JP2019063841A - Automatic welding machine and automatic welding method - Google Patents
Automatic welding machine and automatic welding method Download PDFInfo
- Publication number
- JP2019063841A JP2019063841A JP2017194217A JP2017194217A JP2019063841A JP 2019063841 A JP2019063841 A JP 2019063841A JP 2017194217 A JP2017194217 A JP 2017194217A JP 2017194217 A JP2017194217 A JP 2017194217A JP 2019063841 A JP2019063841 A JP 2019063841A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- bead
- tack
- target line
- weld bead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 375
- 238000000034 method Methods 0.000 title claims description 38
- 239000011324 bead Substances 0.000 claims abstract description 179
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 238000012545 processing Methods 0.000 claims abstract description 29
- 238000003384 imaging method Methods 0.000 claims description 23
- 238000012937 correction Methods 0.000 claims description 15
- 238000006073 displacement reaction Methods 0.000 claims description 13
- 238000002474 experimental method Methods 0.000 description 32
- 238000012795 verification Methods 0.000 description 24
- 210000001503 joint Anatomy 0.000 description 14
- 238000012360 testing method Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000012447 hatching Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005493 welding type Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
本発明は、仮付溶接が行われた二つの開先エッジを有する継手を溶接する自動溶接機及び自動溶接方法に関する。 The present invention relates to an automatic welding machine and an automatic welding method for welding a joint having two beveled edges on which tack welding has been performed.
仮付溶接ビードがあると、溶接が仮付溶接ビードに影響されるため、溶接ラインに倣って溶接することが容易でなかった。この点において、これまでも仮付溶接が行われた開先エッジを有する継手を溶接する自動溶接機が開発されている(例えば、特許文献1参照。)。この従来の自動溶接機は、溶接ラインに沿って左右に溶接ライン検出センサを2個ずつ計4個配置して、仮付溶接ビードを検出し、仮付溶接ビードの影響を無くそうとしている。 If there is a tack weld bead, the weld is affected by the tack weld bead, so it was not easy to weld along the weld line. In this regard, automatic welders have been developed for welding joints having grooved edges on which tack welding has been performed (see, for example, Patent Document 1). This conventional automatic welding machine arranges a total of four welding line detection sensors, two each on the left and right along the welding line, to detect a tack welding bead and to eliminate the influence of the tack welding bead.
上記従来の自動溶接機は、多数の溶接ライン検出センサ(レーザ式光電センサ)を備えており、自動溶接機が高価になるという問題があった。また、多数の検出センサからの信号を処理する必要があり、且つ検出センサからの信号レベルは溶接ラインでも仮付溶接ビードでもキズ付き領域でも低レベルになるので、倣い制御処理が複雑になってしまう。倣い制御処理が複雑になると自動溶接機の信頼性が低くなるという問題もあった。 The above-mentioned conventional automatic welding machine is provided with a large number of welding line detection sensors (laser type photoelectric sensors), and there is a problem that the automatic welding machine becomes expensive. In addition, it is necessary to process the signals from a large number of detection sensors, and the signal level from the detection sensors becomes low in the welding line, in the tacking weld bead and in the scratched area, so the copying control processing becomes complicated. I will. There is also a problem that the reliability of the automatic welding machine is lowered when the copying control process becomes complicated.
本発明は、上記の問題に鑑みてなされたものであり、倣い制御処理を単純化した自動溶接機及び自動溶接方法を提供することを課題としている。 The present invention has been made in view of the above problems, and an object thereof is to provide an automatic welding machine and an automatic welding method in which a copying control process is simplified.
本発明者は、倣い制御処理を単純化すべく、溶接目標線検出に撮像装置を用いることを想起して本発明を完成した。 The present inventor has completed the present invention in consideration of using an imaging device for welding target line detection in order to simplify the copying control process.
課題を解決するためになされた本発明の自動溶接機は、溶接トーチをもつ溶接ロボットと、前記溶接ロボットに支持され、二つの開先エッジが突き合わされて飛び飛びに仮付溶接された仮付溶接ビードをもつ被溶接部材の溶接する部分より先の開先エッジ領域画像を撮像する撮像部と、前記撮像部で撮像した前記開先エッジ領域画像を処理して溶接目標線を設定する画像処理装置と、前記画像処理装置で設定した前記溶接目標線に前記溶接トーチが倣うように前記溶接ロボットを制御するロボット制御部と、を有し、前記画像処理装置は、仮付溶接ビード判定部と、前記溶接目標線と前記溶接トーチで溶接加工される溶接予定点とのズレを演算するズレ演算部と、を備え、前記仮付溶接ビード判定部は、前記開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して前記仮付溶接ビードの有無を判定する濃度値判定部、前記開先エッジ領域画像の中で濃度が変化する境界線に沿う複数の検出セグメントを通る近似直線と基準線との成すエッジ角度θを所定のエッジ角度閾値と比較して前記仮付溶接ビードの有無を判定するエッジ角度判定部、前記境界線に沿う複数の検出セグメント位置の前記溶接目標線と交差する方向の標準偏差値σを所定の標準偏差閾値と比較して前記仮付溶接ビードの有無を判定する標準偏差値判定部の少なくとも一つを備え、前記ロボット制御部は、前記仮付溶接ビード判定部で仮付溶接ビード無と判定され且つ前記ズレ演算部でズレが演算されると、前記溶接トーチをズレが小となるように補正制御し、前記仮付溶接ビード判定部で仮付溶接ビード有と判定されると、前記補正制御を行わないことを特徴とする。 An automatic welding machine according to the present invention made to solve the problem is a welding robot having a welding torch, and a tack welding which is supported by the welding robot and in which two groove edges are butt-welded and tack-welded in flight. An image processing unit for setting a welding target line by processing an imaging unit configured to capture a grooved edge region image ahead of a portion to be welded of a member to be welded having a bead, and the grooved edge region image captured by the imaging unit And a robot control unit configured to control the welding robot such that the welding torch follows the welding target line set by the image processing apparatus, the image processing apparatus including a tacking weld bead determination unit; A deviation calculating unit for calculating a deviation between the welding target line and a welding scheduled point to be welded by the welding torch; and the temporary welding bead determination unit determines the density value ρ of the groove edge area image A density value determination unit that determines the presence or absence of the tacked weld bead by comparing with a fixed density threshold value, and an approximate straight line and a reference line passing through a plurality of detection segments along a boundary where the density changes in the groove edge area image An edge angle determination unit that determines the presence or absence of the temporary welding bead by comparing an edge angle θ formed with the line with a predetermined edge angle threshold, and intersects the welding target line of a plurality of detection segment positions along the boundary line At least one of a standard deviation value determination unit that determines the presence or absence of the tacking weld bead by comparing the standard deviation value σ of the direction with a predetermined standard deviation threshold value, and the robot control unit determines the tackiness weld bead If it is determined that there is no tacking weld bead in the part and the shift is calculated in the shift calculating section, correction control is performed on the welding torch so as to reduce the shift, and the tacking weld bead is determined in the tacking weld bead determination section. Existence Once, characterized in that it does not perform the correction control.
課題を解決するためになされた本発明の自動溶接方法は、溶接トーチをもつ溶接ロボットに支持された撮像部で、二つの開先エッジが突き合わされて飛び飛びに仮付溶接された仮付溶接ビードをもつ被溶接部材の溶接する部分より先の開先エッジ領域画像を撮像する撮像工程と、前記撮像工程で撮像した前記開先エッジ領域画像を処理して溶接目標線を設定する溶接目標線設定工程と、前記溶接目標線設定工程で設定した前記溶接目標線に前記溶接トーチが倣うように前記溶接ロボットを制御するロボット制御工程と、を備え、前記溶接目標線設定工程は、前記仮付溶接ビードの有無を判定する仮付溶接ビード判定工程と、前記溶接目標線と前記溶接トーチで溶接加工される溶接予定点とのズレを演算するズレ演算工程と、を備え、前記仮付溶接ビード判定工程は、前記開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して前記仮付溶接ビードの有無を判定する濃度値判定工程、前記開先エッジ領域画像の中で濃度が変化する境界線に沿う複数の検出セグメントを通る近似直線と基準線との成すエッジ角度θを所定のエッジ角度閾値と比較して前記仮付溶接ビードの有無を判定するエッジ角度判定工程、前記境界線に沿う複数の検出セグメント位置の前記溶接目標線と交差する方向の標準偏差値σを所定の標準偏差閾値と比較して前記仮付溶接ビードの有無を判定する標準偏差値判定工程の少なくとも一つを備え、前記ロボット制御工程は、前記仮付溶接ビード判定工程で仮付溶接ビード無と判定され且つ前記ズレ演算工程でズレが演算されると、前記溶接トーチをズレが小となるように補正制御し、前記仮付溶接ビード判定工程で仮付溶接ビード有と判定されると、前記補正制御を行わないことを特徴とする。 The automatic welding method according to the present invention made to solve the problem is an imaging unit supported by a welding robot having a welding torch, in which two groove edges are butt-welded and tack-welded with tack-welding in a fly-over manner. An imaging step of imaging a grooved edge area image ahead of a portion to be welded of the welding target member and a welding target line setting of a welding target line by processing the grooved edge area image imaged in the imaging step And a robot control step of controlling the welding robot such that the welding torch follows the welding target line set in the welding target line setting step, the welding target line setting step includes the tack welding And a deviation calculation step of calculating a deviation between the welding target line and a planned welding point to be welded by the welding torch. In the contact bead determination step, the concentration value determination step of determining the presence or absence of the temporary attachment weld bead by comparing the concentration value ρ of the groove edge region image with a predetermined concentration threshold, the concentration in the groove edge region image An edge angle determination step of determining the presence or absence of the temporary welding bead by comparing an edge angle θ formed by an approximate straight line passing through a plurality of detection segments along the boundary line where the changes and the reference line with a predetermined edge angle threshold value; At least a standard deviation value determining step of determining the presence or absence of the temporary welding bead by comparing a standard deviation value σ in a direction intersecting with the welding target line of a plurality of detection segment positions along the boundary with a predetermined standard deviation threshold In the robot control process, when it is determined that the temporary welding bead is not present in the temporary welding bead determination process and the deviation is calculated in the deviation calculation process, the welding torch is determined to have a small deviation. And correction control to so that, if it is determined that tack welding bead Yes in the tack welding bead determination step, characterized in that it does not perform the correction control.
撮像部で撮像した開先エッジ領域画像を処理することで、仮付溶接ビードの有無を確実に判定して溶接トーチを溶接目標線に正確に沿わせることができる。 By processing the grooved edge area image captured by the imaging unit, it is possible to reliably determine the presence or absence of the tack weld bead and accurately align the welding torch with the welding target line.
以下、添付図面を参照して、本発明を実施する形態を詳細に説明する。
(実施形態1)
本実施形態の自動溶接機は、図1、2、4に示すように、溶接トーチ12をもつ溶接ロボット11と、溶接ロボット11に支持され、二つの開先エッジOE52、OE53が突き合わされて飛び飛びに仮付溶接された仮付溶接ビードK1〜K3をもつ被溶接部材50の溶接する部分より先の開先エッジ領域画像を撮像する撮像部13と、撮像部13で撮像した開先エッジ領域画像を処理して溶接目標線WLを設定する画像処理装置14と、画像処理装置14で設定した溶接目標線WLに溶接トーチ12が倣うように溶接ロボット11を制御するロボット制御部15を備え、画像処理装置14は、仮付溶接ビード判定部141及び溶接目標線WLと溶接トーチ12で溶接加工される溶接予定点Pとのズレを演算するズレ演算部142を備えている。ロボット制御部15は、仮付溶接ビード判定部141で仮付溶接ビード無と判定され且つズレ演算部142でズレが演算されると、溶接トーチ12をズレが小となるように補正制御し、仮付溶接ビード判定部141で仮付溶接ビード有と判定されると、前記補正制御を行わないようになっている。また、本実施形態の仮付溶接ビード判定部141は、撮像部13で撮像した開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して仮付溶接ビードK1〜K3の有無を判定する濃度値判定部D(不図示)を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
(Embodiment 1)
As shown in FIGS. 1, 2 and 4, the automatic welding machine according to the present embodiment is supported by the welding robot 11 having the
厳密な溶接目標線WLは、図4に示すように開先エッジOE52、OE53の中間線である。なお、図4は、拡大して模式的に示しており、実際は、クロスハッチングが施された開先エッジOE52とOE53の間隙は狭く、溶接目標線WLは開先エッジOE52、OE53と略一致する。 The exact welding target line WL is a middle line of the groove edge OE52, OE53 as shown in FIG. FIG. 4 schematically shows an enlarged view, and in fact, the gap between the cross-hatched grooved edge OE52 and OE53 is narrow, and the welding target line WL substantially coincides with the grooved edge OE52, OE53. .
レーザ装置16は、光導波路17で溶接トーチ12と連結されている。溶接トーチ12には、集光レンズ系が組み込まれている。なお、溶接トーチ12が、例えば、アーク溶接トーチの場合は、電線17でアーク溶接電源16と連結されている。撮像部13は例えばCCDカメラであり、画像処理装置14はCPUを備えている。
The
図2に示すように、被溶接部材50は、2枚の金属板52、53が突き合わされて3カ所飛び飛びに仮付溶接されてなる。図2で、K1〜K3が仮付溶接ビードであり、Wbは本実施形態に係る自動溶接機の溶接トーチ12で溶接加工された溶接ビードを示す。
As shown in FIG. 2, two members of the
図4はCCDカメラ13で撮像した開先エッジ領域画像の部分拡大図で、説明の便宜上、金属板52、53の表面は濃度値が高い(白っぽい)ので、1点斜線が施されている。仮付溶接ビードK1の表面は、金属板52、53の表面より濃度値が低い(グレーぽい)ので、実線の斜線が施されている。金属板52の開先エッジOE52と金属板53の開先エッジOE53の間の隙間は光を殆ど反射しないので濃度が低く(黒っぽく)なる。よって、この隙間には実線のクロスハッチングが施されている。図4で、矩形領域SE1、SE2はセンシングエリアで、この矩形領域内の画像データを処理する。その一例として、仮付溶接ビードK1〜K3の外径は3mmのオーダであり、センシングエリアSE1、SE2は3mm×3mm程度の大きさ、開先エッジOE52とOE53の間隙は0.1mmのオーダである。また、矩形状センシングエリアSE1、SE2において交差する一方の辺は溶接目標線WLと交差し、他方の辺は溶接目標線WLに沿う。
FIG. 4 is a partially enlarged view of a grooved edge area image captured by the
図4に示すように、仮付溶接ビードK1〜K3がないセンシングエリアSE1では、濃度が変化する境界線(開先エッジOE52)に沿う検出セグメントs1、s2を結ぶ線は、開先エッジOE52に平行となるので、s1とs2を結ぶ線を溶接目標線WLとすることができる。しかし、図5に示すように、仮付溶接ビードK1があるセンシングエリアSE2では、検出セグメントsn、sn+1は開先エッジOE52に沿うが、検出セグメントsn+2、sn+3、sn+4・・・は仮付溶接ビードK1の輪郭線に沿うようになる。すると、仮付溶接ビードK1の輪郭線を溶接目標線と誤検出して、その誤検出した溶接目標線に倣うように溶接してしまう。そこで、本実施形態の自動溶接機は、仮付溶接ビードのあるセンシングエリアでは、溶接目標線の設定をしないようにした。すなわち、本実施形態の自動溶接機は、センシングエリア内の仮付溶接ビードの有無を判定し、仮付溶接ビードがある場合は、予め設定された溶接予定線に沿うように溶接トーチ12を制御する。図4の符号Pは、溶接トーチ12で溶接加工される溶接予定点である。
As shown in FIG. 4, in the sensing area SE1 in which there is no tack welding bead K1 to K3, the line connecting the detection segments s1 and s2 along the boundary line (groove edge OE52) at which the concentration changes is the groove edge OE52. Since it becomes parallel, the line which ties s1 and s2 can be made into welding target line WL. However, as shown in FIG. 5, in the sensing area SE2 in which the tack weld bead K1 is present, the detection segment sn, sn + 1 follows the groove edge OE52, but the detection segment sn + 2, sn + 3, sn + 4 ... comes along the contour of the tack welding bead K1. Then, the contour of the tack weld bead K1 is erroneously detected as a welding target line, and welding is performed so as to follow the erroneously detected welding target line. So, the automatic welding machine of this embodiment was made not to set a welding target line in a sensing area with a tack welding bead. That is, the automatic welding machine of the present embodiment determines the presence or absence of the tacking weld bead in the sensing area, and controls the
本実施形態の濃度値判定部Dは、所定の濃度閾値と開先エッジ領域画像のセンシングエリアSE1、SE2、・・・の平均濃度値ρaveとを比較して仮付溶接ビードK1〜K3の有無を次のように判定する。まず、開先エッジOE52とOE53の間隔が所定値より狭い場合、画像処理装置14が開先エッジOE52とOE53を視認できないように画像処理する。すなわち、画像処理装置14は、開先エッジOE52とOE53の間隔が広くなるほど黒く表示され、開先エッジOE52とOE53の間隔が狭くなるほど淡く表示されるように処理する。すると、開先エッジOE52とOE53の間隔が基準値以下であれば、溶接目標線WLが表示されなくなる。したがって、濃度値判定部Dは、画像処理により溶接目標線WLが表示されないようにして、仮付溶接ビードK1のみを表示するようにし、仮付溶接ビードK1の有無を判定するものである。
The density value determination unit D of the present embodiment compares the predetermined density threshold value with the average density value aveave of the sensing areas SE1, SE2, ... of the groove edge area image, and the presence or absence of the tack weld bead K1 to K3. Is determined as follows. First, when the interval between the
図6に濃度値判定部Dが所定の濃度基準値の入力により溶接目標線WLが表示されないようにしたセンシングエリアSE1を示す。図7に、濃度値判定部Dが所定の濃度基準値の入力により溶接目標線WLが表示されないように画像処理したセンシングエリアSE2を示す。このように溶接目標線WLが表示されないので、仮付溶接ビードK1の有無を確実に判定することできる。 FIG. 6 shows a sensing area SE1 in which the concentration value determination unit D prevents the welding target line WL from being displayed by the input of a predetermined concentration reference value. FIG. 7 shows a sensing area SE2 in which the density value determination unit D performs image processing so that the welding target line WL is not displayed by the input of a predetermined concentration reference value. Since the welding target line WL is not displayed in this manner, the presence or absence of the tack welding bead K1 can be reliably determined.
例えば、白・黒濃度を256分割し、真白を255、真黒を0とすると、上記したように、金属板52、53の表面は白色に近く濃度値ρmが大きい。仮付溶接ビードK1の表面は灰色に近く濃度値ρkは金属板52、53の表面の濃度値ρmより小さい。すなわち、ρk<ρmである。よって、図7の仮付溶接ビードK1のあるセンシングエリアSE2全体の平均濃度値をρaveとすると、ρk≦ρave<ρmである。したがって、濃度値判定部Dは、所定の濃度閾値をρkとρm(>ρk)とすると、開先エッジ領域画像のセンシングエリアの平均濃度値ρaveが、ρk≦ρave、ρave<ρmの少なくとも一方を満たすとき仮付溶接ビード有と判定することができる。このようにすることで、仮付溶接ビードの有無を安定して判定することができる。
For example, assuming that white and black densities are divided into 256, white and white are 255, and true black is 0, as described above, the surfaces of the
様々な開先エッジ、仮付溶接ビードをもつ被溶接部材で実験した結果、開先エッジ画像の白・黒濃度を256分割し、白を255、黒を0としたとき、ρk<20.0、ρm>115.0であることがわかった。そこで、濃度値判定部Dは、平均濃度値ρaveが、20≦ρave、及び又は、ρave<115のとき仮付溶接ビード有りと判定するようにするとよい。 As a result of experiment with welded members having various grooved edges and tacked weld beads, when the black and white density of grooved edge image is divided into 256, white is 255 and black is 0, ρ k <20.0 , Mm> 115.0. Therefore, the concentration value determination unit D may determine that there is a tack weld bead when the average concentration value aveave is 20 ≦ ρave and / or 又 は ave <115.
次に本実施形態の自動溶接機の作動について、図3のフローチャートにより説明する。まず、仮付溶接された被溶接部材50がテーブル20に載置され、溶接ロボット11は溶接トーチ12が溶接開始点Wsと溶接終了点Weを結ぶ溶接予定線に倣うようにティーチングされて溶接がスタートする。溶接がスタートすると、ステップ100でCCDカメラ13が開先エッジ領域画像(開先エッジOE52、OE53を含む領域の画像)を取得する。次に、ステップ110で画像処理装置14が開先エッジOE52、OE53(〜溶接目標線WL)座標を取得する。次に、ステップ120で仮付溶接ビード判定部141が仮付溶接ビードK1〜K3の有無を判定する。ステップ120で仮付溶接ビードが無と判定されると、ズレ演算部142がステップ130で開先エッジOE52、OE53(〜溶接目標線WL)座標位置と溶接トーチ12で溶接加工される溶接予定点Pとのズレ(差)を演算判定する。ステップ130で差が大と判定されるとステップ150でロボット制御部15が差を小となるように補正制御し、ステップ160で溶接が継続される。ステップ120で仮付溶接ビード有と判定されると、ステップ140でロボット制御部15が溶接目標線WLへの倣いをストップし、ステップ160に進み、溶接開始点Wsと溶接終了点Weを結ぶ溶接予定線に倣うように溶接される。
Next, the operation of the automatic welding machine of the present embodiment will be described with reference to the flowchart of FIG. First, the temporarily welded
(実施形態2)
本実施形態の自動溶接機は、実施形態1の自動溶接機の仮付溶接ビード判定部141が標準偏差値判定部Σ(不図示)を備えるようにしたものである。
Second Embodiment
In the automatic welding machine of this embodiment, the temporary welding
図8にセンシングエリアSE1での標準偏差値判定の様子を示す。センシングエリアSE1には仮付溶接ビードK1がないので、検出セグメントs1、s2、・・・snは濃度が変化する境界線(開先エッジOE52)に沿う。したがって、各検出セグメントs1、s2、・・・snのx座標(検出セグメント位置)をx1、x2、・・・・xnとしたときの標準偏差値σse1は小さい値になる。 FIG. 8 shows the state of standard deviation determination in the sensing area SE1. Since there is no tack welding bead K1 in the sensing area SE1, the detection segments s1, s2,... Sn follow the boundary (groove edge OE 52) at which the concentration changes. Therefore, the standard deviation value σse1 is small when the x coordinate (detection segment position) of each detection segment s1, s2, ... sn is x1, x2, ... xn.
一方、図9に示すセンシングエリアSE2の場合、検出セグメントsn、sn+1、sn+2は濃度が変化する境界線(開先エッジOE52)に沿い、検出セグメントsn+3、sn+4、sn+5は仮付溶接ビードK1の境界線に沿う。したがって、各検出セグメントsn、sn+1、sn+2、sn+3、sn+4、sn+5のx座標をxn、xn+1、xn+2、・・・xn+5としたときの標準偏差値σse2は大きくなり、σse2>σse1である。 On the other hand, in the case of the sensing area SE2 shown in FIG. 9, the detection segments sn, sn + 1, sn + 2 are along the boundary (the groove edge OE 52) where the concentration changes, and the detection segments sn + 3, sn + 4, sn +5 is along the boundary line of the tack welding bead K1. Therefore, when the x-coordinates of the detection segments sn, sn + 1, sn + 2, sn + 3, sn + 4, and sn + 5 are xn, xn + 1, xn + 2, ... xn + 5 The standard deviation value σse2 becomes larger, and σse2> σse1.
本実施形態の標準偏差値判定部Σは、標準偏差値σが所定の標準偏差閾値σl未満のとき仮付溶接ビード無と判定する。 When the standard deviation value σ is less than a predetermined standard deviation threshold value σl, the standard deviation value determination unit Σ of this embodiment determines that there is no tacked weld bead.
様々な開先エッジ、仮付溶接ビードをもつ被溶接部材で実験した結果、σ1=50とすると仮付溶接ビードの有無を正確に判定できることがわかった。そこで、変形態様の自動溶接機の標準偏差値判定部Σは、σ1=50として仮付溶接ビードの有無を判定する。
As a result of experiment with welded members having various groove edges and tack welding beads, it was found that the presence or absence of tack welding beads can be accurately determined when
(実施形態3)
本実施形態の自動溶接機は、実施形態1の自動溶接機の仮付溶接ビード判定部141がエッジ角度判定部A(不図示)を備えるようにしたものである。
(Embodiment 3)
In the automatic welding machine of this embodiment, the temporary welding
図10にセンシングエリアSE1でのエッジ角度判定の様子を示す。センシングエリアSE1には仮付溶接ビードK1がないので、検出セグメントs1、s2、s3、s4は濃度が変化する境界線(開先エッジOE52)に沿う。したがって、s1とs4を結ぶ近似直線SL1と基準線Lbとの成すエッジ角度θは90°に近くなる。 FIG. 10 shows the state of edge angle determination in the sensing area SE1. Since there is no tack welding bead K1 in the sensing area SE1, the detection segments s1, s2, s3, s4 are along the boundary line (groove edge OE 52) where the concentration changes. Therefore, the edge angle θ formed by the approximate straight line SL1 connecting s1 and s4 and the reference line Lb is close to 90 °.
一方、図11に示すセンシングエリアSE2の場合、検出セグメントsnとsn+1を結ぶ近似直線SL2と基準線Lbとの成すエッジ角度θは90°より大きくなる。そこで、本実施形態では、90°を所定のエッジ角度閾値とする。 On the other hand, in the case of the sensing area SE2 shown in FIG. 11, the edge angle θ formed by the reference line Lb and the approximate straight line SL2 connecting the detection segments sn and sn + 1 is larger than 90 °. So, in this embodiment, 90 degrees is made into a predetermined | prescribed edge angle threshold value.
本実施形態では、基準線Lbを開先エッジOE52、OE53と直交する線(X軸)としたが、矩形状センシングエリアのX軸に平行する辺を基準線としてもよい。
In the present embodiment, the reference line Lb is a line (X axis) orthogonal to the groove edges
本実施形態のエッジ角度判定部Aは、θが90°より大きいとき仮付溶接ビード有と判定し、θが90°のとき仮付溶接ビード無と判定する。 The edge angle determination unit A of the present embodiment determines that there is a tack weld bead when θ is greater than 90 °, and determines that there is no tack weld bead when θ is 90 °.
エッジ角度判定部Aは、所定のエッジ角度閾値をθsとθl(>θs)とすると、開先エッジ領域画像のエッジ角度θが、θs以上及び或いはθl以下であるとき、仮付溶接ビード無と判定するようにしてもよい。このようにすることで、仮付溶接ビードの有無を安定して判定することができる。 Assuming that predetermined edge angle thresholds are θs and θl (> θs), the edge angle determination unit A determines that there is no tack weld bead when the edge angle θ of the grooved edge area image is θs or more and / or θl or less. It may be determined. By doing this, it is possible to stably determine the presence or absence of the tack weld bead.
様々な開先エッジ、仮付溶接ビードをもつ被溶接部材で実験した結果、θs=75°、θl=105°のとき、エッジ角度判定部Aが確実に仮付溶接ビードの有無を判定できることがわかった。そこでエッジ角度判定部Aは、θが75°以上及び或いは105°以下のとき、仮付溶接ビード無と判定するようにするとよい。 As a result of experiment with welded members having various groove edges and tack welding beads, it is possible that the edge angle judgment unit A can surely judge the presence or absence of the tack welding bead when θs = 75 ° and θl = 105 °. all right. Therefore, the edge angle determination unit A may determine that no tacking weld bead is present when θ is 75 ° or more and / or 105 ° or less.
(実施形態4)
本実施形態の自動溶接機は、実施形態1の自動溶接機の仮付溶接ビード判定部141が濃度値判定部D、標準偏差値判定部Σ、及びエッジ角度判定部Aを備えるようにしたものである。
(Embodiment 4)
In the automatic welding machine according to the present embodiment, the temporary welding
図12に本実施形態に係る自動溶接機の操作画面を示す。図12では点線円で囲まれたボタンが選択されているので、濃度値、又は標準偏差値、又はエッジ角度のどれか一つでも仮付溶接ビード有の判定が行われた場合にステップ140(図3参照)に進むことができる。なお、図12の例では、濃度値、標準偏差値、エッジ角度のすべてが仮付溶接ビード無と判定しているので(操作画面における状態の仮付判定に表示がないので)、ステップ130(図3参照)へ進むことになる。 FIG. 12 shows an operation screen of the automatic welding machine according to the present embodiment. Since the button surrounded by the dotted circle is selected in FIG. 12, step 140 (when it is determined that the tack weld bead is present even if any one of the concentration value, the standard deviation value, or the edge angle is present). (See FIG. 3). In the example of FIG. 12, all of the concentration value, standard deviation value, and edge angle are determined to be no tack welding bead (since there is no display in the tack identification determination of the state on the operation screen), step 130 ( Go to Figure 3).
本実施形態の自動溶接機では、濃度値、標準偏差値、エッジ角度を「AND」或いは[OR]で自由に組み合わせることにより、様々な状況での仮付溶接ビードの識別が可能となり、溶接ロボットによる溶接施工の安定化につながる。例えば、濃度値、標準偏差値、エッジ角度のどれか一つで仮付溶接ビードの識別を行えば、識別時間が短縮できるが、精度、信頼性を高くすることができない。一方、濃度値、標準偏差値、エッジ角度の三つで仮付溶接ビードの識別を行えば、識別時間が長くなるが、誤識別の確率が低くなり、識別の精度、信頼性が高くなる。溶接施工の種類によっては、濃度値、標準偏差値、エッジ角度のどれか一つで仮付溶接ビードの識別を行えばよい場合もあれば、濃度値、標準偏差値、エッジ角度の三つで仮付溶接ビードの識別を行う必要がある場合もある。溶接施工の種類に応じて、濃度値、標準偏差値、エッジ角度を「AND」或いは[OR]で自由に組み合わせることにより、溶接を安定して行うことができる。 In the automatic welding machine according to the present embodiment, it is possible to identify the tacked weld bead in various situations by freely combining the concentration value, the standard deviation value, and the edge angle by “AND” or “OR”, and the welding robot It leads to the stabilization of welding construction by For example, if identification of a tack welding bead is performed by any one of concentration value, standard deviation value, and edge angle, identification time can be shortened, but accuracy and reliability can not be improved. On the other hand, if identification of a tack weld bead is performed by three values of concentration value, standard deviation value, and edge angle, the identification time will be long, but the probability of false identification will be low and the accuracy and reliability of identification will be high. Depending on the type of welding work, there may be cases where identification of the tack weld bead may be performed by any one of concentration value, standard deviation value, and edge angle, but there are three cases of concentration value, standard deviation value, and edge angle. It may be necessary to identify the tack weld bead. Welding can be stably performed by freely combining the concentration value, the standard deviation value, and the edge angle with “AND” or “OR” according to the type of welding work.
(実施形態5)
本実施形態の自動溶接方法は、溶接トーチ12をもつ溶接ロボット11に支持されたCCDカメラ13で、二つの開先エッジOE52、OE53が突き合わされて飛び飛びに仮付溶接された仮付溶接ビードK1〜K3をもつ被溶接部材50の開先エッジ領域画像を撮像する撮像工程P1と、撮像工程P1で撮像した開先エッジ領域画像を処理して開先エッジOE52、OE53の中間線である溶接目標線WLを設定する溶接目標線設定工程P2と、溶接目標線設定工程P2で設定した溶接目標線WLに溶接トーチ12が倣うように溶接ロボット11を制御するロボット制御工程P3と、を備え、溶接目標線設定工程P2は、仮付溶接ビードK1〜K3の有無を判定する仮付溶接ビード判定工程P4と、溶接目標線WLと溶接トーチ12で溶接加工される溶接予定点Pとのズレを演算するズレ演算工程と、を備え、仮付溶接ビード判定工程P4は、撮像工程P1で撮像した開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して仮付溶接ビードK1〜K3の有無を判定する濃度値判定工程P41、撮像工程P1で撮像した開先エッジ領域画像の中で濃度が変化する境界線へ沿う複数の検出セグメントs1、s2、・・snを通る近似直線と基準線Lbとの成すエッジ角度θを所定のエッジ角度閾値と比較して仮付溶接ビードK1〜K3の有無を判定するエッジ角度判定工程P42、前記境界線に沿う複数の検出セグメントs1、s2、・・sn位置の溶接目標線WLと交差する方向の標準偏差値σを所定の標準偏差閾値と比較して仮付溶接ビードK1〜K3の有無を判定する標準偏差値判定工程P43の少なくとも一つを備え、ロボット制御工程P3は、仮付溶接ビード判定工程P4で仮付溶接ビード無と判定され且つズレ演算工程P5でズレが演算されると、溶接トーチ12をズレが小となるように補正制御し、仮付溶接ビード判定工程P4で仮付溶接ビード有と判定されると、前記補正制御を行わないようにする。
The automatic welding method of the present embodiment is a tack welding bead K1 in which two
変形態様の自動溶接方法は、ロボット制御工程P3が前記補正制御を行わないとき、溶接トーチ12を予め設定された溶接予定線に倣うように制御する。また別の変形態様の自動溶接方法は、ロボット制御工程P3が前記補正制御を行わないとき、溶接トーチ12を直前の溶接目標線WLの延長線に倣うように制御する。
In the automatic welding method of the modified embodiment, when the robot control process P3 does not perform the correction control, the
(検証実験1)
レーザビームを出さないで、仮付溶接ビード判定部141が濃度値ρ、標準偏差値σ、エッジ角度θで仮付溶接ビードの有無を判定した場合の溶接トーチの溶接目標線WLへの追従性を調べた。すなわち、板厚2.6mmのSPCC鋼板の突合せ継手材を用いて仮付溶接ビードの判定機能を発揮させる場合と発揮させない場合で溶接目標線WLへの追従精度を比較した。
(Verification experiment 1)
The followability of the welding torch to the welding target line WL when the temporary welding
試験片を図13に示す。板厚2.6mm、長さ410mm、幅30mmのSPCC鋼板2枚を突合せ継手にして、試験片の溶接開始点Wsから溶接終了点Weまで溶接トーチを走行させた。仮付溶接ビードK1、K2、K3はレーザスポット溶接によるもので、直径3.2mmの円形である。なお、本検証実験では、開先がない突合せ継ぎ手で開先ギャップ0として実験した。溶接ロボットには、溶接開始点Wsではネライはずし量を0mm、溶接終了点Weではネライはずし量を2mmとなるように、溶接目標線WLに対して溶接予定線を意図的にずらすようにティーチングした。
The test piece is shown in FIG. Two SPCC steel plates with a thickness of 2.6 mm, a length of 410 mm, and a width of 30 mm were used as butt joints, and the welding torch was run from the welding start point Ws of the test piece to the welding end point We. The tack welding beads K1, K2 and K3 are formed by laser spot welding and are round with a diameter of 3.2 mm. In addition, in this verification experiment, it experimented as the
図14は、仮付溶接ビード判定部141を機能させないときの溶接トーチ12の溶接目標線WLからのズレ量の変化を示している。最大で0.7mmのズレが発生している。
FIG. 14 shows a change in the amount of deviation from the welding target line WL of the
図15は、仮付溶接ビード判定部141を機能させたときの溶接トーチ12の溶接目標線WLからのズレ量の変化を示している。これから、仮付溶接ビード判定部141を機能させたときの溶接トーチ12の溶接目標線WLからのズレ量の最大値が0.095mmであることがわかる。このズレ量は、レーザ溶接を行う上で良好な溶接品質を確保するのに問題とならない。
FIG. 15 shows a change in the amount of deviation from the welding target line WL of the
(検証実験2)
レーザ溶接を行って、仮付溶接ビード判定部141が濃度値ρ、標準偏差値σ、エッジ角度θのいずれかで仮付溶接ビードの有無を判定した場合の溶接ビードの溶接目標線WLへの追従性を調べた。すなわち、板厚1.2mmのSPCC鋼板の突合せ継手材を用いて、仮付溶接ビード判定部141が濃度値ρ、標準偏差値σ、エッジ角度θのいずれか一つを用いて仮付溶接ビードの有無を判定した場合の溶接トーチの溶接目標線WLへの追従精度を調べた。
(Verification experiment 2)
When laser welding is performed, and the temporary welding
試験片を図16に示す。板厚1.2mm、長さ320mm、幅30mmのSPCC鋼板2枚を突合せ継ぎ手にして、100mmピッチで3カ所仮付溶接した。なお、本実験では、開先がない突合せ継ぎ手で開先ギャップを0として実験が行われた。 The test specimen is shown in FIG. Two SPCC steel plates with a thickness of 1.2 mm, a length of 320 mm and a width of 30 mm were butt-welded and tack welded at three points at a pitch of 100 mm. In this experiment, the experiment was conducted by setting the groove gap to 0 with a butt joint having no groove.
レーザパワーは2KWで、溶接速度は3m/minである。溶接ロボットには、溶接開始点Wsではネライはずし量を0mm、溶接終了点Weではネライはずし量を1.5mmとなるように、溶接目標線WLに対して溶接予定線を意図的にずらすようにティーチングした。溶接後、マイクロスコープを用いて、溶接目標線WLの位置と溶接後の溶接ビード中心位置を測定して倣い精度を評価した。全溶接長300mmに対して、40mmのピッチで7カ所長さ30mmの溶接を行った後、溶接目標線WLの位置と溶接後の溶接ビード中心位置のズレδを測定した(図17参照。)。 The laser power is 2 KW and the welding speed is 3 m / min. In the welding robot, the planned welding line is intentionally shifted with respect to the welding target line WL so that the welding start point Ws will have a Nerai displacement of 0 mm and the welding end point We will have a Nerai displacement of 1.5 mm. I was teaching. After welding, using a microscope, the position of the welding target line WL and the welding bead center position after welding were measured to evaluate the copying accuracy. After welding of seven 30 mm lengths at a pitch of 40 mm for a total welding length of 300 mm, the deviation δ between the position of the welding target line WL and the weld bead center position after welding was measured (see FIG. 17). .
仮付溶接ビードの有無の判定のために、濃度値ρ、標準偏差値σ、エッジ角度θの閾値を入力した。その入力画面を図18に示す。濃度値ρが濃度閾値20以上及び115以下のとき、仮付溶接ビード有と判定する。標準偏差値σが標準偏差閾値50以上のとき仮付溶接ビード有と判定する。エッジ角度θがエッジ角度閾値75°以上及び105°以下のとき仮付溶接ビードが無と判定する。すなわち、エッジ角度θが75°未満、105°を越えるとき、仮付溶接ビード有と判定する。
In order to determine the presence or absence of the tack weld bead, threshold values of density value 値, standard deviation value σ, and edge angle θ were input. The input screen is shown in FIG. When the concentration value ρ is greater than or equal to the
図19に濃度値ρ単独で仮付溶接ビードの有無を判定したときの溶接ビードの溶接目標線WLからのズレ量を示す。平均ズレ量は0.083mmであり、溶接目標線WLの座標位置に対して最大+0.120mm、最小0.02mmの倣いズレが生じている。最大でも+0.120mmの倣いズレであり、濃度値のみの判定でもレーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 19 shows the amount of deviation from the welding target line WL of the weld bead when the presence or absence of the tack weld bead is determined by the concentration value 単 独 alone. The average displacement amount is 0.083 mm, and a scanning displacement of a maximum of +0.120 mm and a minimum of 0.02 mm is generated with respect to the coordinate position of the welding target line WL. The scanning deviation is +0.120 mm at the maximum, and the judgment of only the concentration value satisfies the scanning accuracy of ± 0.15 mm, which enables good welding by laser welding.
図20に標準偏差値σ単独で仮付溶接ビードの有無を判定したときの溶接ビードの溶接目標線WLからのズレ量を示す。平均ズレ量は0.087mmであり、溶接目標線WLの座標位置に対して最大+0.130mm、最小0.05mmの倣いズレが生じている。標準偏差値のみの判定でもレーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 20 shows the amount of deviation from the welding target line WL of the weld bead when the presence or absence of the tack weld bead is determined with the standard deviation value σ alone. The average displacement amount is 0.087 mm, and a scanning displacement of a maximum of +0.130 mm and a minimum of 0.05 mm occurs with respect to the coordinate position of the welding target line WL. Even with the determination of only the standard deviation value, the scanning accuracy of ± 0.15 mm, which enables good welding by laser welding, is satisfied.
図21にエッジ角度θ単独で仮付溶接ビードの有無を判定したときの溶接ビードの溶接目標線WLからのズレ量を示す。平均ズレ量は0.080mmであり、溶接目標線WLの座標位置に対して最大+0.11mm、最小0.05mmの倣いズレが生じている。エッジ角度のみの判定でもレーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 FIG. 21 shows the amount of deviation from the welding target line WL of the weld bead when the presence or absence of the tack weld bead is determined by the edge angle θ alone. The average displacement amount is 0.080 mm, and a scanning displacement of a maximum of +0.11 mm and a minimum of 0.05 mm occurs with respect to the coordinate position of the welding target line WL. Even with the determination of only the edge angle, the scanning accuracy of ± 0.15 mm, which enables good welding by laser welding, is satisfied.
(検証実験3)
仮付溶接ビード判定部141が仮付溶接ビードの有無の判定を、濃度値ρと標準偏差値σとの「OR」で行った場合の溶接ビードの溶接目標線WLへの追従性を調べた。試験片、実験条件等は、検証実験2と同じであるので、説明を省略する。
(Verification experiment 3)
The followability of the welding bead to the welding target line WL was examined when the tacking weld
図22に実験結果を示す。平均ズレ量は0.052mmであり、溶接目標線WLの座標位置に対して最大+0.130mm、最小0.06mmの倣いズレが生じている。濃度値ρと標準偏差値σを「OR」で組み合わせた場合でも、仮付溶接ビードによる外乱に影響されることなく、レーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 An experimental result is shown in FIG. The average shift amount is 0.052 mm, and a scan shift of +0.130 mm at the maximum and 0.06 mm at the minimum with respect to the coordinate position of the welding target line WL occurs. Even when the concentration value ρ and the standard deviation value σ are combined by “OR”, the scanning accuracy of ± 0.15 mm, which enables good welding by laser welding, is satisfied without being affected by the disturbance due to the temporary welding bead. .
(検証実験4)
仮付溶接ビード判定部141が仮付溶接ビードの有無の判定を、濃度値ρとエッジ角度θとの「OR」で行った場合の溶接ビードの溶接目標線WLへの追従性を調べた。試験片、実験条件等は、検証実験2と同じであるので、説明を省略する。
(Verification experiment 4)
The tackiness of the weld bead to the weld target line WL was examined when the tack weld
図23に実験結果を示す。平均ズレ量は0.088mmであり、溶接目標線WLの座標位置に対して最大+0.140mm、最小0.04mmの倣いズレが生じている。濃度値ρとエッジ角度θを「OR」で組み合わせた場合でも、仮付溶接ビードによる外乱に影響されることなく、レーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 The experimental results are shown in FIG. The average displacement amount is 0.088 mm, and a scanning displacement of a maximum of +0.140 mm and a minimum of 0.04 mm occurs with respect to the coordinate position of the welding target line WL. Even when the concentration value ρ and the edge angle θ are combined by “OR”, the scanning accuracy of ± 0.15 mm, which enables good welding by laser welding, is satisfied without being influenced by the disturbance due to the temporary welding bead.
(検証実験5)
仮付溶接ビード判定部141が仮付溶接ビードの有無の判定を、標準偏差値σとエッジ角度θとの「OR」で行った場合の溶接ビードの溶接目標線WLへの追従性を調べた。
(Verification experiment 5)
The followability of the weld bead to the weld target line WL was examined when the tack weld
図24に実験結果を示す。平均ズレ量は0.083mmであり、溶接目標線WLの座標位置に対して最大+0.120mm、最小0.05mmの倣いズレが生じている。標準偏差値σとエッジ角度θを「OR」で組み合わせた場合でも、仮付溶接ビードによる外乱に影響されることなく、レーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 An experimental result is shown in FIG. The average shift amount is 0.083 mm, and a scan shift of +0.120 mm at the maximum and 0.05 mm at the minimum with respect to the coordinate position of the welding target line WL occurs. Even when the standard deviation value σ and the edge angle θ are combined by “OR”, the scanning accuracy of ± 0.15 mm, which enables good welding by laser welding, is not affected by the disturbance due to the temporary welding bead. .
(検証実験6)
仮付溶接ビード判定部141が濃度値ρと標準偏差値σ及びエッジ角度θで仮付溶接ビードの有無を判定した場合の溶接ビードの溶接目標線WLへの追従性を調べた。
(Verification experiment 6)
The followability of the weld bead to the welding target line WL was examined when the tack weld
試験片を図25に示す。板厚1.2mm、長さ610mm、幅30mmのSPCC鋼板2枚を突合せ継ぎ手にして、150mmピッチで4カ所仮付溶接した。なお、本実験では、開先がない突合せ継ぎ手で開先ギャップを0として実験が行われた。 The test specimens are shown in FIG. Two SPCC steel plates having a thickness of 1.2 mm, a length of 610 mm, and a width of 30 mm were butt-welded and tack welded at four points at a pitch of 150 mm. In this experiment, the experiment was conducted by setting the groove gap to 0 with a butt joint having no groove.
レーザパワーは、2KWで、溶接速度は3m/minである。溶接ロボットには、溶接開始点Wsではネライはずし量を0mm、溶接終了点Weではネライはずし量を2mmとなるように、溶接目標線WLに対して意図的にずらすようにティーチングした。溶接後、マイクロスコープを用いて、溶接目標線WLの位置と溶接後の溶接ビード中心位置を測定して倣い精度を評価した。全溶接長600mmに対して、40mmのピッチで15カ所長さ30mmの溶接を行った後、溶接目標線WLの位置と溶接後の溶接ビード中心位置のズレδを測定した(図17参照。)。 The laser power is 2 KW and the welding speed is 3 m / min. The welding robot was taught to be intentionally shifted with respect to the welding target line WL so that the welding removal point is 0 mm at the welding start point Ws and 2 mm at the welding completion point We. After welding, using a microscope, the position of the welding target line WL and the welding bead center position after welding were measured to evaluate the copying accuracy. After welding at 15 points and 30 mm at a pitch of 40 mm for a total welding length of 600 mm, the deviation δ between the position of the welding target line WL and the weld bead center position after welding was measured (see FIG. 17). .
仮付溶接ビードの有無の判定のために、濃度値ρ、標準偏差値σ、エッジ角度θの閾値を入力した(図18参照)。濃度値ρが濃度閾値20以上及び濃度閾値115以下のとき、仮付溶接ビード有と判定する。標準偏差値σが標準偏差閾値50以上のとき仮付溶接ビード有と判定する。エッジ角度θがエッジ角度閾値75°以上及びエッジ角度閾値105°以下のとき仮付溶接ビードが無と判定する。すなわち、エッジ角度θが75°未満、105°を越えるとき、仮付溶接ビード有と判定する。
In order to determine the presence or absence of the tack weld bead, threshold values of density value ρ, standard deviation value σ, and edge angle θ were input (see FIG. 18). When the concentration value ρ is greater than or equal to the
濃度値ρ、標準偏差値σ及びエッジ角度θの3つを「OR」で組み合わせて仮付溶接ビード判定部141が仮付溶接ビードの有無を判定した場合の溶接ビードの溶接目標線WLへの追従性を調べた。
When the tack welding
図26に実験結果を示す。平均ズレ量は0.050mmであり、溶接目標線WLの座標位置に対して最大+0.140mm、最小−0.035mmの倣いズレが生じている。仮付溶接ビードによる外乱に影響されることなく、レーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしている。 The experimental results are shown in FIG. The average shift amount is 0.050 mm, and a scan shift of +0.140 mm at the maximum and −0.035 mm at the minimum occurs with respect to the coordinate position of the welding target line WL. The scanning accuracy of ± 0.15 mm, which enables good welding by laser welding, without being affected by the disturbance caused by the tack welding bead, is satisfied.
溶接速度を1m/min(レーザパワー:1.2KW)、5m/min(レーザパワー:3KW)、7m/min(レーザパワー:3.5KW)、10m/min(レーザパワー:5KW)にして、同様の実験を行った。 The welding speed is 1 m / min (laser power: 1.2 KW), 5 m / min (laser power: 3 KW), 7 m / min (laser power: 3.5 KW), 10 m / min (laser power: 5 KW) Experiment was conducted.
それぞれの溶接速度での平均ズレ量は、溶接速度1m/minでは0.041mm、溶接速度5m/minでは0.062mm、溶接速度7m/minでは0.082mm、溶接速度10m/minでは0.045mmであった。いずれの溶接条件でもレーザ溶接で良好な溶接が可能な倣い精度±0.15mmを満たしていることがわかった。 The average deviation at each welding speed is 0.041 mm at welding speed 1 m / min, 0.062 mm at welding speed 5 m / min, 0.082 mm at welding speed 7 m / min, and 0.045 mm at welding speed 10 m / min Met. It was found that the scanning accuracy of ± 0.15 mm, which enables good welding by laser welding under any welding conditions, is satisfied.
以上本発明は、このような実施形態、検証実験に何ら限定されるものでなく、突き合わせ継手以外の角継手、重ね継手、隅肉継手、重ね隅肉継手、T継手、フレア継手、へり継手等に適用可能である。また、本発明は、溶接以外の肉盛、ろう付けする際の倣いにも適用することができる。 The present invention is not limited to such embodiment and verification experiment, and square joints other than butt joints, lap joints, fillet joints, lap joints, T joints, flare joints, edge joints, etc. Applicable to The present invention can also be applied to overlaying during overlaying and brazing other than welding.
11・・・・・・・・・・溶接ロボット
12・・・・・・・・・・溶接トーチ
13・・・・・・・・・・撮像部
14・・・・・・・・・・画像処理装置
141・・・・・・・・仮付溶接ビード判定部
142・・・・・・・・ズレ演算部
15・・・・・・・・・・ロボット制御部
50・・・・・・・・・・被溶接部材
D・・・・・・・・・・・濃度値判定部
Σ・・・・・・・・・・・標準偏差値判定部
A・・・・・・・・・・・エッジ角度判定部
K1〜K4・・・・・・・仮付溶接ビード
OE52、OE53・・・開先エッジ
s1、s2、・・sn・・検出セグメント
ρ・・・・・・・・・・・濃度値
θ・・・・・・・・・・・エッジ角度
σ・・・・・・・・・・・標準偏差値
11 ··········································································································· The
Claims (6)
前記画像処理装置は、仮付溶接ビード判定部と、前記溶接目標線と前記溶接トーチで溶接加工される溶接予定点とのズレを演算するズレ演算部と、を備え、
前記仮付溶接ビード判定部は、前記開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して前記仮付溶接ビードの有無を判定する濃度値判定部、前記開先エッジ領域画像の中で濃度が変化する境界線に沿う複数の検出セグメントを通る近似直線と基準線との成すエッジ角度θを所定のエッジ角度閾値と比較して前記仮付溶接ビードの有無を判定するエッジ角度判定部、前記境界線に沿う複数の検出セグメント位置の前記溶接目標線と交差する方向の標準偏差値σを所定の標準偏差閾値と比較して前記仮付溶接ビードの有無を判定する標準偏差値判定部の少なくとも一つを備え、
前記ロボット制御部は、前記仮付溶接ビード判定部で仮付溶接ビード無と判定され且つ前記ズレ演算部でズレが演算されると、前記溶接トーチをズレが小となるように補正制御し、前記仮付溶接ビード判定部で仮付溶接ビード有と判定されると、前記補正制御を行わないことを特徴とする自動溶接機。 A grooved edge ahead of a welding portion of a welding robot having a welding torch and a welding member supported by the welding robot and having a tack welding bead supported by the welding robot and having two beveled edges butt-welded and tack-welded An imaging unit configured to capture an area image; an image processing apparatus configured to set a welding target line by processing the grooved edge area image captured by the imaging unit; and the welding target line set by the image processing apparatus. A robot control unit that controls the welding robot such that a torch follows the robot;
The image processing apparatus includes a tacking weld bead determination unit, and a shift calculation unit that calculates a shift between the welding target line and a planned welding point to be welded by the welding torch.
The temporary welding bead determination unit compares the density value ρ of the groove edge region image with a predetermined concentration threshold to determine the presence or absence of the temporary welding bead; Edge angle determination that determines the presence or absence of the tack weld bead by comparing an edge angle θ formed by an approximate straight line passing through a plurality of detection segments along the boundary where the concentration changes and the reference line with a predetermined edge angle threshold And a standard deviation value determination to determine the presence or absence of the tackiness weld bead by comparing a standard deviation value σ in a direction intersecting the weld target line of a plurality of detection segment positions along the boundary with a predetermined standard deviation threshold value Equipped with at least one of the
The robot control unit corrects and controls the welding torch so as to reduce the displacement when the tacking weld bead determination unit determines that there is no tacking weld bead and the displacement calculation unit calculates a displacement. The automatic welding machine according to claim 1, wherein the correction control is not performed when it is determined that the temporary welding bead is present in the temporary welding bead determination unit.
前記撮像工程で撮像した前記開先エッジ領域画像を処理して溶接目標線を設定する溶接
目標線設定工程と、
前記溶接目標線設定工程で設定した前記溶接目標線に前記溶接トーチが倣うように前記溶接ロボットを制御するロボット制御工程と、を備え、
前記溶接目標線設定工程は、前記仮付溶接ビードの有無を判定する仮付溶接ビード判定工程と、前記溶接目標線と前記溶接トーチで溶接加工される溶接予定点とのズレを演算するズレ演算工程と、を備え、
前記仮付溶接ビード判定工程は、前記開先エッジ領域画像の濃度値ρを所定の濃度閾値と比較して前記仮付溶接ビードの有無を判定する濃度値判定工程、前記開先エッジ領域画像の中で濃度が変化する境界線に沿う複数の検出セグメントを通る近似直線と基準線との成すエッジ角度θを所定のエッジ角度閾値と比較して前記仮付溶接ビードの有無を判定するエッジ角度判定工程、前記境界線に沿う複数の検出セグメント位置の前記溶接目標線と交差する方向の標準偏差値σを所定の標準偏差閾値と比較して前記仮付溶接ビードの有無を判定する標準偏差値判定工程の少なくとも一つを備え、
前記ロボット制御工程は、前記仮付溶接ビード判定工程で仮付溶接ビード無と判定され且つ前記ズレ演算工程でズレが演算されると、前記溶接トーチをズレが小となるように補正制御し、前記仮付溶接ビード判定工程で仮付溶接ビード有と判定されると、前記補正制御を行わないことを特徴とする自動溶接方法。 In an imaging unit supported by a welding robot having a welding torch, a groove edge area ahead of a portion to be welded of a workpiece to be welded having a tack weld bead in which two groove edges are butted and tack-welded temporarily An imaging process for capturing an image;
A welding target line setting step of setting a welding target line by processing the grooved edge area image picked up in the imaging step;
A robot control step of controlling the welding robot such that the welding torch follows the welding target line set in the welding target line setting step;
The welding target line setting step is a temporary welding bead determination step of judging presence / absence of the temporary welding bead, and a deviation operation for calculating a deviation between the welding target line and a welding scheduled point to be welded by the welding torch. Process, and
The tacking weld bead determination step is a concentration value determination step of determining the presence or absence of the tacking weld bead by comparing the density value ρ of the grooved edge area image with a predetermined concentration threshold value; Edge angle determination that determines the presence or absence of the tack weld bead by comparing an edge angle θ formed by an approximate straight line passing through a plurality of detection segments along the boundary where the concentration changes and the reference line with a predetermined edge angle threshold Determining the presence or absence of the tack weld bead by comparing a standard deviation value σ of the plurality of detection segment positions along the boundary in the direction intersecting the weld target line with a predetermined standard deviation threshold value Comprising at least one of the steps
The robot control process corrects and controls the welding torch so as to reduce the deviation when it is determined that there is no tacking weld bead in the tacking weld bead determination step and the deviation is calculated in the deviation calculation step. The automatic welding method characterized in that the correction control is not performed when it is determined that the temporary welding bead is present in the temporary welding bead determination step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017194217A JP6842171B2 (en) | 2017-10-04 | 2017-10-04 | Automatic welding machine and automatic welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017194217A JP6842171B2 (en) | 2017-10-04 | 2017-10-04 | Automatic welding machine and automatic welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019063841A true JP2019063841A (en) | 2019-04-25 |
JP6842171B2 JP6842171B2 (en) | 2021-03-17 |
Family
ID=66338759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017194217A Active JP6842171B2 (en) | 2017-10-04 | 2017-10-04 | Automatic welding machine and automatic welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6842171B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03161173A (en) * | 1989-11-20 | 1991-07-11 | Nkk Corp | Groove profiling control method |
JPH06328251A (en) * | 1993-05-21 | 1994-11-29 | Kobe Steel Ltd | Joint detecting method |
JP2003126962A (en) * | 2001-10-24 | 2003-05-08 | Kobe Steel Ltd | Controller for welding robot |
-
2017
- 2017-10-04 JP JP2017194217A patent/JP6842171B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03161173A (en) * | 1989-11-20 | 1991-07-11 | Nkk Corp | Groove profiling control method |
JPH06328251A (en) * | 1993-05-21 | 1994-11-29 | Kobe Steel Ltd | Joint detecting method |
JP2003126962A (en) * | 2001-10-24 | 2003-05-08 | Kobe Steel Ltd | Controller for welding robot |
Also Published As
Publication number | Publication date |
---|---|
JP6842171B2 (en) | 2021-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000167666A (en) | Automatic welding, defect repair method and automatic welding equipment | |
US11260471B2 (en) | Method and device for monitoring a joining seam during joining by means of a laser beam | |
JP4531396B2 (en) | Method and apparatus for evaluating workpiece joints | |
KR102235832B1 (en) | Portable type welding inspection appatatus and inspection method | |
JPH0571932A (en) | Quality-inspection device of welding bead | |
JP2011045898A (en) | Welding robot | |
JP7422337B2 (en) | Repair welding control device and repair welding control method | |
WO2020262050A1 (en) | Repair welding examination device and repair welding examination method | |
CN114007793B (en) | Repair welding control equipment and repair welding control method | |
JP2002331383A (en) | Monitoring device for cutting | |
KR100671024B1 (en) | Method and system for conducting step welding of the welding robot by using laser vision sensor | |
JP2019063841A (en) | Automatic welding machine and automatic welding method | |
JP2000024777A (en) | Groove shape detecting device | |
JP4186533B2 (en) | Welding position automatic scanning control device and automatic scanning welding method | |
JP2006266994A (en) | Method and device for inspecting weld part | |
JP3787401B2 (en) | Control method for multilayer prime welding and multilayer prime welding apparatus | |
JP2003220471A (en) | Automatic trace controller of welding position | |
JP3203507B2 (en) | Laser processing equipment | |
JP4147390B2 (en) | Laser welding quality inspection method and apparatus | |
JPH11207461A (en) | Lap welding method for bead connection and its automatic welding device | |
JP2020082184A (en) | Weld defect detection method and welding device | |
JP3482615B2 (en) | Welding position automatic profiling control device | |
JPH05138354A (en) | Automatic welding profiling device | |
JPH0647541A (en) | Method for judging status of arc | |
JPH0970664A (en) | Method for profiling beveling with laser spot beam and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20171017 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6842171 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |