態において素子基板10側に発生する電位勾配は次の通りである。図6(A)に示す状態では5Vの電位差の電位勾配が、図6(B)に示す状態では−5Vの電位差の電位勾配が、図6(C)に示す状態では10Vの電位差の電位勾配が、それぞれ発生し、図6(D)に示す状態では、電位勾配は発生しない。第1駆動制御部41による駆動周期と第2駆動制御部42による駆動周期の最小公倍数を1サイクルとすると、その1サイクルにおいて素子基板10側に発生する正味の電位勾配(換言すれば、電位勾配の時間平均)は、10Vの電位差分の電位勾配となる。なお、図6では上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印610B、620Bおよび630の向きおよび長さで表されている。
これに対して、対向基板20側に発生する電位勾配は次の通りである。図6(A)に示す状態では5Vの電位差の電位勾配が、図6(B)に示す状態では5Vの電位差の電位勾配が、それぞれ発生し、図6(C)および図6(D)の各々に示す状態では電位勾配は発生しない。このため、1サイクルにおいて対向基板20側に発生する正味の電位勾配も10Vの電位差分の電位勾配となる。なお、図6では上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印610Aおよび620Aの向きおよび長さで表されている。
このように、1サイクルにおいて素子基板10側で発生する正味の電位勾配と対向基板20側で発生する正味の電位勾配は同じであるため、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。
図7は、収集対象のイオン性不純物が陰イオンである場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図7に示す例では、収集対象のイオン性不純物が陰イオンであるため、第2実施形態と同様に第4の電位は第1の電位と同じ値(12.5V)に設定されている。この場合も図6に示す場合と同様に、表示領域への電位印加状態が正極印加→負極印加と遷移しても、非表示領域は正極印加状態に維持され、表示領域が再度正極印加状態へ遷移するタイミングで非表示領域は負極印加状態へ遷移し、表示領域が再度正極印加状態へ遷移するまでその状態が維持される。
図7(A)〜(D)に示すように、素子基板10側に発生する電位勾配は次の通りである。図7(A)に示す状態では電位勾配は発生せず、図7(B)に示す状態では−10Vの電位勾配が、図7(C)に示す状態では5Vの電位差の電位勾配が、図7(D)に示す状態では−5Vの電位差の電位勾配が、それぞれ発生する。つまり、1サイクルにおいて、素子基板10側に発生する正味の電位勾配は、−10Vの電位差分の電位勾配である。図7においても上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印710、720Bおよび730Bの向きおよび長さで表されている。
これに対して、対向基板20側に発生する電位勾配は次の通りである。図7(A)および図7(B)の各々に示す状態では電位勾配は発生せず、図7(C)に示す状態では−5Vの電位差の電位勾配が、図7(D)に示す状態では−5Vの電位差の電位勾配が、それぞれ発生する。このため、1サイクルにおいて対向基板20側に発生する正味の電位勾配も−10Vの電位差分の電位勾配となる。図7においても上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印720Aおよび730Aの向きおよび長さで表されている。
このように、1サイクルにおいて素子基板10側で発生する正味の電位勾配と対向基板20側で発生する正味の電位勾配は同じであるため、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。
以上説明したように本実施形態においても、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになり、イオン性不純物に起因する表示品質の低下を確実に回避することができる。加えて、本実施形態によれば以下の効果も奏される。すなわち、表示領域の駆動周波数は表示品位向上のためには高い周波数であることが好ましいが、非表示領域を高速駆動する必要はない。本実施形態によれば、非表示領域を駆動するための回路負荷および消費電力を第1および第2実施形態よりも低く抑えつつ、イオン性不純物を収集することができるといった効果が奏される。
<第4実施形態>
上記第3実施形態では、第2駆動制御部42による電極の駆動周波数が第1駆動制御部41による電極の駆動周波数の1/2であったが、本実施形態は、第2駆動制御部42による電極の駆動周波数が第1駆動制御部41による電極の駆動周波数の2倍である点が第3実施形態と異なる。以下、図8および図9を参照しつつ、本実施形態におけるイオン性不純物収集の様子を説明する。
図8は、収集対象のイオン性不純物が陽イオンである場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図8に示す例では、収集対象のイオン性不純物が陽イオンであるため、第1実施形態と同様に第4の電位は第2の電位と同じ値(2.5V)に設定されている。本実施形態では、第2駆動制御部42による駆動周波数が第1駆動制御部41による駆動周波数の2倍であるため、図8(A)〜図8(D)に示すように、非表示領域への電位印加状態が正極印加→負極印加と遷移しても、表示領域は正極印加状態に維持され、非表示領域が再度正極印加状態へ遷移するタイミングで表示領域は負極印加状態へ遷移し、非表示領域が再度正極印加状態へ遷移するまでその状態が維持される。
本実施形態において素子基板10側に発生する電位勾配は次の通りである。図8(A)に示す状態では5Vの電位差の電位勾配が、図8(B)に示す状態では10Vの電位差の電位勾配が、図8(C)に示す状態では−5Vの電位差の電位勾配が、それぞれ発生し、図8(D)に示す状態では電位勾配は発生しない。つまり、1サイクルにおいて、素子基板10側に発生する正味の電位勾配は、10Vの電位差分の電位勾配である。図8では上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印810B、820および830Bの向きおよび長さで表されている。
これに対して、対向基板20側に発生する電位勾配は次の通りである。図8(A)および図8(C)の各々に示す状態では5Vの電位差の電位勾配が発生し、図8(B)および図8(D)の各々に示す状態では電位勾配は発生しない。このため、1サイクルにおいて、対向基板20側に発生する正味の電位勾配も10Vの電位差分の電位勾配である。図8では上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印810Aおよび830Aの向きおよび長さで表されている。
図9は、収集対象のイオン性不純物が陰イオンである場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図9に示す例では、収集対象のイオン性不純物が陰イオンであるため、第2実施形態と同様に第4の電位は第1の電位と同じ値(12.5V)に設定されている。この場合も図8に示す場合と同様に、非表示領域への電位印加状態が正極印加→負極印加と遷移しても、表示領域は正極印加状態に維持され、非表示領域が再度正極印加状態へ遷移するタイミングで表示領域は負極印加状態へ遷移し、非表示領域が再度正極印加状態へ遷移するまでその状態が維持される。
図9(A)〜(D)に示すように、素子基板10側に発生する電位勾配は次の通りである。図7(A)に示す状態では電位勾配は発生せず、図9(B)に示す状態では5Vの電位勾配が、図9(C)に示す状態では−10Vの電位差の電位勾配が、図9(D)に示す状態では−5Vの電位差の電位勾配が、それぞれ発生する。つまり、1サイクルにおいて、素子基板10側に発生する正味の電位勾配は、−10Vの電位差分の電位勾配である。図9では上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印910B、920、および930Bの向きおよび長さで表されている。
これに対して、対向基板20側に発生する電位勾配は次の通りである。図9(A)および図9(C)の各々に示す状態では電位勾配は発生せず、図9(B)および図9(D)の各々に示す状態では−5Vの電位差の電位勾配がそれぞれ発生する。このため、1サイクルにおいて、対向基板20側に発生する正味の電位勾配も−10Vの電位差分の電位勾配となる。図9では上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印910Aおよび930Aの向きおよび長さで表されている。
このように本実施形態においても、1サイクルにおいて素子基板10側に発生する正味の電位勾配と対向基板20側に発生する正味の電位勾配は同じであるため、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。したがって、本実施形態によっても、イオン性不純物に起因する表示品質の低下を確実に回避することが可能になる。
<第5実施形態>
上記第1および第2実施形態では、第1駆動制御部41による電極の駆動周期の時間長と第2駆動制御部42による電極の駆動周期の時間長とが等しく、両者の位相が揃っていたが、両者の位相にずれがあっても良い。例えば、第1駆動制御部41による駆動周期と第1駆動制御部41による駆動周期が、1/M(Mは2以上の任意の自然数)周期だけ異なっていても(換言すれば、360°/Mだけ位相がずれていても)良い。以下、M=2の場合について図10および図11を参照しつつ、本実施形態におけるイオン性不純物収集の様子を説明する。
図10は、収集対象のイオン性不純物が陽イオンである場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図10に示す例では、収集対象のイオン性不純物が陽イオンであるため、第1実施形態と同様に第4の電位は第2の電位と同じ値(2.5V)に設定されている。本実施形態では、第2駆動制御部42による駆動周期の位相と第1駆動制御部41による駆動周期の位相が180°ずれているため、図10(A)および図10(B)に示すように、表示領域が正極印加状態であれば非表示領域は負極印加状態となり、表示領域が負極印加状態であれば非表示領域は正極印加状態となる。
本実施形態において素子基板10側に発生する電位勾配は次の通りである。図10(A)に示す状態では10Vの電位差の電位勾配が発生し、図10(B)に示す状態では−5Vの電位差の電位勾配が発生する。したがって、1サイクルにおいて素子基板10側に発生する正味の電位勾配は、5Vの電位差分の電位勾配となる。これに対して、対向基板20側に発生する電位勾配は次の通りである。図10(A)に示す状態では電位勾配は発生せず、図10(B)に示す状態では5Vの電位差の電位勾配が発生する。したがって、1サイクルにおいて対向基板20側に発生する正味の電位勾配も5Vの電位差分の電位勾配となる。なお、図10では、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1010、1020Aおよび1020Bの向きおよび長さで表されている。
図11は、収集対象のイオン性不純物が陰イオンである場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図11に示す例では、収集対象のイオン性不純物が陽イオンであるため、第2実施形態と同様に第4の電位は第1の電位と同じ値(12.5V)に設定されている。図11に示す場合も、表示領域が正極印加状態であれば非表示領域は負極印加状態となり、表示領域が負極印加状態であれば非表示領域は正極印加状態となっている。
図11(A)および図11(B)に示すように、素子基板10側に発生する電位勾配は次の通りである、図11(A)に示す状態では5Vの電位差の電位勾配が発生し、図10(B)に示す状態では−10Vの電位差の電位勾配が発生する。したがって、1サイクルにおいて、素子基板10側に発生する正味の電位勾配は−5Vの電位差分の電位勾配となる。これに対して、対向基板20側に発生する電位勾配は次の通りである。図11(A)に示す状態では−5Vの電位勾配が発生し、図11(B)に示す状態では電位勾配は発生しない。したがって、1サイクルにおいて対向基板20側に発生する正味の電位勾配も−5Vの電位差分の電位勾配となる。なお、図11においても、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1110A、1110Bおよび1120の向きおよび長さで表されている。
このように図10および図11の何れの場合においても、1サイクルにおいて素子基板10側に発生する正味の電位勾配と対向基板20側に発生する正味の電位勾配は同じであるため、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。
図12は、収集対象のイオン性不純物が陽イオンであり、かつM=4の場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図12に示す例においても、収集対象のイオン性不純物が陽イオンであるため、第1実施形態と同様に第4の電位は第2の電位と同じ値(2.5V)に設定されている。図12(A)〜図12(D)に示すように、素子基板10側には、図12(A)に示す状態では5Vの電位差の電位勾配が発生し、図12(B)に示す状態では10Vの電位差の電位勾配が発生し、図12(C)に示す状態では電位勾配は発生せず、図12(D)に示す状態では−5Vの電位差の電位勾配が発生する。したがって、1サイクルにおいて素子基板10側に発生する正味の電位勾配は10Vの電位差分の電位勾配となる。一方、対向基板20側には、図12(A)および図12(D)の各々に示す状態では5Vの電位勾配が発生し、図12(B)および図12(D)の各々に示す状態では電位勾配は発生しない。したがって、1サイクルにおいて対向基板20側に発生する正味の電位勾配も10Vの電位差分の電位勾配となる。
したがって、図12に示す場合も、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。図12においても、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1410A、1410B、1420、1430Aおよび1430Bの向きおよび長さで表されている。
図13は、収集対象のイオン性不純物が陰イオンであり、かつM=4の場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図13に示す例においても、収集対象のイオン性不純物が陰イオンであるため、第2実施形態と同様に第4の電位は第1の電位と同じ値(12.5V)に設定されている。図13(A)〜図13(D)に示すように、素子基板10側には、図13(A)に示す状態では電位勾配は発生せず、図13(B)に示す状態では5Vの電位差の電位勾配が、図13(C)に示す状態では−5Vの電位差の電位勾配が、図13(D)に示す状態では−10Vの電位差の電位勾配がそれぞれ発生する。したがって、1サイクルにおいて素子基板10側に発生する正味の電位勾配は−10Vの電位差分の電位勾配となる。一方、対向基板20側には、図13(A)および図13(D)の各々に示す状態では電位勾配は発生せず、図13(B)および図13(C)の各々に示す状態ではそれぞれー5Vの電位差の電位勾配が発生する。したがって、1サイクルにおいて対向基板20側に発生する正味の電位勾配も−10Vの電位差分の電位勾配となる。
したがって、図13に示す場合も、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。なお、図13においても、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1510A、1510B、1520A、1520B、および1530の向きおよび長さで表されている。
図14は、収集対象のイオン性不純物が陽イオンであり、かつM=6の場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図14に示す例においても、収集対象のイオン性不純物が陽イオンであるため、第1実施形態と同様に第4の電位は第2の電位と同じ値(2.5V)に設定されている。図14(A)〜図14(F)に示すように、素子基板10側には、図12(A)に示す状態では5Vの電位差の電位勾配が、図14(B)および図14(C)の各々に示す状態ではそれぞれ10Vの電位差の電位勾配が、図14(E)および図14(F)の各々に示す状態ではそれぞれ−5Vの電位勾配が発生し、図14(D)に示す状態では電位勾配は発生しない。したがって、1サイクルにおいて、素子基板10側に発生する正味の電位勾配は15Vの電位差分の電位勾配となる。一方、対向基板20側には、図14(A)、図14(E)および図14(F)の各々に示す状態ではそれぞれ5Vの電位勾配が発生し、図14(B)〜図14(D)の各々に示す状態では電位勾配は発生しない。したがって、1サイクルにおいて対向基板20側に発生する正味の電位勾配も15Vの電位差分の電位勾配となる。
したがって、図14に示す場合も、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。なお、図14においても、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1610A、1610B、1620、1630、1640A、1640B、1650Aおよび11650Bの向きおよび長さで表されている。
図15は、収集対象のイオン性不純物が陰イオンであり、かつM=6の場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図15に示す例においても、収集対象のイオン性不純物が陰イオンであるため、第2実施形態と同様に第4の電位は第1の電位と同じ値(12.5V)に設定されている。図15(A)〜図15(F)に示すように、素子基板10側には、図15(A)に示す状態では電位勾配は発生せず、図15(B)および図15(C)の各々に示す状態ではそれぞれ5Vの電位差の電位勾配が、図15(D)に示す状態では−5Vの電位差の電位勾配が、図15(E)および図15(F)の各々に示す状態ではそれぞれ−10Vの電位差の電位勾配が発生する。したがって、1サイクルにおいて素子基板10側に発生する正味の電位勾配は−15Vの電位差分の電位勾配となる。一方、対向基板20側には、図15(A)、図15(E)および図15(F)の各々に示す状態では電位勾配は発生せず、図15(B)〜図15(D)の各々に示す状態では−5Vの電位差の電位勾配がそれぞれ発生する。したがって、1サイクルにおいて対向基板20側に発生する正味の電位勾配も−15Vの電位差分の電位勾配となる。
したがって、図15に示す場合も、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。なお、図15においても、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1710A、1710B、1720A、1720B、1730A、1730B、1740、および1750の向きおよび長さで表されている。
以上説明したように本実施形態においても、1サイクルにおいて素子基板10側で発生する正味の電位勾配と対向基板20側で発生する正味の電位勾配は同じであり、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。したがって、本実施形態によっても、イオン性不純物に起因する表示品質の低下を確実に回避することが可能になる。また、本実施形態は、第1駆動制御部41と第2駆動制御部42を同期させなくてもイオン性不純物に起因する表示品質の低下を確実に回避できることを示している。したがって、第1駆動制御部41と第2駆動制御部42とを同期させるための同期信号は不要であり、このような同期信号の発生が不要になる分、回路負荷を低減することができる。
<第6実施形態>
上記第5実施形態では、第1駆動制御部41による電極の駆動周期の時間長と第2駆動制御部42による電極の駆動周期の時間長とが同じであるものの、両者の位相にずれがある場合について説明した。しかし、第1駆動制御部41による電極の駆動周期と第2駆動制御部42による電極の駆動周期の位相にずれがあり、かつ両駆動周期の時間長が異なっていても(すなわち、両者の駆動周波数が異なっていても)良い。以下、第2駆動制御部42による駆動周波数が第1駆動制御部41による駆動周波数の1/2であり、かつ位相が180°ずれている場合について図16および図17を参照しつつ説明する。
図16は、収集対象のイオン性不純物が陽イオンである場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図16に示す例においても、収集対象のイオン性不純物が陽イオンであるため、第1実施形態と同様に第4の電位は第2の電位と同じ値(2.5V)に設定されている。第2駆動制御部42による駆動周期の位相と第1駆動制御部41による駆動周期の位相が180°ずれているため、図16(A)に示す状態では表示領域は正極印加状態に、非表示領域は負極印加状態になっている。第2駆動制御部42による駆動周波数が第1駆動制御部41による駆動周波数の1/2であるため、図16(A)に示す状態から表示領域が負極印加状態へ遷移しても非表示領域は負極印加状態のままである(図16(B)参照)。その後、表示領域が再度正極印加状態へ遷移すると非表示領域は正極印加状態へ遷移し(図16(C)参照)、表示領域が負極印加状態へ遷移しても非表示領域は正極印加状態を維持する(図16(D))。さらにその後、表示領域が正極印加状態へ遷移すると、非表示領域は負極印加状態へ遷移して図16(A)の状態に戻る。
図16(A)〜図16(D)に示すように、素子基板10側には、図16(A)に示す状態では10Vの電位差の電位勾配が、図16(C)に示す状態では5Vの電位差の電位勾配が、図16(D)に示す状態では−5Vの電位差の電位勾配がそれぞれ発生し、図16(B)に示す状態では電位勾配は発生しない。したがって、1サイクルにおいて素子基板10側に発生する正味の電位勾配は10Vの電位差分の電位勾配となる。一方、対向基板20側には、図16(A)および図16(B)の各々に示す状態では電位勾配は発生せず、図16(C)および図16(D)の各々に示す状態では5Vの電位差の電位勾配がそれぞれ発生する。したがって、1サイクルにおいて対向基板20側に発生する正味の電位勾配も10Vの電位差分の電位勾配となる。したがって、図16に示す場合も、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。なお、図16においても、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1210、1220A、1220B、1230A、および1230Bの向きおよび長さで表されている。
図17は、収集対象のイオン性不純物が陰イオンである場合の本実施形態の電気光学装置の駆動方法およびイオン性不純物収集の様子を示す模式図である。図17に示す例においても、収集対象のイオン性不純物が陰イオンであるため、第2実施形態と同様に第4の電位は第1の電位と同じ値(12.5V)に設定されている。表示領域および非表示領域の各々における極性の遷移態様は図16の場合と同様である。
図17(A)〜図17(D)に示すように、素子基板10側には、図17(A)に示す状態では5Vの電位差の電位勾配が、図16(B)に示す状態では−5Vの電位差の電位勾配が、図17(D)に示す状態では−10Vの電位差の電位勾配がそれぞれ発生し、図17(C)に示す状態では電位勾配は発生しない。したがって、1サイクルにおいて素子基板10側に発生する正味の電位勾配は−10Vの電位差分の電位勾配となる。一方、対向基板20側には、図17(A)および図16(B)の各々に示す状態では−5Vの電位差の電位勾配が発生し、図17(C)および図17(D)の各々に示す状態では電位勾配は発生しない。したがって、1サイクルにおいて対向基板20側に発生する正味の電位勾配も−10Vの電位差分の電位勾配となる。したがって、図17に示す場合も、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。なお、図17においても、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1310A、1310B、1320A、1320Bおよび1330の向きおよび長さで表されている。
次いで、第2駆動制御部42による駆動周波数が第1駆動制御部41による駆動周波数の1/2であり、かつ位相が45°ずれている場合における陽イオンのイオン性不純物の収集の様子を図18および図19を参照しつつ説明する。この場合、表示領域および非表示領域の極性は、図18(A)〜図18(H)→図19(A)〜図19(H)→図18(A)〜図18(H)・・・と遷移する。なお、図18および図19に示す場合においても、収集対象のイオン性不純物は陽イオンであるため、第4の電位は第2の電位と同じ値(2.5V)に設定されている。
図8および図19に示す場合における素子基板10側での電位勾配の発生状況は次の通りである。すなわち、図18(A)、図19(B)、図19(C)および図19(D)の各々に示す状態では5Vの電位差の電位勾配が発生する。また、図18(B)、図18(C)、図18(D)、および図19(A)の各々に示す状態では10Vの電位差の電位勾配が発生する。そして、図19(E)〜図19(H)の各々に示す状態では−5Vの電位勾配が発生し、図18(E)〜図18(H)の各々に示す状態では電位勾配は発生しない。その結果、1サイクルにおいて素子基板10側に発生する正味の電位勾配は40Vの電位差分の電位勾配となる。
一方、図8および図19に示す場合における対向基板20側での電位勾配の発生状況は次の通りである。すなわち、図18(A)および図19(B)〜図19(G)の各々に示す状態では5Vの電位差の電位勾配が発生し、図18(B)〜図18(H)および図19(A)の各々に示す状態では電位勾配は発生しない。その結果、1サイクルにおいて対向基板20側に発生する正味の電位勾配も40Vの電位差分の電位勾配となる。したがって、図18および図19に示す場合も、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。なお、図18および図19においても、上記各電位勾配によるイオン性不純物の移動方向および引き寄せ量が矢印1810A、1810B、1820、1830、1840、1910、1920A、1920B、1930A、1930B、1940A、1940B、1950A、1950B、1960A、1960B、1970A、1970B、1980A、および1980Bで表されている。
以上説明したように本実施形態においても、1サイクルにおいて素子基板10側に発生する正味の電位勾配と対向基板20側に発生する正味の電位勾配は同じであり、1サイクルの処理を繰り返す過程で、素子基板10側と対向基板20側とでイオン性不純物の引き寄せ量の時間平均は、理論上同じになる。したがって、本実施形態によっても、イオン性不純物に起因する表示品質の低下を確実に回避することが可能になる。また、本実施形態も、第1駆動制御部41と第2駆動制御部42を同期させなくてもイオン性不純物に起因する表示品質の低下を確実に回避できることを示しているので、第1駆動制御部41と第2駆動制御部42とを同期させるための同期信号は不要であり、回路負荷を低減し、設計の自由度を向上させることができる。
<第7実施形態>
上記第1〜第6実施形態では、収集対象のイオン性不純物が陽イオンである場合には第4の電位を第2の電位と同じ値に設定したが、この場合の第4の電位の値は、図20に示すように、第2の電位と第3の電位とで定まる電位範囲(具体的には、第2の電位以上かつ第3の電位未満の電位範囲)内の電位であれば他の値であっても良い。同様に上記第1〜第6実施形態では、収集対象のイオン性不純物が陰イオンである場合には第4の電位を第1の電位と同じ値に設定したが、この場合の第4の電位の値は、図20に示すように、第1の電位と第3の電位とで定まる電位範囲(具体的には、第2の電位以上かつ第3の電位未満の電位範囲)内の電位であれば他の値であっても良い。なお、図20にて他方の電位とは、非表示領域の駆動の際に第1トラップ電極120と第2トラップ電極220のうち第4の電位を与えられなかった方の電極に与えられる電位、すなわち第3の電位のことである。
図20に示すように、イオン性不純物の収集効果の観点から見れば、収集対象のイオン性不純物が陽イオンである場合には第4の電位を第2の電位と同じ値に設定し、収集対象のイオン性不純物が陰イオンである場合には第4の電位を第1の電位と同じ値に設定すると最大の効果を得られる。しかし、非表示領域における液晶応答に起因する漏れ光を抑えることも必要になる場合には、第1イオントラップ電極120と第2イオントラップ電極220の電位の振れ幅がより小さくなるように、収集対象のイオン性不純物が陽イオンである場合の第4の電位の値を第2の電位よりも大きな値とし、収集対象のイオン性不純物が陰イオンである場合の第4の電位の値を第1の電位よりも小さな値とすることが考えられる。
例えば、第1イオントラップ電極120と第2イオントラップ電極220の電位の振れ幅が±2.0Vであれば非表示領域において液晶応答が発生しないのであれば、図20に示すように、収集対象のイオン性不純物が陽イオンである場合の第4の電位の値を5.5Vに設定し、収集対象のイオン性不純物が陰イオンである場合の第4の電位の値を9.5Vに設定すれば良い。なお、第4の電位と第3の電位の電位差を小さくすると、イオン性不純物の引き寄せ量が減少するので、この場合は非表示領域の駆動周期を表示領域の駆動周期よりも早くすることでその減少分を補っても良い。また、上記第1〜第6実施形態では、第4の電位は固定されていたが、フレームごとに第4の電位を異なる値に設定しても良い。
<変形例>
以上本発明の第1〜第7実施形態について説明したが、これら実施形態に以下の変形を加えても勿論良い。
上記各実施形態では、素子基板10と対向基板20とにより挟持される電気光学物質が液晶であったが、他の電気光学物質であっても良い。
<応用例>
次に、上述した第1〜第7実施形態の電気光学装置及び変形例に係る電気光学装置(以下、「電気光学装置1000」と総称する)の応用例について説明する。図21は、電気光学装置1000を適用したモバイル型のパソコンの構成例を示す図である。パソコン2000は、表示ユニットとしての電気光学装置1000と本体部2010を備える。本体部2010には、電源スイッチ2001及びキーボード2002が設けられている。
図22は、電気光学装置1000を適用した携帯電話機の構成例を示す図である。携帯電話機3000は、複数の操作ボタン3001及びスクロールボタン3002、並びに表示ユニットとしての電気光学装置1000を備える。スクロールボタン3002を操作することによって、電気光学装置1000に表示される画面がスクロールされる。
図23は、電気光学装置1000を適用した情報携帯端末(PDA:Personal Digital Assistants)の構成例を示す図である。情報携帯端末4000は、複数の操作ボタン4001及び電源スイッチ4002、並びに表示ユニットとしての電気光学装置1000を備える。電源スイッチ4002を操作すると、住所録やスケジュール帳といった各種の情報が電気光学装置1000に表示される。
なお、電気光学装置1000が適用される電子機器としては、図21〜図23に示すものの他、デジタルスチルカメラ、液晶テレビ、ビューファインダー型、モニター直視型のビデオテープレコーダー、カーナビゲーション装置、ページャー、電子手帳、電卓、ワープロ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等などが挙げられる。そして、これらの各種電子機器の表示部として、前述した電気光学装置が適用可能である。
10…素子基板、110…画素電極、120…第1イオントラップ電極、20…対向基板、210…共通電極、220…第2イオントラップ電極、30…液晶、41…第1駆動制御部、42…第2駆動制御部、42a…第1供給部、42b…第2供給部、1000…電気光学装置、2000…パソコン、3000…携帯電話機、4000…情報携帯端末。

Claims (8)

  1. 画素電極と第1イオントラップ電極とを備える第1基板と、
    前記画素電極に向き合う共通電極と、前記第1イオントラップ電極に向き合う第2イオントラップ電極と、を備える第2基板と、
    前記第1基板と前記第2基板とにより挟持される電気光学物質と、
    第1の電位と前記第1の電位よりも低い第2の電位とを、予め定められた第1の時間ずつ交互に前記画素電極に与える一方、前記共通電極を前記第1の電位と前記第2の電位の間の電位である第3の電位に維持する第1駆動制御部と、
    前記第1の電位と前記第2の電位のうちの一方の電位と前記第3の電位とで定まる電位範囲内の電位である第4の電位と前記第3の電位とを、予め定められた第2の時間ずつ交互に前記第1イオントラップ電極に与えるとともに、前記第4の電位を前記第1イオントラップ電極に与えている間は前記第3の電位を前記第2イオントラップ電極に与え、前記第3の電位を前記第1イオントラップ電極に与えている間は前記第4の電位を前記第2イオントラップ電極に与える第2駆動制御部と、
    を有することを特徴とする電気光学装置。
  2. 前記第1の時間と前記第2の時間の時間長が異なることを特徴とする請求項に記載の電気光学装置。
  3. 前記第1の時間の時間長と前記第2の時間の時間長が同じことを特徴とする請求項に記載の電気光学装置。
  4. 前記画素電極への前記第1の電位の印加開始タイミングと、前記第3の電位と前記第4の電位のうちの高い方の電位の前記第1イオントラップ電極への印加開始タイミングとが異なっていることを特徴とする請求項に記載の電気光学装置。
  5. 前記画素電極への前記第1の電位の印加開始タイミングと前記第1イオントラップ電極への前記第3の電位の印加開始タイミングの時間差が前記第1駆動制御部による駆動周期の1/M(Mは2以上の自然数)であることを特徴とする請求項に記載の電気光学装置。
  6. 前記画素電極への前記第1の電位の印加開始タイミングと、前記第3の電位と前記第4の電位のうちの高い方の電位の前記第1イオントラップ電極への印加開始タイミングとが揃っていることを特徴とする請求項に記載の電気光学装置。
  7. 前記第4の電位は、前記第1の電位と前記第2の電位のうちの一方の電位と前記第3の電位との間の電位であることを特徴とする請求項の何れか1項に記載の電気光学装置。
  8. 画素電極と第1イオントラップ電極とを備える第1基板と、
    前記画素電極に向き合う共通電極と、前記第1イオントラップ電極に向き合う第2イオントラップ電極と、を備える第2基板と、
    により電気光学物質を挟持してなる電気光学装置の駆動方法において、
    第1の電位と前記第1の電位よりも低い第2の電位とを、予め定められた第1の時間ずつ交互に前記画素電極に与える一方、前記共通電極を前記第1の電位と前記第2の電位の間の電位である第3の電位に維持し、
    前記第1の電位と前記第2の電位のうちの一方の電位と前記第3の電位とで定まる電位範囲内の電位である第4の電位と前記第3の電位とを、予め定められた第2の時間ずつ交互に前記第1イオントラップ電極に与えるとともに、前記第4の電位を前記第1イオントラップ電極に与えている間は前記第3の電位を前記第2イオントラップ電極に与え、前記第3の電位を前記第1イオントラップ電極に与えている間は前記第4の電位を前記第2イオントラップ電極に与える
    ことを特徴とする電気光学装置の駆動方法。
JP2017033034A 2017-02-24 2017-02-24 電気光学装置、および電気光学装置の駆動方法 Active JP6844306B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017033034A JP6844306B2 (ja) 2017-02-24 2017-02-24 電気光学装置、および電気光学装置の駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017033034A JP6844306B2 (ja) 2017-02-24 2017-02-24 電気光学装置、および電気光学装置の駆動方法

Publications (2)

Publication Number Publication Date
JP2018138942A JP2018138942A (ja) 2018-09-06
JP6844306B2 true JP6844306B2 (ja) 2021-03-17

Family

ID=63451385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017033034A Active JP6844306B2 (ja) 2017-02-24 2017-02-24 電気光学装置、および電気光学装置の駆動方法

Country Status (1)

Country Link
JP (1) JP6844306B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201830A (ja) * 1995-01-27 1996-08-09 Citizen Watch Co Ltd 液晶表示装置
KR101100992B1 (ko) * 2003-08-28 2011-12-29 치메이 이노럭스 코포레이션 액정층으로부터 이온을 제거하는 방법 및 액정 디스플레이디바이스
KR20070059385A (ko) * 2005-12-06 2007-06-12 삼성전자주식회사 표시 장치
JP4923866B2 (ja) * 2006-08-30 2012-04-25 ソニー株式会社 液晶表示装置および映像表示装置
KR101117641B1 (ko) * 2010-05-25 2012-03-05 삼성모바일디스플레이주식회사 표시 장치 및 그 구동 방법

Also Published As

Publication number Publication date
JP2018138942A (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
US9269285B2 (en) Array substrate including a first switching circuit, a second switching circuit, and a fan-out unit, display device including the same and method of operating the display device
JP4883729B2 (ja) 液晶表示装置および液晶表示装置の駆動方法
JP4432852B2 (ja) 液晶装置及び電子機器
US8139012B2 (en) Liquid-crystal-device driving method, liquid crystal device, and electronic apparatus
CN102169668A (zh) 像素电路、液晶装置及电子装置
US9293103B2 (en) Display device, and method for driving same
KR20120002883A (ko) 게이트 구동부 및 이를 포함하는 액정표시장치
JP3147104B2 (ja) アクティブマトリクス型液晶表示装置とその駆動方法
JP2008224924A (ja) 液晶装置、その駆動方法および電子機器
JP2014041348A (ja) 液晶表示装置
JP6844306B2 (ja) 電気光学装置、および電気光学装置の駆動方法
CN106597715B (zh) 一种亚像素单元、显示装置以及该显示装置的驱动方法
KR101752780B1 (ko) 액정표시장치 및 그 구동방법
JP2007248984A (ja) 液晶装置
JP2006065330A (ja) Ocbモード液晶表示装置及びその駆動方法
TWI584035B (zh) Display device and display method
US20110102695A1 (en) Liquid crystal display device driving method and liquid crystal display device
JP5919112B2 (ja) パルス出力回路、表示装置、及び電子機器
JP5034291B2 (ja) 電気光学装置、電気光学装置の駆動方法及び電子機器
WO2012111475A1 (ja) 表示装置およびその駆動方法
TWI278815B (en) Liquid crystal display panel
CN103493124B (zh) 显示装置、电子设备、显示装置的控制方法以及电子设备的控制方法
CN112927660B (zh) 一种驱动电路及其驱动方法、显示面板
JP2008015401A (ja) 電気光学装置、電気光学装置の駆動方法、および電子機器
CN107884966B (zh) 液晶显示装置及液晶显示面板

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6844306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150