JP6842429B2 - 1−メチル−d−トリプトファンの塩及びプロドラッグ - Google Patents

1−メチル−d−トリプトファンの塩及びプロドラッグ Download PDF

Info

Publication number
JP6842429B2
JP6842429B2 JP2017561946A JP2017561946A JP6842429B2 JP 6842429 B2 JP6842429 B2 JP 6842429B2 JP 2017561946 A JP2017561946 A JP 2017561946A JP 2017561946 A JP2017561946 A JP 2017561946A JP 6842429 B2 JP6842429 B2 JP 6842429B2
Authority
JP
Japan
Prior art keywords
acid
indoxymod
methyl
alkyl
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017561946A
Other languages
English (en)
Other versions
JP2018522830A (ja
Inventor
モーティーノ,マリオ
クマール,サンジーヴ
ジャイプリ,フィロズ
ウォルド,ジェシー
ポッツリ,ヒマ
チュアン,ホン
Original Assignee
ニューリンク ジェネティクス コーポレイション
ニューリンク ジェネティクス コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニューリンク ジェネティクス コーポレイション, ニューリンク ジェネティクス コーポレイション filed Critical ニューリンク ジェネティクス コーポレイション
Publication of JP2018522830A publication Critical patent/JP2018522830A/ja
Application granted granted Critical
Publication of JP6842429B2 publication Critical patent/JP6842429B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an alkyl or cycloalkyl radical attached to the ring nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/285Arsenic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/04Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing only one sulfo group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/20Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65742Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • C07K5/06043Leu-amino acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/0606Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06078Dipeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06086Dipeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06104Dipeptides with the first amino acid being acidic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

関連出願への相互参照
本出願は、2015年7月24日出願の米国仮出願シリアル番号62/196,671及び2016年3月9日出願の米国仮出願シリアル番号62/305,748の優先権を主張し、その内容の全体は、参照によりその全体が本明細書に組み込まれる。
本開示は、インドールアミン−2,3−ジオキシゲナーゼ経路の阻害のための化合物、特に、インドキシモッド(indoximod)と比較して増強した薬物動態特性を有するインドキシモッドの塩及びプロドラッグに関する。
関連技術の概要
キヌレニンへのトリプトファン分解は、形質細胞様樹状細胞、胎盤、上皮細胞及び腫瘍細胞が発現するインドールアミン−2,3−ジオキシゲナーゼ(IDO1)並びに肝臓及び腫瘍細胞が主に発現するトリプトファン−2,3−ジオキシゲナーゼ(TDO2)によって媒介される。
IDO1は、反応性エフェクターT細胞にアネルギーを誘発することによって、かつ制御性T細胞(Treg)の分化及び活性化を調節することによって免疫反応の制御に重要な役割を果たしている。より一般的な観点から、IDO酵素は、IDO発現の誘導、還元酵素による酵素活性の活性化、活性を制御する翻訳後修飾、タンパク質分解、並びに低濃度のTrp及び一般制御非抑圧−2(General Control Nonrepressed−2(GCN2))経路、アリール炭化水素受容体(AhR)経路、及びラパマイシンの哺乳類標的(mTOR)経路に組み込まれる異化ストレスセンサーを含むTrp異化産物[集合的にキヌレニン(Kyn)として知られている]の存在によって誘発されるシグナルの解釈及び伝達を媒介するタンパク質を含む、IDO活性に依存する免疫抑制機能を調節するのに直接的又は間接的に貢献する全てのタンパク質を含む経路に関与する。IDOを中心して統合される下流の制御経路のこの概念は、多くの研究グループによる複数のモデル系の研究から浮上し、この考えは、IDO経路が誘導される方法、IDOが下流効果を発揮する方法、IDOを直接標的とするか又はIDO経路の他の構成要素を標的とするIDO経路阻害剤の作用機構を理解するのに非常に重要であり得る[1、2]。
したがって、IDO1酵素活性の直接的な薬理学的阻害又はIDO1酵素を活性化する上流因子の阻害又はIDO1酵素活性の下流効果の阻害は、エフェクターT細胞のアネルギーの阻止、アネルギー性エフェクターT細胞の再活性化、制御性T細胞の活性化の阻止、炎症促進性TH17細胞へのTregの表現型変換の促進及び免疫刺激性樹状細胞への免疫抑制性樹状細胞の表現型の再プログラミングの促進に関与し得る複数の機構によって免疫反応を刺激するに違いない。
これらの理由から、IDOの多数の酵素阻害剤が記載されており、癌及び感染症などのIDO関連疾患を治療又は予防するために開発されている。競合的又は非競合的阻害剤のいずれかとしてIDO酵素活性を阻害する多数の分子は、文献、例えば、特許出願WO2012142237、WO2014159248、WO2011056652、WO2009132238、WO2009073620、WO2008115804、WO 2014150646、WO 2014150677、WO 2015002918、WO 2015006520、WO 2014141110、WO 2014/186035、WO 2014/081689、米国特許第7714139号、同第8476454号、同第7705022号、同第8993605号、同第8846726号、同第8951536号、同第7598287号に記載されている。
前臨床モデルにおいて研究された最初のIDO経路阻害剤の1つは、マウスにおける同種胎児の免疫依存性拒絶反応[3]及び化学療法及び放射線療法の抗腫瘍活性の免疫依存性増強[4]を媒介することが示された鏡像異性体のラセミ混合物の1−メチル−DL−トリプトファン(1mT)であった。これらの鏡像異性体のうちのそれぞれが異なる生物学的特性を示す。1−メチル−L−トリプトファン(L1mT)は、精製された組換えIDO1酵素を用いた無細胞アッセイにおいて、及びINFγで処理した腫瘍細胞又は異種プロモーターの制御下でIDO1をコードする発現ベクターでトランスフェクトした腫瘍細胞株においてIDO1酵素活性を阻害する(Ki=34μΜ、[5])ことが示されているが、D異性体(インドキシモッド)は、これらのアッセイの種類で酵素活性を阻害しない[6]。それにもかかわらず、両方の異性体は、刺激細胞としてIDO+樹状細胞を用いるMLRアッセイにおいて、又は腫瘍灌流リンパ節から単離したIDO+DCを用いる同系抗原依存性T細胞増殖アッセイ[6]においてT細胞増殖を回復することが可能である。この種のアッセイにおいて、IDO+DCが存在する場合、T細胞は増殖しない。しかし、これらの阻害剤によるIDO経路の阻害は、T細胞の増殖能力を回復させる。興味深いことに、両方の異性体は、このアッセイにおいて異なる効力を示し、インドキシモッドはL1mT(EC50=80〜100μΜ)又はラセミ混合物(80〜100μΜ)より効力が高い(EC50=30μΜ)[6]。さらに、インドキシモッドが、他の種のアッセイにおいて酵素活性の阻害を示さないという事実にもかかわらず、Trp分解及びKyn合成の低下によって示されるように、この共培養アッセイにおいて酵素活性の阻害を示す。
インドキシモッドは、インビトロでIDO1酵素活性の阻害を示さないが、インビボ又は細胞ベースのアッセイにおいてIDO1阻害の生物学的結果を何らかの形で模倣するという事実は、やや不可解な問題であった。いくつかの研究所からの実験的証拠は、インドキシモッドがIDO1経路の阻害に関与しているという結論を指摘する。これを起こし得るいくつかの可能性のある機構は、1)IDO1アイソフォームの阻害、2)IDO2の阻害、3)インドキシモッド由来の代謝産物の代替形成、4)L1mTへのインドキシモッドのラセミ化、5)Trp輸送の阻害、6)インドキシモッド−tRNA複合体の形成によるGCN2経路の阻害、7)WARS1若しくはWARS2などのTrpセンシングに関与する酵素の阻害、8)アミノ酸欠乏によって誘導されるストレス条件下でのオートファジーの変更又は9)アミノ酸欠乏条件下でmTORを不活性化する機構のバイパス化である。これらの機構は、必ずしも相互に排他的ではなく、現在の実験データとこれまでは整合性がある。これらの生化学的機構のどれがインドキシモッドの生物活性に関与するかを解明するために、さらなる検討が必要とされている。
インビボ及びインビトロで免疫抑制を緩和するインドキシモッドの生物活性は、マウス前臨床モデルにおけるいくつかの研究所で行われた研究によって支持される。インドキシモッドは、以下の生物学的アッセイで活性を示した:
1.化学療法との併用において、インドキシモッドは、異所性黒色腫、結腸及び肺腫瘍の動物モデルにおいて、かつ同所及び自発性の乳房腫瘍モデルにおいて抗腫瘍効果を示す。インドキシモッドの抗腫瘍効果は、ヌードマウス及びIDO1−KOマウスにおいて失われる[6]。
2.インドキシモッドは、インビボで成熟Tregの活性化プロセスを防ぐことができ、炎症促進性TH17様T細胞へのTregのインビトロ及びインビボトランス分化を促進する[8、9]。
3.腫瘍ワクチン接種プロトコルにおいて、インドキシモッドとの2つの異なる抗腫瘍ワクチンの組み合わせは、併用抗腫瘍効果があり、より高い割合のTreg細胞のTH17様T細胞への変換に有効であった[9]。
4.黒色腫モデルにおいて、抗CTLA4(イピリムマブ)とインドキシモッドの組み合わせは、相乗的な抗腫瘍効果をもたらす[10]。
5.インビボで、インドキシモッドは、移植可能な黒色腫及び移植可能な乳癌(4T1)及び自発性の乳癌(mmTV−neu)のマウスモデルにおいて試験した場合、シクロホスファミド、パクリタキセル、又はゲムシタビンを用いる化学免疫療法レジメンにおいて抗癌剤としてより有効であった[6]。
6.IDO1はまた、GCN2に依存する機構を介して、Trp欠乏とTrp異化産物の存在の組み合わせ効果による、Tregへの未処理CD4 T細胞の分化に関与している[11、12]。この変換は、インドキシモッドの存在下で、インビボで遮断される。
7.同様に、IDO+pDCはまた、インビボで成熟Tregの活性化に関与しており、これもTreg集団における完全なGCN2経路を必要とした。この現象は、過剰のTrp又はインドキシモッドによって阻止され得る[8]。
8.成熟Treg細胞の活性化を阻止することに加えて、インドキシモッドは、インビトロ及びインビボで炎症促進性TH17細胞への抑制性FoxP3Tregの変換を媒介することができる。TH17細胞へのTregのこの変換は、pDCにおける抗原の存在又はB7の関与、及びpDCにおける機能性IDO1及びGCN2遺伝子の存在を必要とした。インドキシモッドは、IDO1又はGCN2遺伝子消失の表現型の結果を模倣することができ[9]、それゆえに、IDO経路の阻害においてその役割を支持する。
9.IDO1−KOマウス又はIDO1−KOマウス由来のpDCを用いる抗腫瘍研究及び免疫学的研究は、インドキシモッドの有益な効果が、機能性IDO1を欠く遺伝的背景との関連で失われることを実証した[6]。特に、IDO1−KOマウスは、化学療法と組み合わせたインドキシモッドでの治療に感受性のない腫瘍を発症することが観察された。加えて、IDO1−KOマウスの腫瘍灌流リンパ節由来のpDCは、IDO(−)APCと同程度に、培養中のT細胞の増殖を刺激することができる。これらの観察は、インドキシモッドの薬理学的標的としてのIDO1の遺伝的検証として解釈された。しかし、このことはまた、インドキシモッドがIDO経路内のいくつかの他の作用点を遮断すると解釈できた。
10.インドキシモッドの投与による抗腫瘍及び免疫学的観察はまた、5−Br−ブラシニン、メナジオン、メチル−チオヒダントイン−トリプトファン、及びフェニルイミダゾールの類似体(未公開)などの他の十分に立証されたIDO1阻害剤(すなわち、インビトロ及び細胞ベースアッセイでIDO1の酵素活性を阻害する分子)の投与によって再現され、それによって、IDO1経路は薬理学的標的として確証された[4、13、14]。
11.前臨床動物モデルにおいて、インドキシモッドのインビボ薬力学的効果は、主に、腫瘍灌流リンパ節で観察され、その効果は、CD8α+細胞の活性化及び増殖、FoxP3+Tregの数の減少、免疫刺激性T細胞(CD40L)へのTreg(CD40L)の再プログラミング及びCD11c/CD80/86からCD80/86表現型へのIDO抗原提示細胞の再プログラミングとして観察される。
これらの理由から、インドキシモッドは、癌の徴候に対するヒト臨床試験で検討されている。インドキシモッドは、ドセタキセル、パクリタキセル、ゲムシタビン、Nab−パクリタキセル、テモゾロミド、イピリムマブ、シプロイセル−T、又はワクチンなどの異なる化学療法剤及び生物学的免疫療法剤と組み合わせて、いくつかの癌の徴候で研究されている。
インドキシモッドは、好ましい薬物動態(PK)プロファイル(Tmax:約3時間;半減期:約10時間)及び優れた安全性プロファイルにより経口で生物学的に利用可能である。患者における薬物動態研究により、最大血漿濃度(Cmax)が15μΜで、1時間あたりの薬物曝露(AUC(0〜最後))レベルが約100μMである最大800mg/用量の用量で、インドキシモッドが線形PKプロファイルを示すことが実証された。しかし、800mg/用量超から最大2000mg/用量まで用量を増加させると、Cmax若しくは薬物曝露に線形又は比例的な増加は生じないため、この治験薬の治療活性を潜在的に制限する。
混合リンパ球反応(MLR)T細胞増殖アッセイは、IDO環境にあるT細胞が30μΜより高いインドキシモッドの濃度でその増殖能力の約50%を回復することを示す。マウスの抗腫瘍実験は、マウスに3mg/mL(約500mg/kg/日)で飲料水中のインドキシモッドを投与するか、又は1日2回、200mg/kgで経口投与した時に、20μM超のCmax及び1時間あたり300μM超の曝露をもたらすインドキシモッドの生物学的効果が観察されることを示す。これらの理由から、治療活性に必要なレベルに達することができるように、ヒトの臨床試験でインドキシモッドのCmax及びインドキシモッドへの曝露を増加させることが望ましい。しかし、このことは患者に与える用量を増やすことによって解決できるかは、この薬物の非線形薬物動態プロファイルのせいで可能性が低い。
上述した理由により、発明者らは、噴霧乾燥分散体又は塩若しくは異なる塩形態のインドキシモッドプロドラッグなどのインドキシモッドの異なる製剤が、インドキシモッドの最大濃度及びインドキシモッドへの曝露を増加させるレベルまで溶解度及び吸収率を増加させるか、又は血液クリアランスを低下させるかどうかを検討した。さらに、発明者らは、経口投与及び丸剤(カプセル又は錠剤)投与製剤で投与した時に、曝露パラメータを増加させる可能性のあるプロドラッグ及びその塩を探した。
これらの検討の結果により、いくつかの選択したプロドラッグが曝露パラメータを増加させること、かつインビトロ溶解性及びインビボ曝露の増加が、経口投与時にいくつかのインドキシモッド塩によって達成され得ることが示された。
一態様において、本発明は、式1a及び式1b
(式中、A−p は、本明細書で定義されるように無機又は有機陰イオンであり、C+p は無機陽イオンである)
による化合物並びに式1a及び式1bによる化合物を含む医薬組成物について記載する。
別の態様において、本発明は、式(2)
(式中、R、R及びmHAは本明細書で定義される)
による化合物及び式(2)による化合物を含む医薬組成物を含む。
別の態様において、本開示は、
a)遊離塩基として製剤化した等モル用量のインドキシモッドの投与と比較して、対象への経口投与後に1−メチル−D−トリプトファン(インドキシモッド)への曝露及び最大濃度の上昇をもたらす式1a、1b又は式2の化合物を含む医薬組成物、
b)それを必要とする対象におけるインドールアミン−2,3−ジオキシゲナーゼ経路の活性を調節するための、式1a、1b又は2の化合物を含む組成物の使用方法であって、そのような対象へ、適切な医薬形態又はビヒクル中の十分な量のそのような組成物を経口投与することを含む方法、
c)それを必要とする対象における癌の治療のための、式1a、1b又は2の化合物を含む組成物の使用方法であって、そのような対象へ、適切な医薬形態又はビヒクル中の十分な量のそのような組成物を経口投与することを含む方法、
d)それを必要とする対象における癌に関連する腫瘍特異的免疫抑制を治療するための、式1a、1b又は2の化合物を含む組成物の使用方法であって、そのような対象へ、適切な医薬形態又はビヒクル中の十分な量のそのような組成物を経口投与することを含む方法、
e)それを必要とする対象における感染症(例えば、HIV−1感染、インフルエンザ)に関連する免疫抑制を治療するための、式1a、1b又は2の化合物を含む組成物の使用方法であって、そのような対象へ、適切な医薬形態又はビヒクル中の十分な量のそのような組成物を経口投与することを含む方法、
を提供する。
遊離塩基及びその塩酸塩形態のインドキシモッドのXRPDスペクトルを示す。 インドキシモッド塩酸塩の熱重量分析(TGA)及び示差走査熱量測定(DSC)分析を示す。 遊離塩基及びそのリン酸塩形態のインドキシモッドのXRPDスペクトルを示す。 インドキシモッドリン酸塩の熱重量分析(TGA)及び示差走査熱量測定(DSC)分析を示す。 様々な溶媒溶液及び模擬生物学的液体中のインドキシモッド並びにその塩の測定した溶解度プロファイル対pHを示す。 経口カプセル形態でラットに与えたインドキシモッドの最大血漿濃度(Cmax)及び曝露(AUC0〜inf)対インドキシモッド、インドキシモッド塩酸塩又はインドキシモッドリン酸塩のモル用量を示す。
インドキシモッド(1−メチル−D−トリプトファン、D1mT)は、標準的及び実験的な化学療法剤と免疫調節剤と有効な免疫療法とを組み合わせて、複数の癌の徴候についていくつかのヒト臨床試験で試験されているインドールアミン−2,3−ジオキシゲナーゼ(IDO)経路の治験阻害剤である。
IDO樹状細胞の存在下で、CD8エフェクターT細胞は、アネルギーになり、増殖することができなくなる。さらに、制御性T細胞(CD4、CD25、FoxP3)は、IDODCの存在下で活性化され、腫瘍又はウイルス抗原に対する全身性免疫抑制を媒介することが可能になる。インドキシモッドは、これらのプロセスを元に戻すことが可能で、エフェクターT細胞が増殖するのを可能にし、TH17ヘルパー様表現型へのTregの再プログラミングを引き起こす。インビトロアッセイにおいて、これらの効果は、約30μΜのEC50でインドキシモッドによって媒介される[6]。前臨床マウス腫瘍モデルにおいて、灌流リンパ節における抗腫瘍効果、エフェクターT細胞の刺激及びTregの再プログラミングは、1時間あたり300μΜ超の曝露で、約500mg/kgの1日用量を必要とする。
200mg〜2000mg/用量の範囲の経口用量でのヒト薬物動態実験は、薬物動態パラメータCmax及び曝露(AUC0〜inf)が約800mg/用量の範囲まで、用量と共に直線的に増加することを示した。これらの用量で、血漿中のCmaxは、平均約15μΜに達し、AUC0〜infは1時間あたり約100μΜに達する。Cmax及びAUCパラメータは、最大2000mg/用量のより高い用量でこれらの値を超えて著しく増加しない。したがって、マウスモデルにおいて免疫調節及び抗腫瘍治療効果をもたらす濃度及びレベルに匹敵するインドキシモッドの濃度及び曝露レベルを達成するために、インドキシモッドのCmax及び曝露レベルを増加させることが有用である。
本発明は、インドキシモッドの等モル用量の経口投与と比較して、経口投与時にインドキシモッドのより高い曝露及び最大血清濃度をもたらす式1a、1b及び式2の化合物について記載する。
インドキシモッドの塩
一実施形態において、インドキシモッドの塩が開示される。一実施形態において、該塩は、式1a:
(式中、A−p は、イオン化状態−pの無機又は有機陰イオンである。一実施形態において、該陰イオンは、分子を確実に電荷中性にする化学量論比nで存在する)
による構造を有する。
一実施形態において、該陰イオンA−p は、塩化物、リン酸塩、硫酸塩、メシル酸塩、ベシル酸塩、酢酸塩、アスコルビン酸塩、アスパラギン酸塩、グルタミン酸塩、グルタル酸塩、乳酸塩、マレイン酸塩、マロン酸塩、シュウ酸塩、コハク酸塩、フマル酸塩、酒石酸塩及びクエン酸塩からなる群から選択される。一実施形態において、該陰イオンは、生じた塩が電荷中性であるように化学量論比nで存在する。したがって、一実施形態において、該陰イオンは、電荷中性の化学量論的な条件が満たされるように、−1、−2又は−3のイオン化状態pを有し、それぞれ、1、1/2又は1/3の化学量論比nで存在する。一実施形態において、リン酸塩はHPO −2であり、該HPO −2は0.5の化学量論比nで存在する。一実施形態において、該リン酸塩は、HPO であり、該HPO は1の化学量論比nで存在する。一実施形態において、該硫酸塩はSO −2であり、該SO −2は0.5の化学量論比nで存在する。一実施形態において、該メシル酸塩はCHSO であり、該CHSO は0.5の化学量論比nで存在する。
別の実施形態において、該陰イオンA−p は、化学量論比nが1のClである。別の好ましい実施形態において、該陰イオンA−p は、化学量論比nが1のClであり、結晶型がフォーム1の無水アイソフォームである。
一実施形態において、該塩は、式1b:
(式中、C+p は、イオン化状態+pの陽イオンである)
による構造を有する。一実施形態において、該陽イオンは、確実に分子を電荷中性にする化学量論比mで存在する。一実施形態において、該C+p は、Li、Na、K、Mg2及びCa+2からなる群から選択される。一実施形態において、pが+1である場合、mは1であり、pが+2である場合、mは1/2である。
インドキシモッドプロドラッグ
一実施形態において、インドキシモッドのプロドラッグが開示される。一実施形態において、遊離塩基又は塩形態のプロドラッグの構造は、式2:
に提供される。
一実施形態において、Rは、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、−OC1−3アルキル−R、−NHC(S)HR(COOH)、−NHC(R)HR(COOH)、−OC1−6アルキルR、−OC1−2アルキル−C(S)H(NH)(COOH)、又は−OC1−2アルキル−C(R)H(NH)(COOH)である。一実施形態において、Rは、−NHC(S)HR(COOCH)又は−NHC(R)HR(COOCH)である。
一実施形態において、Rは、−H、−C(O)C(S)H(NH)R、−C(O)C(R)H(NH)R、−C(O)CH(S)H(NH)−C(O)OCH、−C(O)OR、又は−C(O)NHRである。
一実施形態において、Rは、テトラヒドロピランであるか、又は
である。
一実施形態において、Rは、−H、−C1−5アルキル、−(CH1−2SH、−C1−5アルキルSC1−5アルキル、−C1−5アルキルOC1−5アルキル、−CH−R、−CHOH、−CH(OH)CH、−(CH1−2C(O)NH、−(CH1−3C(O)OH、−(CH1−4NH、又は−(CH1−3NC(=NH)NHである。
一実施形態において、Rが−Hではない場合、C(S)及びC(R)は、それぞれS又はR立体化学を有する炭素である。
一実施形態において、Rは、−H、C1−6アルキルR、又はRである。一実施形態において、Rは、−H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル、及びヘテロシクロアルキルからなる群から選択され、該アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR基で任意に置換されている。
一実施形態において、各Rは、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R)、−SR、−C(O)OR、C1−6アルキル、C1−6ハロアルキル、−C(O)N(R)、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R)、−S(O)R、−S(O)OR、−S(O)N(R)、−OC(O)R、−OC(O)OR、−OC(O)N(R)、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R)であり、式中、RはH又はC1−4アルキルである。
式2のプロドラッグのいくつかの実施形態において、Rは、RがHである場合、−OHではあり得ない。
さらに、全ての実施形態において、該プロドラッグは、Nα−tert−ブトキシカルボニル−1−メチル−D−トリプトファン、エチル Nα−ベンジル−1−メチル−D−トリプトファナート、又はベンジル Nα−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファナートではあり得ない。
一実施形態において、HAは酸である。一実施形態において、該酸HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、CSOH(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される。
一実施形態において、該HAは、生じたプロドラッグが電荷中性であるように化学量論比nで存在する。したがって、一実施形態において、該酸HAの化学量論比nは、該プロドラッグが電荷中性であるように、0、0.5、1又は2である。
本発明はまた、遊離塩基又は塩形態のインドキシモッドのプロドラッグを提供する。一実施形態において、インドキシモッドのプロドラッグは、式2
(式中、
は、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、−OC1−3アルキル−R、−NHC(S)HR(COOH)、−NHC(R)HR(COOH)、−OC1−6アルキルR、−OC1−2アルキル、−C(S)H(NH)(COOH)、又は−OC1−2アルキル−C(R)H(NH2)(COOH)であり;
は、−H、−C(O)C(S)H(NH)R、−C(O)C(R)H(NH)R、−C(O)CH(S)H(NH)−C(O)OCH、−C(O)OR、又は−C(O)NHRであり;
は、テトラヒドロピランであるか、又は
であり;
式中、Rは、H、−C1−5アルキル、−(CH1−2SH、C1−5アルキルSC1−5アルキル、−C1−5アルキルOC1−5アルキル、−CH−R、−CHOH、−CH(OH)CH、−(CH1−2C(O)NH、−(CH1−3C(O)OH、−(CH1−4NH、又は−(CH1−3NC(=NH)NHであり;
式中、Rが−Hではない場合、C(S)及びC(R)は、それぞれS又はR立体化学を有する炭素を表し、式中、Rは、−H、C1−6アルキルR、又はRであり;
式中、Rは、H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル、又はヘテロシクロアルキルであり、そのようなアリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR基で任意に置換されており;
各Rは、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R)、−SR、−C(O)OR、−C1−6アルキル、C1−6ハロアルキル、−C(O)N(R)、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R)、−S(O)R、−S(O)OR、−S(O)N(R)、−OC(O)R、−OC(O)OR、−OC(O)N(R)、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R)であり;
式中、Rは−H又はC1−4アルキルであり;
ただし、Rは、Rが−Hである場合、−OHではあり得ず、該化合物は、
α−tert−ブトキシカルボニル−1−メチル−D−トリプトファン、
エチル Nα−ベンジル−1−メチル−D−トリプトファナート、
ベンジル Nα−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファナートではあり得ず、
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、CSOH(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表される。
別の実施形態において、本発明は、式2
(式中、
は、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、又は−OC1−3アルキル−Rであり、
は、H、又は−C(O)C(S)H(NH)Rであり、
は、テトラヒドロピランであるか、又は
であり;
式中、Rは、H、−C1−5アルキル、−(CH1−2SH、−(CH1−3SCH、−(CH1−3OCH、−CH−R、−CHOH、−CH(OH)CH、−(CH1−2C(O)NH、−(CH1−3C(O)OH、−(CH1−4NH、又は−(CH1−3NC(=NH)NHであり;
式中、RがHではない場合、C(S)はS立体化学を有する炭素を表し;
式中、Rは、H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル、ヘテロシクロアルキルであり、そのようなアリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR基で任意に置換されており;
式中、各Rは、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R)、−SR、−C(O)OR、−C1−6アルキル、C1−6ハロアルキル、−C(O)N(R)、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R)、−S(O)R、−S(O)OR、−S(O)N(R)、−OC(O)R、−OC(O)OR、−OC(O)N(R)、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R)であり;
式中、RはH又はC1−4アルキルであり;
ただし、Rは、RがHである場合、−OHではあり得ず;
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、CSOH(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表されるような、遊離塩基又は塩形態のインドキシモッドのプロドラッグを提供する。
好ましい実施形態において、本発明は、式2
(式中、
は、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、又は−OC1−3アルキル−Rであり、
は、H、又は−C(O)C(S)H(NH)Rであり、
は、テトラヒドロピランであるか、又は
であり;
式中、Rは、H、−C1−5アルキル、−CH−R、−(CH1−2C(O)NH、−(CHSCH、−(CH1−3C(O)OH、又は−(CH1−4NHであり;
式中、Rが−Hではない場合、C(S)はS立体化学を有する炭素を表し;
式中、Rは、−H、アリール、アルキルアリール又はヘテロアリールであり、そのようなアリール、アルキルアリール又はヘテロアリールは、1個のR基で任意に置換されており;
式中、Rは、ハロゲン、シアノ、ニトロ、−OR、−N(R)、−SR、−C(O)OR、−C1−6アルキル、C1−6ハロアルキル、−C(O)N(R)、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R)、−S(O)R、−S(O)OR、−S(O)N(R)、−OC(O)R、−OC(O)OR、−OC(O)N(R)、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R)から選択され;
式中、Rは−H又はC1−4アルキルであり;
ただし、Rは、RがHである場合、−OHではあり得ず;
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、又はCSOH(ベンジルスルホン酸)の群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表されるような、遊離塩基又は塩形態のインドキシモッドのプロドラッグを提供する。
別の好ましい実施形態において、本発明は、式2
(式中、
は、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、又は−OC1−3アルキル−Rであり、
は、H、又は−C(O)C(S)H(NH)Rであり、
は、テトラヒドロピランであるか、又は
であり;
式中、Rは、−CHCH(CH、−C(S)H(CH)CHCH、−(CHSCH、−CH−R、−(CHC(O)NH、−(CHC(O)OH、又は−(CHNHであり;
式中、C(S)はS立体化学を有する炭素を表し;
式中、Rはフェニルであり;
ただし、Rは、RがHである場合、−OHではあり得ず;
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、及びCSOH(ベンジルスルホン酸)からなる群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表されるような、遊離塩基又は塩形態のインドキシモッドのプロドラッグを提供する。
最も好ましい実施形態において、本発明は、式2
(式中、
は、−OC2−3アルキル、又は−OCHCH(OH)CHOHであり、
は、H、又は−C(O)C(S)H(NH)Rであり、
式中、Rは、−CHCH(CH2、−(CHSCH、又は−(CHC(O)NHであり;
式中、C(S)はS立体化学を有する炭素を表し;
ただし、Rは、RがHである場合、−OHではあり得ず、
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)又はCSOH(ベンジルスルホン酸)の群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表されるような、遊離塩基又は塩形態のインドキシモッドのプロドラッグを提供する。
好ましい実施形態において、本発明は、表1に示される式2の化合物によって表されるような、遊離塩基又は薬学的に適切な塩形態のインドキシモッドのプロドラッグを提供する。
一実施形態において、該プロドラッグは、実質的に以下の化合物のうちの少なくとも1つを含む:(i)エチル Nα−(L−ロイシル)−1−メチル−D−トリプトファナート;(ii)2,3−ジヒドロキシプロピル 1−メチル−D−トリプトファナート;(iii)Nα−(L−ロイシル)−1−メチル−D−トリプトファン;(iv)エチル Nα−(L−イソロイシル)−1−メチル−D−トリプトファナート;(v)Nα−(L−グリシル)−1−メチル−D−トリプトファン;(vi)(S)−5−アミノ−6−(((R)−1−カルボキシ−2−(1−メチル−1H−インドール−3−イル)エチル)アミノ)−6−オキソヘキサン酸;(vii)Nα−(L−リシル)−1−メチル−D−トリプトファン;(viii)Nα−(L−フェニルアラニル)−1−メチル−D−トリプトファン;(ix)エチル Nα−(L−グルタミニル)−1−メチル−D−トリプトファナート;(x)2−(ジメチルアミノ)エチル 1−メチル−D−トリプトファナート;(xi)(2−エトキシ−2−オキシド−1,3,2−ジオキサホスホラン−4−イル)メチル 1−メチル−D−トリプトファナート;(xii)2−(テトラヒドロ−2H−ピラン−4−イル)エチル 1−メチル−D−トリプトファナート;(xiii)エチル 1−メチル−D−トリプトファナート;(xiv)イソプロピル 1−メチル−D−トリプトファナート;(xv)Nα−(L−メチオニル)−1−メチル−D−トリプトファン;又は(xvi)エチル Nα−(L−メチオニル)−1−メチル−D−トリプトファナート。
インドキシモッドの塩及びプロドラッグの医薬組成物
一態様において、本発明は、式1a及び1b
(式中、A は無機又は有機陰イオンであり、C+p は、イオン化状態で、分子を確実に電荷中性にする化学量論比の無機陽イオンである)
の化合物によって表されるような、インドキシモッドの塩を含む医薬組成物を提供する。
第1の態様の第2の実施形態において、本発明は、式1aの化合物によって表されるような、インドキシモッドの塩を含む医薬組成物を提供し、式中、A−p は、塩化物、リン酸塩、硫酸塩、メシル酸塩、ベシル酸塩、酢酸塩、アスコルビン酸塩、アスパラギン酸塩、グルタミン酸塩、グルタル酸塩、乳酸塩、マレイン酸塩、マロン酸塩、シュウ酸塩、コハク酸塩、フマル酸塩、酒石酸塩及びクエン酸塩からなる群から選択される陰イオンであり、負電荷pは、電荷中性の化学量論的条件を満たすように、1、1/2又は1/3の化学量論比nそれぞれで−1、−2又は−3である。
第1の態様の第3の実施形態において、本発明は、式1bの化合物によって表されるような、インドキシモッドの塩を含む医薬組成物を提供し、式中、C+p は、Li、Na、K、Mg+2又はCa+2の群から選択される陽イオンであり、陽電荷pは、電荷中性の化学量論的条件を満たすように、1又は1/2の化学量論比mそれぞれで+1又は+2である。
第1の態様の第4の実施形態において、本発明は、式1aの化合物によって表されるような、インドキシモッドの塩を含む医薬組成物を提供し、式中、A−p は、それぞれ、0.5、0.5、1又は1の化学量論比nのHPO −2(リン酸塩)、SO −2(硫酸塩)、HPO (リン酸塩)、Cl、及びCHSO (メシル酸塩)からなる群から選択される陰イオンである。
第1の態様の好ましい第5の実施形態において、本発明は、式1aの化合物によって表されるような、インドキシモッドの塩を含む医薬組成物を提供し、式中、A−p は、1の化学量論比nのClである。
第1の態様の最も好ましい第5の実施形態において、本発明は、式1aの化合物によって表されるような、インドキシモッドの塩を含む医薬組成物を提供し、式中、A−p は、1の化学量論比nのClであり、結晶形態はフォーム1の無水アイソフォームである。第2の態様において、本発明は、遊離塩基又は塩形態のインドキシモッドのプロドラッグを含む医薬組成物を提供する。一実施形態において、インドキシモッドのプロドラッグは、式2
(式中、
は、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、−OC1−3アルキル−R、−NHC(S)HR(COOH)、−NHC(R)HR(COOH)、−OC1−6アルキルR、−OC1−2アルキル、−C(S)H(NH)(COOH)、又は−OC1−2アルキル−C(R)H(NH)(COOH)であり;
は、−H、−C(O)C(S)H(NH)R、−C(O)C(R)H(NH)R、−C(O)CH(S)H(NH)−C(O)OCH、−C(O)OR、又は−C(O)NHRであり、
は、テトラヒドロピランであるか、又は
であり;
式中、Rは、H、−C1−5アルキル、−(CH1−2SH、−C1−5アルキルSC1−5アルキル、−C1―5アルキルOC1−5アルキル、−CH−R、−CHOH、−CH(OH)CH、−(CH1−2C(O)NH、−(CH1−3C(O)OH、−(CH1−4NH、又は−(CH1−3NC(=NH)NHであり;
式中、Rが−Hではない場合、C(S)及びC(R)は、それぞれS又はR立体化学を有する炭素を表し、式中、Rは、−H、C1−6アルキルR、又はRであり;
式中、Rは、H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル、又はヘテロシクロアルキルであり、そのようなアリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR基で任意に置換されており;
式中、各Rは、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R)、−SR、−C(O)OR、−C1−6アルキル、C1−6ハロアルキル、−C(O)N(R)、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R)、−S(O)R、−S(O)OR、−S(O)N(R)、−OC(O)R、−OC(O)OR、−OC(O)N(R)、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R)であり;
式中、Rは−H又はC1−4アルキルであり;
ただし、Rは、Rが−Hである場合、−OHではあり得ず、該化合物は、
α−tert−ブトキシカルボニル−1−メチル−D−トリプトファン、
エチル Nα−ベンジル−1−メチル−D−トリプトファナート、
ベンジル Nα−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファナートではあり得ず、
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、CSOH(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表される。
第2の態様の別の実施形態において、本発明は、式2
(式中、
は、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、又は−OC1−3アルキル−Rであり、
は、H、又は−C(O)C(S)H(NH)Rであり、
は、テトラヒドロピランであるか、又は
であり;
式中、Rは、H、−C1−5アルキル、−(CH1−2SH、−(CH1−3SCH、−(CH1−3OCH、−CH−R、−CHOH、−CH(OH)CH、−(CH1−2C(O)NH、−(CH1−3C(O)OH、−(CH1−4NH、又は−(CH1−3NC(=NH)NHであり;
式中、RがHではない場合、C(S)はS立体化学を有する炭素を表し;
式中、Rは、H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル、ヘテロシクロアルキルであり、そのようなアリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR基で任意に置換されており;
式中、各Rは、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R)、−SR、−C(O)OR、−C1−6アルキル、C1−6ハロアルキル、−C(O)N(R)、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R)、−S(O)R、−S(O)OR、−S(O)N(R)、−OC(O)R、−OC(O)OR、−OC(O)N(R)、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R)であり;
式中、RはH又はC1−4アルキルであり;
ただし、Rは、RがHである場合、−OHではあり得ず、
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、CSOH(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表されるような、遊離塩基又は塩形態のインドキシモッドのプロドラッグを含む医薬組成物を提供する。
第2の態様の好ましい実施形態において、本発明は、式2
(式中、
は、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、又は−OC1−3アルキル−Rであり、
は、H、又は−C(O)C(S)H(NH)Rであり、
は、テトラヒドロピランであるか、又は
であり;
式中、Rは、H、−C1−5アルキル、−CH−R、−(CH1−2C(O)NH、−(CHSCH、−(CH1−3C(O)OH、又は−(CH1−4NHであり、
式中、Rが−Hではない場合、C(S)はS立体化学を有する炭素を表し;
式中、Rは、−H、アリール、アルキルアリール、又はヘテロアリールであり、そのようなアリール、アルキルアリール、又はヘテロアリールは、1個のR基で任意に置換されており;
式中、Rは、ハロゲン、シアノ、ニトロ、−OR、−N(R)、−SR、−C(O)OR、−C1−6アルキル、C1−6ハロアルキル、−C(O)N(R)、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R)、−S(O)R、−S(O)OR、−S(O)N(R)、−OC(O)R、−OC(O)OR、−OC(O)N(R)、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R)であり;
式中、Rは−H又はC1−4アルキルであり;
ただし、Rは、RがHである場合、−OHではあり得ず、
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、又はCSOH(ベンジルスルホン酸)の群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表されるような、遊離塩基又は塩形態のインドキシモッドのプロドラッグを含む医薬組成物を提供する。
第2の態様の最も好ましい実施形態において、本発明は、式2
(式中、
は、−OH、−OC2−3アルキル、−OCHCH(OH)CHOH、−O(CHN(CH、又は−OC1−3アルキル−Rであり、
は、H、又は−C(O)C(S)H(NH)Rであり、
は、テトラヒドロピランであるか、又は
であり;
式中、Rは、−CHCH(CH、−C(S)H(CH)CHCH、−(CHSCH、−CH−R、−(CHC(O)NH、−(CHC(O)OH、又は−(CHNHであり;
式中、C(S)はS立体化学を有する炭素を表し;
式中、Rはフェニルであり;
ただし、Rは、RがHである場合、−OHではあり得ず、
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、又はCSOH(ベンジルスルホン酸)からなる群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表されるような、遊離塩基又は塩形態のインドキシモッドのプロドラッグを含む医薬組成物を提供する。
第2の態様の最も好ましい実施形態において、本発明は、式2
(式中、
は、−OC2−3アルキル、又は−OCHCH(OH)CHOHであり、
は、H又は−C(O)C(S)H(NH)Rであり、
式中、Rは、−CHCH(CH、−(CHSCH、又は−(CHC(O)NHであり;
式中、C(S)はS立体化学を有する炭素を表し;
ただし、Rは、RがHである場合、−OHではあり得ず、
HAは、PO(リン酸)、SO(硫酸)、HCl(塩酸)、HSOCH(メチルスルホン酸)、又はCSOH(ベンジルスルホン酸)の群から選択される酸であり、nは、生じた塩を確実に電荷中性にする0、0.5、1又は2の化学量論比である)
の化合物によって表されるような、遊離塩基又は塩形態のインドキシモッドのプロドラッグを含む医薬組成物を提供する。
好ましい実施形態において、本発明は、表1に示される式2の化合物によって表されるような、遊離塩基又は薬学的に適切な塩形態のインドキシモッドのプロドラッグを含む医薬組成物を提供する。
別の態様において、本発明は、それを必要とする対象においてインドールアミン−2,3−ジオキシゲナーゼ経路の活性を調節するための式1及び2の組成物の使用方法であって、そのような対象へ、適切な医薬形態又はビヒクル中の治療有効量のそのような組成物を経口投与することを含む方法を提供する。
別の態様において、本発明は、それを必要とする対象における癌の治療のための式1a、1b及び2の組成物の使用方法であって、そのような対象へ、適切な医薬形態又はビヒクル中の治療有効量のそのような組成物を経口投与することを含む方法を提供する。
別の態様において、本発明は、それを必要とする対象における癌に関連する腫瘍特異的免疫抑制の治療のための式1a、1b及び2の組成物の使用方法であって、そのような対象へ、適切な医薬形態又はビヒクル中の十分な量のそのような組成物を経口投与することを含む方法を提供する。
別の態様において、本発明は、それを必要とする対象における感染症(例えば、HIV−l感染、インフルエンザ)に関連する免疫抑制を治療するための式1a、1b及び2の組成物の使用方法であって、そのような対象へ、適切な医薬形態又はビヒクル中の十分な量のそのような組成物を経口投与することを含む方法を提供する。
一実施形態において、インドキシモッドの塩及び/又はプロドラッグは、医薬組成物に含まれ、該組成物は、固体のカプセル、ゼラチンカプセル、錠剤又は丸剤に含まれる。一実施形態において、該塩及び/又はプロドラッグは、溶解可能なカプセル内に含まれる。
具体的な実施形態において、本発明の組成物は、さらに、それらの技術で確立された使用レベルで、医薬組成物中に従来見られる他の補助成分を含有してもよい。したがって、例えば、該組成物は、染料、香料、防腐剤、抗酸化剤、乳白剤、増粘剤及び安定剤などの本発明の組成物の様々な剤形を物理的に製剤化するのに有用な追加の物質を含有してよい。該製剤は、滅菌し、かつ必要であれば、該製剤のオリゴヌクレオチド(複数可)と有害に相互作用しない助剤、例えば、滑剤、防腐剤、安定剤、湿潤剤、乳化剤、浸透圧に影響を与える塩、緩衝剤、着色剤、香味料及び/又は芳香物質などと混合することができる。
特定の実施形態において、本発明の医薬組成物は、1種以上の賦形剤を含む。特定のそのような実施形態において、賦形剤は、水、塩溶液、アルコール、ポリエチレングリコール、ゼラチン、ラクトース、ラクトース一水和物、アミラーゼ、ステアリン酸マグネシウム、タルク、ケイ酸、粘性パラフィン、ヒドロキシメチルセルロース、微結晶セルロース及びポリビニルピロリドンから選択される。
特定の実施形態において、本発明の医薬組成物は、混合、溶解、造粒、糖衣錠製造、研和、乳化、カプセル化、封入又は打錠のプロセスを含むが、これらに限定されない公知の技術を用いて調製される。
さらなる実施形態は、該製剤が、固体、粉末、液体及びゲルからなる群から選択される医薬製剤に関する。特定の実施形態において、本発明の医薬組成物は、液体(例えば、懸濁液、エリキシル及び/又は溶液)である。いくつかのそのような実施形態において、液体医薬組成物は、水、グリコール、油、アルコール、香味剤、保存剤、及び着色剤を含むが、これらに限定されない当技術分野で公知の成分を用いて調製される。
特定の実施形態において、本発明の医薬組成物は、固体(例えば、粉末、錠剤、及び/又はカプセル)である。いくつかのそのような実施形態において、固体医薬組成物は、デンプン、糖、希釈剤、造粒剤、滑剤、結合剤、及び崩壊剤を含むが、これらに限定されない当技術分野で公知の1種以上の成分を含む。
特定の実施形態において、本発明の医薬組成物は送達系を含む。送達系の例としては、リポソーム及びエマルジョンが挙げられるが、これらに限定されない。特定の送達系は、疎水性化合物を含むものを含む特定の医薬組成物を調製するのに有用である。特定の実施形態において、ジメチルスルホキシドなどの特定の有機溶媒が使用される。
特定の実施形態において、本発明の医薬組成物は共溶媒系を含む。いくつかのそのような共溶媒系は、例えば、ベンジルアルコール、非極性界面活性剤、水混和性有機ポリマー、及び水相を含む。特定の実施形態において、そのような共溶媒系は、疎水性化合物のために使用される。そのような共溶媒系の非限定的な例としては、3%w/vのベンジルアルコール、8%w/vの非極性界面活性剤ポリソルベート80及び65%w/vのポリエチレングリコール300を含む無水エタノールの溶液であるVPD共溶媒系である。そのような共溶媒系の割合は、その溶解性及び毒性特性を著しく変えることなく、かなり変化させることができる。さらに、共溶媒成分の同一性は変化させることができ、例えば、他の界面活性剤をポリソルベート80の代わりに使用してよく、ポリエチレングリコールの分画サイズを変更してもよく、他の生体適合性ポリマーをポリエチレングリコール、例えば、ポリビニルピロリドンと置き換えてもよく、他の糖又は多糖をデキストロースと置換してよい。
特定の実施形態において、本発明の医薬組成物は、持続放出システムを含む。そのような持続放出システムの非限定的な例としては、固体疎水性ポリマーの半透過性マトリックスが挙げられる。特定の実施形態において、持続放出システムは、その化学的性質に応じて、数時間、数日、数週間又は数ヶ月にわたって薬剤を放出し得る。
特定の実施形態において、本発明の医薬組成物は、経口投与用に調製される。いくつかのそのような実施形態において、医薬組成物は、1以上の薬剤及び薬学的に許容される担体を組み合わせることにより製剤化される。いくつかのそのような担体は、対象による経口摂取のための錠剤、丸剤、糖衣錠、カプセル、液体、ゲル、シロップ、スラリー、及び懸濁液などとして医薬組成物を製剤化するのを可能にする。適切な賦形剤には、ラクトース、ラクトース一水和物、スクロース、マンニトール、又はソルビトールを含む糖などの充填剤;例えば、トウモロコシデンプン、コムギデンプン、コメデンプン、ジャガイモデンプン、ゼラチン、トラガカントゴム、メチルセルロース、ヒドロキシプロピルメチルセルロース、ナトリウムカルボキシメチルセルロース、微結晶セルロース、及び/又はポリビニルピロリドン(PVP)などのセルロース調製物が含まれるが、これらに限定されない。特定の実施形態において、そのような混合物は、必要に応じて粉砕され、補助剤が、必要に応じて添加される。特定の実施形態において、医薬組成物は、錠剤又は糖衣錠コアを得るために形成される。特定の実施形態において、崩壊剤(例えば、クロスカルメロースナトリウムなどの架橋カルボキシメチルセルロース、架橋ポリビニルピロリドン、寒天、又はアルギン酸若しくはアルギン酸ナトリウム塩などのその塩)が添加される。
特定の実施形態において、糖衣錠コアはコーティングが施される。いくつかのそのような実施形態において、必要に応じて、アラビアゴム、タルク、ポリビニルピロリドン、カルボポールゲル、ポリエチレングリコール、及び/又は二酸化チタン、ラッカー溶液、及び適切な有機溶媒又は溶媒混合物を含有し得る濃縮糖溶液を使用してよい。染料又は色素を、錠剤又は糖衣錠コーティングに添加してもよい。
特定の実施形態において、経口投与用の医薬組成物は、ゼラチン製の押し込み型カプセルである。いくつかのそのような押し込み型カプセルは、ラクトースなどの1以上の充填剤、デンプンなどの結合剤、及び/又はタルク若しくはステアリン酸マグネシウムなどの滑剤、必要に応じて、安定剤と混合した本発明の1以上の薬剤を含む。特定の実施形態において、経口投与用の医薬組成物は、ゼラチン及びグリセロール又はソルビトールなどの可塑剤で作られた軟密封カプセルである。特定の軟カプセルでは、本発明の1以上の薬剤は、脂肪油、液体パラフィン、又は液体ポリエチレングリコールなどの適当な液体に溶解又は懸濁される。加えて、安定剤を添加してよい。
特定の実施形態において、医薬組成物は口腔内投与用に調製される。いくつかのそのような医薬組成物は、従来の様式で製剤化された錠剤又はトローチ剤である。
特定の実施形態において、医薬組成物は、注射(例えば、静脈内、皮下、筋肉内など)による投与用に調製される。いくつかのそのような実施形態において、医薬組成物は担体を含み、水などの水溶液、又はハンクス溶液、リンゲル溶液、又は生理食塩水の緩衝液などの生理学的に適合する緩衝液で製剤化される。特定の実施形態において、他の成分(例えば、溶解性を促進するか又は保存剤として機能する成分)が含まれる。特定の実施形態において、注射可能な懸濁液は、適切な液体担体、及び懸濁剤などを用いて調製される。注射用の特定の医薬組成物は、単位剤形、例えば、アンプル又は複数用量容器で提示される。注射用の特定の医薬組成物は、油性又は水性ビヒクル中の懸濁液、溶液又はエマルジョンであり、懸濁化剤、安定化剤及び/又は分散剤などの製剤化剤を含有してよい。注射用医薬組成物での使用に適する特定の溶媒には、親油性溶媒及びゴマ油などの脂肪油、オレイン酸エチル又はトリグリセリドなどの合成脂肪酸エステル、並びにリポソームが含まれるが、これらに限定されない。水性注射懸濁液は、ナトリウムカルボキシメチルセルロース、ソルビトール、又はデキストランなどの懸濁液の粘度を高める物質を含有してよい。必要に応じて、そのような懸濁液はまた、高度に濃縮された溶液の調製を可能にするために、適切な安定化剤又は薬剤の溶解性を増大させる薬剤を含有してよい。
特定の実施形態において、本発明の医薬組成物は、発泡錠又は顆粒であってよい。発泡錠は、最も一般的には、二酸化炭素ガスを生成する可溶性酸源及び炭酸塩源からなり、後者は、崩壊剤として機能する。発泡反応に必要な酸性度は、食物酸、酸無水物及び酸の塩から誘導することができる。食物酸は、例えば、クエン酸、酒石酸、リンゴ酸、フマル酸、アジピン酸又はコハク酸であり得る。酸無水物は、無水コハク酸又は無水クエン酸などであってよい。酸塩は、例えば、リン酸二水素ナトリウム(リン酸一ナトリウム)、ピロリン酸二水素二ナトリウム(酸性ピロリン酸ナトリウム)、酸性クエン酸塩(クエン酸二水素ナトリウム及びクエン酸水素二ナトリウム)、酸性亜硫酸ナトリウム(亜硫酸水素ナトリウム)であってよい。適切な炭酸塩源は、例えば、重炭酸ナトリウム、炭酸ナトリウム、重炭酸カリウム、炭酸カリウム、セスキ炭酸ナトリウム(炭酸ナトリウムと重炭酸ナトリウムの等モル量の混合物)、グリシン炭酸塩、L−リジン炭酸塩、炭酸アルギニン、炭酸カルシウムである。
発泡はまた、酸素などの他のガスの形成によって誘導され、該ガスは、例えば、過ホウ酸ナトリウム又は例えば、水と混合した際に活性酸素を生成する過酸素化合物(例えば、過ホウ酸ナトリウム一水和物又は過炭酸ナトリウム)と、水と接触すると次亜塩素酸を遊離する塩素化合物(例えば、ジクロロイソシアヌル酸ナトリウム又は次亜塩素酸カルシウム)の組み合わせから放出され得る。
本発明の医薬組成物は、当技術分野で公知の標準的な方法に従って製造することができる。本発明による顆粒及び発泡錠は、乾式圧縮又は湿式造粒によって得ることができる。これらの顆粒は、続いて、例えば、適切な崩壊剤、流動促進剤及び滑剤と混合することができ、錠剤に圧縮するか、又は例えば、適切なサイズのサッシェに充填することができる。発泡錠はまた、適切な粉末混合物を直接圧縮することによって、すなわち、事前に賦形剤を造粒することなく得ることができる。
本発明による適切な粉末又は顆粒の混合物はまた、噴霧乾燥(例えば、ホットプロセス噴霧乾燥によって、又は基本的な噴霧乾燥によって)、凍結乾燥、溶融押出し、ペレット積層、活性医薬成分のコーティング又は任意の他の適切な方法によって得られる。好ましくは、条件は、活性医薬成分のアモルファス化を防ぐように選択される。このようにして得られた粉末又は顆粒は、1種以上の適切な成分と混合することができ、得られた混合物は、発泡錠を形成するために圧縮されるか、又はサシェに充填することができる。
各個々の刊行物、特許又は特許出願、図面、又は添付物が、全ての目的のために参照によりその全体が組み込まれるように具体的かつ個別に示されるのと同程度に、全ての刊行物、特許及び特許出願は、その中の全ての図面及び添付物を含めて、全ての目的のために参照によりその全体が組み込まれる。
定義
本明細書で使用する用語は、命名された置換基とその親部分との間の結合の結合次数を示すために単一ダッシュ「−」又は二重ダッシュ「=」に先行するか、かつ/又はその後に続くことができ、単一のダッシュは単結合を示し、二重ダッシュは、二重結合又はスピロ置換基の場合には単結合の組を示す。単一又は二重ダッシュが存在しない場合には、単結合は置換基とその親部分との間に形成されると理解され、さらに、ダッシュが別段示さない限り、置換基は、「左から右」に読み取られることが意図される。例えば、C1−6アルコキシカルボニルオキシ及び−OC(O)C1−6アルキルは、同じ官能基を示し、同様に、アリールアルキル、アリールアルキル−、及び−アルキルアリールは、同じ官能基を示す。
さらに、特定の用語は、当業者に周知であるとおり、一価と二価の両方の連結ラジカルとして、及び2つの他の部分の間のそれらの提示連結によって本明細書で使用され得る。例えば、アルキル基は、一価のラジカル又は二価のラジカルの両方であり得、後者の場合には、追加の水素原子が一価のアルキルラジカルから除去されて、適切な二価部分を提供することは当業者には明らかであろう。
本明細書で使用する用語「アルケニル」は、特に断りのない限り、2〜10個の炭素を含有し、少なくとも1つの炭素−炭素二重結合を含有する直鎖又は分枝鎖の炭化水素を意味する。アルケニルの代表例としては、エテニル、2−プロペニル、2−メチル−2−プロペニル、3−ブテニル、4−ペンテニル、5−ヘキセニル、2−ヘプテニル、2−メチル−1−ヘプテニル、3−デセニル、及び3,7−ジメチルオクタ−2,6−ジエニルが挙げられるが、これらに限定されない。
本明細書で使用する用語「アルコキシ」は、酸素原子を介して親分子部分に付加された本明細書で定義されるアルキル基を意味する。アルコキシの代表例としては、メトキシ、エトキシ、プロポキシ、2−プロポキシ、ブトキシ、tertブトキシ、ペンチルオキシ、及びヘキシルオキシが挙げられるが、これらに限定されない。
本明細書で使用する用語「アルキル」は、特に断りのない限り、1〜10個の炭素原子を含有する直鎖又は分枝鎖炭化水素を意味する。アルキルの代表例としては、メチル、エチル N−プロピル、イソ−プロピル、n−ブチル、sec−ブチル、イソ−ブチル、tert−ブチル、n−ペンチル、イソペンチル、ネオペンチル、n−ヘキシル、3−メチルヘキシル、2,2−ジメチルペンチル、2,3−ジメチルペンチル、n−ヘプチル、n−オクチル、n−ノニル、及びn−デシルが挙げられるが、これらに限定されない。「アルキル」基が2つの他の部分の間の連結基である場合、直鎖又は分枝鎖であってよく、例としては、−CH−、−CHCH−、−CHCHCHC(CH)−、−CHCH(CHCH)CH−が挙げられるが、これらに限定されない。
用語C1−5アルキルは、1〜5個の炭素原子の直鎖状又は分岐鎖状のアルキルを指す。
用語C1−6アルキルは、1〜6個の炭素原子の直鎖状又は分岐鎖状のアルキルを指す。
本明細書で使用する用語「アリール」は、フェニル(すなわち、単環式アリール)、又は少なくとも1個のフェニル環を含有する二環式環系又は芳香族二環式環系に炭素原子を1個だけ含有する芳香族二環式環を意味する。二環式アリールは、アズレニル、ナフチル、又は単環式シクロアルキルと縮合したフェニル、単環式シクロアルケニル、又は単環式ヘテロシクリルであり得る。二環式アリールは、二環系のフェニル部分内に含有されるいずれかの炭素原子、又はナフチル環若しくはアズレニル環を有する任意の炭素原子を介して親分子部分に結合している。二環式アリールの縮合した単環式シクロアルキル又は単環式ヘテロシクリル部分は、必要に応じて、1個若しくは2個のオキソ及び/又はチア基で置換されている。二環式アリールの代表例としては、アズレニル、ナフチル、ジヒドロインデン−1−イル、ジヒドロインデン−2−イル、ジヒドロインデン−3−イル、ジヒドロインデン−4−イル、2,3−ジヒドロインドール−4−イル、2,3−ジヒドロインドール−5−イル、2,3−ジヒドロインドール−6−イル、2,3−ジヒドロインドール−7−イル、インデン−1−イル、インデン−2−イル、インデン−3−イル、インデン−4−イル、ジヒドロナフタレン−2−イル、ジヒドロナフタレン−3−イル、ジヒドロナフタレン−4−イル、ジヒドロナフタレン−1−イル、5,6,7,8−テトラヒドロナフタレン−1−イル、5,6,7,8−テトラヒドロナフタレン−2−イル、2,3−ジヒドロベンゾフラン−4−イル、2,3−ジヒドロベンゾフラン−5−イル、2,3−ジヒドロベンゾフラン−6−イル、2,3−ジヒドロベンゾフラン−7−イル、ベンゾ[d][1,3]ジオキソール−4−イル、ベンゾ[d][1,3]ジオキソール−5−イル、2H−クロメン−2−オン−5−イル、2H−クロメン−2−オン−6−イル、2H−クロメン−2−オン−7−イル、2H−クロメン−2−オン−8−イル、イソインドリン−1,3−ジオン−4−イル、イソインドリン−1,3−ジオン−5−イル、インデン−1−オン−4−イル、インデン−1−オン−5−イル、インデン−1−オン−6−イル、インデン−1−オン−7−イル、2,3−ジヒドロベンゾ[b][1,4]ジオキシン−5−イル、2,3−ジヒドロベンゾ[b][1,4]ジオキシン−6−イル、2H−ベンゾ[b][1,4]オキサジン−3(4H)−オン−5−イル、2Hベンゾ[b][1,4]オキサジン−3(4H)−オン−6−イル、2Hベンゾ[b][1,4]オキサジン−3(4H)−オン−7−イル、2Hベンゾ[b][1,4]オキサジン−3(4H)−オン−8−イル、ベンゾ[d]オキサジン−2(3H)−オン−5−イル、ベンゾ[d]オキサジン−2(3H)−オン−6−イル、ベンゾ[d]オキサジン−2(3H)−オン−7−イル、ベンゾ[d]オキサジン−2(3H)−オン−8−イル、キナゾリン−4(3H)−オン−5−イル、キナゾリン−4(3H)−オン−6−イル、キナゾリン−4(3H)−オン−7−イル、キナゾリン−4(3H)−オン−8−イル、キノキサリン−2−(1H)−オン−5−イル、キノキサリン−2−(1H)−オン−6−イル、キノキサリン2(1H)−オン−7−イル、キノキサリン−2−(1H)−オン−8−イル、ベンゾ[d]チアゾール−2(3H)−オン−4−イル、ベンゾ[d]チアゾール−2(3H)−オン−5−イル、ベンゾ[d]チアゾール−2(3H)−オン−6−イル、及び、ベンゾ[d]チアゾール−2(3H)−オン−7−イルが挙げられるが、これらに限定されない。特定の実施形態において、二環式アリールは、(i)ナフチル又は(ii)5若しくは6員の単環式シクロアルキル、5若しくは6員の単環式シクロアルケニル、又は5若しくは6員の単環式ヘテロシクリルのいずれかと縮合したフェニル環であり、縮合したシクロアルキル、シクロアルケニル、及びヘテロシクリル基は、独立してオキソ又はチアである1個又は2個の基で任意に置換されている。
本明細書で使用する用語「アリールアルキル」、「アルキルアリール」及び「アリールアルキル−」は、本明細書で定義されるアルキル基を介して親分子部分に付加される、本明細書で定義されるアリール基を意味する。アリールアルキルの代表例としては、ベンジル、2−フェニルエチル、3−フェニルプロピル及び2−ナフト−2−イルエチルが挙げられるが、これらに限定されない。
本明細書で使用する用語「シアノ」及び「ニトリル」は、−CN基を意味する。
本明細書で使用する用語「シクロアルキル」は、単環式又は二環式シクロアルキル環系を意味する。単環式環系は、3〜8個の炭素原子を含有する環状炭化水素基であり、そのような基は飽和又は不飽和であり得るが、芳香族ではない。特定の実施形態において、シクロアルキル基は完全に飽和されている。単環式シクロアルキルの例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロペンテニル、シクロヘキシル、シクロヘキセニル、シクロヘプチル、及びシクロオクチルが挙げられる。二環式シクロアルキル環系は、架橋単環式環又は縮合二環式環である。架橋単環式環は、単環式環の2個の非隣接炭素原子が1〜3個の追加の炭素原子のアルキレン架橋によって連結されている単環式シクロアルキル環を含有する(すなわち、−(CH−型の架橋基、式中、wは1、2、又は3である)。代表的な二環式環系の例としては、ビシクロ[3.1.1]へプタン、ビシクロ[2.2.1]へプタン、ビシクロ[2.2.2]オクタン、ビシクロ[3.2.2]ノナン、ビシクロ[3.3.1]ノナン、及びビシクロ[4.2.1]ノナンが挙げられるが、これらに限定されない。縮合二環式シクロアルキル環系は、フェニル、単環式シクロアルキル、単環式シクロアルケニル、単環式複素環、又は単環式ヘテロアリールのいずれかと縮合した単環式シクロアルキル環を含有する。架橋又は縮合二環式シクロアルキルは、単環式シクロアルキル環内に含有されるいずれかの炭素原子を介して親分子部分に結合している。シクロアルキル基は、独立してオキソ又はチアである1個又は2個の基で任意に置換されている。特定の実施形態において、縮合二環式シクロアルキルは、フェニル環、5若しくは6員の単環式シクロアルキル、5若しくは6員の単環式シクロアルケニル、5若しくは6員の単環式ヘテロシクリル、又は5若しくは6員の単環式ヘテロアリールのいずれかと縮合した5若しくは6員の単環式シクロアルキル環であり、縮合二環式シクロアルキルは、独立してオキソ又はチアである1個又は2個の基で任意に置換されている。
本明細書で使用する「シクロアルケニル」は、単環式又は二環式シクロアルケニル環系を指す。単環式環系は、3〜8個の炭素原子を含有する環状炭化水素基であり、そのような基は不飽和である(すなわち、少なくとも1つの環状炭素−炭素二重結合を含有する)が、芳香族ではない。単環式環系の例としては、シクロペンテニル及びシクロヘキセニルが挙げられる。二環式シクロアルケニル環は、架橋単環式環又は縮合二環式環である。架橋単環式環は、単環式環の2個の非隣接炭素原子が1〜3個の追加の炭素原子のアルキレン架橋によって連結された単環式シクロアルケニル環を含有する(すなわち、−(CH−型の架橋基、式中、wは1、2、又は3である)。二環式シクロアルケニルの代表例としては、ノルボルネニル及びビシクロ[2.2.2]オクト−2−エニルが挙げられるが、これらに限定されない。縮合二環式シクロアルケニル環系は、フェニル、単環式シクロアルキル、単環式シクロアルケニル、単環式複素環、又は単環式ヘテロアリールのいずれかと縮合した単環式シクロアルケニル環を含有する。架橋又は縮合二環式シクロアルケニルは、単環式シクロアルケニル環内に含有されるいずれかの炭素原子を介して親分子部分に結合している。シクロアルケニル基は、独立してオキソ又はチアである1個又は2個の基で任意に置換されている。
本明細書で使用する用語「ハロ」又は「ハロゲン」は、Cl、Br、I又はFを意味する。
本明細書で使用する用語「ハロアルキル」は、本明細書で定義されるアルキル基を介して親分子部分に付加された、本明細書で定義される少なくとも1つのハロゲンを意味する。ハロアルキルの代表例としては、クロロメチル、2−フルオロエチル、トリフルオロメチル、ペンタフルオロエチル、及び2−クロロ−3−フルオロペンチルが挙げられるが、これらに限定されない。
本明細書で使用する用語「ヘテロアリール」は、少なくとも1つの芳香族複素環を含む単環式ヘテロアリール又は二環式環系を意味する。単環式ヘテロアリールは、5又は6員環であり得る。5員環は、2つの二重結合及び1、2、3又は4個の窒素原子、及び必要に応じて1個の酸素又は硫黄原子からなる。6員環は、3つの二重結合及び1、2、3又は4個の窒素原子からなる。5又は6員のヘテロアリールは、ヘテロアリール内に含有される任意の炭素原子又は任意の窒素原子を介して親分子部分に連結されている。単環式ヘテロアリールの代表例としては、フリル、イミダゾリル、インドリル、1−メチル−インドリル、イソオキサゾリル、イソチアゾリル、オキサジアゾリル、オキサゾリル、ピリジニル、ピリダジニル、ピリミジニル、ピラジニル、ピラゾリル、ピロリル、テトラゾリル、チアジアゾリル、チアゾリル、チエニル、トリアゾリル、及びトリアジニルが挙げられるが、これらに限定されない。二環式ヘテロアリールは、フェニル、単環式シクロアルキル、単環式シクロアルケニル、単環式複素環、又は単環式ヘテロアリールと縮合した単環式ヘテロアリールからなる。二環式ヘテロアリール基の縮合シクロアルキル又はヘテロシクリル部分は、独立してオキソ又はチアである1個又は2個の基で任意に置換されている。二環式ヘテロアリールが縮合シクロアルキル、シクロアルケニル、又はヘテロシクリル環を含有する場合、二環式ヘテロアリール基は、二環式環系の単環式ヘテロアリール部分内に含有される任意の炭素又は窒素原子を介して親分子部分に連結されている。二環式ヘテロアリールが、フェニル環又は単環式ヘテロアリールと縮合した単環式ヘテロアリールである場合、二環式ヘテロアリール基は、二環式環系内の任意の炭素原子又は窒素原子を介して親分子部分に連結されている。二環式ヘテロアリールの代表例としては、ベンズイミダゾリル、ベンゾフラニル、ベンゾチエニル、ベンゾオキサジアゾリル、ベンズオキサチアジアゾリル、ベンゾチアゾリル、シンノリニル、5,6−ジヒドロキノリン−2−イル、5,6−ジヒドロイソキノリン−1−イル、フロピリジニル、インダゾリル、インドリル、イソキノリニル、ナフチリジニル、キノリニル、プリニル、5,6,7,8−テトラヒドロキノリン−2−イル、5,6,7,8−テトラヒドロキノリン−3−イル、5,6,7,8−テトラヒドロキノリン−4−イル、5,6,7,8−テトラヒドロ−1−イル、チエノピリジニル、4,5,6,7−テトラヒドロベンゾ[c][1,2,5]オキサジアゾリル、及び6,7−ジヒドロベンゾ[c][1,2,5]オキサジアゾール−4(5H)−オニルが挙げられるが、これらに限定されない。特定の実施形態において、縮合二環式ヘテロアリールは、フェニル環、5若しくは6員の単環式シクロアルキル、5若しくは6員の単環式シクロアルケニル、5若しくは6員の単環式ヘテロシクリル、又は5若しくは6員の単環式ヘテロアリールのいずれかと縮合した5若しくは6員の単環式ヘテロアリール環であり、縮合シクロアルキル、シクロアルケニル、及びヘテロシクリル基は、独立してオキソ又はチアである1個又は2個の基で任意に置換されている。
本明細書で使用する用語「ヘテロアリールアルキル」及び「アルキルヘテロアリール」は、本明細書で定義されるアルキル基を介して親分子部分に付加される、本明細書で定義されるヘテロアリールを意味する。ヘテロアリールアルキルの代表例としては、フル−3−イルメチル、1H−イミダゾール−2−イルメチル、1H−イミダゾール−4−イルメチル、1−(ピリジン−4−イル)エチル、ピリジン−3−イルメチル、ピリジン−4−イルメチル、ピリミジン−5−イルメチル、2−(ピリミジン−2−イル)プロピル、チエン−2−イルメチル及びチエン−3−イルメチルが挙げられるが、これらに限定されない。
本明細書で使用する用語「ヘテロシクリル」又は「ヘテロシクロアルキル」は、単環式複素環又は二環式複素環を意味する。単環式複素環は、環が飽和又は不飽和であるが、芳香族ではないO、N、及びSからなる群から独立して選択される少なくとも1個のヘテロ原子を含有する3、4、5、6又は7員環である。3又は4員環は、O、N、及びSからなる群から選択される1個のヘテロ原子を含有する。5員環は、0又は1個の二重結合並びにO、N、及びSからなる群から選択される1、2又は3個のヘテロ原子を含有することができる。6又は7員環は、0、1、又は2個の二重結合並びにO、N、及びSからなる群から選択される1、2又は3個のヘテロ原子を含有する。単環式複素環は、単環式複素環内に含有される任意の炭素原子又は任意の窒素原子を介して親分子部分に連結されている。単環式複素環の代表例としては、アゼチジニル、アゼパニル、アジリジニル、ジアゼパニル、1,3−ジオキサニル、1,3−ジオキソラニル、1,3−ジチオラニル、1,3−ジチアニル、イミダゾリニル、イミダゾリジニル、イソチアゾリニル、イソチアゾリジニル、イゾオキサゾリニル、イソオキサゾリジニル、モルホリニル、オキサジアゾリニル、オキサジアゾリジニル、オキサゾリニル、オキサゾリジニル、ピペラジニル、ピペリジニル、ピラニル、ピラゾリニル、ピラゾリジニル、ピロリニル、ピロリジニル、テトラヒドロフラニル、テトラヒドロチエニル、チアジアゾリニル、チアジアゾリジニル、チアゾリニル、チアゾリジニル、チオモルホリニル、1,1−ジオキシドチオモルホリニル(チオモルホリンスルホン)、チオピラニル、及びトリチアニルが挙げられるが、これらに限定されない。二環式複素環は、フェニル、単環式シクロアルキル、単環式シクロアルケニル、単環式複素環、又は単環式ヘテロアリールのいずれかと縮合した単環式複素環である。二環式複素環は、二環式環系の単環式複素環部内に含有される任意の炭素原子又は任意の窒素原子を介して親分子部分に連結されている。二環式ヘテロシクリルの代表例としては、2,3−ジヒドロベンゾフラン−2−イル、2,3−ジヒドロベンゾフラン−3−イル、インドリン−1−イル、インドリン−2−イル、インドリン−3−イル、2,3−ジヒドロベンゾチエン−2−イル、デカヒドロキノリニル、デカヒドロイソキノリニル、オクタヒドロ−1H−インドリル、及びオクタヒドロベンゾフラニルが挙げられるが、これらに限定されない。ヘテロシクリル基は、独立してオキソ又はチアである1個又は2個の基で任意に置換されている。特定の実施形態において、二環式ヘテロシクリルは、フェニル環、5若しくは6員の単環式シクロアルキル、5若しくは6員の単環式シクロアルケニル、5若しくは6員の単環式ヘテロシクリル、又は5若しくは6員の単環式ヘテロアリールと縮合した5若しくは6員の単環式ヘテロシクリル環であり、二環式ヘテロシクリルは、独立してオキソ又はチアである1個又は2個の基で任意に置換されている。
本明細書で使用する用語「ヒドロキシ」は、−OH基を意味する。
本明細書で使用する用語「ニトロ」は、−NO基を意味する。
本明細書で使用する用語「オキソ」は、=O基を意味する。
本明細書で使用する用語「チア」は、−S−基を意味する。
本明細書で使用する「飽和」という用語は、参照化学構造が任意の多重炭素−炭素結合を含有しないことを意味する。例えば、本明細書に定義される飽和シクロアルキル基は、シクロヘキシル、及びシクロプロピルなどを含む。
本明細書で使用する用語「不飽和」は、参照化学構造が、少なくとも1つの多重炭素−炭素結合を含有するが、芳香族ではないことを意味する。例えば、本明細書で定義される不飽和シクロアルキル基は、シクロヘキセニル、シクロペンテニル、及びシクロヘキサジエニルなどを含む。
本明細書で互換的に使用する用語「個体」又は「患者」は、哺乳動物、好ましくはマウス、ラット、他のげっ歯類、ウサギ、イヌ、ネコ、ブタ、ウシ、ヒツジ、ウマ、又は霊長類を含む任意の動物、最も好ましくはヒトを指す。
本明細書で使用する語句「治療有効量」は、研究者、獣医師、医師又は他の臨床医が組織、系、動物、個体若しくはヒトで求めている生物学的又は医学的反応を誘発する活性化合物又は医薬品の量を指す。
特定の実施形態において、治療有効量は、
(1)疾患の予防;例えば、疾患、病状若しくは障害にかかりやすいが、まだ疾患の病理若しくは症候を経験していないか、又は示さない個体における疾患、病状若しくは障害の予防;
(2)疾患の抑制;例えば、疾患、病状若しくは障害の病理又は症候を経験しているか、又は示している個体における疾患、病状若しくは障害の抑制;
(3)疾患の寛解;例えば、疾患の重症度の低減などの疾患、病状若しくは障害の病理又症候を経験しているか、又は示している個体における疾患、病状若しくは障害の寛解(すなわち、病理及び/又は症候の逆転)
に適切する量であり得る。
本明細書で使用する用語「治療」及び「治療すること」は、(i)参照疾患状態の寛解、例えば、疾患の重症度の低減などの疾患、病状若しくは障害の病理又症候を経験しているか、又は示している個体における疾患、病状若しくは障害の寛解(すなわち、病理及び/若しくは症候の逆転又は改善);又は(ii)参照生物学的効果の誘発(例えば、IDO調節又はトリプトファン分解阻害)を意味する。
基礎IDO媒介免疫抑制を有する疾患状態の寛解の症状は、癌の場合における抗腫瘍剤、若しくはウイルス性疾患の場合における抗レトロウイルス薬などの追加の治療剤の同時又は逐次投与を必要とし得る。例えば、癌の治療のためのIDO阻害剤の投与は、単剤として使用する場合、必ずしも直接的な抗腫瘍効果をもたらさない。しかし、化学療法剤(抗腫瘍)と組み合わせた場合、観察される抗腫瘍効果は、各薬剤単独の効果の合計よりも高い。
本明細書で使用する用語「触媒ポケット」、「触媒部位」、「活性部位」は、総称して、かつ区別なく、基質結合(電荷、疎水性、立体障害)を担うアミノ酸残基及びプロトン供与体又は受容体として作用するか、補因子の結合を担い、化学反応の触媒作用に関与する触媒アミノ酸残基を含有する酵素の領域を指す。
本明細書で使用する語句「薬学的に許容される塩」は、薬学的に許容される酸及び塩基付加塩と溶媒和物の両方を指す。そのような薬学的に許容される塩は、塩酸、リン酸、臭化水素酸、硫酸、スルフィン酸、ギ酸、トルエンスルホン酸、メタンスルホン酸、硝酸、安息香酸、クエン酸、酒石酸、マレイン酸、ヨウ化水素酸、酢酸などのアルカン酸、及びHOOC−(CH−COOH(式中、nは0〜4である)などの酸の塩を含む。非毒性の薬学的塩基付加塩は、ナトリウム、カリウム、カルシウム、及びアンモニウムなどの塩基の塩を含む。当業者は、多種多様な非毒性の薬学的に許容される付加塩を認識する。
本明細書で使用する用語「インドキシモッド」は、D−1MT又はD1mTとも呼ばれる1−メチル−D−トリプトファンを指す。
本明細書で使用する用語「インドキシモッドのプロドラッグ」は、インビボ投与後に代謝されて、主代謝物の1つとしてインドキシモッドを生成する任意の物質を指す。
実施例
実施例1.試薬及び合成方法
全ての試薬及び溶媒は商業的供給源から購入した。全ての市販の試薬及び溶媒は、さらに精製することなく受け取ったまま使用した。反応は、0.25mm EMサイエンスシリカゲルプレート(60F−254)を用いて分析用薄層クロマトグラフィー(TLC)を用いて監視した。開発したTLCプレートは、短波UV光(254nm)によるか、又は過マンガン酸カリウム溶液に浸漬した後、ホットプレート上で加熱することによって可視化した。フラッシュクロマトグラフィーは、Selecto Scientific社製シリカゲル、32〜63μm粒径を用いて行った。全ての反応は、窒素雰囲気下で、火であぶるか又はオーブン乾燥したガラス器具中で行った。特に断りのない限り、全ての反応は周囲温度で磁気的に攪拌した。H NMRスペクトルは、Bruker DRX400、Varian VXR400又はVXR300を用いて取得した。H NMRスペクトルは、内部標準としてTMS(0.0)、DMSO−d(2.50)又はCDOD(4.80)に対する百万分率(δ)で報告した。特に断りのない限り、全てのH NMRスペクトルは、CDCl中で取得した。
エチル 1−メチル−D−トリプトファン塩酸塩(NLG−1283)の合成
0℃のエタノール(50mL)中のD−1MT(4.00g、18.3mmol)の懸濁液にSOCl(1.34mL、18.3mmol)を添加し、混合物を80℃で一晩撹拌した。室温まで冷却した後、溶媒を蒸留して取り除き、粗生成物をジエチルエーテル(100mL)で希釈し、白色固体を濾別し、乾燥エーテルで洗浄して、所望の生成物(5.1g、98%)を得た。
イソプロピル 1−メチル−D−トリプトファン塩酸塩(NLG−1284)の合成
0℃のイソプロパノール(15mL)中のD−1MT(0.500g、2.29mmol)の懸濁液に、室温でSOCl(0.167mL、2.29mmol)を添加し、混合物を80℃で一晩攪拌した。室温まで冷却した後、溶媒を蒸留して取り除き、粗生成物を25%の水性NaHCO(20mL)で塩基性化し、生成物をCHClで抽出し、合わせた有機抽出物をNaSO上で乾燥させ、溶媒を減圧下で蒸留して取り除いた。遊離塩基をジオキサン中の乾燥HClを添加することによってそのHCl塩に変換し、溶媒を減圧下で除去して、所望の生成物を白色の固体(0.252g、37%)として得た。
カルバミン酸エステルの合成の一般的な方法
1:1のTHF/1M NaHCO(2.75mL、2.75mmol)中のD−1MT(0.150g、0.687mmol)の撹拌溶液に、適切なクロロホルメートを滴下した。混合物を30分間撹拌し、その溶液を水で希釈し、エーテルで2回抽出した。水層を0℃まで冷却し、濃HCl溶液を添加して、pHを約1に調整した。冷たい水層を直ちに酢酸エチルで抽出し、合わせた有機層を水、ブラインで洗浄し、乾燥させた。溶媒を減圧下で除去し、粗カルバメートを得た。粗生成物をカラムクロマトグラフィーにより精製し、活性炭で処理して、純粋なカルバメートを得た。
α−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファンの合成
0℃のジオキサン(70mL)中のD−1MT(3.0g、13.75mmol)の混合物に、NaOH(30mLのDI水に溶解した550mg)を添加し、その後、BocOを添加した。反応物を4時間、0℃で撹拌し、室温で一晩撹拌した。溶液を、元の体積の約三分の一まで減圧下で濃縮した。反応物を0℃で1N HClで酸性化し、生成物をEtOAcで抽出した。有機抽出物をブラインで洗浄し、NaSO上で乾燥させ、溶媒を減圧下で蒸発させ、生成物を得て、さらに精製することなく次の工程に直接使用した(4.3g、98%)。
α−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファナートの合成
60mLのDMFに、Nα−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファン(3.00g、9.42mmol)を溶解し、これにCsCO(1.78g、5.47mmol)及び臭化ベンジル(1.61mL、9.42mmol)を添加した。得られた懸濁液を室温で2時間撹拌した。反応の終了(TLC)後、DMFを減圧下で除去し、その後、蒸留水(3×50mL)及びブラインで洗浄する前にトルエン/酢酸エチルで残渣を懸濁した。有機層を無水硫酸ナトリウム上で乾燥させ、真空下で濃縮した。残渣をシリカゲルカラムクロマトグラフィーにより精製した(3.5g、91%)。
ベンジル 1−メチル−D−トリプトファン塩酸塩(NLG−1338)の合成
セプタム及びニードルベントを備えたRBフラスコ中の酢酸エチル(26.9mL)及びMeOH(8.9mL)を、撹拌しながら氷浴中で冷却した。塩化アセチル(14.22mL)をゆっくりと添加した。得られた溶液を20分間、0℃で撹拌し、MeOH(0.5mL)を添加した。ベンジル Nα−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファナート(3.5g、8.6mmol)を含有するフラスコを氷浴に入れ、冷たい、新たに調製したHCl(EtOAc中4M)を、ベンジル Nα−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファナートを含有するフラスコにゆっくり注いだ。溶液を15分間、0℃で激しく撹拌し、白色の懸濁液の形成が観察されたら、フラスコを氷浴から除去した。懸濁液を2.5時間激しく撹拌した。溶液を氷浴で冷却し、エーテル(50mL)で希釈し、懸濁液を濾過し、固体ケーキを冷エーテルで洗浄した。固体を高真空下で乾燥させ、所望の生成物を無色固体(6.45g、88%)として単離した。1H NMR(d−dmdso);3.28(dd,2H,J=5.6,15.2Hz),3.70(s,3H),4.26−4.29(M,1H),5.08(d,1H,J=12.4Hz),5.13(d,1H,J=12.4Hz),7.04(t,1H,J=7.6Hz),7.06(s,1H),7.10−7.18(m,3H),7.30−7.35(m,3H),7.42(d,1H,J=8Hz),7.53(d,1H,J=8Hz)。
D−1MTの−COOH基の誘導体化のための一般的なスキーム
0℃のアセトニトリル(30mL)中のN−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファン(3.14mmol)、適切なアルコール又はアミン(3.14mmol)及びHATU(3.14mmol)の溶液に、DIPEA(9.42mmol)を添加し、溶液を室温まで温めた。一晩(17時間)攪拌した後、反応物を水(50mL)で希釈し、生成物をCHCl(3×50mL)で抽出した。合わせた有機抽出物を水(25mL×1)、ブライン(25mL×1)で洗浄し、NaSOで乾燥させ、減圧下で濃縮して、粗生成物を得た。クロマトグラフィー精製により所望の生成物を得た。
α−(tert−ブトキシカルボニル)−1−メチル−D−トリプトフィルグリシン(NLG−1579−A−E44)の合成
THF(10mL)中のNLG−1578−A−E43(300mg、0.770mmol)の溶液に、水(2mL)及びリチウム一水和物(49mg、1.16mmol)を添加し、混合物を周囲温度下で2.0時間撹拌した。混合物を(0℃で)1MのHClで中和し、氷冷水(20mL)に注いだ。水層をEtOAc(3×35mL)で抽出した。合わせた有機層をNaSO上で乾燥させ、濃縮した。粗生成物をフラッシュカラムクロマトグラフィーにより精製し、所望の生成物を白色の固体(260mg、90%)として得た。H NMR:1.25及び1.39(2つのs,9H).3.18−3.24(m,2H),3.70(s,3H),3.81−4.05(m,2H),4.55(s,1H),5.20−5.33(m,1H),6.63(s,1H),6.92(s,1H),7.10(t,1H,J=7.2Hz),7.15−7.25(m,2H),7.59(dt,1H,J=7.9Hz)。
室温でジオキサン(15mL)中のtBoc保護アミン(1.57mmol)の混合物に、HCl(4mL、ジオキサン中の4.0M溶液)を添加した。2.5時間撹拌した後、溶媒を減圧下で蒸留して取り除いた。残渣をメチルtert−ブチルエーテル(10mL)と撹拌し、固体を濾過し、減圧下で乾燥させ、所望の生成物を得た。
以下の化合物を、上記のセクションに記載した手順に従って合成した。
O−(1−メチル−D−トリプトフィル)−L−セリン二塩酸塩(NLG−1551)の合成
CHCl(10mL)中のNLG−1551−B.1−E15(0.450g、824.66mmol)の溶液に、0℃でHCl(2mL、ジオキサン中4Mの溶液)を添加し、溶液は室温まで温めた。5時間撹拌した後、溶媒を蒸発させ、反応物をトリフルオロ酢酸(8mL)で希釈し、溶液を室温で7時間撹拌した。トリフルオロ酢酸を蒸発させた後、反応物を乾燥HCl溶液(1mL、ジオキサン中4Mの溶液)で希釈し、混合物を10分間攪拌した。溶媒を減圧下で蒸発させ、生成物をエタノール:エーテル(10:90、15mL)で磨砕し、生成物を濾過し、乾燥エーテル(10mL)で洗浄した。生成物を減圧下で乾燥させた(0.190g、61%)。H NMR(400MHz,CDOD):3.22−3.28(m,1H),3.43(dd,1H,J=15.4,4.7Hz),3.70(s,3H),4.23(t,1H,J=3.9Hz),4.35(dd,1H,J=8.0,4.9Hz),4.60(d,2H,J=3.8Hz),6.99−7.04(m,1H),7.05(s,1H),7.09−7.16(m,1H),7.29(d,1H,J=8.3Hz),7.50(d,1H,J=7.9Hz)。
1−メチル−D−トリプトフィル−L−バリン塩酸塩(NLG−1556)の合成
セプタムとニードルベントを備えたRBフラスコ中のジオキサン(7mL)及びMeOH(1.20mL、28.6mmol)を撹拌しながら氷浴中で冷却した。塩化アセチル(2.00mL、28.6mmol)をゆっくりと添加した。得られた溶液を20分間0℃で撹拌し、MeOH(0.1mL)を添加した。NLG−1556−A−E22(678mg、1.43mmol)を含有するフラスコを氷浴に入れ、冷たい、新たに調製したHCl(ジオキサン中4M)をNLG−1556−A−E22を含有するフラスコにゆっくり注いだ。溶液を室温まで温め、18時間激しく攪拌した。ロータリーエバポレーターを用いて溶媒を除去し、純粋な白色固体(205mg、40%)を得た。(DMSO−d6) 0.71−0.77(m,6H),1.91−2.00(m,1H),3.08(dd,1H,J=14.4,8.4Hz),3.23(dd,1H,J=14.4,8.4Hz),3.73(s,3H),4.12−4.17(m,2H),7.06(t,1H,J=7.4Hz),7.17(t,1H,J=7.8Hz),7.20(s,1H),7.40(d,1H,J=8.4Hz),7.74(d,1H,J=8.0Hz),8.2(br S,3H),8.74(d,1H,J=8.4Hz)。
2,3−ジヒドロキシプロピル 1−メチル−D−トリプトファン塩酸塩(NLG−1558)の合成
0℃のTHF(100mL)中のNLG1558−A−E23(11.5g、26.59mmol)の溶液をTFA(16.3mL、212.7mmol)及び水(0.958g、53.18mmol)に添加し、冷却浴を除去し、混合物を室温で2時間撹拌した。HCl(13.3mL、53.18mmol;ジオキサン中の4.0M溶液)を添加し、1時間撹拌を続けた。反応物を45分間、40℃で撹拌した。沈殿した白色固体を濾過し、MTBEで洗浄し、塩酸塩(4.5g、51%)を得た。H NMR(400MHz,DMSO−d):3.32−3.40(m,1H),3.44−3.52(m,3H),3.76−3.86(m,4H),4.16−4.37(m,3H),7.10(t,1H,J=7.4Hz),7.14(s,1H),7.19(t,1H,J=7.6Hz),7.38(d,1H,J=8.2Hz),7.58(d,1H,J=7.9Hz)。
D−1MTの−NH及び−COOH基の誘導体化のための一般的なスキーム
適切なD−トリプトファン塩酸エステル(1.0g、3.54mmol)及び適切な酸(3.54mmol)を0℃でアセトニトリル(50mL)中で攪拌した。HATU(1.48g、3.89mmol)及びiPrNEt(2.46mL、14.15mmol)を添加し、反応物を室温で一晩撹拌した。溶媒を減圧下で除去し、粗生成物を水(50mL)及びジクロロメタン(50mL)で希釈した。有機層を分離し、水層をジクロロメタン(3×50mL)で抽出した。合わせた有機層をブライン(50mL)で洗浄し、NaSO上で乾燥させ、減圧下で濃縮した。粗生成物をフラッシュカラムクロマトグラフィーにより精製し、所望の生成物を得た。
α−((S)−5−(tert−ブトキシ)−2−((tert−ブトキシカルボニル)アミノ)−5−オキソペンタノイル)−1−メチル−D−トリプトファン(NLG−1547−E.2−E17)の合成
tert−ブチル(S)−5−(((R)−1−(ベンジルオキシ)−3−(1−メチル−1H−インドール−3−イル)−1−オキソプロパン−2−イル)アミノ)−4−((tert−ブトキシカルボニル)アミノ)−5−オキソペンタノエート(800mg、1.38mmol)をMeOH(8mL)及びTHF(8mL)に懸濁した。0℃まで冷却した後、NaOH溶液(2.4mL、2M)を添加し、反応物を1時間撹拌した。溶液をpH=4まで1MのHClで酸性化し、溶媒を減圧下で濃縮した(40℃)。溶液を分液漏斗中で水とDCMの間に分配し、有機層を回収した。水層をDCM(2×15mL)で抽出し、合わせた有機層を水及びブラインで洗浄した。クロマトグラフィー精製により、所望の生成物(0.502g、72%)を得た。H NMR(クロロホルム−d,400MHz):δ=1.38(s,9H),1.44(s,9H),1.68−1.81(m,1H),1.84−1.99(m,1H),2.12−2.33(m,3H),3.23−3.42(m,2H),4.23(s,3H),4.86(d,1H,J=6.9Hz),5.41(d,1H,J=8.6Hz),6.83(d,1H,J=7.5Hz),6.93(s,1H),7.09(dt,1H,J=8.0,1.2Hz),7.18(t,1H,J=7.8Hz),7.23(CDClと重なった見かけのd,1H),7.60(d,1H,J=7.9Hz)。
(S)−4−アミノ−5−(((R)−1−カルボキシ−2−(1−メチル−1H−インドール−3−イル)エチル)アミノ)−5−オキソペンタン酸塩酸塩(NLG−1547)の合成
α−((S)−5−(tert−ブトキシ)−2−((tert−ブトキシカルボニル)アミノ)−5−オキソペンタノイル)−1−メチル−D−トリプトファン(470mg、0.93mmol)にHCl(ジオキサン中4M)(4.7mL)を添加した。得られた溶液を室温で5時間撹拌した。溶液を濃縮し、固体をMeOHに溶解し、活性炭で処理し、1時間、60℃まで加熱した。セライトを通して溶液を濾過し、濾液を濃縮し、所望の生成物をベージュ色の固体(0.304、85%)として得た。H NMR(DMSO−d,400MHz):(回転異性体の混合物)1.73−2.21(m,4H),2.93−3.12(m,1H),3.14−3.27(m,1H),3.70(s,3H),3.83(q,1H,J=5.8Hz),4.53−4.72(m,1H),7.01(tt,1H,J=7.3,3.7Hz),7.07−7.19(m,2H),7.35(dt,1H,J=7.5,3.5Hz),7.44−7.61(m,1H),8.42(br s,3H),8.83−9.10(m,1H)。
置換D−1MTエチルエステルの加水分解の一般的な方法
THF(10mL)中の適切なアミド(0.991mmol)の溶液に、水(3mL)及びリチウム一水和物(67mg、1.59mmol)を添加し、混合物を2時間、周囲温度下で撹拌した。混合物を(0℃で)1MのHClで中和し、氷冷水(20mL)に注いだ。水層をEtOAc(3×35mL)で抽出した。合わせた有機層をNaSO上で乾燥させ、濃縮した。粗生成物をフラッシュカラムクロマトグラフィーにより精製し、所望の生成物を得た。
Boc脱保護の一般的な方法
ジオキサン(2mL)中の適切なBoc保護アミンの溶液(0.707mmol)に、HCl溶液(1.77mL、ジオキサン中の4.0M溶液)を0℃で添加した。溶液を室温まで温め、2.5〜18時間激しく攪拌した。ロータリーエバポレーターを用いて溶媒を除去した。固体を乾燥エーテル(15mL)で希釈し、生成物を濾過して、粗生成物を得た。粗生成物を高真空下で乾燥させ、所望の生成物を得た。
(2−エトキシ−2−オキシド−1,3,2−ジオキサホスホラン−4−イル)メチル 1−メチル−D−トリプトファン塩酸塩(NLG−1559)の合成
2,3−ジヒドロキシプロピル Nα−((tert−ブトキシカルボニル)−1−メチル−D−トリプトファナート(NLG−1559−A−E24)
0℃のアセトニトリル(10mL)中のNLG−1558遊離塩基溶液(0.750mg、2.57mmol)にBocO(560mg、2.57mmol)を添加し、反応物を室温まで温め、4時間攪拌した。溶媒を減圧下で除去し、粗生成物をカラムクロマトグラフィーにより精製し、所望の生成物(760mg、75%)を得た。H NMR:1.34(s,9H),3.13−3.23(m,2H,3.35−3.38(m,1H),3.42−3.45(m,1H),3.67−3.72(m,4H),4.01−4.08(m,2H),5.01−5.04(m,1H),6.83(s,1H),7.05(t,1H,J=7.4Hz),7.16(t,1H,J=7.3Hz),7.23(d,1H,J=8.2Hz),7.49(d,1H,J=7.9Hz)。
(2−エトキシ−2−オキシド−1,3,2−ジオキサホスホラン−4−イル)メチル Na−(tert−ブトキシカルボニル)−1−メチル−D−トリプトファナート(NLG−1559−B−E24)
0℃の乾燥ピリジン(2mL)中のNLG−1559−A−E24の溶液(650mg、1.66mmol)に、POClを添加し、溶液を室温まで温めた。一晩(18時間)攪拌した後、エタノール(1.5mL)を添加し、反応を4時間続けた。溶媒を減圧下で除去し、粗生成物をカラムクロマトグラフィーにより精製した(460mg、57%)。H NMR:1.13(t,3H,J=7.0Hz),1.30(s,9H),3.10−3.20(m,2H),3.47−3.55(m,1H),3.60(s,3H),41.9−4.44(m,3H),4.55−4.57(m,1H),5.23−5.27(m,1H),6.79及び6.83(2つのs,1H),7.01(t,1H,J=7.4Hz),7.12(t,1H,J=7.2Hz),7.18(d,1H,J=9.2Hz),7.46(d,1H,J=7.7Hz)。
(2−エトキシ−2−オキシド−1,3,2−ジオキサホスホラン−4−イル)メチル 1−メチル−D−トリプトファン塩酸塩(NLG−1559)
0℃の乾燥CHCl(10mL)中のNLG−1559−B−E24溶液(550mg、1.14mmol)に無水HCl(1.4mL、ジオキサン中4M溶液)を添加し、混合物を室温まで温めた。2時間攪拌した後、溶媒を減圧下で除去し、粗生成物を乾燥エーテル(3×15mL)で洗浄した。白色固体を濾過し、生成物を減圧下で乾燥させた(0.241g、61%)。(CD3OD−d) 1.20(td,3H,J=7.1,4.3Hz),3.26−3.42(m,2H),3.44(dd,1H,J=5.1,3.0Hz),3.48−3.56(m,1H),3.71(s,3H),3.95(h,2H,J=7.1Hz),4.21−4.36(m,3H),4.37−4.53(m,1H),7.02(t,1H,J=7.4Hz),7.07(d,1H,J=4.0Hz),7.10−7.17(m,1H),7.30(d,1H,J=8.2Hz),7.49(d,1H,J=7.4Hz)。
薬学的に許容される塩の組成物(複数可)
(R)−1−カルボキシ−2−(1−メチル−1H−インドール−3−イル)エタン−1−アンモニウム塩(NLG−1607)の合成
氷冷HCl水溶液(15.5mL、30.9mmol;2M)溶液にD1MT(4.5g、20.6mmol)を添加した。30分間撹拌した後、透明な溶液を減圧下で蒸発させ、粗生成物をエタノール(40mL)で3回蒸発させた。粗生成物をエタノール及びtert−ブチルメチルエーテル中で撹拌し、濾過して、所望の生成物(4.25g、81%)を得た。
別の方法を開発し、250mLのガラス瓶中で約10gのD−1MTを100mLのアセトニトリルで懸濁させた。アセトニトリル(511.2mg/mL)に予め溶解した10mLのHCl溶液を、遊離塩基:酸のモル比を1:1にしてD−1MT遊離形態溶液に添加し、次いで、室温で一晩振盪し続け、塩を形成させた。濾過した固体を30℃で一晩真空乾燥させた。白色粉末(11.1g)を上記プロセスにより得て、XRPD、DSC及びTGAによって性質決定した(図1〜2)。純度は、HPLC分析に基づいて99.7面積%であり、化学量論をELSDより分析し、計算されたモル比(API:HCl酸)は1:1.0であった。偏光顕微鏡(PLM)及びX線粉末分散分析(XRPD、図1)によって評価すると、粉末は結晶であった。熱重量分析(TGA)及び示差走査熱量測定(DSC)によって評価すると、塩は無水物であった(図2)。
(R)−1−カルボキシ−2−(1−メチル−1H−インドール−3−イル)エタン−1−メタンスルホン酸アンモニウム(NLG−1619)の合成
DI水(50mL)中の攪拌溶液メタンスルホン酸(1.50mL、22.9mmol)に100mgずつD−1MT(1.0g、4.48mmol)を添加した。溶液が均質になるまで、溶液を75℃で3時間激しく撹拌した。溶液を減圧下で濃縮し、固体(1.38g、96%)を収集した。H NMR(メタノール−d,400MHz):δ=2.69(s,3H),3.32−3.39(m,1H),3.49(dd,1H,J=15.3,4.9Hz),3.80(s,3H),4.25(dd,1H,J=7.8,4.9Hz),7.10(ddd,1H,J=8.0,7.0,1.0Hz),7.14(s,1H),7.21(ddd,1H,J=8.2,7.0,1.1Hz),7.38(dd,1H,J=8.3,1.1Hz),7.62(dt,1H,J=8.0,0.9Hz)。
(R)−1−カルボキシ−2−(1−メチル−1H−インドール−3−イル)エタン−1−リン酸二水素アンモニウム(NLG−1660)の合成
50℃の脱イオン水(30mL)中のリン酸(0.673g、6.87mmol)の溶液にD−1MT(0.5g、2.29)を少しずつ添加し、混合物を50℃で一晩撹拌した。次いで、溶液を元の体積の半分になるまで濃縮し、室温で一晩放置した。得られた沈殿物を濾過し、冷エタノールで洗浄し、乾燥させ、白色の固体(0.250、34%)としてNLG−1660を得た。H NMR(400MHz,DMSO−d) δ 2.95(dd,1H,J=15.1,8.6Hz),3.22−3.29(m,1H),3.46(dd,1H,J=8.6,4.2Hz),3.71(s,3H),7.00(ddd,1H,J=8.0,7.1,1.0Hz),7.09−7.15(m,2H),7.37(d,1H,J=8.4Hz),7.55(d,1H,J=7.9Hz)。
別の方法を開発し、500mLのガラス瓶中で約10gのD−1MTを100mLのTHFで懸濁させた。THF(792.3mg/mL)に予め溶解した20mLのHPO溶液を遊離塩基:酸のモル比を1:3にしてD−1MT遊離形態溶液に添加し、次いで、室温で一晩振盪し続け、塩を形成させた。濾過した固体を30℃で一晩真空乾燥させ、XRPD、DSC、TGA及びELSDによって確認した。白色粉末(11.1g)を得て、PLM及びXRPDパターン(図3)によって結晶性であることが示された。DSC及びTGAデータ(図4)に基づくと、この塩は無水物であった。純度は、99.8%であり、化学量論をELSDにより分析し、計算されたモル比(遊離塩基:リン酸)は1:0.57であった。
(R)−1−カルボキシ−2−(1−メチル−1H−インドール−3−イル)エタン−1−硫酸水素アンモニウム(NLG−1667)の合成
室温で水/THF(4:1、100mL)中のD−1MT(1.00g、4.58mmol)の懸濁液に0.5MのHSO(9.16mL、4.58mmol)を添加し、混合物を室温で一晩撹拌した。白色固体を濾別し、冷THFで洗浄し、D−1MTの硫酸塩(0.429g、34%)を得た。(DMSO−d)3.17(dd,1H,J=15.1,7.2Hz),3.27(dd,1H,J=15.0,5.3Hz),3.74(s,3H),3.96(t,1H,J=6.2Hz),7.04(t,1H,J=7.4Hz),7.12−7.21(m,2H),7.41(d,1H,J=8.2Hz),7.58(d,1H,J=8.0Hz),8.52(br s,4H)。
インドキシモッドプロドラッグのモノリン酸塩及びジリン酸塩の生成の一般的な方法
0℃でEtOH(5mL)中の遊離塩基(0.747mmol)の溶液にリン酸(0.747mmol、EtOH1mL中の溶液)又は(ジアミンの場合は1.494mmol)を添加し、混合物を室温まで温め、5〜18時間撹拌した。溶媒を減圧下で除去し、残渣をメチルtert−ブチルエーテル(10mL)で希釈し、1〜5時間撹拌した後、固体を濾過し、減圧下で乾燥させ、所望の生成物を得た。NLG−03380−02の場合は、遊離塩基を、イオン交換樹脂を用いてNLG−03380−01から生成した。
インドキシモッドプロドラッグのモノメタンスルホン酸塩及びジメタンスルホン酸塩並びにモノベンゼンスルホン酸塩及びジベンゼンスルホン酸塩の生成の一般的な方法
室温でエタノール(10mL)中の遊離塩基(0.25g、0.723mmol)の溶液に、メタンスルホン酸又はベンゼンスルホン酸(ジアミンの場合は0.723mmol又は1.446mmol)を添加し、混合物を室温で一晩撹拌した。エタノールを蒸発させ、粗生成物を1〜5時間、メチルtert−ブチルエーテルで撹拌した。沈殿物を濾過し、乾燥させ、対応するメタンスルホン酸塩又はベンゼンスルホン酸塩を得た。
インドキシモッド及びインドキシモッドプロドラッグのモノ硫酸塩、二硫酸塩及び硫酸水素塩の生成の一般的な方法
0℃の乾燥THF(10mL)中の遊離塩基(1.22mmol)の溶液に、THF(2mL)中の溶液として硫酸(0.611mmol又は1.22mmol)を添加し、溶液を室温まで温めた。2〜6時間攪拌した後、溶媒を蒸留して取り除き、粗生成物をメチルtert−ブチルエーテルで撹拌し、固体を濾過し、真空下で乾燥させ、所望の生成物を得た。
(R)−メチル 2−(((2−(1H−イミダゾール−4−イル)フェノキシ)カルボニル)アミノ)−3−(1−メチル−1H−インドール−3−イル)プロパノアート(NLG−1264)の合成
DMF(3mL)中の2−(1H−イミダゾール−4−イル)フェノール(1.0mmol)(J.Med.Chem.,2008,51(16),pp 4968−4977に従って調製した)の溶液に、トリエチルアミン(1.1mmol)を添加した。10分間撹拌した後、DMF(2mL)中の4,4’−ジメトキシトリチルクロリド(1.0mmol)の溶液を滴下した。窒素雰囲気下で一晩撹拌した後、反応混合物を氷水(10mL)に注いだ。固体を濾別し、冷水で洗浄し、酢酸エチルに溶解した。有機層をNa2SO4上で乾燥させ、濃縮し、粗生成物をさらに精製することなく次の工程にもっていった。DCM(3mL)中の(R)−メチル 2−アミノ−3−(1−メチル−1H−インドール−3−イル)プロパノアート(0.5mmol)(Paul Cox,Donald Craig,Stephanos Ioannidis,Volker S.Rahn,Tetrahedron Letters 2005,46,4687によって記載されたように調製した)の懸濁液に、0℃でトリホスゲン(0.5mmol)及びEt3N(2.0mmol)を添加した。溶液を1時間撹拌し、濃縮乾固した。粗残渣を精製することなく直ちに次の工程で使用した。粗残渣をDCM(5mL)に溶解し、フェニルイミダゾール誘導体(0.5mmol)及びDMAP(1.5mmol)を添加した。得られた溶液を室温で一晩撹拌した。溶媒を減圧下で除去し、粗残渣をシリカゲルのプラグを通して濾過し、濃縮した。残渣にMeOH(3mL)及びAcOH(2mL)を添加し、溶液を室温で30分間攪拌した。溶液を水で希釈し、固体K2CO3(pH約8〜9)で塩基性にした。水溶液をEtOAcで抽出し、合わせた有機層を水、ブラインで洗浄し、乾燥させた(Na2SO4)。粗残渣をシリカゲル上のカラムクロマトグラフィーにより精製し、化合物(21%収率)を得た。1H NMR:3.20−3.48(m,2H),3.66(s,3H),3.70(s,3H),4.61−4.75(m,1H),6.57(d,1H,J=7.2Hz),6.90−7.30(m,7H),7.50−7.58(m,1H),7.10−7.76(m,2H)。
実施例2:インドキシモッド遊離塩基の固体形態の性質決定
D−1MT(HPLC純度99.6%)遊離塩基は白色粉末であり、偏光顕微鏡(PLM)下及びX−線粉末分散分光法(XRPD)によって複屈折、針状及び結晶の外観を示す(図1)。D−1MTは、熱重量分析(TGA)及び示差走査熱量測定(DSC)によって293.8℃で開始し、30〜200℃で約0.01重量%を失った単一の溶融吸熱ピークのみを示すことから、これが無水物の形態であることを示す。この結晶形態は、非吸湿性(0〜80%RHで0.09重量%増加)であり、動的蒸気収着法(DVS)後に変化を示さない。さらに、固体粉末形態の安定性研究は、D−1MTが試験条件(25℃/60%RH、40℃、40℃/75%RH、60℃及び70℃)で4週間、化学的に安定であることを示す。加えて、0.1NのHCl、及び50mMのリン酸緩衝液pH2〜8の溶液中で、24時間、25℃でも安定であるが、0.3%Hを有するpH2及びpH8の緩衝液中で多少の分解(0.45%〜3.3%)を示す(ほとんどの不純物がRRT=0.58であった)。
実施例3:インドキシモッド遊離塩基の溶解度の性質決定
緩衝溶液又は非緩衝溶液、並びに模擬生物学的流体(SGF、FaSSIF又はFeSSIF)中の遊離塩基としてのインドキシモッドの溶解度を、図5(オープンシンボル)に示す。pH2〜8の水溶液中のインドキシモッドの溶解度は1.8〜2.0mg/mLであり、pH<1.5又は>10では溶解度はより高かった。中性のpH範囲でのこの低い溶解度は、結晶中のインドキシモッドの高分子パッキングエネルギーが原因である可能性が高く、293.8℃の非常に高い融点によって反映される。腸のpHに相当するpH範囲のインドキシモッドのこの低い溶解度は、ヒトにおける800mg超の用量での用量制限吸収を部分的に説明し得る。したがって、発明者らは、インドキシモッドの塩又は噴霧乾燥分散液が、経口投与後に溶解性及び曝露を増加させることができるかどうかを調べた。
実施例4:インドキシモッドの塩及びそれらの溶解性の性質決定
インドキシモッドのいくつかの塩を製造し、それらの物理化学的性質を評価した(表2)。塩酸塩、硫酸塩、リン酸塩、ヘミ−リン酸塩、メシル酸塩及びヘミメシル酸塩は、白色固体粉末であり、PLM及びXRPDによって結晶性を示し、TGAにより無水物であった。これらの塩は、遊離塩基よりも低い融点を示し、>1.5及び<10のpHの範囲の水の中で溶解度の増加を示唆した。これらの塩のほとんどは、水中で約4.7〜8.6mg/mL及びSGF中で5.5〜10.6mg/mLまで溶解度の増加を示し、塩酸塩は、水又はSGF中で200mg/mLを超える溶解度へ非常に著しい増加を示した。
試験した別のインドキシモッド塩はマレイン酸塩であり、PLM及びXRPDによって194℃の低融点並びに不十分な結晶性を示した。この塩は、水和物又は溶媒和物の形態の粘着性の白色粉末(TGAによる4.5重量%の損失)の外観を有する。
トシル酸塩は、褐色油状の外観を示し、有効成分の腸吸収を増加させることができるものとして有利であり得る。
他の塩は、あまり良好な物理化学的性質を有していなかった。例えば、乳酸及びN−メチルグルカミンはインドキシモッドと塩を形成せず、その結晶は、インドキシモッド遊離塩基結晶とN−メチルグルカミン又は乳酸の結晶の混合物を示した。
ナトリウム塩は結晶形態を示さず、TGA若しくはDSCによって非常に低い融点及び複数の分解ピークを有する水和物又は溶媒和物であることが分かったため、さらなる性質決定を行わなかった。
実施例4:インドキシモッドの噴霧乾燥分散体
SDD製剤が、吸収性を高めることができるように胃腸液中でインドキシモッドの過飽和状態を生成し、維持することによって分子の吸収を増加させることができるかどうかを評価するために、インドキシモッド噴霧乾燥分散液(SDD)製剤のリストを作った。本研究では、SDD製剤を2つの方法:ホットプロセス噴霧乾燥−噴霧乾燥前に製剤溶液を110℃まで加熱させる方法、及び基本的な噴霧乾燥−噴霧乾燥前に、製剤のpHを約11.5(室温)まで上昇させる方法によって作製した。各SDD製剤の性能は、模擬胃緩衝液(GB)及び擬似腸液(SIF)中でインビトロ溶解試験により調べた。表3に示すように、CmaxGBは、十分なSDD製剤を30分間、GBに溶解した場合の、溶液中のインドキシモッドの最大濃度を表し、Cmax90は、SDDを90分間、SIFに溶解した場合の、最大インドキシモッド濃度を表し、UltraC90は、90分の溶解後、全ての微粒子を除去するために超遠心分離した後のSIF中の濃度を表し、UltraC1200は、1200分の溶解後、全ての微粒子を除去するために超遠心分離した後のSIF中の濃度を表す。SDD製剤は、動物だけでなく、人間に投与した時に、GB及びSIF中のインドキシモッドの濃度を増加させると、インドキシモッドの吸収が増加することが予想された。これらのSDD製剤を評価するための別の基準は、これらの製剤中のインドキシモッドの物理的及び化学的安定性であった。ホットプロセス噴霧薬方法で作製したSDD製剤は、一般的に、基本的なプロセス噴霧乾燥によって作製した製剤よりも安定であることが判明した。加えて、最終製剤の投与量を減少させる可能性があるので、粉末中のより高い薬物負荷が好まれた。全てのこれらの基準に基づいて、2種類のSDD製剤を、サルにおけるさらなるインビボPK試験のために選択した。第1のものは、50%インドキシモッド/50%PVPVA−64であり、インドキシモッドよりも1.8倍増加した予測腸濃度(UltraC90 3293ng/mL対1849ng/mL)を示し、第2のものは、50%インドキシモッド/50%アフィニソール(Affinisol)126であり、インドキシモッドよりも2.3倍高い予測腸濃度(UltraC90 4340ng/mL対1849ng/mL)を示した。これらのSDDは、ホットプロセス噴霧乾燥によって調製したものであり、より良好な安定性を示した。
実施例5:カニクイザルにおけるインドキシモッド遊離塩基、インドキシモッド塩及びインドキシモッドSDDの薬物動態比較
インドキシモッド遊離塩基と比較して溶解度の増加を示す塩又はSDDが、インドキシモッドの最大濃度(Cmax)及び総曝露(AUC0〜∞)の増加をもたらすかどうかを決定するために、発明者らは、ヒトの経口バイオアベイラビリティを予測するために使用される一般的な種であるカニクイザルにおいて比較クロスオーバー薬物動態試験を行った。それぞれ4匹のサル(全て雄)の2つのグループに、1)インドキシモッド遊離塩基カプセル;2)インドキシモッド塩酸塩カプセル;3)インドキシモッドのヘミリン酸塩カプセル;4)SDD1懸濁液(インドキシモッド 50%/50% PVPVA−64,(w/w))及び5)SDD2懸濁液(インドキシモッド 50%/Affinisol 126 50%(w/w))を、275μmol/kg(グループ1)又は825μmol/kg(グループ2)で経口投与した。各サルに、7日ごとに1回、5種類の製剤のそれぞれを投与し、血液試料を0、0.25時間、0.5時間、1時間、2時間、4時間、6時間、8時間、12時間、24時間、36時間及び48時間の時点で採取した。インドキシモッドの濃度を、有効なLC−MS/MS分析法により血漿から決定した。Cmax及びAUC(0〜48時)を、WinNonLinソフトウェア(Certara)を使用して、非コンパートメント解析により計算した。カプセル製剤中のインドキシモッドについては、グループ1の動物に3つのカプセルAを経口投与し、グループ2の動物に4つのカプセルBを投与した。カプセルA及びカプセルBの組成物を表4に示す。SDD製剤中のインドキシモッドについては、グループ1の動物に、15mgのインドキシモッド/mL懸濁液の4mL/kgを投与し、グループ2の動物に、45mgのインドキシモッド/mL懸濁液の4mL/kgを投与した。SDD懸濁製剤は、0.5%メチルセルロース(Methocel)で調製した。
インドキシモッドの各製剤を投与した後に得られた、各グループで観察された平均Cmax及びAUC(0〜48時)のパラメータの値を表5に示す。インドキシモッド遊離塩基のものに対する各製剤の比較のために得られたこれらの値及びP値の増加の割合を表5に示す。インドキシモッドHClカプセルの投与は、インドキシモッド遊離塩基カプセルの投与と比較して、試験した両方の用量レベルでCmax(31〜65%)及び曝露(37〜53%)の著しい増加をもたらす。同様に、インドキシモッドヘミリン酸塩カプセルは、Cmax(7〜44%)及び曝露(27〜34%)の著しい増加をもたらした。逆に、SDD1又はSDD2製剤中のインドキシモッドは、Cmaxの著しい増加(15〜94%)をもたらしたが、インドキシモッド遊離塩基カプセルに対して曝露全体を高めることはできなかった。これらの理由から、それらの塩酸塩、ヘミ−リン酸塩又はリン酸塩中のインドキシモッド塩は、その遊離塩基形態、カプセル剤又はスプレー乾燥分散体中のいずれかのインドキシモッドより好ましい。
この研究は、インドキシモッドの塩酸塩及びリン酸塩が275〜825μmol/kgの用量範囲で、遊離塩基に対するCmax及びAUCの薬物動態パラメータの増加をもたらすことができることを示す。
実施例6:ラットにおけるカプセル製剤中のインドキシモッド塩の薬物動態試験
塩形成が、ラットにおいてインドキシモッドの最大濃度(Cmax)及び総曝露(AUC0〜∞)を増加させるかどうかを決定するために、発明者らは、インドキシモッドの塩酸塩、リン酸塩、硫酸塩及びメシル酸塩を試験し、適切な賦形剤と混合してこれらをカプセルに製剤化した。3つの用量レベル:37、185又は500μmol/kgを検討した。
表6.1〜6.3に示す比率で微結晶性セルロース、ラクトース一水和物、クロスカルメロースナトリウム及びステアリン酸マグネシウムからなる賦形剤を含めて又は含めないで、インドキシモッド又はその塩をカプセルあたり11.4、28.6又は50μmolを含有するゼラチンカプセル(Torpac、20mgの容量)を調製した。カプセルを手作業で充填し、各バッチからのカプセルの代表的な試料の組成均一性を、平均インドキシモッド含有量を決定するために、重量及びLC−MS/MSにより確認した。
遊離塩基又は塩形態のインドキシモッドを投与することによって達成される薬物動態プロファイルを試験するために、ラットに37、185及び500μmol/kgの用量レベル(それぞれ8、40及び110mg/kgのインドキシモッドに相当)を達成するために、1個のカプセルA、2個のカプセルB又は3個のカプセルCを胃内送達によって投与した。全ての交絡食品の影響を排除するために、ラットを投与前に16時間絶食させ、投与後2時間の時点で食べ物を戻した。投与後0、15分、30分、1時間、2時間、4時間、6時間、10時間、24時間、48時間及び72時間の時点で、各ラットから血液試料を採取した。血漿中のインドキシモッドの濃度を、LC−MS/MSによって決定し、薬物動態パラメータを、ソフトウェアのWinNonLin(Certara)を用いて計算した。
評価した最も関連する薬物動態パラメータは、インドキシモッドの最大濃度(Cmax)及び総曝露(AUC0〜∞)であった。表7.1〜7.3及び図6は、実験結果の要約を示す。
インドキシモッド塩酸塩形態は、低用量レベルでCmaxの統計的に有意でない減少、中間用量で統計的に有意な増加及び高レベルで統計的に有意な減少をもたらす。塩酸塩の薬物曝露(AUC)は、低用量及び高用量レベルで有意な変化を示さなかったが、中間レベルで有意な増加を示した。この塩の溶解度及び溶解プロファイルに基づくと、霊長類と比較してげっ歯類におけるインドキシモッド塩酸塩の異なる挙動は、予想外であり、用量依存的傾向を辿らず、ヒトでの薬物動態プロファイルの予測にとって、種特異性試験及び用量依存性試験を行うことの重要性を強調する。
インドキシモッドリン酸塩及びヘミリン酸塩は、低用量及び中間用量レベルでCmax及びAUCの有意な増加を示したが、Cmaxの有意な減少及び最高用量レベルでの曝露において統計的に有意でない減少を示した。
インドキシモッドの遊離塩基、HCl及びPOの形態についてのCmax並びにAUCの用量依存的相関を図6に示す。この図は、低い及び中間用量レベルで遊離塩基に対してHCl及びPO塩のCmaxの増加を示すが、最高用量レベルではCmax用量−反応曲線に飽和を示し、これは遊離塩基では見られない。AUCの用量−反応曲線は、PO塩を除いて、用量と共にAUCのより直線的な増加を示し、これは試験した最高用量レベルでは用量に比例して増加するようには思われない。
同様に、硫酸塩又メシル酸塩などのインドキシモッドの他の塩形態は、37μmmol/kgで試験した場合に、Cmax及びAUCを約30〜40%増加させる。
これらの試験は、インドキシモッドの塩酸塩及びリン酸塩が、遊離塩基形態に対して溶解度を増加させ、Cmax及びAUCのパラメータ値の増加を表すことを示す。
実施例7:液体製剤中のインドキシモッドプロドラッグの薬物動態試験
異なるプロドラッグの溶解性又は可溶化率に影響を与える可能性のある多形結晶又は非晶質固体の違いなどの固体状態形態の違いを反映することなく、腸透過性及びプロドラッグのインドキシモッドへのインビボ変換における差異のみを反映するような方法で、いくつかのインドキシモッドプロドラッグの経口投与後に得られたインドキシモッドの薬物動態プロファイルを試験した。したがって、インドキシモッド及びそのプロドラッグの各々を、生理食塩水、クレマホール(Cremaphor(登録商標)):エタノール:生理食塩水(10:10:80)、又はCremaphor:EtOH:生理食塩水:HCl(10:10:80:0.1N)のいずれかである適切なビヒクルに可溶化した。インドキシモッド又はそのプロドラッグを、1mg/mLの濃度で溶解し、10mg/kgの最終用量を達成するために10mL/kgで経口経管栄養によってラットに投与するか、又は25mg/mLで溶解し、50mg/kgの最終用量を達成するために2mL/kgで経口経管栄養によってラットに投与するか、又は10mg/mLの濃度で溶解し、50mg/kgの最終用量を達成するために5mL/kgで経口経管栄養によってマウスに経口投与した。血液試料(0.1〜0.2mL)を、ラットの大腿動脈ポートから採取するか、又はマウスから後眼窩出血により採取し、血漿を遠心分離により直ちに回収し、血漿収集後のプロドラッグの加水分解を回避するために、ドライアイス上で保存した。血液試料を、ラットから投与後0、15分、30分、1時間、2時間、4時間、6時間、10時間、24時間、48時間及び72時間の時点で採取するか、又はマウスから投与後0、30分、1時間、2時間、4時間、6時間、16時間及び24時間の時点で採取した。血漿中のインドキシモッド及び各プロドラッグの濃度をLC−MS/MSによって決定し、インドキシモッド及びそのプロドラッグの薬物動態パラメータを計算した。薬物動態パラメータは、個々のラット(n)から得られた個々のパラメータ値の平均値又はマウス(n)のグループから得られた血液試料由来の単一薬物動態曲線からの1つの共通パラメータを反映する。
表8.1及び8.2は、インドキシモッド又は試験プロドラッグの各1つのいずれかを投与した後に得られるインドキシモッドのCmax及びAUC(0〜∞))を示す。各プロドラッグ投与後に得られたCmax及びAUC(0〜∞)対遊離塩基としてのインドキシモッド投与後に得られたCmax及びAUC(0〜∞)の値を比較するために、全てのラットに10mg/kgの同一の用量で経口投与したが、各プロドラッグは異なる分子量を有しており、測定したCmax及びAUC(0〜∞)を、それらにMWプロドラッグ/MWインドキシモッドの比に乗じることで正規化し、約2倍の用量範囲内の線形薬物動態を仮定した。
表8.1は、いくつかのプロドラッグがCmax、AUC又は両方の薬物動態パラメータに有効な増加をもたらすことを示す。これらのプロドラッグを完全な可溶性形態で投与したので、血漿中のインドキシモッドのCmax及び/又はAUCの増強を示すそれらのプロドラッグは、腸管細胞壁を通るプロドラッグの透過性の向上、インドキシモッドに対するプロドラッグのクリアランスの低下及び、プロドラッグのインドキシモッドへの良好なインビボ変換率を含む要因の組合せが関与する機構によってこれを行うことが示唆される。すべてのインドキシモッドのプロドラッグ形態が、インドキシモッドの投与と比較して増強したインドキシモッドの最大濃度及び曝露をもたらすわけではなかった。特に、インドキシモッドに対する曝露(AUC)は、NLG−1563、NLG−1564、NLG−1566、NLG−1548、NLG−1572、NLG−1557、NLG−1559、NLG−1570、NLG−1565、NLG−1554、NLG−1558、NLG−1551、及びNLG−1547を投与した時に高まるように思われるが、インドキシモッドのCmaxは、NLG−1557、NLG−1558、NLG−1554、NLG−1566、NLG−1570、NLG−1283及びNLG−1263を投与した時に高まるように思われる。
表8.2は、10mg/kgでラットに経口投与した時に、インドキシモッドのCmaxにもインドキシモッド曝露にも有効な増加をもたらさなかったプロドラッグを示し、これらの化学的置換のいくつかは、透過性若しくはインドキシモッドへの変換率を減少させるか、又はインドキシモッドへの変換をもたらさない経路でプロドラッグクリアランスの速度を増加させるか、又はこれらの効果の組み合わせのいずれかであり得ることを示す。
表8.3は、50mg/kgでラットに経口投与することにより試験したプロドラッグを示す。NLG−1283は、50mg/kgでラットに投与した時に、Cmax及びAUCを増加させる。しかし、このプロドラッグは、50mg/kgでマウスに投与した時に、Cmax及びAUCの低下をもたらす。逆に、非常に類似した分子のNLG−1284は、ラットに50mg/kgで投与した時に、Cmax又はAUCを著しく増加させないが、マウスではCmax及びAUCを著しく増加させることから、異なる種は、これらのプロドラッグの吸収、排出及び代謝の異なる速度を有していること、並びに分子構造の最小限の変更は異なる種で結果に影響を与え得ることが示唆される。インドキシモッドを10、50及び100mg/kgで投与するか、又はプロドラッグのNLG−1626若しくはNLG−1665を同様の用量で投与した時の用量依存性PKをマウスで行った。遊離塩基としてのプロドラッグ対インドキシモッドの投与間の比較の注意点は、プロドラッグが投与製剤に完全に可溶性であるが、インドキシモッドは、50及び100mg/kgの用量では不溶性であることであった。これは、完全な可溶性形態で投与した時よりもCmaxは低いがAUCは高いインドキシモッドの時間依存性制御放出効果をもたらし得る。NLG−1626及びNLG−1665は、懸濁液中のインドキシモッドを投与した時に観察されるものと比較して、試験した全ての用量でインドキシモッドのCmaxの著しい増加をもたらした。しかし、NLG−1626は、インドキシモッドのAUCの用量依存的な増加を示したが、AUCの増加の割合はより高い用量で減少する。表8.3はまた、インドキシモッドのアミノ基上でカルバメートを形成すると、インドキシモッドの薬物動態パラメータが顕著に減少するプロドラッグをもたらすことを示す。
実施例8:ラットにおける固体カプセル製剤でのインドキシモッドプロドラッグ塩の薬物動態試験
どのプロドラッグが、カプセル製剤での経口投与後のインドキシモッドのより高い血漿濃度及びインドキシモッドに対する曝露の増加を達成するのに必要な薬理学的特性(可溶化率、溶解性、腸透過性、クリアランス速度及びインドキシモッドへの代謝速度)の最高の組み合わせセットを有するかを試験するために、溶液で投与した時にインドキシモッドのCmax又は曝露が増強したプロドラッグを、いくつかの塩形態で調製し、賦形剤と混合して、粉末混合物を形成させた。これらの混合物を、各カプセルが同モル量の各プロドラッグを含有するように製剤化した。表9.1a及び9.1bに示す割合で、微結晶セルロース、ラクトース一水和物、クロスカルメロースナトリウム及びステアリン酸マグネシウムからなる賦形剤混合物中に、インドキシモッド遊離塩基の11μmol/カプセルA、28μmol/カプセルB又は50μmol/カプセルC(それぞれ、2.5、6.3又は11.4mg/カプセル)又は多様な塩形態のそのプロドラッグを含有するゼラチンカプセル(Torpac、20mg容量)を調製した。各バッチからのカプセルの代表的な試料の組成及び均一性を、平均インドキシモッド又はプロドラッグ含有量を決定するために重量及びLC−MS/MSにより確認した。
異なる塩形態のインドキシモッドプロドラッグを投与することによって達成される薬物動態プロファイルを試験するために、1つのカプセルA(11μmol/カプセル)又は2つのカプセルB(28μmol/カプセル)3つのカプセルC(50μmmol/カプセル)を胃内送達によってラットに投与した。試験した投与レベルは、11μmol/カプセルのカプセルAを投与した場合に対応する8mg/kg(37μmol/kg)のインドキシモッド、28μmol/カプセルのカプセルBを投与した場合に対応する40mg/kg(185μmol/kg)のインドキシモッド及び50μmmol/カプセルのカプセルCを投与した場合に対応する110mg/kg(500μmol/kg)のインドキシモッドに対応した。全ての交絡食品の影響を排除するために、ラットを投与前に16時間絶食させ、投与後2時間の時点で食べ物を戻した。投与後0、15分、30分、1時間、2時間、4時間、6時間、10時間、24時間、48時間及び72時間の時点で、各ラットから血液試料を採取した。血漿中のインドキシモッドの濃度を、LC−MS/MSによって決定し、薬物動態パラメータを、ソフトウェアのWinNonLin(Certara)を用いて計算した。
最も関連すると評価された薬物動態パラメータは、インドキシモッドの最大濃度(Cmax)及びインドキシモッドの総曝露(AUC0〜∞)であった。表10.1及び10.2は、実験結果のまとめを示す。
薬物動態パラメータの統計的比較により、37〜185μmmol/kgで投与される塩酸塩(NLG−1564)、リン酸塩(NLG−1665)、メシル酸塩(NLG−1666)又はベシル酸塩(NLG−1671)の塩形態のエチル Nα−(L−ロイシル)−1−メチル−D−トリプトファナートが、インドキシモッドの曝露を33〜127%まで有意に(p<0.05)増加させることができたが、その硫酸塩(NLG−1691)はそれらの用量でCmax又はAUCの有意な増加をもたらさなかったことが示された。同様に、Cmaxの有意な増加が、NLG−1564、NLG−1665及びNLG−1666について観察された。500μmol/kgの用量で、NLG−1564塩酸塩は、インドキシモッドと比較してCmax及びAUCのわずかな増加を示した。
表10.2は、リン酸形態の2,3−ジヒドロキシプロピル 1−メチル−D−トリプトファナート(NLG−1626)がCmax(37〜153%)及びAUC(46〜75%)の有意な増加をもたらしたが、その塩酸塩(NLG−1558)、及び硫酸塩(NLG−1628)はCmax及びAUCに有意な増加をもたらさなかったことを示す。興味深いことに、2,3−ジヒドロキシプロピル 1−メチル−D−トリプトファナート(NLG−1627)のメシル酸塩が、Cmax及びAUCの減少をもたらしたが、この減少は統計的に有意ではなかった。
表10.2はまた、エチル Nα−(L−メチオニル)−1−メチル−D−トリプトファナート(HCl、及びリン酸塩、NLG−3272)が37〜500μmmol/kgの用量でCmax及びAUCの統計的に有意な増加を示すことを示す。
研究した他のプロドラッグには、a)エチル Nα−(L−グルタミニル)−1−メチル−D−トリプトファナート(遊離塩基、HCl、リン酸塩又はメシル酸塩)、b)Nα−グリシル−1−メチル−D−トリプトファン((HCl又はリン酸塩)、c)メチル N−((R)−1−エトキシ−3−(1−メチル−1H−インドール−3−イル)−1−オキソプロパン−2−イル)−L−アスパラ銀酸塩(HCl形態)及びd)Nα−(L−リシル)−1−メチル−D−トリプトファン(遊離塩基、HCl、硫酸塩又はリン酸塩)が含まれた。これらのプロドラッグは、等モル用量のインドキシモッドと比較して、インドキシモッドのCmax又はAUCのわずかで、統計的に有意ではない変化をもたらした(表10.3)。
興味深いことに、HCl又はリン酸塩形態(NLG−1563及びNLG−1664)のピペリジン−4−イルメチル 1−メチル−D−トリプトファナートは、インドキシモッドのCmax(69〜79%、p<0.004)及びAUC(54〜64%、p<0.014)の統計的に有意な減少をもたらした。この化合物は、経口溶液を介して投与した時にCmax(24%)及びAUC(75%)の増加を示したので、可溶化速度又は最終溶解性の差異が、粉末形態で投与した時に観察された差異を説明し得る。
実施例9:カニクイザルにおける固体カプセル製剤中のインドキシモッドプロドラッグ塩の薬物動態試験
ラットは、最大100mg/kgのインドキシモッドの用量での曝露において非飽和線形増加を示し、一方ヒトは、10mg/kgの用量を超える飽和性曝露を示すので、発明者らは、ラットよりもヒトの薬物動態を予測するのにより良好なモデルを構成し得る霊長類において2種類のプロドラッグを評価することを決めた。各動物が7日ごとにインドキシモッド、NLG1564 HCl又はNLG−3272 HClのいずれかの同じモル用量を投与されるクロスオーバー試験デザインにおいて、カニクイザル(4.5〜5kg)に92、275又は875μmmol/kgの用量でインドキシモッド、NLG1564 HCl又はNLG−3272 HClを投与した。カプセルを、表9.2に記載の製剤化に従って調製した。サルに1又は3つのカプセルA(458μmol/カプセル)又は4つのカプセルB(1032μmol/カプセル)を経口投与した。投与後0、5分、15分、30分、1時間、2時間、4時間、8時間、12時間、24時間、26時間及び48時間の時点で血液試料を採取し、プロドラッグ及びインドキシモッドの濃度を有効なLC−MS/MS法によって分析した。
表11.1のデータは、NLG−1564 HClが統計的に有意にインドキシモッドのCmaxを230〜500%及びAUCを195〜518%増加させることを示す。同様に、NLG−3272 HClは、統計的に有意にインドキシモッドのCmaxを約305〜411%及びAUCを136〜393%増加させる。霊長類における薬力学的指標の増加は、ラットで観察された結果よりも予想外に優れており、霊長類において、本発明のインドキシモッドのプロドラッグは、インドキシモッドの最大濃度及び曝露の著しい改善を提供することができ、ヒト患者における薬物に対する曝露及び治療有効性を改善することが期待されることを示した。
n:平均薬物動態パラメータを決定するために使用したラットの数
Cmax(μΜ):血漿中で観察されるインドキシモッドの最大濃度。値は、nの値の平均である。
正規化したCmax(μΜ):各プロドラッグのMWとインドキシモッドのMWの比並びにインドキシモッドとプロドラッグの用量(mg/kg単位)の比を、観察される血漿中のインドキシモッドのCmaxに乗じることによって計算したインドキシモッドの最大平均濃度。これは同じモル用量(μmol/kg)に対してCmaxを正規化する。
正規化したCmaxの変化(%):[Cmax(プロドラッグからのインドキシモッド)/Cmax(インドキシモッドからのインドキシモッド)−1]×100として計算した。
AUC(0〜∞)(μM.時):血漿中で観察される曲線下面積[インドキシモッド]対時間。値は、nの値の平均である。
正規化したAUC(0〜∞)(μM.時):各プロドラッグのMWとインドキシモッドのMWの比並びにインドキシモッドとプロドラッグの用量(mg/kg単位)の比を、観察される血漿中のインドキシモッドのAUC(0〜∞)に乗じることによって計算した平均AUC。これは同じモル用量(μmol/kg)に対してAUCを正規化する。
AUC(0〜∞)の変化(%):[AUC(0〜∞)(プロドラッグからのインドキシモッド)/AUC(0〜∞)(インドキシモッドからのインドキシモッド)−1]×100として計算した。
参考文献
1. McGaha, T.L., et al., Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol Rev, 2012. 249(1): p. 135−57.
2. Li, L., et al., Altered tryptophan metabolism as a paradigm for good and bad aspects of immune privilege in chronic inflammatory diseases. Front Immunol, 2012. 3: p. 109.
3. Munn, D.H., et al., Prevention of allogeneic fetal rejection by tryptophan catabolism. science, 1998. 281(5380): p. 1191−3.
4. Muller, A.J., et al., Inhibition of indoleamine 2,3−dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med, 2005. 11(3): p. 312−9.
5. Peterson, A.C., et al., Evaluation of functionalized tryptophan derivatives and related compounds as competitive inhibitors of indoleamine 2,3−dioxygenase. Medicinal Chemistry Research, 1994. 3: p. 531−544.
6. Hou, D.Y., et al., Inhibition of indoleamine 2,3−dioxygenase in dendritic cells by stereoisomers of 1−methyl−tryptophan correlates with antitumor responses. Cancer Res, 2007. 67(2): p. 792−801.
7. Metz, R., et al., IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D−1−methyl−tryptophan. Oncoimmunology, 2012. 1(9): p. 1460−1468.
8. Sharma, M.D., et al., Plasmacytoid dendritic cells from mouse tumor−draining lymph nodes directly activate mature Tregs via indoleamine 2,3−dioxygenase. J Clin Invest, 2007. 117(9): p. 2570−82.
9. Sharma, M.D., et al., Indoleamine 2,3−dioxygenase controls conversion of Foxp3+ Tregs to TH17−like cells in tumor−draining lymph nodes. Blood, 2009.
10. Holmgaard, R.B., et al., Indoleamine 2,3−dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA−4. J Exp Med, 2013. 210(7): p. 1389−402.
11. Munn, D.H., et al., GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3−dioxygenase. Immunity, 2005. 22(5): p. 633−42.
12. Fallarino, F., et al., The combined effects of tryptophan starvation and tryptophan catabolites down−regulate T cell receptor zeta−chain and induce a regulatory phenotype in naive T cells. J Immunol, 2006. 176(11): p. 6752−61.
13. Kumar, S., et al., Structure based development of phenylimidazole−derived inhibitors of indoleamine 2,3−dioxygenase. J Med Chem, 2008. 51(16): p. 4968−77.
14. Banerjee, T., et al., A key in vivo antitumor mechanism of action of natural product−based brassinins is inhibition of indoleamine 2,3−dioxygenase. Oncogene, 2008. 27(20): p. 2851−7.
本発明の好ましい実施形態においては、例えば、以下が提供される。
(項1)
式1a:

(式中、A −p は、イオン化状態−pの無機又は有機陰イオンであり、前記陰イオンは、分子を確実に電荷中性にする化学量論比nで存在する)
によるインドキシモッドの塩。
(項2)
−p が、塩化物、リン酸塩、硫酸塩、メシル酸塩、ベシル酸塩、酢酸塩、アスコルビン酸塩、アスパラギン酸塩、グルタミン酸塩、グルタル酸塩、乳酸塩、マレイン酸塩、マロン酸塩、シュウ酸塩、コハク酸塩、フマル酸塩、酒石酸塩及びクエン酸塩からなる群から選択される陰イオンであり、電荷中性の化学量論的な条件が満たされるように、前記イオン化状態−pが−1、−2又は−3であり、前記化学量論比nが1、1/2又は1/3である、上記項1に記載の塩。
(項3)
前記リン酸塩がHPO −2 であり、前記HPO −2 が0.5の化学量論比nで存在する、上記項2に記載の塩。
(項4)
前記リン酸塩がHPO であり、前記HPO は1の化学量論比nで存在する、上記項2に記載の塩。
(項5)
前記陰イオンA −pn がCl であり、前記Cl が1の化学量論比で存在する、上記項1に記載の塩。
(項6)
前記メシル酸塩がCH SO であり、前記CH SO が1の化学量論比nで存在する、上記項2に記載の塩。
(項7)
式1b:

(式中、C +p は、イオン化状態+pの無機陽イオンであり、前記陽イオンは、前記塩の分子を確実に電荷中性にする化学量論比mで存在する)
によるインドキシモッドの塩。
(項8)
+p が、Li 、Na 、K 、Mg +2 及びCa +2 からなる群から選択され、pが+1である場合、mは1であり、pが+2である場合、mは1/2である、上記項7に記載の塩。
(項9)
式2:

(式中、
(a)R は、−OH、−OC 2−3 アルキル、−OCH CH(OH)CH OH、−O(CH N(CH 、−OC 1−3 アルキル−R 、−NHC (S) HR (COOH)、−NHC (R) HR (COOH)、−OC 1−6 アルキルR 、−OC 1−2 アルキル−C (S) H(NH )(COOH)、又は−OC 1−2 アルキル−C (R) H(NH )(COOH)であり;
(b)R は、H、−C(O)C (S) H(NH )R 、−C(O)C (R) H(NH )R 、−C(O)CH (S) H(NH )、−C(O)OCH 、−C(O)OR 、又は−C(O)NHR であり;
(c)R は、テトラヒドロピランであるか、又は

であり;
(d)R は、H、−C 1−5 アルキル、−(CH 1−2 SH、−C 1−5 アルキルSC 1−5 アルキル、−C 1―5 アルキルOC 1−5 アルキル、−CH −R 、−CH OH、−CH(OH)CH 、−(CH 1−2 C(O)NH 、−(CH 1−3 C(O)OH、−(CH 1−4 NH 、又は−(CH 1−3 NC(=NH )NH であり;
(e)R がHではない場合、C (S) 及びC (R) は、それぞれS又はR立体化学を有する炭素であり;
(f)R は、H、C 1−6 アルキルR 、又はR であり;
(g)R は、H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルであり、前記アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR 基で任意に置換されており;
(h)各R は、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R) 、−SR、−C(O)OR、−C 1−6 アルキル、C 1−6 ハロアルキル、−C(O)N(R) 、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R) 、−S(O) R、−S(O) OR、−S(O) N(R) 、−OC(O)R、−OC(O)OR、−OC(O)N(R) 、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R) であり、式中、RはH又はC 1−4 アルキルであり;
但し、R は、R がHである場合、−OHではあり得ず、前記化合物は、N α −tert−ブトキシカルボニル−1−メチル−D−トリプトファン、エチル N α −ベンジル−1−メチル−D−トリプトファナート、又はベンジル N α −(tert−ブトキシカルボニル)−1−メチル−トリプトファナートではあり得ず;
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)、C SO H(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記酸の化学量論比nが0、0.5、1又は2である)
による、遊離塩基又は塩形態のインドキシモッドのプロドラッグ。
(項10)
式中、(a)R は、−OH、−OC 2−3 アルキル、−OCH CH(OH)CH OH、−O(CH N(CH 、又は−OC 1−3 アルキル−R であり;
(b)R は、H又は−C(O)C (S) H(NH )R であり;
(c)R は、テトラヒドロピランであるか、又は

であり;
(d)R は、H、−C 1−5 アルキル、−(CH 1−2 SH、−(CH 1−3 SCH 、−(CH 1−3 OCH 、−CH −R 、−CH OH、−CH(OH)CH 、−(CH 1−2 C(O)NH 、−(CH 1−3 C(O)OH、−(CH 1−4 NH 、又は−(CH 1−3 NC(=NH )NH であり;
(e)R がHではない場合、C (S) は、S立体化学を有する炭素であり;
(f)R は、H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルであり、前記アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR 基で任意に置換されており;
(g)各R は、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R) 、−SR、−C(O)OR、−C 1−6 アルキル、C 1−6 ハロアルキル、−C(O)N(R) 、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R) 、−S(O) R、−S(O) OR、−S(O) N(R) 、−OC(O)R、−OC(O)OR、−OC(O)N(R) 、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R) であり、式中、RはH又はC 1−4 アルキルであり;
ただし、R は、R がHである場合、−OHではあり得ず;
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)、C SO H(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記化学量論比nが0、0.5、1又は2である、上記項9に記載のプロドラッグ。
(項11)
式中、(a)R は、−OH、−OC 2−3 アルキル、−OCH CH(OH)CH OH、−O(CH N(CH 、又は−OC 1−3 アルキル−R であり;
(b)R は、H又は−C(O)C (S) H(NH )R であり;
(c)R は、テトラヒドロピランであるか、又は

であり;
(d)R は、H、−C 1−5 アルキル、−(CH SCH 、−CH −R 、−(CH 1−2 C(O)NH 、−(CH 1−3 C(O)OH、又は−(CH 1−4 NH であり;
(e)R がHではない場合、C (S) はS立体化学を有する炭素であり;
(f)R は、H、アリール、アルキルアリール、又はヘテロアリールであり、前記アリール、アルキルアリール又はヘテロアリールは、1個のR 基で任意に置換されており;
(g)各R は、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R) 、−SR、−C(O)OR、−C 1−6 アルキル、C 1−6 ハロアルキル、−C(O)N(R) 、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R) 、−S(O) R、−S(O) OR、−S(O) N(R) 、−OC(O)R、−OC(O)OR、−OC(O)N(R) 、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R) であり、式中、RはH又はC 1−4 アルキルであり;
ただし、R は、R がHである場合、−OHではあり得ず;
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)、C SO H(ベンジルスルホン酸)の群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記酸の化学量論比nが0、0.5、1又は2である、上記項9に記載のプロドラッグ。
(項12)
式中、(a)R は、−OH、−OC 2−3 アルキル、−OCH CH(OH)CH OH、−O(CH N(CH 、又は−OC 1−3 アルキル−R であり;
(b)R は、H又は−C(O)C (S) H(NH )R であり;
(c)R は、テトラヒドロピランであるか、又は

であり;
(d)R は、−CH CH(CH 、−(CH SCH 、−C (S) H(CH) CH CH 、−CH −R 、−(CH C(O)NH 、−(CH C(O)OH、又は−(CH NH であり;
(e)C (S) は、S立体化学を有する炭素であり;
(f)R はフェニルであり;
ただし、R は、R がHである場合、−OHではあり得ず;
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)、C SO H(ベンジルスルホン酸)の群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記酸の化学量論比nが0、0.5、1又は2である、上記項9に記載のプロドラッグ。
(項13)
式中、(a)R は、−OC 2−3 アルキル又は−OCH CH(OH)CH OHであり;
(b)R は、H又は−C(O)C (S) H(NH )R であり;
(c)R は、−CH CH(CH 2、 −(CH SCH 、又は−(CH C(O)NH であり;
(d)C (S) は、S立体化学を有する炭素であり;
ただし、R は、R が−Hである場合、−OHではあり得ず;
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)又はC SO H(ベンジルスルホン酸)の群から選択される酸であり;前記プロドラッグが電荷中性であるように、前記酸の化学量論比nが0、0.5、1又は2である、上記項9に記載のプロドラッグ。
(項14)
以下の化合物:
エチル N α −(L−ロイシル)−1−メチル−D−トリプトファナート;
エチル N α −(L−メチオニル)−1−メチル−D−トリプトファナート;
2,3−ジヒドロキシプロピル 1−メチル−D−トリプトファナート;
α −(L−ロイシル)−1−メチル−D−トリプトファン;
α −(L−メチオニル)−1−メチル−D−トリプトファン;
エチル N α −(L−イソロイシル)−1−メチル−D−トリプトファナート;
α −(L−グリシル)−1−メチル−D−トリプトファン;
(S)−5−アミノ−6−(((R)−1−カルボキシ−2−(1−メチル−1H−インドール−3−イル)エチル)アミノ)−6−オキソヘキサン酸;
α −(L−リシル)−1−メチル−D−トリプトファン;
α −(L−フェニルアラニル)−1−メチル−D−トリプトファン;
エチル N α −(L−グルタミニル)−1−メチル−D−トリプトファナート;
2−(ジメチルアミノ)エチル 1−メチル−D−トリプトファナート;
(2−エトキシ−2−オキシド−1,3,2−ジオキサホスファラン4−イル)メチル 1−メチル−D−トリプトファナート;
2−(テトラヒドロ−2H−ピラン−4−イル)エチル 1−メチル−D−トリプトファナート;
エチル 1−メチル−D−トリプトファナート;又は
イソプロピル−1−メチル−D−トリプトファナート
のうちの1つを含むプロドラッグ。
(項15)
式1a:

(式中、A −p は、イオン化状態−pの無機又は有機陰イオンであり、前記陰イオンは、分子を確実に電荷中性にする化学量論比nで存在する)
によるインドキシモッドの医薬組成物。
(項16)
−p は、塩化物、リン酸塩、硫酸塩、メシル酸塩、ベシル酸塩、酢酸塩、アスコルビン酸塩、アスパラギン酸塩、グルタミン酸塩、グルタル酸塩、乳酸塩、マレイン酸塩、マロン酸塩、シュウ酸塩、コハク酸塩、フマル酸塩、酒石酸塩及びクエン酸塩からなる群から選択される陰イオンであり、電荷中性の化学量論的条件を満たすように、前記イオン化状態pは−1、−2又は−3であり、前記化学量論比nはそれぞれ1、1/2又は1/3である、上記項15に記載の医薬組成物。
(項17)
前記リン酸塩がHPO −2 であり、前記HPO −2 は0.5の化学量論比nで存在する、上記項16に記載の医薬組成物。
(項18)
前記リン酸塩がHPO であり、前記HPO は1の化学量論比nで存在する、上記項16に記載の医薬組成物。
(項19)
前記陰イオンA −pn がCl であり、前記Cl が1の化学量論比で存在する、上記項15に記載の医薬組成物。
(項20)
前記メシル酸塩がCH SO であり、前記CH SO が1の化学量論比nで存在する、上記項16に記載の医薬組成物。
(項21)
式1b:

(式中、C +p は、イオン化状態+pの陽イオンであり、前記陽イオンは、前記塩の分子を確実に電荷中性にする化学量論比mで存在する)
によるインドキシモッドの医薬組成物。
(項22)
+p が、Li 、Na 、K 、Mg +2 及びCa +2 からなる群から選択され、pが+1である場合、mは1であり、pが+2である場合、mは1/2である、上記項21に記載の医薬組成物。
(項23)
式2:

(式中、
(a)R は、−OH、−OC 2−3 アルキル、−OCH CH(OH)CH OH、−O(CH N(CH 、−OC 1−3 アルキル−R 、−NHC (S) HR (COOH)、−NHC (R) HR (COOH)、−OC 1−6 アルキルR 、−OC 1−2 アルキル、−C (S) H(NH )(COOH)、又は−OC 1−2 アルキル−C (R) H(NH )(COOH)であり;
(b)R は、H、−C(O)C (S) H(NH )R 、−C(O)C (R) H(NH )R 、−C(O)CH (S) H(NH )、−C(O)OCH 、−C(O)OR 、又は−C(O)NHR であり;
(c)R は、テトラヒドロピランであるか、又は

であり;
(d)R は、H、−C 1−5 アルキル、−(CH 1−2 SH、C 1−5 アルキルSC 1−5 アルキル、C 1―5 アルキルOC 1−5 アルキル、−CH −R 、−CH OH、−CH(OH)CH 、−(CH 1−2 C(O)NH 、−(CH 1−3 C(O)OH、−(CH 1−4 NH 、又は−(CH 1−3 NC(=NH )NH であり;
(e)R がHではない場合、C (S) 及びC (R) は、それぞれS又はR立体化学を有する炭素であり;
(f)R は、H、C 1−6 アルキルR 、又はR であり、
(g)R は、H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルであり、前記アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR 基で任意に置換されており;
(h)各R は、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R) 、−SR、−C(O)OR、−C 1−6 アルキル、C 1−6 ハロアルキル、−C(O)N(R) 、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R) 、−S(O) R、−S(O) OR、−S(O) N(R) 、−OC(O)R、−OC(O)OR、−OC(O)N(R) 、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R) であり、式中、RはH又はC 1−4 アルキルであり、
但し、R は、R がHである場合、−OHではあり得ず、前記化合物は、N α −tert−ブトキシカルボニル−1−メチル−D−トリプトファン、エチル N α −ベンジル−1−メチル−D−トリプトファナート、又はベンジル N α −(tert−ブトキシカルボニル)−1−メチル−トリプトファナートではあり得ず、
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)、C SO H(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記酸の化学量論比nは0、0.5、1又は2である)
による、遊離塩基又は塩形態のインドキシモッドの医薬組成物。
(項24)
式中、(a)R は、−OH、−OC 2−3 アルキル、−OCH CH(OH)CH OH、−O(CH N(CH 、又は−OC 1−3 アルキル−R であり;
(b)R は、H又は−C(O)C (S) H(NH )R であり;
(c)R は、テトラヒドロピランであるか、又は

であり;
(d)R は、H、−C 1−5 アルキル、−(CH 1−2 SH、−(CH 1−3 SCH 、−(CH 1−3 OCH 、−CH −R 、−CH OH、−CH(OH)CH 、−(CH 1−2 C(O)NH 、−(CH 1−3 C(O)OH、−(CH 1−4 NH 、又は−(CH 1−3 NC(=NH )NH であり;
(e)R がHではない場合、C (S) はS立体化学を有する炭素であり;
(f)R は、H、アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルであり、前記アリール、アルキルアリール、ヘテロアリール、シクロアルキル又はヘテロシクロアルキルは、1、2又は3個のR 基で任意に置換されており;
(g)各R は、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R) 、−SR、−C(O)OR、−C 1−6 アルキル、C 1−6 ハロアルキル、−C(O)N(R) 、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R) 、−S(O) R、−S(O) OR、−S(O) N(R) 、−OC(O)R、−OC(O)OR、−OC(O)N(R) 、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R) であり、式中、RはH又はC 1−4 アルキルであり;
ただし、R は、R がHである場合、−OHではあり得ず;
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)、C SO H(ベンジルスルホン酸)、酢酸、アスコルビン酸、アスパラギン酸、グルタミン酸、グルタル酸、乳酸、マレイン酸、マロン酸、シュウ酸、コハク酸、フマル酸、酒石酸及びクエン酸からなる群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記化学量論比nが0、0.5、1又は2である、上記項23に記載の医薬組成物。
(項25)
式中、(a)R は、−OH、−OC 2−3 アルキル、−OCH CH(OH)CH OH、−O(CH N(CH 、又は−OC 1−3 アルキル−R であり;
(b)R は、H又は−C(O)C (S) H(NH )R であり;
(c)R は、テトラヒドロピランであるか、又は

であり;
(d)R は、H、−C 1−5 アルキル、−(CH SCH 、−CH −R 、−(CH 1−2 C(O)NH 、−(CH 1−3 C(O)OH、又は−(CH 1−4 NH であり、
(e)R がHではない場合、C (S) はS立体化学を有する炭素であり;
(f)R は、H、アリール、アルキルアリール、又はヘテロアリールであり、前記アリール、アルキルアリール又はヘテロアリールは、1個のR 基で任意に置換されており;
(g)各R は、独立して、ハロゲン、シアノ、ニトロ、−OR、−N(R) 、−SR、−C(O)OR、−C 1−6 アルキル、C 1−6 ハロアルキル、−C(O)N(R) 、−C(O)R、−S(O)R、−S(O)OR、−S(O)N(R) 、−S(O) R、−S(O) OR、−S(O) N(R) 、−OC(O)R、−OC(O)OR、−OC(O)N(R) 、−N(R)C(O)R、−N(R)C(O)OR、又は−N(R)C(O)N(R) であり、式中、RはH又はC 1−4 アルキルであり;
ただし、R は、R がHである場合、−OHではあり得ず;
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)、及びC SO H(ベンジルスルホン酸)からなる群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記酸の化学量論比nが0、0.5、1又は2である、上記項23に記載の医薬組成物。
(項26)
式中、(a)R は、−OH、−OC 2−3 アルキル、−OCH CH(OH)CH OH、−O(CH N(CH 、又は−OC 1−3 アルキル−R であり;
(b)R は、H又は−C(O)C (S) H(NH )R であり;
(c)R は、テトラヒドロピランであるか、又は

であり;
(d)R は、−CH CH(CH 、−(CH SCH 、−C (S) H(CH) CH CH 、−CH −R 、−(CH C(O)NH 、−(CH C(O)OH、又は−(CH NH であり;
(e)C (S) はS立体化学を有する炭素であり;
(f)R はフェニルであり;
ただし、R は、R がHである場合、−OHではあり得ず、
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)、及びC SO H(ベンジルスルホン酸)からなる群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記酸の化学量論比nが0、0.5、1又は2である、上記項23に記載の医薬組成物。
(項27)
式中、(e)R は、−OC 2−3 アルキル又は−OCH CH(OH)CH OHであり;
(f)R は、H又は−C(O)C (S) H(NH )R であり;
(g)R は、−CH CH(CH 2、 −(CH SCH 、又は−(CH C(O)NH であり;
(h)C (S) はS立体化学を有する炭素であり;
ただし、R は、R がHである場合、−OHではあり得ず、
HA は、PO (リン酸)、SO (硫酸)、HCl(塩酸)、HSO CH (メチルスルホン酸)又はC SO H(ベンジルスルホン酸)の群から選択される酸であり、前記プロドラッグが電荷中性であるように、前記酸の化学量論比nが0、0.5、1又は2である、上記項23に記載の医薬組成物。
(項28)
以下の化合物:
エチル N α −(L−ロイシル)−1−メチル−D−トリプトファナート;
エチル N α −(L−メチオニル)−1−メチル−D−トリプトファナート;
2,3−ジヒドロキシプロピル 1−メチル−D−トリプトファナート;
α −(L−ロイシル)−1−メチル−D−トリプトファン;
α −(L−メチオニル)−1−メチル−D−トリプトファン;
エチル N α −(L−イソロイシル)−1−メチル−D−トリプトファナート;
α −(L−グリシル)−1−メチル−D−トリプトファン;
(S)−5−アミノ−6−(((R)−1−カルボキシ−2−(1−メチル−1H−インドール−3−イル)エチル)アミノ)−6−オキソヘキサン酸;
α −(L−リシル)−1−メチル−D−トリプトファン;
α −(L−フェニルアラニル)−1−メチル−D−トリプトファン;
エチル N α −(L−グルタミニル)−1−メチル−D−トリプトファナート;
2−(ジメチルアミノ)エチル 1−メチル−D−トリプトファナート;
(2−エトキシ−2−オキシド−1,3,2−ジオキサホスファラン4−イル)メチル 1−メチル−D−トリプトファナート;
2−(テトラヒドロ−2H−ピラン−4−イル)エチル 1−メチル−D−トリプトファナート;
エチル 1−メチル−D−トリプトファナート;又は
イソプロピル−1−メチル−D−トリプトファナート
のうちの1つを含む医薬組成物。
(項29)
前記組成物が固体のカプセル、錠剤又は丸剤である、上記項15〜28のいずれかに記載の医薬組成物。
(項30)
前記組成物が溶解可能なカプセルである、上記項15〜28のいずれかに記載の医薬組成物。
(項31)
それを必要とする対象におけるインドールアミン−2,3−ジオキシゲナーゼ経路の活性を調節するために、適切な医薬形態又はビヒクル中の治療有効量の前記組成物を前記対象へ経口投与することを含む、上記項15〜30のいずれかに記載の医薬組成物の使用方法。
(項32)
それを必要とする対象における癌の治療のために、適切な医薬形態又はビヒクル中の治療有効量の前記組成物を前記対象へ経口投与することを含む、上記項15〜30のいずれかに記載の医薬組成物の使用方法。
(項33)
それを必要とする対象における癌に関連する腫瘍特異的免疫抑制の治療のために、適切な医薬形態又はビヒクル中の十分な量の前記組成物を前記対象へ経口投与することを含む、上記項15〜30のいずれかに記載の医薬組成物の使用方法。
(項34)
それを必要とする対象における感染症(例えば、HIV−l感染、インフルエンザ)に関連する免疫抑制を治療するために、適切な医薬形態又はビヒクル中の十分な量の前記組成物を前記対象へ経口投与することを含む、上記項15〜30のいずれかに記載の医薬組成物の使用方法。

Claims (7)

  1. 式1a:

    (式中、 −p は、Cl でありそしてnは1である
    によるインドキシモッドの塩。
  2. 式1a:

    (式中、 −p は、Cl でありそしてnは1である
    によるインドキシモッドの塩および1種以上の賦形剤を含む医薬組成物。
  3. 前記組成物が固体のカプセル、錠剤又は丸剤である、請求項に記載の医薬組成物。
  4. 前記組成物が溶解可能なカプセルである、請求項に記載の医薬組成物。
  5. 結晶形態である、請求項1に記載の塩。
  6. 前記結晶形態がインドキシモッドHCl塩フォーム1の無水アイソフォームである、請求項5に記載の塩。
  7. 前記インドキシモッドHCl塩フォーム1の無水アイソフォームが、図1のXRPDおよび/または図2のTGAおよびDSCプロファイルを有する、請求項6に記載の塩。
JP2017561946A 2015-07-24 2016-06-02 1−メチル−d−トリプトファンの塩及びプロドラッグ Active JP6842429B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562196671P 2015-07-24 2015-07-24
US62/196,671 2015-07-24
US201662305748P 2016-03-09 2016-03-09
US62/305,748 2016-03-09
PCT/US2016/035391 WO2017019175A1 (en) 2015-07-24 2016-06-02 Salts and prodrugs of 1-methyl-d-tryptophan

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018204025A Division JP7286299B2 (ja) 2015-07-24 2018-10-30 1-メチル-d-トリプトファンの塩及びプロドラッグ

Publications (2)

Publication Number Publication Date
JP2018522830A JP2018522830A (ja) 2018-08-16
JP6842429B2 true JP6842429B2 (ja) 2021-03-17

Family

ID=57836622

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017561946A Active JP6842429B2 (ja) 2015-07-24 2016-06-02 1−メチル−d−トリプトファンの塩及びプロドラッグ
JP2018204025A Active JP7286299B2 (ja) 2015-07-24 2018-10-30 1-メチル-d-トリプトファンの塩及びプロドラッグ
JP2021088493A Pending JP2021121633A (ja) 2015-07-24 2021-05-26 1−メチル−d−トリプトファンの塩及びプロドラッグ
JP2023037970A Withdrawn JP2023060349A (ja) 2015-07-24 2023-03-10 1-メチル-d-トリプトファンの塩及びプロドラッグ

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2018204025A Active JP7286299B2 (ja) 2015-07-24 2018-10-30 1-メチル-d-トリプトファンの塩及びプロドラッグ
JP2021088493A Pending JP2021121633A (ja) 2015-07-24 2021-05-26 1−メチル−d−トリプトファンの塩及びプロドラッグ
JP2023037970A Withdrawn JP2023060349A (ja) 2015-07-24 2023-03-10 1-メチル-d-トリプトファンの塩及びプロドラッグ

Country Status (24)

Country Link
US (4) US9732035B2 (ja)
EP (3) EP3613420B1 (ja)
JP (4) JP6842429B2 (ja)
KR (2) KR20180030825A (ja)
CN (2) CN111004167B (ja)
AU (1) AU2016298471C1 (ja)
BR (1) BR112018000225A2 (ja)
CA (3) CA3132620C (ja)
CL (1) CL2018000082A1 (ja)
CO (1) CO2017013724A2 (ja)
CR (1) CR20180023A (ja)
DO (1) DOP2018000011A (ja)
EA (1) EA201792256A1 (ja)
EC (1) ECSP18002561A (ja)
ES (2) ES2923184T3 (ja)
HK (2) HK1247837A1 (ja)
IL (2) IL255625B (ja)
MA (1) MA43294A1 (ja)
MX (1) MX2018001014A (ja)
NZ (1) NZ736978A (ja)
PE (1) PE20180928A1 (ja)
PH (1) PH12017502046A1 (ja)
WO (1) WO2017019175A1 (ja)
ZA (1) ZA201800208B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3132620C (en) 2015-07-24 2024-03-05 Lumos Pharma, Inc. Salts and prodrugs of 1-methyl-d-tryptophan
CN109400517A (zh) * 2017-08-17 2019-03-01 上海时莱生物技术有限公司 1-甲基-色氨酸类化合物及其制备方法和用途
US20200261414A1 (en) * 2017-09-14 2020-08-20 Lankenau Institute For Medical Research Methods and compositions for the treatment of cancer
CN109646683A (zh) * 2019-02-27 2019-04-19 武汉理工大学 一种1-mt-羧甲基壳聚糖药物的制备方法
WO2022055542A1 (en) 2020-09-10 2022-03-17 Nammi Therapeutics, Inc. Formulated and/or co-formulated liposome compositions containing pd-1 antagonist prodrugs useful in the treatment of cancer and methods thereof

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1330573A (en) 1970-09-12 1973-09-19 Ajinomoto Kk Optical resolution of dl-tryptophan derivatives
US4072691A (en) 1974-01-12 1978-02-07 Tanabe Seiyaku Co., Ltd. Process for the resolution of DL-6-chlorotryptophan
US5185157A (en) 1990-05-02 1993-02-09 Caston John C Treatment of refractory Eosinophilia-Myalgia Syndrome with L-tryptophan composition
WO1996011927A1 (en) 1994-10-12 1996-04-25 Abbott Laboratories Endothelin antagonists
AU1628599A (en) 1997-12-05 1999-06-28 Medical College Of Georgia Research Institute, Inc. Regulation of t cell-mediated immunity by tryptophan
NZ521028A (en) * 2000-03-16 2004-07-30 F Carboxylic acid derivatives as IP antagonists
WO2002098877A1 (en) * 2001-06-05 2002-12-12 Lilly Icos Llc Pyrazino 1',2':1,6 pyrido 3,4-b indole1,4-dione derivatives
US7714139B2 (en) 2003-03-27 2010-05-11 Lankenau Institute For Medcial Research IDO inhibitors and methods of use
US7598287B2 (en) 2003-04-01 2009-10-06 Medical College Of Georgia Research Institute, Inc. Use of inhibitors of indoleamine-2,3-dioxygenase in combination with other therapeutic modalities
JO2625B1 (en) 2003-06-24 2011-11-01 ميرك شارب اند دوم كوربوريشن Phosphoric acid salts of dipeptidyl betidase inhibitor 4
US20080132539A1 (en) 2003-12-25 2008-06-05 Junji Kakuchi Hydroxamic Acid Derivative And Age Generation Inhibitor Containing The Derivative
ES2401482T3 (es) 2005-05-10 2013-04-22 Incyte Corporation Moduladores de la indolamina 2,3-dioxigenasa y métodos de uso de los mismos
WO2007081878A2 (en) 2006-01-07 2007-07-19 Medical College Of Georgia Research Institute, Inc. Indoleamine 2,3-dioxygenase pathways in the generation of regulatory t cells
US7705022B2 (en) 2005-10-27 2010-04-27 Lankenau Institute For Medical Research IDO inhibitors and methods of use thereof
EP1971583B1 (en) 2005-12-20 2015-03-25 Incyte Corporation N-hydroxyamidinoheterocycles as modulators of indoleamine 2,3-dioxygenase
CA2569204A1 (en) 2006-11-28 2008-05-28 Apotex Technologies Inc. Crystalline d-isoglutamyl-d-tryptophan and the mono ammonium salt of d-isoglutamyl-d-tryptophan
WO2008100562A2 (en) * 2007-02-14 2008-08-21 Medical College Of Georgia Research Institute, Inc. Indoleamine 2,3-dioxygenase, pd-1/pd-l pathways, and ctla4 pathways in the activation of regulatory t cells
EP2137168B1 (en) 2007-03-16 2016-09-14 Lankenau Institute for Medical Research Novel ido inhibitors and methods of use thereof
CA2932121A1 (en) 2007-11-30 2009-06-11 Newlink Genetics Corporation Ido inhibitors
ES2367229T3 (es) * 2008-02-01 2011-10-31 Firmenich S.A. Ciclohexenonas sustituidas.
US8748469B2 (en) 2008-04-24 2014-06-10 Newlink Genetics Corporation IDO inhibitors
RS53688B9 (sr) 2008-07-08 2020-01-31 Incyte Holdings Corp 1,2,5-oksadiazoli kao inhibitori indoleamin 2,3-dioksigenaze
EP3626716A1 (en) 2009-05-13 2020-03-25 Gilead Pharmasset LLC Antiviral compounds
CA2778115C (en) 2009-10-28 2016-04-05 Newlink Genetics Corporation Imidazole derivatives as ido inhibitors
CA2788284A1 (en) * 2010-02-09 2011-08-18 Georgia Health Sciences University Research Institute, Inc. Alpha-methyl-tryptophan as an inhibitor of indoleamine dioxygenase
NO2694640T3 (ja) 2011-04-15 2018-03-17
JO3353B1 (ar) 2012-04-20 2019-03-13 Ono Pharmaceutical Co شكل صلب معزول من أحادي هيدروكلوريد أناموريلين بنسبة مولارية منخفضة من الكلوريد: أناموريلين ومحتوى منخفض من مذيب عضوي متبقي
RU2015124002A (ru) 2012-11-20 2017-01-10 Вертекс Фармасьютикалз Инкорпорейтед Соединения, применяемые в качестве ингибиторов индоламин-2,3-диоксигеназы
SG10201707545XA (en) 2013-03-14 2017-10-30 Newlink Genetics Corp Tricyclic compounds as inhibitors of immunosuppression mediated by tryptophan metabolization
WO2014141110A2 (en) 2013-03-14 2014-09-18 Curadev Pharma Pvt. Ltd. Aminonitriles as kynurenine pathway inhibitors
AU2014265957A1 (en) 2013-03-14 2015-09-10 Curadev Pharma Private Ltd. Inhibitors of the kynurenine pathway
PE20151594A1 (es) 2013-03-15 2015-11-19 Bristol Myers Squibb Co Inhibidores de indolamina 2-3 dioxigenasa
SG11201506918WA (en) 2013-03-15 2015-09-29 Bristol Myers Squibb Co Inhibitors of indoleamine 2,3-dioxygenase (ido)
WO2015002918A1 (en) 2013-07-01 2015-01-08 Bristol-Myers Squibb Company Ido inhibitors
CN105517999B (zh) 2013-07-11 2019-06-28 百时美施贵宝公司 Ido抑制剂
CA3132620C (en) 2015-07-24 2024-03-05 Lumos Pharma, Inc. Salts and prodrugs of 1-methyl-d-tryptophan
EA201892034A1 (ru) 2016-03-09 2019-04-30 Эмори Юниверсити Элиминация вируса гепатита в при помощи противовирусных агентов
US10741094B2 (en) 2016-06-30 2020-08-11 Timpson Electrical & Aerial Services, LLC High voltage training device and system and method thereof

Also Published As

Publication number Publication date
AU2016298471B2 (en) 2019-08-22
ES2894334T3 (es) 2022-02-14
EP3613420B1 (en) 2022-05-25
NZ736978A (en) 2019-06-28
US20200283385A1 (en) 2020-09-10
US9732035B2 (en) 2017-08-15
JP2023060349A (ja) 2023-04-27
ECSP18002561A (es) 2018-03-31
MX2018001014A (es) 2018-05-23
MA43294A1 (fr) 2020-04-30
EP3324958A4 (en) 2018-10-24
HK1247844A1 (zh) 2018-10-05
CA2992016C (en) 2019-10-22
IL255625B (en) 2019-08-29
CA3132620A1 (en) 2017-02-02
JP2018522830A (ja) 2018-08-16
WO2017019175A1 (en) 2017-02-02
EP3954369A1 (en) 2022-02-16
CR20180023A (es) 2018-03-20
ES2923184T3 (es) 2022-09-26
KR20180086300A (ko) 2018-07-30
JP2021121633A (ja) 2021-08-26
CN111004167B (zh) 2024-03-22
EP3613420A1 (en) 2020-02-26
KR20180030825A (ko) 2018-03-26
CL2018000082A1 (es) 2018-06-15
JP2019011381A (ja) 2019-01-24
IL255625A (en) 2018-01-31
DOP2018000011A (es) 2018-04-30
US10207990B2 (en) 2019-02-19
CA3051388A1 (en) 2017-02-02
US11485705B2 (en) 2022-11-01
CA3132620C (en) 2024-03-05
PE20180928A1 (es) 2018-06-08
IL268048A (en) 2019-09-26
US20190248739A1 (en) 2019-08-15
CA3051388C (en) 2021-11-09
EP3324958B1 (en) 2021-07-28
EP3324958A1 (en) 2018-05-30
ZA201800208B (en) 2018-12-19
AU2016298471A1 (en) 2017-11-23
US20170022157A1 (en) 2017-01-26
JP7286299B2 (ja) 2023-06-05
US20180134658A1 (en) 2018-05-17
CA2992016A1 (en) 2017-02-02
BR112018000225A2 (pt) 2018-09-04
PH12017502046A1 (en) 2018-04-23
EA201792256A1 (ru) 2018-07-31
CN107847486A (zh) 2018-03-27
CO2017013724A2 (es) 2018-03-28
CN111004167A (zh) 2020-04-14
AU2016298471C1 (en) 2020-03-05
HK1247837A1 (zh) 2018-10-05

Similar Documents

Publication Publication Date Title
JP2021121633A (ja) 1−メチル−d−トリプトファンの塩及びプロドラッグ
CA2996318C (en) Heteroaryl compounds as irak inhibitors and uses thereof
TWI683813B (zh) 苯并咪唑衍生物及其醫藥組合物及使用方法
CN101821255A (zh) 作为pi3k抑制剂的2-吗啉-4-基-嘧啶类化合物
US20230233562A1 (en) Heteroaryl compounds, pharmaceutical compositions thereof, and their therapeutic use
EA040751B1 (ru) Соли и пролекарства 1-метил-d-триптофана
WO2024149239A1 (zh) 杂芳环化合物及其制备方法和用途

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180406

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180417

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190507

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20190517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190704

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190705

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190913

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190918

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200630

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200729

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201012

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210106

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210204

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210219

R150 Certificate of patent or registration of utility model

Ref document number: 6842429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250