JP6842171B2 - Automatic welding machine and automatic welding method - Google Patents

Automatic welding machine and automatic welding method Download PDF

Info

Publication number
JP6842171B2
JP6842171B2 JP2017194217A JP2017194217A JP6842171B2 JP 6842171 B2 JP6842171 B2 JP 6842171B2 JP 2017194217 A JP2017194217 A JP 2017194217A JP 2017194217 A JP2017194217 A JP 2017194217A JP 6842171 B2 JP6842171 B2 JP 6842171B2
Authority
JP
Japan
Prior art keywords
welding
temporary
bead
target line
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017194217A
Other languages
Japanese (ja)
Other versions
JP2019063841A (en
Inventor
利光 前田
利光 前田
翔貴 春日
翔貴 春日
功 鳥越
功 鳥越
宗春 沓名
宗春 沓名
Original Assignee
前田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 前田工業株式会社 filed Critical 前田工業株式会社
Priority to JP2017194217A priority Critical patent/JP6842171B2/en
Publication of JP2019063841A publication Critical patent/JP2019063841A/en
Application granted granted Critical
Publication of JP6842171B2 publication Critical patent/JP6842171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、仮付溶接が行われた二つの開先エッジを有する継手を溶接する自動溶接機及び自動溶接方法に関する。 The present invention relates to an automatic welding machine and an automatic welding method for welding a joint having two groove edges on which temporary welding has been performed.

仮付溶接ビードがあると、溶接が仮付溶接ビードに影響されるため、溶接ラインに倣って溶接することが容易でなかった。この点において、これまでも仮付溶接が行われた開先エッジを有する継手を溶接する自動溶接機が開発されている(例えば、特許文献1参照。)。この従来の自動溶接機は、溶接ラインに沿って左右に溶接ライン検出センサを2個ずつ計4個配置して、仮付溶接ビードを検出し、仮付溶接ビードの影響を無くそうとしている。 If there is a temporary welding bead, welding is affected by the temporary welding bead, so it is not easy to perform welding following the welding line. In this respect, an automatic welding machine for welding a joint having a groove edge to which temporary welding has been performed has been developed (see, for example, Patent Document 1). In this conventional automatic welding machine, two welding line detection sensors are arranged on the left and right along the welding line, for a total of four, and the temporary welding bead is detected to eliminate the influence of the temporary welding bead.

特開平9−234565号公報Japanese Unexamined Patent Publication No. 9-234565

上記従来の自動溶接機は、多数の溶接ライン検出センサ(レーザ式光電センサ)を備えており、自動溶接機が高価になるという問題があった。また、多数の検出センサからの信号を処理する必要があり、且つ検出センサからの信号レベルは溶接ラインでも仮付溶接ビードでもキズ付き領域でも低レベルになるので、倣い制御処理が複雑になってしまう。倣い制御処理が複雑になると自動溶接機の信頼性が低くなるという問題もあった。 The conventional automatic welding machine is provided with a large number of welding line detection sensors (laser type photoelectric sensors), and has a problem that the automatic welding machine becomes expensive. In addition, it is necessary to process signals from a large number of detection sensors, and the signal level from the detection sensors is low in the welding line, the temporary weld bead, and the scratched area, which complicates the copying control process. It ends up. There is also a problem that the reliability of the automatic welding machine becomes low when the copying control process becomes complicated.

本発明は、上記の問題に鑑みてなされたものであり、倣い制御処理を単純化した自動溶接機及び自動溶接方法を提供することを課題としている。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an automatic welding machine and an automatic welding method in which the copying control process is simplified.

本発明者は、倣い制御処理を単純化すべく、溶接目標線検出に撮像装置を用いることを想起して本発明を完成した。 The present inventor has completed the present invention by recalling the use of an imaging device for welding target line detection in order to simplify the copying control process.

課題を解決するためになされた本発明の自動溶接機は、溶接トーチをもつ溶接ロボットと、前記溶接ロボットに支持され、二枚の金属板の開先エッジが突き合わされて飛び飛びに仮付溶接された仮付溶接ビードをもつ被溶接部材の溶接する部分より先の開先エッジ領域画像を撮像する撮像部と、前記撮像部で撮像した前記開先エッジ領域画像を処理して溶接目標線を設定する画像処理装置と、前記画像処理装置で設定した前記溶接目標線に前記溶接トーチが倣うように前記溶接ロボットを制御するロボット制御部と、を有し、前記画像処理装置は、仮付溶接ビード判定部と、前記溶接目標線と前記溶接トーチで溶接加工される溶接予定点とのズレを演算するズレ演算部と、を備え、前記仮付溶接ビード判定部は、前記開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して前記仮付溶接ビードの有無を判定する濃度値判定部、前記開先エッジ領域画像の中で前記開先エッジに沿うか又は前記仮付け溶接ビードの輪郭線に沿う複数の検出セグメントを通る近似直線と基準線との成すエッジ角度θを所定のエッジ角度閾値と比較して前記仮付溶接ビードの有無を判定するエッジ角度判定部、前記開先エッジに沿うか又は前記仮付け溶接ビードの輪郭線に沿う複数の検出セグメント位置の前記溶接目標線と交差する方向の標準偏差値σを所定の標準偏差閾値と比較して前記仮付溶接ビードの有無を判定する標準偏差値判定部の少なくとも一つ備え、前記ロボット制御部は、前記仮付溶接ビード判定部で仮付溶接ビード無と判定され且つ前記ズレ演算部でズレが演算されると、前記溶接トーチをズレが小となるように補正制御し、前記仮付溶接ビード判定部で仮付溶接ビード有と判定されると、前記補正制御を行わないことを特徴とする。 The automatic welding machine of the present invention made to solve the problem is supported by a welding robot having a welding torch and the welding robot, and the groove edges of two metal plates are abutted and temporarily welded in a discrete manner. A welding target line is set by processing an imaging unit that captures a groove edge region image ahead of the welded portion of a member to be welded having a temporary weld bead and the groove edge region image captured by the imaging unit. The image processing device includes a robot control unit that controls the welding robot so that the welding torch follows the welding target line set by the image processing device, and the image processing device has a temporary welding bead. A determination unit and a deviation calculation unit for calculating the deviation between the welding target line and the planned welding point to be welded by the welding torch are provided, and the temporary welding bead determination unit is the groove edge region image. A density value determination unit that compares the density value ρ with a predetermined density threshold to determine the presence or absence of the temporary weld bead , along the groove edge in the groove edge region image, or of the temporary weld bead. An edge angle determination unit for determining the presence or absence of the temporary weld bead by comparing the edge angle θ formed by an approximate straight line passing through a plurality of detection segments along the contour line and a reference line with a predetermined edge angle threshold value, and the groove edge. Presence or absence of the temporary welding bead by comparing the standard deviation value σ in the direction intersecting the welding target line at a plurality of detection segment positions along the contour line of the temporary welding bead or along the contour line of the temporary welding bead with a predetermined standard deviation threshold value. The robot control unit is provided with at least one of the standard deviation value determination units for determining, and when the temporary welding bead determination unit determines that there is no temporary welding bead and the deviation calculation unit calculates the deviation, the above. The welding torch is corrected and controlled so that the deviation becomes small, and when the temporary welding bead determination unit determines that the temporary welding bead is present, the correction control is not performed.

課題を解決するためになされた本発明の自動溶接方法は、溶接トーチをもつ溶接ロボットに支持された撮像部で、二枚の金属板の開先エッジが突き合わされて飛び飛びに仮付溶接された仮付溶接ビードをもつ被溶接部材の溶接する部分より先の開先エッジ領域画像を撮像する撮像工程と、前記撮像工程で撮像した前記開先エッジ領域画像を処理して溶接目標線を設定する溶接目標線設定工程と、前記溶接目標線設定工程で設定した前記溶接目標線に前記溶接トーチが倣うように前記溶接ロボットを制御するロボット制御工程と、を備え、前記溶接目標線検出工程は、前記仮付溶接ビードの有無を判定する仮付溶接ビード判定工程と、前記溶接目標線と前記溶接トーチで溶接加工される溶接予定点とのズレを演算するズレ演算工程と、を備え、前記仮付溶接ビード判定工程は、前記開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して前記仮付溶接ビードの有無を判定する濃度値判定工程、前記開先エッジ領域画像の中で前記開先エッジに沿うか又は前記仮付け溶接ビードの輪郭線に沿う複数の検出セグメントを結ぶ近似直線と基準線との成すエッジ角度θを所定のエッジ角度閾値と比較して前記仮付溶接ビードの有無を判定するエッジ角度判定工程、前記開先エッジに沿うか又は前記仮付け溶接ビードの輪郭線に沿う複数の検出セグメント位置の前記溶接目標線と交差する方向の標準偏差値σを所定の標準偏差閾値と比較して前記仮付溶接ビードの有無を判定する標準偏差値判定工程の少なくとも一つ備え、前記ロボット制御工程は、前記仮付溶接ビード判定工程で仮付溶接ビード無と判定されて前記ズレ演算工程でズレが演算されると、前記溶接トーチをズレが小となるように補正制御し、前記仮付溶接ビード判定工程で仮付溶接ビード有と判定されると、前記補正制御を行わないことを特徴とする。 The automatic welding method of the present invention, which was made to solve the problem, is an imaging unit supported by a welding robot having a welding torch, and the groove edges of two metal plates are abutted and temporarily welded in a discrete manner. A welding target line is set by processing an imaging step of capturing a groove edge region image ahead of the welded portion of a member to be welded having a temporary weld bead and the groove edge region image captured in the imaging step. The welding target line detection step includes a welding target line setting step and a robot control step of controlling the welding robot so that the welding torch follows the welding target line set in the welding target line setting step. The provisional welding bead determination step of determining the presence or absence of the temporary welding bead and the deviation calculation step of calculating the deviation between the welding target line and the planned welding point to be welded by the welding torch are provided. The weld bead determination step is a density value determination step of comparing the density value ρ of the groove edge region image with a predetermined density threshold to determine the presence or absence of the temporary weld bead, in the groove edge region image. The temporary weld bead is made by comparing the edge angle θ formed by the reference line with the approximate straight line connecting a plurality of detection segments along the groove edge or along the contour line of the temporary weld bead with a predetermined edge angle threshold value. In the edge angle determination step for determining the presence or absence of, the standard deviation value σ in the direction intersecting the welding target line at a plurality of detection segment positions along the groove edge or along the contour line of the temporary welding bead is determined. It is provided with at least one of the standard deviation value determination steps for determining the presence or absence of the temporary weld bead in comparison with the standard deviation threshold, and the robot control step is determined to have no temporary weld bead in the temporary weld bead determination step. When the deviation is calculated in the deviation calculation step, the welding torch is corrected and controlled so that the deviation becomes small, and when it is determined in the temporary welding bead determination step that the temporary welding bead is present, the correction control is performed. It is characterized by not performing.

撮像部で撮像した開先エッジ領域画像を処理することで、仮付溶接ビードの有無を確実に判定して溶接トーチを溶接目標線に正確に沿わせることができる。 By processing the groove edge region image captured by the imaging unit, the presence or absence of the temporary welding bead can be reliably determined and the welding torch can be accurately aligned with the welding target line.

本発明の実施形態1に係る自動溶接機の概略構成図である。It is a schematic block diagram of the automatic welding machine which concerns on Embodiment 1 of this invention. 図1の被溶接部材50の上面視図であり、仮付溶接ビードの判定を説明する図である。It is a top view view of the member 50 to be welded of FIG. 1, and is the figure explaining the determination of the temporary welding bead. 実施形態1に係る自動溶接機の動作のフローチャートである。It is a flowchart of the operation of the automatic welding machine which concerns on Embodiment 1. CCDカメラ13で撮像した開先エッジ領域画像の部分拡大図である。It is a partially enlarged view of the groove edge region image taken by the CCD camera 13. 通常の画像処理で図形の境界をセンシングする様子を模式的に示すセンシングエリアSE2である。It is a sensing area SE2 which shows typically the state of sensing the boundary of a figure by ordinary image processing. 開先エッジ領域画像を画像処理して開先エッジOE52、OE53を消去したセンシングエリアSE1を模式的に示す図である。It is a figure which shows typically the sensing area SE1 which image-processed the groove edge area image and erased the groove edge OE52, OE53. 開先エッジ領域画像を画像処理して開先エッジOE52、OE53を消去したセンシングエリアSE2を模式的に示す図である。It is a figure which shows typically the sensing area SE2 which image-processed the groove edge region image and erased the groove edge OE52, OE53. 仮付溶接ビードが無いセンシングエリアSE1において、検出セグメントSの標準偏差値で仮付溶接ビードの有無を判定する様子を模式的に示す図である。It is a figure which shows typically the state of determining the presence or absence of a temporary welding bead by the standard deviation value of the detection segment S in the sensing area SE1 which does not have a temporary welding bead. 仮付溶接ビードが有るセンシングエリアSE2において、検出セグメントSの標準偏差値で仮付溶接ビードの有無の判定する様子を模式的に示す図である。It is a figure which shows typically the state of determining the presence or absence of a temporary welding bead by the standard deviation value of the detection segment S in the sensing area SE2 which has a temporary welding bead. 仮付溶接ビードが無いセンシングエリアSE1において、濃度が変化する境界線に沿う検出セグメントSの近似直線と基準線Lbとの成す角で仮付溶接ビードの有無の判定をする様子を模式的に示す図である。In the sensing area SE1 where there is no temporary welding bead, the presence or absence of the temporary welding bead is schematically shown by the angle formed by the approximate straight line of the detection segment S along the boundary line where the concentration changes and the reference line Lb. It is a figure. 仮付溶接ビードが有るセンシングエリアSE2において、濃度が変化する境界線に沿う検出セグメントSの近似直線と基準線Lbとの成す角で仮付溶接ビードの有無の判定をする様子を模式的に示す図である。In the sensing area SE2 where the temporary welding bead is present, the presence or absence of the temporary welding bead is schematically shown by the angle formed by the approximate straight line of the detection segment S along the boundary line where the concentration changes and the reference line Lb. It is a figure. 実施形態4に係る自動溶接機の操作画面を示す図である。It is a figure which shows the operation screen of the automatic welding machine which concerns on Embodiment 4. 検証実験1の被溶接試験片を示す図である。It is a figure which shows the test piece to be welded of the verification experiment 1. 検証実験1の結果で、仮付溶接ビード判定部を動作させないときの溶接線追従精度を示すグラフである。As a result of the verification experiment 1, it is a graph which shows the welding line follow-up accuracy when the temporary welding bead determination part is not operated. 検証実験1の結果で、仮付溶接ビード判定部を動作させ、濃度値、エッジ角度、標準偏差の3つで仮付領域を判定したときの溶接線追従精度を示すグラフである。It is a graph which shows the welding line follow-up accuracy when the temporary welding bead determination part was operated, and the temporary welding area was judged by the density value, the edge angle, and the standard deviation by the result of the verification experiment 1. 検証実験2の被溶接試験片を示す図である。It is a figure which shows the test piece to be welded of the verification experiment 2. 検証実験2の方法を示す図である。It is a figure which shows the method of the verification experiment 2. 検証実験2で仮付溶接ビードの有無を判定させるための濃度、標準偏差、エッジ角度のそれぞれの閾値を入力する画面であり、濃度値ρ、標準偏差値σ、エッジ角度θの現在値を表示する画面でもある。It is a screen for inputting the respective thresholds of the density, standard deviation, and edge angle for determining the presence or absence of the temporary welding bead in the verification experiment 2, and displays the current values of the density value ρ, the standard deviation value σ, and the edge angle θ. It is also a screen to do. 検証実験2の結果で、濃度値判定部のみを動作させたときの溶接目標線追従精度を示すグラフである。As a result of the verification experiment 2, it is a graph which shows the welding target line follow-up accuracy when only the density value determination part is operated. 検証実験2の結果で、標準偏差値判定部のみを動作させたときの溶接線追従精度を示すグラフである。As a result of the verification experiment 2, it is a graph which shows the welding line follow-up accuracy when only the standard deviation value determination part is operated. 検証実験2の結果で、エッジ角度判定部のみを動作させたときの溶接目標線追従精度を示すグラフである。As a result of the verification experiment 2, it is a graph which shows the welding target line follow-up accuracy when only the edge angle determination part is operated. 検証実験3の結果で、濃度値判定部又は標準偏差値判定部を動作させたときの溶接目標線追従精度を示すグラフである。It is a graph which shows the welding target line follow-up accuracy when the density value determination unit or the standard deviation value determination unit is operated by the result of the verification experiment 3. 検証実験4の結果で、濃度値判定部又はエッジ角度判定部を動作させたときの溶接目標線追従精度を示すグラフである。As a result of the verification experiment 4, it is a graph which shows the welding target line follow-up accuracy when the density value determination part or the edge angle determination part is operated. 検証実験5の結果で、標準偏差値判定部又はエッジ角度判定部を動作させたときの溶接目標線追従精度を示すグラフである。It is a graph which shows the welding target line follow-up accuracy when the standard deviation value determination part or the edge angle determination part is operated by the result of the verification experiment 5. 検証実験6の被溶接試験片を示す図である。It is a figure which shows the test piece to be welded of the verification experiment 6. 検証実験6の結果で、溶接目標線追従精度を示すグラフである。It is the result of the verification experiment 6, and is the graph which shows the welding target line follow-up accuracy.

以下、添付図面を参照して、本発明を実施する形態を詳細に説明する。
(実施形態1)
本実施形態の自動溶接機は、図1、2、4に示すように、溶接トーチ12をもつ溶接ロボット11と、溶接ロボット11に支持され、二つの開先エッジOE52、OE53が突き合わされて飛び飛びに仮付溶接された仮付溶接ビードK1〜K3をもつ被溶接部材50の溶接する部分より先の開先エッジ領域画像を撮像する撮像部13と、撮像部13で撮像した開先エッジ領域画像を処理して溶接目標線WLを設定する画像処理装置14と、画像処理装置14で設定した溶接目標線WLに溶接トーチ12が倣うように溶接ロボット11を制御するロボット制御部15を備え、画像処理装置14は、仮付溶接ビード判定部141及び溶接目標線WLと溶接トーチ12で溶接加工される溶接予定点Pとのズレを演算するズレ演算部142を備えている。ロボット制御部15は、仮付溶接ビード判定部141で仮付溶接ビード無と判定され且つズレ演算部142でズレが演算されると、溶接トーチ12をズレが小となるように補正制御し、仮付溶接ビード判定部141で仮付溶接ビード有と判定されると、前記補正制御を行わないようになっている。また、本実施形態の仮付溶接ビード判定部141は、撮像部13で撮像した開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して仮付溶接ビードK1〜K3の有無を判定する濃度値判定部D(不図示)を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(Embodiment 1)
As shown in FIGS. 1, 2 and 4, the automatic welding machine of the present embodiment is supported by a welding robot 11 having a welding torch 12 and the welding robot 11, and two groove edges OE52 and OE53 are abutted against each other and jump. The image pickup unit 13 that captures the groove edge region image ahead of the welded portion of the member 50 to be welded having the temporary weld bead K1 to K3 temporarily welded to the surface, and the groove edge region image captured by the image pickup unit 13. An image processing device 14 that processes the welding target line WL to set the welding target line WL, and a robot control unit 15 that controls the welding robot 11 so that the welding torch 12 follows the welding target line WL set by the image processing device 14. The processing device 14 includes a temporary welding bead determination unit 141 and a deviation calculation unit 142 that calculates a deviation between the welding target line WL and the planned welding point P to be welded by the welding torch 12. When the temporary welding bead determination unit 141 determines that there is no temporary welding bead and the deviation calculation unit 142 calculates the deviation, the robot control unit 15 corrects and controls the welding torch 12 so that the deviation becomes small. When the temporary welding bead determination unit 141 determines that the temporary welding bead is present, the correction control is not performed. Further, the temporary welding bead determination unit 141 of the present embodiment compares the density value ρ of the groove edge region image imaged by the imaging unit 13 with a predetermined density threshold value to determine the presence or absence of the temporary welding beads K1 to K3. It is provided with a concentration value determination unit D (not shown).

厳密な溶接目標線WLは、図4に示すように開先エッジOE52、OE53の中間線である。なお、図4は、拡大して模式的に示しており、実際は、クロスハッチングが施された開先エッジOE52とOE53の間隙は狭く、溶接目標線WLは開先エッジOE52、OE53と略一致する。 The exact welding target line WL is an intermediate line between the groove edges OE52 and OE53 as shown in FIG. Note that FIG. 4 is enlarged and schematically shown. In reality, the gap between the cross-hatched groove edges OE52 and OE53 is narrow, and the welding target line WL substantially coincides with the groove edges OE52 and OE53. ..

レーザ装置16は、光導波路17で溶接トーチ12と連結されている。溶接トーチ12には、集光レンズ系が組み込まれている。なお、溶接トーチ12が、例えば、アーク溶接トーチの場合は、電線17でアーク溶接電源16と連結されている。撮像部13は例えばCCDカメラであり、画像処理装置14はCPUを備えている。 The laser device 16 is connected to the welding torch 12 by an optical waveguide 17. A condenser lens system is incorporated in the welding torch 12. In the case of the arc welding torch 12, for example, the welding torch 12 is connected to the arc welding power supply 16 by an electric wire 17. The image pickup unit 13 is, for example, a CCD camera, and the image processing device 14 includes a CPU.

図2に示すように、被溶接部材50は、2枚の金属板52、53が突き合わされて3カ所飛び飛びに仮付溶接されてなる。図2で、K1〜K3が仮付溶接ビードであり、Wbは本実施形態に係る自動溶接機の溶接トーチ12で溶接加工された溶接ビードを示す。 As shown in FIG. 2, the member 50 to be welded is formed by temporarily attaching and welding two metal plates 52 and 53 to each other at three places. In FIG. 2, K1 to K3 are temporary weld beads, and Wb indicates a weld bead welded by the welding torch 12 of the automatic welding machine according to the present embodiment.

図4はCCDカメラ13で撮像した開先エッジ領域画像の部分拡大図で、説明の便宜上、金属板52、53の表面は濃度値が高い(白っぽい)ので、1点斜線が施されている。仮付溶接ビードK1の表面は、金属板52、53の表面より濃度値が低い(グレーぽい)ので、実線の斜線が施されている。金属板52の開先エッジOE52と金属板53の開先エッジOE53の間の隙間は光を殆ど反射しないので濃度が低く(黒っぽく)なる。よって、この隙間には実線のクロスハッチングが施されている。図4で、矩形領域SE1、SE2はセンシングエリアで、この矩形領域内の画像データを処理する。その一例として、仮付溶接ビードK1〜K3の外径は3mmのオーダであり、センシングエリアSE1、SE2は3mm×3mm程度の大きさ、開先エッジOE52とOE53の間隙は0.1mmのオーダである。また、矩形状センシングエリアSE1、SE2において交差する一方の辺は溶接目標線WLと交差し、他方の辺は溶接目標線WLに沿う。 FIG. 4 is a partially enlarged view of the groove edge region image captured by the CCD camera 13, and for convenience of explanation, the surfaces of the metal plates 52 and 53 have high density values (whitish), and thus are shaded at one point. Since the surface of the temporary weld bead K1 has a lower density value (grayish) than the surfaces of the metal plates 52 and 53, it is shaded with a solid line. Since the gap between the groove edge OE 52 of the metal plate 52 and the groove edge OE 53 of the metal plate 53 hardly reflects light, the density becomes low (blackish). Therefore, this gap is cross-hatched with a solid line. In FIG. 4, the rectangular regions SE1 and SE2 are sensing areas, and the image data in the rectangular region is processed. As an example, the outer diameters of the temporary weld beads K1 to K3 are on the order of 3 mm, the sensing areas SE1 and SE2 are on the order of about 3 mm × 3 mm, and the gap between the groove edges OE52 and OE53 is on the order of 0.1 mm. is there. Further, one side intersecting the welding target line WL in the rectangular sensing areas SE1 and SE2 intersects the welding target line WL, and the other side is along the welding target line WL.

図4に示すように、仮付溶接ビードK1〜K3がないセンシングエリアSE1では、濃度が変化する境界線(開先エッジOE52)に沿う検出セグメントs1、s2を結ぶ線は、開先エッジOE52に平行となるので、s1とs2を結ぶ線を溶接目標線WLとすることができる。しかし、図5に示すように、仮付溶接ビードK1があるセンシングエリアSE2では、検出セグメントsn、sn+1は開先エッジOE52に沿うが、検出セグメントsn+2、sn+3、sn+4・・・は仮付溶接ビードK1の輪郭線に沿うようになる。すると、仮付溶接ビードK1の輪郭線を溶接目標線と誤検出して、その誤検出した溶接目標線に倣うように溶接してしまう。そこで、本実施形態の自動溶接機は、仮付溶接ビードのあるセンシングエリアでは、溶接目標線の設定をしないようにした。すなわち、本実施形態の自動溶接機は、センシングエリア内の仮付溶接ビードの有無を判定し、仮付溶接ビードがある場合は、予め設定された溶接予定線に沿うように溶接トーチ12を制御する。図4の符号Pは、溶接トーチ12で溶接加工される溶接予定点である。 As shown in FIG. 4, in the sensing area SE1 without the temporary weld beads K1 to K3, the line connecting the detection segments s1 and s2 along the boundary line (groove edge OE52) where the density changes is the groove edge OE52. Since they are parallel to each other, the line connecting s1 and s2 can be the welding target line WL. However, as shown in FIG. 5, in the sensing area SE2 where the temporary weld bead K1 is located, the detection segments sn and sn + 1 follow the groove edge OE52, but the detection segments sn + 2, sn + 3, sn + 4 ... will follow the contour line of the temporary welding bead K1. Then, the contour line of the temporary welding bead K1 is erroneously detected as the welding target line, and welding is performed so as to follow the erroneously detected welding target line. Therefore, in the automatic welding machine of the present embodiment, the welding target line is not set in the sensing area where the temporary welding bead is located. That is, the automatic welding machine of the present embodiment determines the presence or absence of a temporary welding bead in the sensing area, and if there is a temporary welding bead, controls the welding torch 12 so as to follow a preset welding schedule line. To do. Reference numeral P in FIG. 4 is a planned welding point to be welded by the welding torch 12.

本実施形態の濃度値判定部Dは、所定の濃度閾値と開先エッジ領域画像のセンシングエリアSE1、SE2、・・・の平均濃度値ρaveとを比較して仮付溶接ビードK1〜K3の有無を次のように判定する。まず、開先エッジOE52とOE53の間隔が所定値より狭い場合、画像処理装置14が開先エッジOE52とOE53を視認できないように画像処理する。すなわち、画像処理装置14は、開先エッジOE52とOE53の間隔が広くなるほど黒く表示され、開先エッジOE52とOE53の間隔が狭くなるほど淡く表示されるように処理する。すると、開先エッジOE52とOE53の間隔が基準値以下であれば、溶接目標線WLが表示されなくなる。したがって、濃度値判定部Dは、画像処理により溶接目標線WLが表示されないようにして、仮付溶接ビードK1のみを表示するようにし、仮付溶接ビードK1の有無を判定するものである。 The density value determination unit D of the present embodiment compares the predetermined density threshold value with the average density value ρave of the sensing areas SE1, SE2, ... Of the groove edge region image, and has the presence or absence of the temporary welding beads K1 to K3. Is determined as follows. First, when the distance between the groove edges OE52 and OE53 is narrower than a predetermined value, the image processing device 14 performs image processing so that the groove edges OE52 and OE53 cannot be visually recognized. That is, the image processing device 14 processes so that the wider the distance between the groove edges OE52 and OE53, the darker the display, and the narrower the distance between the groove edges OE52 and OE53, the lighter the display. Then, if the distance between the groove edges OE52 and OE53 is equal to or less than the reference value, the welding target line WL is not displayed. Therefore, the density value determination unit D determines whether or not the temporary welding bead K1 is present by displaying only the temporary welding bead K1 so that the welding target line WL is not displayed by image processing.

図6に濃度値判定部Dが所定の濃度基準値の入力により溶接目標線WLが表示されないようにしたセンシングエリアSE1を示す。図7に、濃度値判定部Dが所定の濃度基準値の入力により溶接目標線WLが表示されないように画像処理したセンシングエリアSE2を示す。このように溶接目標線WLが表示されないので、仮付溶接ビードK1の有無を確実に判定することできる。 FIG. 6 shows a sensing area SE1 in which the density value determination unit D prevents the welding target line WL from being displayed by inputting a predetermined concentration reference value. FIG. 7 shows a sensing area SE2 image-processed so that the welding target line WL is not displayed by inputting a predetermined density reference value by the density value determination unit D. Since the welding target line WL is not displayed in this way, the presence or absence of the temporary welding bead K1 can be reliably determined.

例えば、白・黒濃度を256分割し、真白を255、真黒を0とすると、上記したように、金属板52、53の表面は白色に近く濃度値ρmが大きい。仮付溶接ビードK1の表面は灰色に近く濃度値ρkは金属板52、53の表面の濃度値ρmより小さい。すなわち、ρk<ρmである。よって、図7の仮付溶接ビードK1のあるセンシングエリアSE2全体の平均濃度値をρaveとすると、ρk≦ρave<ρmである。したがって、濃度値判定部Dは、所定の濃度閾値をρkとρm(>ρk)とすると、開先エッジ領域画像のセンシングエリアの平均濃度値ρaveが、ρk≦ρave、ρave<ρmの少なくとも一方を満たすとき仮付溶接ビード有と判定することができる。このようにすることで、仮付溶接ビードの有無を安定して判定することができる。 For example, assuming that the white / black density is divided into 256, pure white is 255, and pure black is 0, the surfaces of the metal plates 52 and 53 are close to white and have a large density value ρm, as described above. The surface of the temporary weld bead K1 is close to gray, and the density value ρk is smaller than the density value ρm on the surfaces of the metal plates 52 and 53. That is, ρk <ρm. Therefore, assuming that the average concentration value of the entire sensing area SE2 with the temporary welding bead K1 in FIG. 7 is ρave, ρk ≦ ρave <ρm. Therefore, when the predetermined density threshold values are ρk and ρm (> ρk), the density value determination unit D sets the average density value ρave of the sensing area of the groove edge region image to at least one of ρk ≦ ρave and ρave <ρm. When it is satisfied, it can be determined that there is a temporary welding bead. By doing so, the presence or absence of the temporary welding bead can be stably determined.

様々な開先エッジ、仮付溶接ビードをもつ被溶接部材で実験した結果、開先エッジ画像の白・黒濃度を256分割し、白を255、黒を0としたとき、ρk<20.0、ρm>115.0であることがわかった。そこで、濃度値判定部Dは、平均濃度値ρaveが、20≦ρave、及び又は、ρave<115のとき仮付溶接ビード有りと判定するようにするとよい。 As a result of experiments with members to be welded with various groove edges and temporary weld beads, when the white / black density of the groove edge image is divided into 256, white is 255 and black is 0, ρk <20.0. , Ρm> 115.0. Therefore, the density value determination unit D may determine that there is a temporary welding bead when the average density value ρave is 20 ≦ ρave and / or ρave <115.

次に本実施形態の自動溶接機の作動について、図3のフローチャートにより説明する。まず、仮付溶接された被溶接部材50がテーブル20に載置され、溶接ロボット11は溶接トーチ12が溶接開始点Wsと溶接終了点Weを結ぶ溶接予定線に倣うようにティーチングされて溶接がスタートする。溶接がスタートすると、ステップ100でCCDカメラ13が開先エッジ領域画像(開先エッジOE52、OE53を含む領域の画像)を取得する。次に、ステップ110で画像処理装置14が開先エッジOE52、OE53(〜溶接目標線WL)座標を取得する。次に、ステップ120で仮付溶接ビード判定部141が仮付溶接ビードK1〜K3の有無を判定する。ステップ120で仮付溶接ビードが無と判定されると、ズレ演算部142がステップ130で開先エッジOE52、OE53(〜溶接目標線WL)座標位置と溶接トーチ12で溶接加工される溶接予定点Pとのズレ(差)を演算判定する。ステップ130で差が大と判定されるとステップ150でロボット制御部15が差を小となるように補正制御し、ステップ160で溶接が継続される。ステップ120で仮付溶接ビード有と判定されると、ステップ140でロボット制御部15が溶接目標線WLへの倣いをストップし、ステップ160に進み、溶接開始点Wsと溶接終了点Weを結ぶ溶接予定線に倣うように溶接される。 Next, the operation of the automatic welding machine of the present embodiment will be described with reference to the flowchart of FIG. First, the temporarily welded member 50 to be welded is placed on the table 20, and the welding robot 11 is taught so that the welding torch 12 follows the planned welding line connecting the welding start point Ws and the welding end point We, and welding is performed. Start. When welding starts, the CCD camera 13 acquires a groove edge region image (an image of a region including the groove edges OE52 and OE53) in step 100. Next, in step 110, the image processing device 14 acquires the groove edge OE52 and OE53 (~ welding target line WL) coordinates. Next, in step 120, the temporary welding bead determination unit 141 determines the presence or absence of the temporary welding beads K1 to K3. When it is determined in step 120 that there is no temporary welding bead, the deviation calculation unit 142 is welded with the groove edge OE52, OE53 (~ welding target line WL) coordinate position and the welding torch 12 in step 130. The deviation (difference) from P is calculated and determined. If the difference is determined to be large in step 130, the robot control unit 15 corrects and controls the difference so that the difference becomes small in step 150, and welding is continued in step 160. When it is determined in step 120 that there is a temporary welding bead, the robot control unit 15 stops copying to the welding target line WL in step 140, proceeds to step 160, and welds connecting the welding start point Ws and the welding end point We. Welded to follow the planned line.

(実施形態2)
本実施形態の自動溶接機は、実施形態1の自動溶接機の仮付溶接ビード判定部141が標準偏差値判定部Σ(不図示)を備えるようにしたものである。
(Embodiment 2)
In the automatic welding machine of the present embodiment, the temporary welding bead determination unit 141 of the automatic welding machine of the first embodiment is provided with a standard deviation value determination unit Σ (not shown).

図8にセンシングエリアSE1での標準偏差値判定の様子を示す。センシングエリアSE1には仮付溶接ビードK1がないので、検出セグメントs1、s2、・・・snは濃度が変化する境界線(開先エッジOE52)に沿う。したがって、各検出セグメントs1、s2、・・・snのx座標(検出セグメント位置)をx1、x2、・・・・xnとしたときの標準偏差値σse1は小さい値になる。 FIG. 8 shows a state of standard deviation value determination in the sensing area SE1. Since there is no temporary weld bead K1 in the sensing area SE1, the detection segments s1, s2, ... Sn are along the boundary line (groove edge OE52) where the density changes. Therefore, the standard deviation value σse1 is small when the x-coordinates (detection segment positions) of the detection segments s1, s2, ... Sn are x1, x2, ... xn.

一方、図9に示すセンシングエリアSE2の場合、検出セグメントsn、sn+1、sn+2は濃度が変化する境界線(開先エッジOE52)に沿い、検出セグメントsn+3、sn+4、sn+5は仮付溶接ビードK1の境界線に沿う。したがって、各検出セグメントsn、sn+1、sn+2、sn+3、sn+4、sn+5のx座標をxn、xn+1、xn+2、・・・xn+5としたときの標準偏差値σse2は大きくなり、σse2>σse1である。 On the other hand, in the case of the sensing area SE2 shown in FIG. 9, the detection segments sn, sn + 1, and sn + 2 are along the boundary line (groove edge OE52) where the density changes, and the detection segments sn + 3, sn + 4, and sn. +5 is along the boundary line of the temporary weld bead K1. Therefore, when the x-coordinates of each detection segment sn, sn + 1, sn + 2, sn + 3, sn + 4, sn + 5 are xn, xn + 1, xn + 2, ... Xn + 5. The standard deviation value σse2 becomes large, and σse2> σse1.

本実施形態の標準偏差値判定部Σは、標準偏差値σが所定の標準偏差閾値σl未満のとき仮付溶接ビード無と判定する。 The standard deviation value determination unit Σ of the present embodiment determines that there is no temporary welding bead when the standard deviation value σ is less than the predetermined standard deviation threshold σl.

様々な開先エッジ、仮付溶接ビードをもつ被溶接部材で実験した結果、σ1=50とすると仮付溶接ビードの有無を正確に判定できることがわかった。そこで、変形態様の自動溶接機の標準偏差値判定部Σは、σ1=50として仮付溶接ビードの有無を判定する。 As a result of experiments with members to be welded having various groove edges and temporary weld beads, it was found that the presence or absence of temporary weld beads can be accurately determined when σ1 = 50. Therefore, the standard deviation value determination unit Σ of the automatic welding machine in the modified mode determines the presence or absence of the temporary welding bead by setting σ1 = 50.

(実施形態3)
本実施形態の自動溶接機は、実施形態1の自動溶接機の仮付溶接ビード判定部141がエッジ角度判定部A(不図示)を備えるようにしたものである。
(Embodiment 3)
In the automatic welding machine of the present embodiment, the temporary welding bead determination unit 141 of the automatic welding machine of the first embodiment is provided with an edge angle determination unit A (not shown).

図10にセンシングエリアSE1でのエッジ角度判定の様子を示す。センシングエリアSE1には仮付溶接ビードK1がないので、検出セグメントs1、s2、s3、s4は濃度が変化する境界線(開先エッジOE52)に沿う。したがって、s1とs4を結ぶ近似直線SL1と基準線Lbとの成すエッジ角度θは90°に近くなる。 FIG. 10 shows a state of edge angle determination in the sensing area SE1. Since there is no temporary weld bead K1 in the sensing area SE1, the detection segments s1, s2, s3, and s4 are along the boundary line (groove edge OE52) where the density changes. Therefore, the edge angle θ formed by the approximate straight line SL1 connecting s1 and s4 and the reference line Lb is close to 90 °.

一方、図11に示すセンシングエリアSE2の場合、検出セグメントsnとsn+1を結ぶ近似直線SL2と基準線Lbとの成すエッジ角度θは90°より大きくなる。そこで、本実施形態では、90°を所定のエッジ角度閾値とする。 On the other hand, in the case of the sensing area SE2 shown in FIG. 11, the edge angle θ formed by the approximate straight line SL2 connecting the detection segment sn and sn + 1 and the reference line Lb is larger than 90 °. Therefore, in the present embodiment, 90 ° is set as a predetermined edge angle threshold value.

本実施形態では、基準線Lbを開先エッジOE52、OE53と直交する線(X軸)としたが、矩形状センシングエリアのX軸に平行する辺を基準線としてもよい。 In the present embodiment, the reference line Lb is a line (X-axis) orthogonal to the groove edges OE52 and OE53, but a side parallel to the X-axis of the rectangular sensing area may be used as a reference line.

本実施形態のエッジ角度判定部Aは、θが90°より大きいとき仮付溶接ビード有と判定し、θが90°のとき仮付溶接ビード無と判定する。 The edge angle determination unit A of the present embodiment determines that the temporary welding bead is present when θ is larger than 90 °, and determines that the temporary welding bead is not present when θ is 90 °.

エッジ角度判定部Aは、所定のエッジ角度閾値をθsとθl(>θs)とすると、開先エッジ領域画像のエッジ角度θが、θs以上及び或いはθl以下であるとき、仮付溶接ビード無と判定するようにしてもよい。このようにすることで、仮付溶接ビードの有無を安定して判定することができる。 When the edge angle θ of the groove edge region image is θs or more and / or θl or less, assuming that the predetermined edge angle thresholds are θs and θl (> θs), the edge angle determination unit A determines that there is no temporary welding bead. It may be determined. By doing so, the presence or absence of the temporary welding bead can be stably determined.

様々な開先エッジ、仮付溶接ビードをもつ被溶接部材で実験した結果、θs=75°、θl=105°のとき、エッジ角度判定部Aが確実に仮付溶接ビードの有無を判定できることがわかった。そこでエッジ角度判定部Aは、θが75°以上及び或いは105°以下のとき、仮付溶接ビード無と判定するようにするとよい。 As a result of experiments with members to be welded having various groove edges and temporary weld beads, when θs = 75 ° and θl = 105 °, the edge angle determination unit A can reliably determine the presence or absence of the temporary weld bead. all right. Therefore, the edge angle determination unit A may determine that there is no temporary welding bead when θ is 75 ° or more and / or 105 ° or less.

(実施形態4)
本実施形態の自動溶接機は、実施形態1の自動溶接機の仮付溶接ビード判定部141が濃度値判定部D、標準偏差値判定部Σ、及びエッジ角度判定部Aを備えるようにしたものである。
(Embodiment 4)
In the automatic welding machine of the present embodiment, the temporary welding bead determination unit 141 of the automatic welding machine of the first embodiment includes a concentration value determination unit D, a standard deviation value determination unit Σ, and an edge angle determination unit A. Is.

図12に本実施形態に係る自動溶接機の操作画面を示す。図12では点線円で囲まれたボタンが選択されているので、濃度値、又は標準偏差値、又はエッジ角度のどれか一つでも仮付溶接ビード有の判定が行われた場合にステップ140(図3参照)に進むことができる。なお、図12の例では、濃度値、標準偏差値、エッジ角度のすべてが仮付溶接ビード無と判定しているので(操作画面における状態の仮付判定に表示がないので)、ステップ130(図3参照)へ進むことになる。 FIG. 12 shows an operation screen of the automatic welding machine according to the present embodiment. In FIG. 12, since the button surrounded by the dotted line circle is selected, step 140 (when it is determined that the temporary welding bead is present at any one of the density value, the standard deviation value, and the edge angle) (step 140). You can proceed to (see Figure 3). In the example of FIG. 12, since it is determined that there is no temporary welding bead in all of the density value, the standard deviation value, and the edge angle (because there is no display in the temporary attachment determination of the state on the operation screen), step 130 (because there is no display). (See Fig. 3).

本実施形態の自動溶接機では、濃度値、標準偏差値、エッジ角度を「AND」或いは[OR]で自由に組み合わせることにより、様々な状況での仮付溶接ビードの識別が可能となり、溶接ロボットによる溶接施工の安定化につながる。例えば、濃度値、標準偏差値、エッジ角度のどれか一つで仮付溶接ビードの識別を行えば、識別時間が短縮できるが、精度、信頼性を高くすることができない。一方、濃度値、標準偏差値、エッジ角度の三つで仮付溶接ビードの識別を行えば、識別時間が長くなるが、誤識別の確率が低くなり、識別の精度、信頼性が高くなる。溶接施工の種類によっては、濃度値、標準偏差値、エッジ角度のどれか一つで仮付溶接ビードの識別を行えばよい場合もあれば、濃度値、標準偏差値、エッジ角度の三つで仮付溶接ビードの識別を行う必要がある場合もある。溶接施工の種類に応じて、濃度値、標準偏差値、エッジ角度を「AND」或いは[OR]で自由に組み合わせることにより、溶接を安定して行うことができる。 In the automatic welding machine of the present embodiment, the temporary welding bead can be identified in various situations by freely combining the density value, standard deviation value, and edge angle with "AND" or [OR], and the welding robot. This leads to stabilization of welding work. For example, if the temporary weld bead is identified by any one of the concentration value, the standard deviation value, and the edge angle, the identification time can be shortened, but the accuracy and reliability cannot be improved. On the other hand, if the temporary weld bead is identified by the density value, the standard deviation value, and the edge angle, the identification time becomes long, but the probability of erroneous identification becomes low, and the accuracy and reliability of the identification become high. Depending on the type of welding work, it may be sufficient to identify the temporary weld bead by one of the density value, standard deviation value, and edge angle, and the density value, standard deviation value, and edge angle may be used. It may be necessary to identify the temporary weld bead. Welding can be performed stably by freely combining the concentration value, standard deviation value, and edge angle with "AND" or [OR] according to the type of welding work.

(実施形態5)
本実施形態の自動溶接方法は、溶接トーチ12をもつ溶接ロボット11に支持されたCCDカメラ13で、二つの開先エッジOE52、OE53が突き合わされて飛び飛びに仮付溶接された仮付溶接ビードK1〜K3をもつ被溶接部材50の開先エッジ領域画像を撮像する撮像工程P1と、撮像工程P1で撮像した開先エッジ領域画像を処理して開先エッジOE52、OE53の中間線である溶接目標線WLを設定する溶接目標線設定工程P2と、溶接目標線設定工程P2で設定した溶接目標線WLに溶接トーチ12が倣うように溶接ロボット11を制御するロボット制御工程P3と、を備え、溶接目標線設定工程P2は、仮付溶接ビードK1〜K3の有無を判定する仮付溶接ビード判定工程P4と、溶接目標線WLと溶接トーチ12で溶接加工される溶接予定点Pとのズレを演算するズレ演算工程と、を備え、仮付溶接ビード判定工程P4は、撮像工程P1で撮像した開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して仮付溶接ビードK1〜K3の有無を判定する濃度値判定工程P41、撮像工程P1で撮像した開先エッジ領域画像の中で開先エッジOE52に沿うか又は仮付け溶接ビードの輪郭Kn(n=1,2,3)に沿う複数の検出セグメントs1、s2、・・snを通る近似直線と基準線Lbとの成すエッジ角度θを所定のエッジ角度閾値と比較して仮付溶接ビードK1〜K3の有無を判定するエッジ角度判定工程P42、前記開先エッジOE52に沿うか又は仮付け溶接ビードの輪郭線に沿う複数の検出セグメントs1、s2、・・sn位置の溶接目標線WLと交差する方向の標準偏差値σを所定の標準偏差閾値と比較して仮付溶接ビードK1〜K3の有無を判定する標準偏差値判定工程P43の少なくとも一つを備え、ロボット制御工程P3は、仮付溶接ビード判定工程P4で仮付溶接ビード無と判定され且つズレ演算工程P5でズレが演算されると、溶接トーチ12をズレが小となるように補正制御し、仮付溶接ビード判定工程P4で仮付溶接ビード有と判定されると、前記補正制御を行わないようにする。
(Embodiment 5)
The automatic welding method of the present embodiment is a temporary welding bead K1 in which two groove edges OE52 and OE53 are butted and temporarily welded in a discrete manner by a CCD camera 13 supported by a welding robot 11 having a welding torch 12. The welding target, which is an intermediate line between the groove edges OE52 and OE53, is processed by processing the groove edge region image captured in the imaging step P1 and the imaging step P1 to capture the groove edge region image of the member 50 to be welded having ~ K3. Welding includes a welding target line setting step P2 for setting the line WL and a robot control step P3 for controlling the welding robot 11 so that the welding torch 12 follows the welding target line WL set in the welding target line setting step P2. The target line setting step P2 calculates the deviation between the temporary welding bead determination step P4 for determining the presence or absence of the temporary welding beads K1 to K3 and the planned welding point P to be welded by the welding target line WL and the welding torch 12. In the temporary welding bead determination step P4, the density value ρ of the groove edge region image imaged in the imaging step P1 is compared with a predetermined density threshold to compare the temporary welding beads K1 to K3. In the groove edge region image imaged in the density value determination step P41 and the imaging step P1 for determining the presence or absence , along the groove edge OE52 or on the contour line Kn (n = 1, 2, 3) of the temporary welding bead. Edge angle for determining the presence or absence of temporary weld beads K1 to K3 by comparing the edge angle θ formed by the approximate straight line passing through a plurality of detection segments s1, s2, ... Sn along the reference line Lb with a predetermined edge angle threshold value. Judgment step P42, a standard deviation value σ in a direction intersecting the welding target line WL at a plurality of detection segments s1, s2, ... Sn positions along the groove edge OE52 or along the contour line of the temporary welding bead is determined. The robot control step P3 includes at least one of the standard deviation value determination steps P43 for determining the presence / absence of the temporary welding beads K1 to K3 in comparison with the standard deviation threshold of the above. When it is determined that there is no bead and the deviation is calculated in the deviation calculation step P5, the welding torch 12 is corrected and controlled so that the deviation becomes small, and it is determined that the temporary welding bead is present in the temporary welding bead determination step P4. And, the correction control is not performed.

変形態様の自動溶接方法は、ロボット制御工程P3が前記補正制御を行わないとき、溶接トーチ12を予め設定された溶接予定線に倣うように制御する。また別の変形態様の自動溶接方法は、ロボット制御工程P3が前記補正制御を行わないとき、溶接トーチ12を直前の溶接目標線WLの延長線に倣うように制御する。 The automatic welding method of the deformation mode controls the welding torch 12 so as to follow a preset welding schedule line when the robot control step P3 does not perform the correction control. In another modification of the automatic welding method, when the robot control step P3 does not perform the correction control, the welding torch 12 is controlled so as to follow the extension line of the immediately preceding welding target line WL.

(検証実験1)
レーザビームを出さないで、仮付溶接ビード判定部141が濃度値ρ、標準偏差値σ、エッジ角度θで仮付溶接ビードの有無を判定した場合の溶接トーチの溶接目標線WLへの追従性を調べた。すなわち、板厚2.6mmのSPCC鋼板の突合せ継手材を用いて仮付溶接ビードの判定機能を発揮させる場合と発揮させない場合で溶接目標線WLへの追従精度を比較した。
(Verification experiment 1)
Followability of the welding torch to the welding target line WL when the temporary welding bead determination unit 141 determines the presence or absence of the temporary welding bead based on the density value ρ, the standard deviation value σ, and the edge angle θ without emitting a laser beam. I examined. That is, the accuracy of following the welding target line WL was compared between the case where the determination function of the temporary weld bead was exerted and the case where the temporary welding bead determination function was not exerted by using the butt joint material of the SPCC steel plate having a plate thickness of 2.6 mm.

試験片を図13に示す。板厚2.6mm、長さ410mm、幅30mmのSPCC鋼板2枚を突合せ継手にして、試験片の溶接開始点Wsから溶接終了点Weまで溶接トーチを走行させた。仮付溶接ビードK1、K2、K3はレーザスポット溶接によるもので、直径3.2mmの円形である。なお、本検証実験では、開先がない突合せ継ぎ手で開先ギャップ0として実験した。溶接ロボットには、溶接開始点Wsではネライはずし量を0mm、溶接終了点Weではネライはずし量を2mmとなるように、溶接目標線WLに対して溶接予定線を意図的にずらすようにティーチングした。 The test piece is shown in FIG. Two SPCC steel plates having a plate thickness of 2.6 mm, a length of 410 mm, and a width of 30 mm were used as butt joints, and a welding torch was run from the welding start point Ws of the test piece to the welding end point We. Temporary welding beads K1, K2, and K3 are laser spot welded and have a circular shape with a diameter of 3.2 mm. In this verification experiment, the groove gap was set to 0 with a butt joint having no groove. The welding robot was taught so that the planned welding line was intentionally shifted from the welding target line WL so that the amount of removal of the nerai was 0 mm at the welding start point Ws and the amount of removal of the nerai was 2 mm at the welding end point We. ..

図14は、仮付溶接ビード判定部141を機能させないときの溶接トーチ12の溶接目標線WLからのズレ量の変化を示している。最大で0.7mmのズレが発生している。 FIG. 14 shows a change in the amount of deviation of the welding torch 12 from the welding target line WL when the temporary welding bead determination unit 141 is not operated. A maximum deviation of 0.7 mm has occurred.

図15は、仮付溶接ビード判定部141を機能させたときの溶接トーチ12の溶接目標線WLからのズレ量の変化を示している。これから、仮付溶接ビード判定部141を機能させたときの溶接トーチ12の溶接目標線WLからのズレ量の最大値が0.095mmであることがわかる。このズレ量は、レーザ溶接を行う上で良好な溶接品質を確保するのに問題とならない。 FIG. 15 shows a change in the amount of deviation of the welding torch 12 from the welding target line WL when the temporary welding bead determination unit 141 is operated. From this, it can be seen that the maximum value of the deviation amount of the welding torch 12 from the welding target line WL when the temporary welding bead determination unit 141 is operated is 0.095 mm. This amount of deviation does not pose a problem in ensuring good welding quality in performing laser welding.

(検証実験2)
レーザ溶接を行って、仮付溶接ビード判定部141が濃度値ρ、標準偏差値σ、エッジ角度θのいずれかで仮付溶接ビードの有無を判定した場合の溶接ビードの溶接目標線WLへの追従性を調べた。すなわち、板厚1.2mmのSPCC鋼板の突合せ継手材を用いて、仮付溶接ビード判定部141が濃度値ρ、標準偏差値σ、エッジ角度θのいずれか一つを用いて仮付溶接ビードの有無を判定した場合の溶接トーチの溶接目標線WLへの追従精度を調べた。
(Verification experiment 2)
When laser welding is performed and the temporary welding bead determination unit 141 determines the presence or absence of the temporary welding bead by any of the density value ρ, the standard deviation value σ, and the edge angle θ, the welding bead is applied to the welding target line WL. The followability was examined. That is, using the butt joint material of the SPCC steel plate having a plate thickness of 1.2 mm, the temporary weld bead determination unit 141 uses any one of the concentration value ρ, the standard deviation value σ, and the edge angle θ. The accuracy of following the welding target line WL of the welding torch was investigated when the presence or absence of the welding torch was determined.

試験片を図16に示す。板厚1.2mm、長さ320mm、幅30mmのSPCC鋼板2枚を突合せ継ぎ手にして、100mmピッチで3カ所仮付溶接した。なお、本実験では、開先がない突合せ継ぎ手で開先ギャップを0として実験が行われた。 The test piece is shown in FIG. Two SPCC steel plates having a plate thickness of 1.2 mm, a length of 320 mm, and a width of 30 mm were used as butt joints and temporarily welded at three locations at a pitch of 100 mm. In this experiment, the groove gap was set to 0 with a butt joint having no groove.

レーザパワーは2KWで、溶接速度は3m/minである。溶接ロボットには、溶接開始点Wsではネライはずし量を0mm、溶接終了点Weではネライはずし量を1.5mmとなるように、溶接目標線WLに対して溶接予定線を意図的にずらすようにティーチングした。溶接後、マイクロスコープを用いて、溶接目標線WLの位置と溶接後の溶接ビード中心位置を測定して倣い精度を評価した。全溶接長300mmに対して、40mmのピッチで7カ所長さ30mmの溶接を行った後、溶接目標線WLの位置と溶接後の溶接ビード中心位置のズレδを測定した(図17参照。)。 The laser power is 2KW and the welding speed is 3m / min. For the welding robot, intentionally shift the planned welding line from the welding target line WL so that the amount of removal of the nerai is 0 mm at the welding start point Ws and the amount of removal of the nerai is 1.5 mm at the welding end point We. Welded. After welding, the position of the welding target line WL and the center position of the welding bead after welding were measured using a microscope to evaluate the copying accuracy. After welding with a total welding length of 300 mm at 7 locations with a length of 30 mm at a pitch of 40 mm, the deviation δ between the position of the welding target line WL and the center position of the weld bead after welding was measured (see FIG. 17). ..

仮付溶接ビードの有無の判定のために、濃度値ρ、標準偏差値σ、エッジ角度θの閾値を入力した。その入力画面を図18に示す。濃度値ρが濃度閾値20以上及び115以下のとき、仮付溶接ビード有と判定する。標準偏差値σが標準偏差閾値50以上のとき仮付溶接ビード有と判定する。エッジ角度θがエッジ角度閾値75°以上及び105°以下のとき仮付溶接ビードが無と判定する。すなわち、エッジ角度θが75°未満、105°を越えるとき、仮付溶接ビード有と判定する。 In order to determine the presence or absence of the temporary weld bead, the threshold values of the concentration value ρ, the standard deviation value σ, and the edge angle θ were input. The input screen is shown in FIG. When the density value ρ is the density threshold value of 20 or more and 115 or less, it is determined that the temporary welding bead is present. When the standard deviation value σ is 50 or more of the standard deviation threshold value, it is determined that the temporary welding bead is present. When the edge angle θ is the edge angle threshold value of 75 ° or more and 105 ° or less, it is determined that there is no temporary welding bead. That is, when the edge angle θ is less than 75 ° and exceeds 105 °, it is determined that the temporary welding bead is present.

図19に濃度値ρ単独で仮付溶接ビードの有無を判定したときの溶接ビードの溶接目標線WLからのズレ量を示す。平均ズレ量は0.083mmであり、溶接目標線WLの座標位置に対して最大+0.120mm、最小0.02mmの倣いズレが生じている。最大でも+0.120mmの倣いズレであり、濃度値のみの判定でもレーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 19 shows the amount of deviation of the welding bead from the welding target line WL when the presence or absence of the temporary welding bead is determined by the concentration value ρ alone. The average amount of deviation is 0.083 mm, and there is a maximum of +0.120 mm and a minimum of 0.02 mm of copying deviation with respect to the coordinate position of the welding target line WL. The maximum copying deviation is +0.120 mm, and the copying accuracy of ± 0.15 mm is satisfied, which enables good welding by laser welding even when only the concentration value is judged.

図20に標準偏差値σ単独で仮付溶接ビードの有無を判定したときの溶接ビードの溶接目標線WLからのズレ量を示す。平均ズレ量は0.087mmであり、溶接目標線WLの座標位置に対して最大+0.130mm、最小0.05mmの倣いズレが生じている。標準偏差値のみの判定でもレーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 20 shows the amount of deviation of the welding bead from the welding target line WL when the presence or absence of the temporary welding bead is determined by the standard deviation value σ alone. The average amount of deviation is 0.087 mm, and there is a maximum of +0.130 mm and a minimum of 0.05 mm of copying deviation with respect to the coordinate position of the welding target line WL. Even if only the standard deviation value is judged, the copying accuracy of ± 0.15 mm, which enables good welding by laser welding, is satisfied.

図21にエッジ角度θ単独で仮付溶接ビードの有無を判定したときの溶接ビードの溶接目標線WLからのズレ量を示す。平均ズレ量は0.080mmであり、溶接目標線WLの座標位置に対して最大+0.11mm、最小0.05mmの倣いズレが生じている。エッジ角度のみの判定でもレーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 21 shows the amount of deviation of the welding bead from the welding target line WL when the presence or absence of the temporary welding bead is determined by the edge angle θ alone. The average amount of deviation is 0.080 mm, and there is a maximum of +0.11 mm and a minimum of 0.05 mm of copying deviation with respect to the coordinate position of the welding target line WL. Even if only the edge angle is judged, the copying accuracy of ± 0.15 mm, which enables good welding by laser welding, is satisfied.

(検証実験3)
仮付溶接ビード判定部141が仮付溶接ビードの有無の判定を、濃度値ρと標準偏差値σとの「OR」で行った場合の溶接ビードの溶接目標線WLへの追従性を調べた。試験片、実験条件等は、検証実験2と同じであるので、説明を省略する。
(Verification experiment 3)
When the temporary welding bead determination unit 141 determines the presence or absence of the temporary welding bead by "OR" of the concentration value ρ and the standard deviation value σ, the followability of the weld bead to the welding target line WL is investigated. .. Since the test piece, experimental conditions, etc. are the same as those in the verification experiment 2, the description thereof will be omitted.

図22に実験結果を示す。平均ズレ量は0.052mmであり、溶接目標線WLの座標位置に対して最大+0.130mm、最小0.06mmの倣いズレが生じている。濃度値ρと標準偏差値σを「OR」で組み合わせた場合でも、仮付溶接ビードによる外乱に影響されることなく、レーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 22 shows the experimental results. The average amount of deviation is 0.052 mm, and there is a maximum of +0.130 mm and a minimum of 0.06 mm of copying deviation with respect to the coordinate position of the welding target line WL. Even when the concentration value ρ and the standard deviation value σ are combined by "OR", the copying accuracy of ± 0.15 mm is satisfied, which enables good welding by laser welding without being affected by the disturbance caused by the temporary welding bead. ..

(検証実験4)
仮付溶接ビード判定部141が仮付溶接ビードの有無の判定を、濃度値ρとエッジ角度θとの「OR」で行った場合の溶接ビードの溶接目標線WLへの追従性を調べた。試験片、実験条件等は、検証実験2と同じであるので、説明を省略する。
(Verification experiment 4)
When the temporary welding bead determination unit 141 determined the presence or absence of the temporary welding bead by "OR" of the concentration value ρ and the edge angle θ, the followability of the welding bead to the welding target line WL was examined. Since the test piece, experimental conditions, etc. are the same as those in the verification experiment 2, the description thereof will be omitted.

図23に実験結果を示す。平均ズレ量は0.088mmであり、溶接目標線WLの座標位置に対して最大+0.140mm、最小0.04mmの倣いズレが生じている。濃度値ρとエッジ角度θを「OR」で組み合わせた場合でも、仮付溶接ビードによる外乱に影響されることなく、レーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 23 shows the experimental results. The average amount of deviation is 0.088 mm, and there is a maximum of +0.140 mm and a minimum of 0.04 mm of copying deviation with respect to the coordinate position of the welding target line WL. Even when the concentration value ρ and the edge angle θ are combined by “OR”, the copying accuracy of ± 0.15 mm is satisfied, which enables good welding by laser welding without being affected by the disturbance caused by the temporary welding bead.

(検証実験5)
仮付溶接ビード判定部141が仮付溶接ビードの有無の判定を、標準偏差値σとエッジ角度θとの「OR」で行った場合の溶接ビードの溶接目標線WLへの追従性を調べた。
(Verification experiment 5)
When the temporary welding bead determination unit 141 determines the presence or absence of the temporary welding bead at the “OR” of the standard deviation value σ and the edge angle θ, the followability of the weld bead to the welding target line WL is investigated. ..

図24に実験結果を示す。平均ズレ量は0.083mmであり、溶接目標線WLの座標位置に対して最大+0.120mm、最小0.05mmの倣いズレが生じている。標準偏差値σとエッジ角度θを「OR」で組み合わせた場合でも、仮付溶接ビードによる外乱に影響されることなく、レーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 24 shows the experimental results. The average amount of deviation is 0.083 mm, and there is a maximum of +0.120 mm and a minimum of 0.05 mm of copying deviation with respect to the coordinate position of the welding target line WL. Even when the standard deviation value σ and the edge angle θ are combined by “OR”, the copying accuracy of ± 0.15 mm is satisfied, which enables good welding by laser welding without being affected by the disturbance caused by the temporary welding bead. ..

(検証実験6)
仮付溶接ビード判定部141が濃度値ρと標準偏差値σ及びエッジ角度θで仮付溶接ビードの有無を判定した場合の溶接ビードの溶接目標線WLへの追従性を調べた。
(Verification experiment 6)
The followability of the weld bead to the welding target line WL when the temporary weld bead determination unit 141 determines the presence or absence of the temporary weld bead based on the concentration value ρ, the standard deviation value σ, and the edge angle θ was investigated.

試験片を図25に示す。板厚1.2mm、長さ610mm、幅30mmのSPCC鋼板2枚を突合せ継ぎ手にして、150mmピッチで4カ所仮付溶接した。なお、本実験では、開先がない突合せ継ぎ手で開先ギャップを0として実験が行われた。 The test piece is shown in FIG. Two SPCC steel plates having a plate thickness of 1.2 mm, a length of 610 mm, and a width of 30 mm were used as butt joints and temporarily welded at four locations at a pitch of 150 mm. In this experiment, the groove gap was set to 0 with a butt joint having no groove.

レーザパワーは、2KWで、溶接速度は3m/minである。溶接ロボットには、溶接開始点Wsではネライはずし量を0mm、溶接終了点Weではネライはずし量を2mmとなるように、溶接目標線WLに対して意図的にずらすようにティーチングした。溶接後、マイクロスコープを用いて、溶接目標線WLの位置と溶接後の溶接ビード中心位置を測定して倣い精度を評価した。全溶接長600mmに対して、40mmのピッチで15カ所長さ30mmの溶接を行った後、溶接目標線WLの位置と溶接後の溶接ビード中心位置のズレδを測定した(図17参照。)。 The laser power is 2KW and the welding speed is 3m / min. The welding robot was taught so as to intentionally shift the welding target line WL so that the amount of removal of the nerai was 0 mm at the welding start point Ws and the amount of removal of the nerai was 2 mm at the welding end point We. After welding, the position of the welding target line WL and the center position of the welding bead after welding were measured using a microscope to evaluate the copying accuracy. After welding with a total welding length of 600 mm at 15 locations with a length of 30 mm at a pitch of 40 mm, the deviation δ between the position of the welding target line WL and the center position of the weld bead after welding was measured (see FIG. 17). ..

仮付溶接ビードの有無の判定のために、濃度値ρ、標準偏差値σ、エッジ角度θの閾値を入力した(図18参照)。濃度値ρが濃度閾値20以上及び濃度閾値115以下のとき、仮付溶接ビード有と判定する。標準偏差値σが標準偏差閾値50以上のとき仮付溶接ビード有と判定する。エッジ角度θがエッジ角度閾値75°以上及びエッジ角度閾値105°以下のとき仮付溶接ビードが無と判定する。すなわち、エッジ角度θが75°未満、105°を越えるとき、仮付溶接ビード有と判定する。 In order to determine the presence or absence of the temporary weld bead, the threshold values of the concentration value ρ, the standard deviation value σ, and the edge angle θ were input (see FIG. 18). When the density value ρ is the density threshold value of 20 or more and the concentration threshold value of 115 or less, it is determined that the temporary welding bead is present. When the standard deviation value σ is 50 or more of the standard deviation threshold value, it is determined that the temporary welding bead is present. When the edge angle θ is equal to or greater than the edge angle threshold value of 75 ° and equal to or less than the edge angle threshold value of 105 °, it is determined that there is no temporary welding bead. That is, when the edge angle θ is less than 75 ° and exceeds 105 °, it is determined that the temporary welding bead is present.

濃度値ρ、標準偏差値σ及びエッジ角度θの3つを「OR」で組み合わせて仮付溶接ビード判定部141が仮付溶接ビードの有無を判定した場合の溶接ビードの溶接目標線WLへの追従性を調べた。 When the temporary welding bead determination unit 141 determines the presence or absence of the temporary welding bead by combining the density value ρ, the standard deviation value σ, and the edge angle θ with “OR”, the welding bead is applied to the welding target line WL. The followability was investigated.

図26に実験結果を示す。平均ズレ量は0.050mmであり、溶接目標線WLの座標位置に対して最大+0.140mm、最小−0.035mmの倣いズレが生じている。仮付溶接ビードによる外乱に影響されることなく、レーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 26 shows the experimental results. The average amount of deviation is 0.050 mm, and a maximum of +0.140 mm and a minimum of -0.035 mm are copied with respect to the coordinate position of the welding target line WL. It satisfies the copying accuracy of ± 0.15 mm, which enables good welding by laser welding without being affected by the disturbance caused by the temporary welding bead.

溶接速度を1m/min(レーザパワー:1.2KW)、5m/min(レーザパワー:3KW)、7m/min(レーザパワー:3.5KW)、10m/min(レーザパワー:5KW)にして、同様の実験を行った。 Welding speed is set to 1 m / min (laser power: 1.2 kW), 5 m / min (laser power: 3 kW), 7 m / min (laser power: 3.5 kW), 10 m / min (laser power: 5 kW), and the same. Experiment was conducted.

それぞれの溶接速度での平均ズレ量は、溶接速度1m/minでは0.041mm、溶接速度5m/minでは0.062mm、溶接速度7m/minでは0.082mm、溶接速度10m/minでは0.045mmであった。いずれの溶接条件でもレーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしていることがわかった。 The average amount of deviation at each welding speed is 0.041 mm at a welding speed of 1 m / min, 0.062 mm at a welding speed of 5 m / min, 0.082 mm at a welding speed of 7 m / min, and 0.045 mm at a welding speed of 10 m / min. Met. It was found that under all welding conditions, the copying accuracy of ± 0.15 mm, which enables good welding by laser welding, was satisfied.

以上本発明は、このような実施形態、検証実験に何ら限定されるものでなく、突き合わせ継手以外の角継手、重ね継手、隅肉継手、重ね隅肉継手、T継手、フレア継手、へり継手等に適用可能である。また、本発明は、溶接以外の肉盛、ろう付けする際の倣いにも適用することができる。 The present invention is not limited to such embodiments and verification experiments, and square joints other than butt joints, lap joints, fillet joints, lap fillet joints, T joints, flare joints, edge joints, etc. Applicable to. The present invention can also be applied to overlaying and brazing other than welding.

11・・・・・・・・・・溶接ロボット
12・・・・・・・・・・溶接トーチ
13・・・・・・・・・・撮像部
14・・・・・・・・・・画像処理装置
141・・・・・・・・仮付溶接ビード判定部
142・・・・・・・・ズレ演算部
15・・・・・・・・・・ロボット制御部
50・・・・・・・・・・被溶接部材
D・・・・・・・・・・・濃度値判定部
Σ・・・・・・・・・・・標準偏差値判定部
A・・・・・・・・・・・エッジ角度判定部
K1〜K4・・・・・・・仮付溶接ビード
OE52、OE53・・・開先エッジ
s1、s2、・・sn・・検出セグメント
ρ・・・・・・・・・・・濃度値
θ・・・・・・・・・・・エッジ角度
σ・・・・・・・・・・・標準偏差値
11 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Welding robot 12 ・ ・ ・ ・ ・ ・ ・ ・ Welding torch 13 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Imaging unit 14 ・ ・ ・ ・ ・ ・ ・ ・Image processing device 141 ・ ・ ・ ・ ・ ・ ・ ・ Temporary welding bead judgment unit 142 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・·················································································································・ ・ ・ Edge angle determination unit K1 to K4 ・ ・ ・ ・ ・ ・ ・ Temporary welding beads OE52, OE53 ・ ・ ・ Groove edge s1, s2, ・ ・ sn ・ ・ ・ ・ Detection segment ρ ・ ・ ・ ・ ・・ ・ ・ Density value θ ・ ・ ・ ・ ・ ・ ・ ・ Edge angle σ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Standard deviation value

Claims (6)

溶接トーチをもつ溶接ロボットと、前記溶接ロボットに支持され、二枚の金属板の開先エッジが突き合わされて飛び飛びに仮付溶接された仮付溶接ビードをもつ被溶接部材の溶接する部分より先の開先エッジ領域画像を撮像する撮像部と、前記撮像部で撮像した前記開先エッジ領域画像を処理して溶接目標線を設定する画像処理装置と、前記画像処理装置で設定した前記溶接目標線に前記溶接トーチが倣うように前記溶接ロボットを制御するロボット制御部と、を有し、
前記画像処理装置は、仮付溶接ビード判定部と、前記溶接目標線と前記溶接トーチで溶接加工される溶接予定点とのズレを演算するズレ演算部と、を備え、
前記仮付溶接ビード判定部は、前記開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して前記仮付溶接ビードの有無を判定する濃度値判定部、前記開先エッジ領域画像の中で前記開先エッジに沿うか又は前記仮付け溶接ビードの輪郭線に沿う複数の検出セグメントを通る近似直線と基準線との成すエッジ角度θを所定のエッジ角度閾値と比較して前記仮付溶接ビードの有無を判定するエッジ角度判定部、前記開先エッジに沿うか又は前記仮付け溶接ビードの輪郭線に沿う複数の検出セグメント位置の前記溶接目標線と交差する方向の標準偏差値σを所定の標準偏差閾値と比較して前記仮付溶接ビードの有無を判定する標準偏差値判定部の少なくとも一つを備え、
前記ロボット制御部は、前記仮付溶接ビード判定部で仮付溶接ビード無と判定され且つ前記ズレ演算部でズレが演算されると、前記溶接トーチをズレが小となるように補正制御し、前記仮付溶接ビード判定部で仮付溶接ビード有と判定されると、前記補正制御を行わないことを特徴とする自動溶接機。
A welding robot having a welding torch and a portion to be welded of a member to be welded having a temporary welding bead that is supported by the welding robot and has a temporary welding bead in which the groove edges of two metal plates are butted and temporarily welded. An imaging unit that captures a groove edge region image, an image processing device that processes the groove edge region image captured by the imaging unit to set a welding target line, and the welding target set by the image processing device. It has a robot control unit that controls the welding robot so that the welding torch follows the line.
The image processing device includes a temporary welding bead determination unit and a deviation calculation unit that calculates a deviation between the welding target line and a planned welding point to be welded by the welding torch.
The temporary weld bead determination unit compares the density value ρ of the groove edge region image with a predetermined density threshold to determine the presence or absence of the temporary weld bead, and the temporary weld bead determination unit of the groove edge region image. The temporary attachment is performed by comparing the edge angle θ formed by the reference line and the approximate straight line passing through a plurality of detection segments along the groove edge or along the contour line of the temporary welding bead with a predetermined edge angle threshold value. An edge angle determination unit that determines the presence or absence of a weld bead, and a standard deviation value σ in a direction that intersects the weld target line at a plurality of detection segment positions along the groove edge or along the contour line of the temporary weld bead. It is provided with at least one of the standard deviation value determination units for determining the presence or absence of the temporary weld bead in comparison with a predetermined standard deviation threshold value.
When the temporary welding bead determination unit determines that there is no temporary welding bead and the deviation calculation unit calculates the deviation, the robot control unit corrects and controls the welding torch so that the deviation becomes small. An automatic welding machine characterized in that the correction control is not performed when the temporary welding bead determination unit determines that the temporary welding bead is present.
前記濃度値判定部は、前記所定の濃度閾値をρkとρm(>ρk)とすると、前記開先エッジ領域画像の濃度値ρが、ρk≦ρ、ρ<ρmの少なくとも一方を満たすとき、仮付溶接ビード有と判定する請求項1に記載の自動溶接機。 Assuming that the predetermined density thresholds are ρk and ρm (> ρk), the density value determination unit temporarily determines that the density value ρ of the groove edge region image satisfies at least one of ρk ≦ ρ and ρ <ρm. The automatic welding machine according to claim 1, wherein it is determined that there is a welding bead attached. 前記エッジ角度判定部は、前記所定のエッジ角度閾値をθsとθl(>θs)とすると、前記エッジ角度θが、θs以上及び或いはθl以下であるとき、仮付溶接ビード無と判定する請求項1又は2に記載の自動溶接機。 The claim that the edge angle determination unit determines that there is no temporary welding bead when the edge angle θ is θs or more and / or θl or less, assuming that the predetermined edge angle thresholds are θs and θl (> θs). The automatic welding machine according to 1 or 2. 溶接トーチをもつ溶接ロボットに支持された撮像部で、二枚の金属板の開先エッジが突き合わされて飛び飛びに仮付溶接された仮付溶接ビードをもつ被溶接部材の溶接する部分より先の開先エッジ領域画像を撮像する撮像工程と、
前記撮像工程で撮像した前記開先エッジ領域画像を処理して溶接目標線を設定する溶接
目標線設定工程と、
前記溶接目標線設定工程で設定した前記溶接目標線に前記溶接トーチが倣うように前記溶接ロボットを制御するロボット制御工程と、を備え、
前記溶接目標線設定工程は、前記仮付溶接ビードの有無を判定する仮付溶接ビード判定工程と、前記溶接目標線と前記溶接トーチで溶接加工される溶接予定点とのズレを演算するズレ演算工程と、を備え、
前記仮付溶接ビード判定工程は、前記開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して前記仮付溶接ビードの有無を判定する濃度値判定工程、前記開先エッジ領域画像の中で前記開先エッジに沿うか又は前記仮付け溶接ビードの輪郭線に沿う複数の検出セグメントを通る近似直線と基準線との成すエッジ角度θを所定のエッジ角度閾値と比較して前記仮付溶接ビードの有無を判定するエッジ角度判定工程、前記開先エッジに沿うか又は前記仮付け溶接ビードの輪郭線に沿う複数の検出セグメント位置の前記溶接目標線と交差する方向の標準偏差値σを所定の標準偏差閾値と比較して前記仮付溶接ビードの有無を判定する標準偏差値判定工程の少なくとも一つを備え、
前記ロボット制御工程は、前記仮付溶接ビード判定工程で仮付溶接ビード無と判定され且つ前記ズレ演算工程でズレが演算されると、前記溶接トーチをズレが小となるように補正制御し、前記仮付溶接ビード判定工程で仮付溶接ビード有と判定されると、前記補正制御を行わないことを特徴とする自動溶接方法。
An imaging unit supported by a welding robot with a welding torch, ahead of the welded part of a member to be welded with a temporary welding bead in which the groove edges of two metal plates are butted and temporarily welded. Welding edge region image imaging process and
A welding target line setting step of processing the groove edge region image captured in the imaging step to set a welding target line, and a welding target line setting step.
A robot control step of controlling the welding robot so that the welding torch follows the welding target line set in the welding target line setting step is provided.
The welding target line setting step is a deviation calculation for calculating the deviation between the temporary welding bead determination step for determining the presence or absence of the temporary welding bead and the planned welding point to be welded by the welding torch. With the process,
The temporary welding bead determination step is a density value determination step of comparing the density value ρ of the groove edge region image with a predetermined density threshold value to determine the presence or absence of the temporary weld bead, and the groove edge region image. The temporary attachment is performed by comparing the edge angle θ formed by the reference line and the approximate straight line passing through a plurality of detection segments along the groove edge or along the contour line of the temporary welding bead with a predetermined edge angle threshold value. An edge angle determination step for determining the presence or absence of a weld bead, a standard deviation value σ in a direction intersecting the weld target line at a plurality of detection segment positions along the groove edge or along the contour line of the temporary weld bead. It includes at least one of the standard deviation value determination steps for determining the presence or absence of the temporary weld bead in comparison with a predetermined standard deviation threshold.
In the robot control step, when it is determined in the temporary welding bead determination step that there is no temporary welding bead and the deviation is calculated in the deviation calculation step, the welding torch is corrected and controlled so that the deviation becomes small. An automatic welding method characterized in that the correction control is not performed when it is determined in the temporary welding bead determination step that the temporary welding bead is present.
前記ロボット制御工程は、前記補正制御を行わないとき、前記溶接トーチが予め設定された溶接予定線に倣うように前記溶接ロボットを制御する請求項4に記載の自動溶接方法。 The automatic welding method according to claim 4, wherein the robot control step controls the welding robot so that the welding torch follows a preset welding schedule line when the correction control is not performed. 前記ロボット制御工程は、前記補正制御を行わないとき、前記溶接トーチが直前の溶接目標線の延長線に倣うように前記溶接ロボットを制御する請求項4に記載の自動溶接方法。 The automatic welding method according to claim 4, wherein the robot control step controls the welding robot so that the welding torch follows an extension of the immediately preceding welding target line when the correction control is not performed.
JP2017194217A 2017-10-04 2017-10-04 Automatic welding machine and automatic welding method Active JP6842171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017194217A JP6842171B2 (en) 2017-10-04 2017-10-04 Automatic welding machine and automatic welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194217A JP6842171B2 (en) 2017-10-04 2017-10-04 Automatic welding machine and automatic welding method

Publications (2)

Publication Number Publication Date
JP2019063841A JP2019063841A (en) 2019-04-25
JP6842171B2 true JP6842171B2 (en) 2021-03-17

Family

ID=66338759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194217A Active JP6842171B2 (en) 2017-10-04 2017-10-04 Automatic welding machine and automatic welding method

Country Status (1)

Country Link
JP (1) JP6842171B2 (en)

Also Published As

Publication number Publication date
JP2019063841A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP5537868B2 (en) Welding robot
JP2000167666A (en) Automatic welding, defect repair method and automatic welding equipment
KR102235832B1 (en) Portable type welding inspection appatatus and inspection method
JP2017148841A (en) Welding processing system and welding failure detection method
US20190323828A1 (en) Method for detecting shape of butt joint of welded steel pipe, and quality control method and apparatus for welded steel pipes using the shape detecting method
CN114007792A (en) Repair welding control device and repair welding control method
JP6842171B2 (en) Automatic welding machine and automatic welding method
KR100671024B1 (en) Method and system for conducting step welding of the welding robot by using laser vision sensor
JP2000024777A (en) Groove shape detecting device
JP6343711B1 (en) Seam tracking system and metal product manufacturing method
JP3368492B2 (en) Welding line detection method and device, and welding device
JPH10193148A (en) Method and device for deciding welding position and method and device for manufacturing welded tube
US11235412B2 (en) Welding tool
JP2989384B2 (en) Arc status judgment method
JP3203507B2 (en) Laser processing equipment
JPS61191905A (en) Beveling position detecting device
JP3289559B2 (en) Welding position inspection device and welding system
JP2667841B2 (en) Welding equipment
JPH09101113A (en) Method and device for measuring beveling position and its form
JPH05138354A (en) Automatic welding profiling device
JP4147390B2 (en) Laser welding quality inspection method and apparatus
JPH03118975A (en) Welding equipment
JP6407007B2 (en) Bonding inspection device
JPH08304026A (en) Welding method using area sensor
JPH0970664A (en) Method for profiling beveling with laser spot beam and device therefor

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6842171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250