JP2000167666A - Automatic welding, defect repair method and automatic welding equipment - Google Patents

Automatic welding, defect repair method and automatic welding equipment

Info

Publication number
JP2000167666A
JP2000167666A JP10345127A JP34512798A JP2000167666A JP 2000167666 A JP2000167666 A JP 2000167666A JP 10345127 A JP10345127 A JP 10345127A JP 34512798 A JP34512798 A JP 34512798A JP 2000167666 A JP2000167666 A JP 2000167666A
Authority
JP
Japan
Prior art keywords
welding
repair
defect
control
automatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10345127A
Other languages
Japanese (ja)
Other versions
JP4696325B2 (en
Inventor
Akiyoshi Imanaga
昭慈 今永
Mitsuaki Haneda
光明 羽田
Noboru Saito
昇 斉藤
Nobuo Shibata
信雄 柴田
Junichiro Morisawa
潤一郎 森沢
Eiji Hino
英司 日野
Kazuhiko Mizuguchi
和彦 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34512798A priority Critical patent/JP4696325B2/en
Publication of JP2000167666A publication Critical patent/JP2000167666A/en
Application granted granted Critical
Publication of JP4696325B2 publication Critical patent/JP4696325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic welding, a defect repair method and automatic welding equipment capable of automatically conducting the whole process including automatic control of multilayer welding, defect detection discrimination per each pass, decision for repair method and welding control of defect repair. SOLUTION: In a process of welding control operation P6, by using the detection information of a sensor 8 for welding, the position copying control of a welding torch and the correction control of a welding condition are conducted, in a process of welding defect detection operation, a quality inspection of a welded part is conducted by a sensor 9 for defect detection, further, the presence or absence, variety, size and position of a defect are discriminated and recorded. Based on the result, a decision process P12 of necessity of repair, automatic repair or manual repair is conducted. In a next repair welding control operation P13, when in automatic repair, control is conducted to repair a defect part and its surrounding, and in manual repair, the demand by manual repair is displayed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円柱又は円筒形或
いは平板の部材から成る開先継手の自動溶接及び溶接欠
陥発生時の補修溶接に係り、特に、多層盛溶接の自動制
御からパス溶接毎の欠陥検出判別と補修方法決定、補修
溶接の制御まで自動で行うのに好適な欠陥補修溶接方法
及び自動溶接装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to automatic welding of grooved joints made of cylindrical, cylindrical or flat members and repair welding when a welding defect occurs. The present invention relates to a defect repair welding method and an automatic welding apparatus suitable for automatically performing the defect detection determination, repair method determination, and repair welding control.

【0002】[0002]

【従来の技術】従来の自動溶接装置における溶接欠陥の
検出例としては、特開昭63−68268号公報に溶接
欠陥の検査方法として、赤外線カメラ、画像識別装置な
どを使って、溶接施工中に溶融池近傍の溶接金属の温度
分布を求め、その結果から溶接欠陥の有無を判定するこ
とが開示されている。この欠陥検査で、欠陥が見つかっ
た時には直ちに溶接を中止して、手作業で欠陥部の除
去、補修してから溶接を再開するようにしている。
2. Description of the Related Art As an example of detecting a welding defect in a conventional automatic welding apparatus, Japanese Patent Application Laid-Open No. 63-68268 discloses an inspection method for a welding defect using an infrared camera, an image identification device, or the like. It is disclosed that a temperature distribution of a weld metal in the vicinity of a molten pool is obtained, and the presence or absence of a welding defect is determined from the result. In this defect inspection, when a defect is found, the welding is immediately stopped, and the defect is manually removed and repaired, and then the welding is restarted.

【0003】また、特開平9−101120号公報に
は、加工物体表面にスリット状光線を照射し、その反射
像の光切断画像を画像処理して、種々の溶接ビード表面
の欠陥検出、欠陥の形状及び大きさを定量的に検出する
ことが開示されている。
Japanese Patent Application Laid-Open No. 9-101120 discloses a method of irradiating a slit-like light beam on the surface of a processed object, performing image processing on a light-cut image of a reflected image thereof, detecting defects on various weld beads, detecting defects on the surface. Quantitative detection of shape and size is disclosed.

【0004】特許番号第2751175号公報(特開平
1−197069号)には、溶接中の各溶接条件をリア
ルタイムで条件信号記録器に記録し、この記録データ信
号と適正条件範囲記録器の保存データ信号を比較して健
全でない溶接部を比較演算器で求め、健全でないと判断
した時の溶接条件及び溶接異常位置を表示器に表示する
ことが開示されている。
Japanese Patent No. 2751175 (Japanese Patent Laid-Open No. 1-197069) discloses that welding conditions during welding are recorded on a condition signal recorder in real time, and the recorded data signal and stored data of an appropriate condition range recorder are recorded. It is disclosed that a signal is compared to determine an unhealthy welded portion by a comparison calculator, and welding conditions and an abnormal welding position when it is determined to be unhealthy are displayed on a display.

【0005】特開平7−47471号公報には、各種の
溶接状況信号と溶接映像信号を同一画面上に経時的に表
示すると共に、装置動作状況が適正溶接条件の範囲内に
あるかどうかを同時表示する。さらに、範囲外の時に補
修位置信号を溶接装置へ送って補修溶接するようにし、
上記溶接状況信号の記録と溶接映像信号を録画して溶接
品質の診断を行うことが開示されている。ここで検出す
る溶接状況信号は、溶接時のアーク電流・電圧、ワイヤ
送り速度、溶接トーチの移動速度、オシレートの幅や速
度などの各種出力信号と、レーザ距離計、溶接の音響
計、音圧計などの計器信号である。この溶接状況信号が
事前入力の適正条件範囲を超えた時には、溶接士が識別
できるように色変化表示をすると共に、溶接装置へ補修
位置信号を自動的に送る、或いは同一画面上に表示され
た溶接映像を見る溶接士の判断を待ってから送るように
している。また、溶接異常と判断された欠陥部分の補修
は、補修位置信号(補修指令)に基づいて溶接装置で直ち
に行うか、或いは溶接作業が一段落した後に行うように
している。
Japanese Patent Application Laid-Open No. 7-47471 discloses various welding status signals and welding video signals over time on the same screen, and simultaneously determines whether the operation status of the apparatus is within a range of appropriate welding conditions. indicate. Furthermore, when outside the range, the repair position signal is sent to the welding device to perform repair welding,
It is disclosed that the welding quality signal is diagnosed by recording the welding status signal and the welding video signal. Welding status signals detected here are various output signals such as arc current and voltage during welding, wire feed speed, moving speed of welding torch, width and speed of oscillate, laser distance meter, welding acoustic meter and sound pressure meter. And the like. When the welding status signal exceeds the proper condition range of the pre-input, a color change display is displayed so that the welder can be identified, and a repair position signal is automatically sent to the welding device, or displayed on the same screen. We wait for the judgment of the welder watching the welding video before sending. Repair of a defective portion determined to be abnormal in welding is performed immediately by a welding device based on a repair position signal (repair command) or after a welding operation has been completed.

【0006】特開平8−150474号公報には、スリ
ットレーザ式(光切断方式)センサ、もしくは揺動走査式
のレーザ変位計を使って検出する溶接直後の開先内形状
から、ビードコーナー半径rとビード折線のずれ角度θ
を求め、この情報を基にウィービング幅、停止時間、電
流、速度などの溶接条件を変化させてビード形状を制御
することが開示されている。
[0006] Japanese Patent Application Laid-Open No. 8-150474 discloses a bead corner radius r based on an inner shape of a groove immediately after welding, which is detected by using a slit laser type (optical cutting type) sensor or an oscillating scanning type laser displacement meter. And bead fold line deviation angle θ
And controlling the bead shape by changing welding conditions such as weaving width, stop time, current, and speed based on this information.

【0007】特開平1−181989号公報には、スリ
ットレーザ式(光切断方式)センサを使ってレーザ溶接中
のビード形状を計測して、補修すべきと判定した時はレ
ーザ溶接装置で全線に渡って再溶接を行うことが開示さ
れている。不良ビードのものは廃棄される。
Japanese Patent Application Laid-Open No. Hei 1-1181989 discloses that a bead shape during laser welding is measured using a slit laser type (light cutting type) sensor, and when it is determined that the bead needs to be repaired, a laser welding apparatus is used to perform the entire process. It is disclosed to perform rewelding across. Bad beads are discarded.

【0008】[0008]

【発明が解決しようとする課題】特開昭63−6826
8号公報の溶接欠陥の検査方法では、溶接中に位置制御
や条件制御を行うことは全く提示されておらず、また、
溶接欠陥の自動補修は行われていない。
SUMMARY OF THE INVENTION Japanese Patent Application Laid-Open No. 63-6826
In the method for inspecting welding defects disclosed in Japanese Patent Publication No. 8 (1994), there is no suggestion that position control or condition control is performed during welding.
No automatic repair of welding defects has been performed.

【0009】特開平9−101120号公報では、検出
した欠陥を定量的に評価するのに有効であるが、欠陥検
出結果の活用方法や、欠陥補修溶接の施工方法について
は全く提示されていない。この他、上記と類以の検出手
段で欠陥検出動作を行う公知例があるが、溶接欠陥部を
自動補修するまでに至っていない。
Japanese Patent Application Laid-Open No. 9-101120 is effective for quantitatively evaluating a detected defect, but does not disclose a method of utilizing a defect detection result or a method of performing defect repair welding. In addition, there is a known example in which a defect detection operation is performed by a detection means similar to the above, but the defect has not been repaired automatically.

【0010】一方、特許番号第2751175号公報
(特開平1−197069号)では、溶接品質の自己診断
は溶接完了後に行うもので、非破壊検査の削減に活用さ
れているが、溶接中には収集データ及び診断結果が利用
されていない。溶接欠陥部の補修は検査終了後であり、
この場合、欠陥箇所の金属除去加工や肉盛式の補修溶接
を熟練溶接士が手作業で行わざるを得ない。
On the other hand, Japanese Patent No. 2751175
In Japanese Unexamined Patent Publication (Kokai) No. 1-197069, the self-diagnosis of the welding quality is performed after the completion of the welding, which is utilized for reducing the non-destructive inspection, but the collected data and the diagnosis result are not used during the welding. Repair of weld defects is after inspection is completed,
In this case, a skilled welder must manually perform the metal removal processing at the defective portion and the overlay repair welding.

【0011】特開平7−47471号公報に記載の溶接
品質診断保証装置は、しかし、本装置には溶接欠陥の有
無、種類、大きさを直接検出する欠陥検出用センサは使
用されていない。録画した溶接映像の観察及び欠陥発生
の判断は溶接士が行っている。また、欠陥部の補修溶接
は自動で行うとしているが、欠陥の種類、大きさに応じ
て施工条件を変える必要があるため、溶接品質診断装置
及び溶接装置によって自動補修及び制御を行うことは困
難である。自動補修を行う方策は全く提示されていな
い。従って、溶接士が欠陥を確認して溶接装置を手動操
作しながら補修せざるを得ないものと推定される。
The welding quality diagnosis assurance apparatus described in Japanese Patent Application Laid-Open No. 7-47471, however, does not use a defect detection sensor for directly detecting the presence, type, and size of a welding defect. The welder observes the recorded welding images and judges the occurrence of defects. In addition, repair welding of defective parts is said to be performed automatically, but it is difficult to perform automatic repair and control with a welding quality diagnosis device and welding device because it is necessary to change the construction conditions according to the type and size of the defect It is. No measures have been proposed for automatic repair. Therefore, it is presumed that the welder has to confirm the defect and repair while manually operating the welding device.

【0012】特開平8−150474号公報では、溶接
不良を未然防止するのに有効であるが、溶接終了後の欠
陥補修を前提にしていない。欠陥検出動作と欠陥判別後
の補修の要否決定、欠陥部の自動補修を行うことについ
ては提示されていない。
Japanese Patent Application Laid-Open No. 8-150474 is effective in preventing poor welding beforehand, but does not assume repair of defects after welding is completed. The document does not disclose a defect detection operation, the necessity of repair after defect determination, and the automatic repair of a defective portion.

【0013】特開平1−181989号公報では、レー
ザ溶接法による1パス溶接であり、アーク溶接法による
多パス溶接ではない。欠陥部分とその周辺を補修する制
御は行っておらず、また、不良ビードのものは手動補修
しないで廃棄している。
In Japanese Patent Application Laid-Open No. Hei 18-181989, one-pass welding by laser welding is used, not multi-pass welding by arc welding. No control is performed to repair the defective part and its surroundings, and defective beads are discarded without manual repair.

【0014】そこで、本発明は上記の問題に鑑みてなさ
れたもので、その目的は、アーク溶接・補修作業の脱技
能化、高度自動化を目指し、多層盛溶接の自動制御から
パス溶接毎の品質検査、欠陥判別後の補修の要否決定、
欠陥補修の溶接制御まで全て自動で行うのに好適な自動
溶接及び欠陥補修方法並びに自動溶接装置を提供するこ
とにある。
Therefore, the present invention has been made in view of the above problems, and aims at de-skilling and advanced automation of arc welding and repair work. Inspection, determination of necessity of repair after defect determination,
It is an object of the present invention to provide an automatic welding and defect repairing method and an automatic welding apparatus suitable for performing all the processes up to the welding repair control automatically.

【0015】[0015]

【課題を解決するための手段】上記の目的を達成する手
段は、溶接トーチの左右上下の移動及び溶接線方向の往
復走行が可能な溶接制御ヘッドと、溶接トーチへの給電
及びワイヤ供給が可能な溶接電源と、溶接制御ヘッドの
駆動制御、溶接電源の出力制御、溶接条件及び位置デー
タの情報処理、溶接用センサや欠陥検出用センサの検出
指令と検出情報処理、及び構成機器の統括管理が可能な
溶接制御装置とを用いて、円柱又は円筒形或いは平板の
部材から成る開先継手の自動溶接及び欠陥補修を行う方
法において、前記溶接用センサによる位置ずれや開先形
状の検出情報と、溶接条件及び位置データの基準情報を
基にして、1パス溶接毎に溶接トーチの位置倣い制御や
溶接条件の補正制御を行う第1工程と、この第1工程の
溶接過程かあるいは溶接終了後に溶接制御ヘッドを反転
移動させる時に、欠陥検出用センサによる溶接部の品質
検査を1パス溶接毎に行うと共に、その検出情報を処理
して欠陥の有無、種類、大きさ、位置を判別及び記録す
る第2工程と、この欠陥判別結果に基づいて、補修溶接
の要否及び補修の必要時に自動補修すべきか手動補修す
べきかを決定する第3工程と、前記自動補修時は欠陥部
分及びその周囲を補修溶接するように溶接制御ヘッドの
駆動制御及び溶接電源の出力制御を行う第4工程と、前
記手動補修時には手動操作による補修要求表示を行う第
5工程とを有することを特徴とする。
Means for achieving the above object include a welding control head capable of moving the welding torch up and down, right and left and reciprocating in the direction of the welding line, and supplying power and wire to the welding torch. Welding power supply, drive control of welding control head, output control of welding power supply, information processing of welding condition and position data, detection command and detection information processing of welding sensor and defect detection sensor, and overall management of component equipment Using a possible welding control device, in a method of performing automatic welding and defect repair of a grooved joint consisting of a cylindrical or cylindrical or flat member, detection information of misalignment and groove shape by the welding sensor, A first step of performing position tracking control of a welding torch or a correction control of welding conditions for each pass welding based on the reference information of the welding conditions and position data, or a welding process of the first step. When reversing the welding control head after welding is completed, the quality of the weld is inspected by the defect detection sensor for each pass welding, and the detected information is processed to determine the presence, type, size and position of the defect. And a second step of recording, and a third step of determining whether repair welding is necessary or not and performing automatic repair or manual repair when necessary based on the defect determination result. A fourth step of performing drive control of a welding control head and an output control of a welding power source so as to perform repair welding on the periphery thereof; and a fifth step of performing a repair request display by manual operation during the manual repair. .

【0016】さらに、補修が不要な時と前記第4工程或
いは第5工程で補修溶接が完了した時は、次パスの溶接
動作に更新する第6工程と、多パス溶接及び欠陥補修が
全て終了した時或いは途中で強制終了する時には、前記
溶接制御ヘッドと自動運転画面を初期位置及び初期画面
に戻す第7工程とを有することを特徴とする。
Further, when repair is unnecessary and when repair welding is completed in the fourth step or the fifth step, a sixth step of updating to a welding operation of the next pass, and multi-pass welding and defect repair are all completed. The method further comprises a seventh step of returning the welding control head and the automatic operation screen to the initial position and the initial screen when the operation is forcibly terminated at the time of or during the operation.

【0017】また、溶接トーチの左右上下の移動及び溶
接線方向の往復走行が可能な溶接制御ヘッドと、溶接ト
ーチへの給電及びワイヤ供給が可能な溶接電源と、溶接
制御ヘッドの駆動制御、溶接電源の出力制御、溶接条件
及び位置データの情報処理、溶接用センサや欠陥検出用
センサの検出指令と検出情報処理、及び構成機器の統括
管理が可能な溶接制御装置とを用いて、円柱又は円筒形
或いは平板の部材から成る開先継手の自動溶接及び欠陥
補修を行うものにおいて、前記溶接用センサによる位置
ずれや開先形状の検出情報と、溶接条件及び位置データ
の基準情報を基にして、1パス溶接毎に溶接トーチの位
置倣い制御、溶接条件の補正制御を行う第1の溶接制御
処理手段と、このパス溶接過程かあるいは終了後に溶接
制御ヘッドを反転移動させる時に、前記欠陥検出用セン
サの検出指令、欠陥検出の情報処理を行う第1の欠陥検
出処理手段と、この検出結果から欠陥の有無、種類、大
きさ、位置を判別及び記録する欠陥判別記録手段と、こ
の欠陥判別結果に基づいて、補修溶接の要否及び補修の
必要時に自動補修すべきか手動補修すべきかを決定する
補修方法決定手段と、前記自動補修時には欠陥部分及び
その周辺を補修溶接するように、前記溶接制御ヘッドの
駆動制御及び溶接電源の出力制御を行う第1の補修制御
処理手段と、前記手動補修時には手動操作による補修要
求表示を行う手動補修要求手段とを設けたことを特徴と
する。
Also, a welding control head capable of moving the welding torch up and down, right and left and reciprocating in the direction of the welding line, a welding power supply capable of supplying power to the welding torch and supplying wires, drive control of the welding control head, welding Using a power output control, information processing of welding conditions and position data, detection instructions and detection information processing of welding sensors and defect detection sensors, and a welding control device capable of comprehensively managing the components, a cylinder or cylinder In the automatic welding and defect repair of the groove joint consisting of a shape or a flat member, based on the detection information of the displacement and groove shape by the welding sensor, based on the reference information of welding conditions and position data, First welding control processing means for performing position tracking control of a welding torch and correction control of welding conditions for each pass welding, and inverting a welding control head during or after this pass welding process A first defect detection processing means for performing a detection command of the defect detection sensor and information processing of defect detection when moving, and a defect determination for determining and recording presence / absence, type, size and position of a defect based on the detection result Recording means, repair method determining means for determining whether repair welding is necessary or not and whether to perform automatic repair or manual repair when necessary based on the result of the defect determination, and repairing the defective portion and its periphery during the automatic repair. First repair control processing means for performing drive control of the welding control head and output control of a welding power source so as to perform welding, and manual repair request means for displaying a repair request display by manual operation during the manual repair. It is characterized by.

【0018】[0018]

【発明の実施の形態】以下、本発明の内容を実施例に基
づいて説明する。図1は、本発明の自動溶接装置の一実
施例を示す構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the contents of the present invention will be described based on embodiments. FIG. 1 is a configuration diagram showing an embodiment of the automatic welding apparatus of the present invention.

【0019】図1において、固定円管の溶接ワーク1
a、1bと、溶接ワーク1aに設置されたレール3と、レ
ール3に取付けられた溶接制御ヘッド4とを備え、溶接
トーチ5の左右上下の移動及び溶接方向の往復走行を各
軸駆動装置14と一対で行うものである。溶接トーチ5
は、溶接ワーク1a、1bの開先継手2の溶接と欠陥発
生時の補修を行うもので、溶接制御ヘッド4の左右駆動
軸6に設置されている。ワイヤ7は、溶接トーチ5先端
の近傍に供給される。また、溶接情報演算装置18と一
対で位置ずれや開先形状などの溶接情報を検出する溶接
用センサ8が設けられ、この溶接用センサ8は光切断式
センサ或いはアークセンサである。
In FIG. 1, a welding work 1 for a fixed circular pipe is shown.
a, 1b, a rail 3 installed on the welding work 1a, and a welding control head 4 attached to the rail 3, and each axis driving device 14 moves the welding torch 5 up and down, right and left, and reciprocates in the welding direction. And a pair. Welding torch 5
Is for welding the groove joint 2 of the welding work 1a, 1b and repairing when a defect occurs, and is installed on the left and right drive shaft 6 of the welding control head 4. The wire 7 is supplied near the tip of the welding torch 5. Further, a welding sensor 8 for detecting welding information such as a displacement or a groove shape is provided as a pair with the welding information calculation device 18, and the welding sensor 8 is an optical cutting sensor or an arc sensor.

【0020】欠陥検出演算装置19と一対で溶接部のビ
ード形状からアンダーカット、オーバラップ、ビード不
揃い、開孔ブローホール、溶接割れなどの溶接欠陥を検
出する(例えば、光切断式センサ或いは直視式センサ)
欠陥検出センサ9が設けられている。溶接電源10は、
溶接トーチ5への給電とワイヤ7の供給を行う。溶接制
御盤11は、溶接用センサ8、欠陥検出用センサ9の情
報を使って溶接制御ヘッド4及び溶接電源10を制御し
て、多パス溶接、溶接部の品質検査、欠陥部の補修溶接
を自動で行う。配線12は、溶接電源10と溶接トーチ
5、ワイヤ7とを結んでいる。配線13a、13bは溶
接制御盤11と溶接制御ヘッド4、センサ8、9、溶接
電源10を結んでいる。
A pair of the defect detection and calculation device 19 detects welding defects such as undercut, overlap, irregular bead, open-hole blowhole, welding crack, etc. from the bead shape of the welded portion (for example, a light-cut type sensor or a direct-view type). Sensor)
A defect detection sensor 9 is provided. The welding power source 10
Power is supplied to the welding torch 5 and the wire 7 is supplied. The welding control panel 11 controls the welding control head 4 and the welding power source 10 using information of the welding sensor 8 and the defect detection sensor 9 to perform multi-pass welding, quality inspection of a welded portion, and repair welding of a defective portion. Do it automatically. The wiring 12 connects the welding power source 10 with the welding torch 5 and the wire 7. The wires 13a and 13b connect the welding control panel 11, the welding control head 4, the sensors 8, 9 and the welding power source 10.

【0021】図2は、図1の自動溶接装置を平板溶接に
適用した場合の一実施例を示す構成図である。
FIG. 2 is a diagram showing an embodiment in which the automatic welding apparatus of FIG. 1 is applied to flat plate welding.

【0022】図2において、図1との主な相違点は、溶
接ワーク1c、1dが平板部材であるため、直線タイプ
のレール3bが溶接ワーク1cに設置されていること、
溶接トーチ5の左右上下の移動及び溶接方向の往復走行
する溶接制御ヘッド4がレール3bに取付けられている
ことである。さらに、溶接用センサ8と欠陥検出用セン
サ9の両方の機能を備えた溶接及び欠陥検出兼用センサ
89が溶接トーチ5の前方に設置されていることであ
る。
In FIG. 2, the main difference from FIG. 1 is that since the welding works 1c and 1d are flat members, the linear type rail 3b is installed on the welding work 1c.
The welding control head 4 that moves the welding torch 5 up and down, left and right, and reciprocates in the welding direction is attached to the rail 3b. Furthermore, a welding and defect detection / combination sensor 89 having both functions of the welding sensor 8 and the defect detection sensor 9 is provided in front of the welding torch 5.

【0023】この溶接及び欠陥検出兼用センサ89は、
例えば光切断式センサである。すなわち、開先継手や溶
接ビードのある表面部にスリット状の光を照射するレー
ザ投光器あるいはスポット状の光を照射・揺動する揺動
式レーザ投光器と、そのレーザ反射像を撮像するカメラ
とを備えた光学式センサと、この光学式センサより得ら
れる光切断画像から、開先形状や位置ずれなどの検出情
報を抽出処理する溶接検出プログラムと溶接ビード表面
の欠陥情報を抽出処理する欠陥検出プログラムの両方を
内臓した画像処理装置(溶接制御盤11に配置)とを含ん
で成る。上記光学式センサと画像処理装置による検出情
報を使って、溶接トーチ位置の修正計算と倣い制御、溶
接速度や溶接電流やウィービング幅の補正計算とこの条
件補正制御を行う。そして、溶接終了後に溶接制御ヘッ
ドを反転移動させる時に、上記光学式センサと画像処理
装置による溶接部の品質検査を行うと共に、その検出情
報を処理して欠陥の有無、種類、大きさ、位置を判別及
び記録するようにしている。この詳細は後で述べる。
This welding and defect detection / combination sensor 89 is
For example, a light-cut sensor. In other words, a laser projector that irradiates slit-shaped light or a spot-shaped light to irradiate and oscillate a slit-shaped light on the surface where a groove joint or a weld bead is provided, and a camera that captures a laser reflection image of the laser projector. Weld detection program for extracting detection information such as groove shape and misalignment from the optical cut image obtained from the optical sensor provided with the optical sensor, and defect detection program for extracting defect information on the surface of the weld bead And an image processing apparatus (disposed on the welding control panel 11) in which both are incorporated. Using the information detected by the optical sensor and the image processing device, the correction calculation of the welding torch position and the profiling control, the correction calculation of the welding speed, the welding current, and the weaving width, and the condition correction control are performed. Then, when the welding control head is reversely moved after the end of welding, the quality inspection of the welded portion is performed by the optical sensor and the image processing device, and the detection information is processed to determine the presence / absence, type, size, and position of the defect. It is determined and recorded. The details will be described later.

【0024】図3は本発明の溶接制御盤11を構成する
ブロック図の一例である。
FIG. 3 is an example of a block diagram constituting the welding control panel 11 of the present invention.

【0025】図3において、15は操作盤であり、自動
運転に必要な初期設定、開先継手2の形状寸法、基本溶
接条件、欠陥検出条件、欠陥補修条件の入力設定を行
う。16は画面表示装置であり、溶接パスプランデータ
作成時の入力と演算結果の表示、自動溶接時や欠陥補修
時の溶接トーチ位置、各溶接条件、センサの検出情報の
表示、その他、自動運転時に必要な情報の表示を行う。
17は統括制御装置であり、溶接制御ヘッド4の駆動制
御、溶接トーチ5への給電及びワイヤ7を供給する溶接
電源10の出力制御、溶接用センサ8と一対の溶接情報
演算装置18や欠陥検出用センサ9と一対の欠陥検出装
置19への検出指令及び取得する検出データの情報処
理、溶接条件や位置データの情報処理、及び構成機器の
統括管理を行う。なお、溶接用センサ8と欠陥検出用セ
ンサ9の代りに溶接及び欠陥検出兼用センサ89を使用
しても良い。この統括制御装置17には、溶接パスプラ
ンデータ22を作成する自動演算プログラム21、自動
溶接及び欠陥補修を行う自動運転プログラム20、自動
運転で使用する各データファイル24、26、27など
を内臓している。
In FIG. 3, reference numeral 15 denotes an operation panel, which is used for inputting initial settings necessary for automatic operation, the shape and dimensions of the groove joint 2, basic welding conditions, defect detection conditions, and defect repair conditions. Reference numeral 16 denotes a screen display device, which displays input and calculation results when creating welding path plan data, displays welding torch positions during automatic welding and defect repair, displays welding conditions, sensor detection information, and other information during automatic operation. Display the necessary information.
Reference numeral 17 denotes a general control device, which controls the driving of the welding control head 4, supplies power to the welding torch 5 and controls the output of a welding power source 10 for supplying the wire 7, a welding sensor 8 and a pair of welding information calculation devices 18 and defect detection. It performs information processing of detection commands to the sensor 9 and a pair of defect detection devices 19 and obtained detection data, information processing of welding conditions and position data, and general management of constituent devices. Note that a welding and defect detection combined sensor 89 may be used instead of the welding sensor 8 and the defect detection sensor 9. The general control device 17 includes an automatic calculation program 21 for creating welding path plan data 22, an automatic operation program 20 for automatic welding and defect repair, and data files 24, 26, 27 used for automatic operation. ing.

【0026】図4は多層盛溶接及び溶接品質検査で欠陥
発生時に補修溶接を行うための施工手順の概要図であ
る。また、図5は他施工手順の概要図である。
FIG. 4 is a schematic diagram of a procedure for performing repair welding when a defect occurs in multi-pass welding and welding quality inspection. FIG. 5 is a schematic diagram of another construction procedure.

【0027】図4及び図5を用いて本発明の自動溶接及
び欠陥補修方法の施工手順概要を説明する。なお、図4
と図5の主な相違点は、溶接欠陥検出動作及び欠陥判別
記録処理P7を、溶接過程で行う場合(図4)と溶接終了
後に行う場合(図5)である。
The outline of the procedure of the automatic welding and defect repairing method of the present invention will be described with reference to FIGS. FIG.
The main difference between FIG. 5 and FIG. 5 is the case where the welding defect detection operation and the defect discrimination recording process P7 are performed in the welding process (FIG. 4) and after the welding is completed (FIG. 5).

【0028】まず最初に、溶接制御盤11から自動運転
プログラム20を呼出して起動P1し、その直後に、溶
接演算プログラム21を使って、任意の開先形状や基本
溶接条件の入力設定値からパス溶接毎のトーチ位置、溶
接電流、速度、ウィービングなど適正条件の目標値を演
算して溶接パスプランデータ22を作成P2する。ま
た、溶接用センサ8と欠陥検出用センサ9の初期設定
や、溶接制御ヘッド4及び溶接位置の原点合わせを行っ
た(P3)後に、運転を開始P4する。自動運転P5の時
は、溶接制御から欠陥補修まで一連の動作が全パス終了
するまでの時々刻々と変化する状況を画面表示装置16
に適宜表示する。次の溶接制御動作P6の工程では、溶
接用センサ8による位置ずれや開先形状の検出情報に基
づいて、1パス溶接毎に溶接トーチの位置倣い制御と溶
接条件制御を行う。
First, the automatic operation program 20 is called from the welding control panel 11 and started P1. Immediately after that, the welding operation program 21 is used to pass an arbitrary groove shape and basic welding conditions from the input set values. A target value of appropriate conditions such as a torch position, welding current, speed, and weaving for each welding is calculated, and welding path plan data 22 is created P2. After the initial setting of the welding sensor 8 and the defect detection sensor 9 and the origin adjustment of the welding control head 4 and the welding position (P3), the operation is started P4. At the time of the automatic operation P5, the screen display device 16 displays a situation in which a series of operations from welding control to defect repair change every moment until all passes are completed.
Is displayed as appropriate. In the next step of the welding control operation P6, position tracking control and welding condition control of the welding torch are performed for each one-pass welding based on the detection information of the displacement and the groove shape by the welding sensor 8.

【0029】溶接欠陥検出動作P7の工程では、欠陥検
出用センサ9による溶接部の品質検査及び欠陥判別記録
処理を行う。図4に記載の実施例では、この溶接欠陥検
出動作P7を、溶接制御動作P6の最中に時間差を与え
て行っている。欠陥検出用センサ9を溶接トーチ6の後
方に設置することで可能となる。図5に記載の実施例で
は、例えば、溶接制御動作P6の終了後に溶接制御ヘッ
ド4を反転移動する時に溶接欠陥検出動作P7を行って
いる。この場合、欠陥検出用センサ9は溶接トーチの後
方又は前方のどちらに設置しても良い。また、溶接用セ
ンサ8と欠陥検出用センサ9の代りに溶接及び欠陥検出
兼用センサ89を使用の時には、溶接トーチの前方に設
置することが望ましい。
In the process of the welding defect detection operation P7, the quality inspection of the welded portion and the defect discrimination recording processing by the defect detection sensor 9 are performed. In the embodiment shown in FIG. 4, the welding defect detection operation P7 is performed while giving a time difference during the welding control operation P6. This is possible by installing the defect detection sensor 9 behind the welding torch 6. In the embodiment shown in FIG. 5, for example, the welding defect detection operation P7 is performed when the welding control head 4 is reversed and moved after the end of the welding control operation P6. In this case, the defect detection sensor 9 may be installed either behind or in front of the welding torch. When the welding and defect detection combined sensor 89 is used instead of the welding sensor 8 and the defect detection sensor 9, it is desirable to install the sensor in front of the welding torch.

【0030】次の補修方法決定処理P12の工程では、
P7の工程で得た欠陥判別の結果を基に、補修溶接の要
否及び補修の必要時に自動補修すべきか手動補修すべき
かを決定する処理を行う。次の補修溶接制御動作P13
の工程では、自動補修時は欠陥部分及びその周囲を補修
溶接するように制御を行い、手動溶接時には手動操作に
よる補修要求表示を行う。補修が不要な時と補修完了の
時P14には、1パス終了処理P16を行うと共に、溶
接制御データ、溶接欠陥の検出データ、欠陥補修データ
など記録すべき各種データファイルを作成する。1パス
終了すると、溶接パス更新・自動運転P5の工程まで戻
り(P18)、次パスの溶接制御動作P5が再開される。
In the next repair method determining process P12,
Based on the result of the defect discrimination obtained in the process of P7, a process is performed to determine whether repair welding is necessary or not and, when repair is necessary, whether to perform automatic repair or manual repair. Next repair welding control operation P13
In the step (2), control is performed such that repair welding is performed on the defective portion and its surroundings during automatic repair, and a repair request display by manual operation is performed during manual welding. When repair is unnecessary and when repair is completed P14, one-pass end processing P16 is performed, and various data files to be recorded such as welding control data, welding defect detection data, and defect repair data are created. When one pass is completed, the process returns to the step of welding path updating / automatic operation P5 (P18), and the welding control operation P5 of the next pass is restarted.

【0031】なお、図示していないが、補修完了後の溶
接品質確認を希望する時には、溶接パス更新の工程P5
に戻る前に、欠陥検出動作P7を再度行うように追加す
ると良い。この一連の動作は全パス終了するまで繰り返
し行われ、そして、全パス終了に至ると、終了処理及び
初期位置移動処理P19をして終了P20となる。この
ように構成することにより、多層盛溶接の自動制御から
パス溶接毎の品質検査、補修の要否と補修方法の決定、
欠陥補修の制御まで自動で行うことができる。
Although not shown, when it is desired to check the welding quality after the completion of the repair, the welding path updating process P5 is required.
It is preferable to add the defect detection operation P7 again before returning to. This series of operations is repeated until all the paths are completed, and when all the paths are completed, the end process and the initial position moving process P19 are performed, and the process is ended P20. With this configuration, from the automatic control of multi-layer welding to the quality inspection for each pass welding, the necessity of repair and the determination of the repair method,
Control of defect repair can be performed automatically.

【0032】多層盛溶接では、そのパス数に応じて割付
けた所定の位置に溶接トーチを持っていく必要があり、
また、パス溶接毎の溶接条件も事前に決めておく必要が
ある。図6は任意形状のV形開先の多層盛溶接における
パス順序(数字)及び目標の溶接トーチ位置(●印の点)を
示す。図中の(a)は溶接ワーク1a、1bの板厚T、
開先角度α、開先底部のルート幅Bと厚みfの寸法を記
載した形状例、また、(b)は開先角度αが広い1層多
パス2bの溶接例、(c)は開先角度αの狭い1層1パ
ス2cの溶接例を示している。
In multi-pass welding, it is necessary to bring a welding torch to a predetermined position allocated according to the number of passes.
Also, welding conditions for each pass welding need to be determined in advance. FIG. 6 shows the pass sequence (numerical) and the target welding torch position (dots with ●) in multi-pass welding of a V-shaped groove having an arbitrary shape. (A) in the figure is the plate thickness T of the welding work 1a, 1b,
An example of a shape that describes the dimensions of the groove angle α, the root width B and the thickness f of the groove bottom, (b) is a welding example of a single-layer multi-pass 2b with a wide groove angle α, and (c) is a groove A welding example of a single-layer one-pass 2c having a small angle α is shown.

【0033】図7は、ある指定パス100(斜線部)の溶
接状況を示す概略図で、溶接トーチ5及びワイヤ7にウ
ィービング動作102を与えて、電極5a先端のアーク
5bとその中にあるワイヤ7先端を左右に揺動させる様
子を示している。また、図8は、図7に示したパルスア
ーク溶接の電流101とウィービング動作102を示す
概略図である。
FIG. 7 is a schematic view showing the welding state of a specified path 100 (shaded area). The welding torch 5 and the wire 7 are subjected to a weaving operation 102 so that the arc 5b at the tip of the electrode 5a and the wire in the arc 5b. 7 shows a state in which the tip 7 is swung right and left. FIG. 8 is a schematic diagram showing the current 101 and the weaving operation 102 of the pulse arc welding shown in FIG.

【0034】ここでは、ベース電流Ibの時間Tb時に開
先の中側で溶接トーチ5を左右に揺動(幅W)させ、ピ
ーク電流Ipの時間Tp時に両壁側で揺動停止をするよ
うに同期させている。なお、パルスアークより容易な直
流アークを使用する時には、上記ピーク電流Ipとベー
ス電流Ibの値を同一にする処理を行えば良い。
Here, at the time Tb of the base current Ib, the welding torch 5 is swung right and left (width W) on the middle side of the groove, and at the time Tp of the peak current Ip, the swing torch is stopped on both wall sides. Synchronized with. When a DC arc that is easier than a pulse arc is used, a process for making the values of the peak current Ip and the base current Ib the same may be performed.

【0035】次に、パス溶接毎のトーチ位置及び溶接条
件は、溶接演算プログラム21を使って、任意の開先形
状や基本溶接条件の入力設定値から演算する。詳細な演
算方法は省略するが、目標の溶接トーチ位置(Y、Z座
標)は、開先断面積、パス当りの溶着面積から層数とパ
ス数を算出した後に、積層ビードの幅と高さから算出
し、積層ビード幅を各層のパス数で分割した中央位置に
している。
Next, the torch position and welding conditions for each pass welding are calculated from input values of an arbitrary groove shape and basic welding conditions by using the welding calculation program 21. Although the detailed calculation method is omitted, the target welding torch position (Y, Z coordinates) is calculated by calculating the number of layers and the number of passes from the groove cross-sectional area and the welding area per pass, and then the width and height of the laminated bead. , And the lamination bead width is set at the center position divided by the number of passes of each layer.

【0036】例えば、図6(c)に示した1層1パス溶接
2c(パス番号:1〜6)、同図(b)1層多パス溶接2
bの中の1パス溶接(パス番号:1〜3)における各トー
チ位置は、各積層ビードの中央位置(開先中心)である。
また、同図(b)の左右振分け2パスの溶接箇所(パス
番号:4〜9)では、開先壁の溶けをより良くするため
に、各積層ビード幅を2分割した中央位置から開先壁側
に少しシフトした位置になるようにしている。溶接条件
は、入力された基本条件、アーク溶接現象に基づく事前
解析の溶接データ、算出した積層ビードの幅と高さなど
の情報から、溶接電流、速度、ワイヤ速度、ウィービン
グなど適正条件の目標値を算出するようにしている。
For example, one-layer one-pass welding 2c (pass numbers: 1 to 6) shown in FIG. 6C, and one-layer multi-pass welding 2c shown in FIG.
Each torch position in one-pass welding (pass numbers: 1 to 3) in b is the center position (groove center) of each laminated bead.
In addition, at the welding locations (pass numbers: 4 to 9) of the two passes in the left and right distribution in FIG. 4B, in order to improve the melting of the groove wall, the groove is divided from the center position where each lamination bead width is divided into two. The position is slightly shifted toward the wall. Welding conditions are based on input basic conditions, welding data of pre-analysis based on arc welding phenomena, and information on calculated lamination bead width and height, etc., and set target values for appropriate conditions such as welding current, speed, wire speed, weaving, etc. Is calculated.

【0037】表1はV形開先の溶接パスプランデータ演
算結果の一部を示す表示例である。
Table 1 is a display example showing a part of the calculation result of the welding path plan data of the V-shaped groove.

【0038】[0038]

【表1】 [Table 1]

【0039】このような多パス溶接の目標となる基準情
報が溶接制御盤11に与えられる。ここでは、V形開先
の例を説明したが、U形開先やレ形開先に対しても、溶
接演算プログラム21を使ってパス溶接毎の目標となる
適正なトーチ位置及び溶接条件を演算し、その溶接パス
プランデータを溶接制御盤11に与えることになる。
Reference information serving as a target of such multi-pass welding is provided to the welding control panel 11. Here, the example of the V-shaped groove has been described. However, for the U-shaped groove and the R-shaped groove, the appropriate torch position and welding conditions to be the target for each pass welding are determined using the welding calculation program 21. The calculation is performed and the welding path plan data is given to the welding control panel 11.

【0040】図9は、図4に示した実施例の溶接制御動
作P6の具体的な実行手順を示したものである。
FIG. 9 shows a specific execution procedure of the welding control operation P6 of the embodiment shown in FIG.

【0041】まず、溶接条件の設定指令31を溶接電源
10へ出し、所定位置への移動指令32を溶接制御ヘッ
ド4へ出した後に、溶接を開始33する。溶接動作中
は、時々刻々変化する状況表示34を画面表示装置16
へ、各軸現在位置の報告要求35を溶接制御ヘッド4
へ、条件出力値の報告要求36を溶接電源10へそれぞ
れ行っている。また、溶接用センサ8側に対しては、溶
接情報の検出指令37と検出結果の報告要求38を行
う。
First, a welding condition setting command 31 is issued to the welding power source 10 and a movement command 32 to a predetermined position is issued to the welding control head 4, and then welding 33 is started. During the welding operation, the status display 34 that changes every moment is displayed on the screen display device 16.
To the welding control head 4
, A request 36 for reporting a condition output value is sent to the welding power source 10. In addition, a welding information detection command 37 and a detection result report request 38 are made to the welding sensor 8 side.

【0042】取得した位置ずれ、開先形状などの検出情
報と、溶接パスプランデータ22の基準情報を基にし
て、トーチ位置の修正計算、溶接速度や溶接電流やウィ
ービング幅などの補正計算39を行う。そして、修正す
べき位置40に溶接トーチ5が到達した時点で位置ずれ
量の修正指令42を溶接制御ヘッド4へ出し、また、条
件補正すべき時点で溶接条件の補正指令45を溶接電源
10、溶接制御ヘッド4へ出すようにしている。一連の
上記動作は終了位置46に達するまで繰り返し(47→
34→47)行われる。このように制御することにより
自動溶接を行うことができる。この上記動作が終了48
に至ると、次の溶接欠陥検出動作及び欠陥判別記録処理
P7の工程に移る。
On the basis of the obtained detection information such as the positional deviation and the groove shape and the reference information of the welding path plan data 22, correction calculation 39 of the torch position and correction calculation 39 such as welding speed, welding current and weaving width are performed. Do. Then, when the welding torch 5 reaches the position 40 to be corrected, a correction command 42 of the positional deviation amount is issued to the welding control head 4, and a correction command 45 of the welding condition is provided at the time when the condition is to be corrected. It is sent to the welding control head 4. A series of the above operations are repeated until the end position 46 is reached (47 →
34 → 47). By performing such control, automatic welding can be performed. This operation is completed 48
Then, the process proceeds to the next welding defect detection operation and defect determination recording process P7.

【0043】図10は、図4に示した実施例の溶接欠陥
検出動作及び欠陥判別記録処理P7の具体的な実行手順
を示す一実施例である。この実施例では、溶接終了の処
理51後に溶接制御ヘッド4を反転移動させながら、欠
陥検出用センサ9による溶接部の品質検査を行ってい
る。すなわち、溶接制御ヘッド4に対して反転移動指令
52と現在走行位置の報告要求54をし、欠陥検出用セ
ンサ9側に溶接欠陥の検出指令55と検出結果の報告要
求56をする。この時の溶接制御ヘッド4の走行速度
は、欠陥検出の要求精度に応じて溶接時より遅く(検出
間隔を短く)或いは速く(検出間隔を長く)することもで
きる。
FIG. 10 is an embodiment showing a specific execution procedure of the welding defect detection operation and the defect discrimination recording process P7 of the embodiment shown in FIG. In this embodiment, the quality inspection of the welded portion is performed by the defect detection sensor 9 while the welding control head 4 is reversed after the welding end processing 51. That is, a reverse movement command 52 and a report request 54 of the current traveling position are made to the welding control head 4, and a welding defect detection command 55 and a report request of the detection result 56 are made to the defect detection sensor 9 side. The traveling speed of the welding control head 4 at this time can be slower (shorter the detection interval) or faster (shorter the detection interval) than during welding, depending on the required accuracy of defect detection.

【0044】欠陥検出動作中は、その動作状況を画面表
示装置16に時系列に表示する。欠陥検出用センサ9側
から取得した欠陥検出データの情報処理をし、欠陥の有
無、種類、大きさ、位置の判別及び記録処理57を行
う。上記の一連動作は、終了位置58に達するまで繰り
返し(58a→53→58a)行われる。終了位置58に
到達すると走行停止、検出終了処理59aに至る。この
ように溶接制御動作と欠陥検出動作を分けることによっ
て、溶接のアーク光に左右されることなく、かつ、希望
する検出間隔で欠陥検出を確実に行うことができる。
During the defect detection operation, the operation status is displayed on the screen display device 16 in chronological order. Information processing is performed on the defect detection data acquired from the defect detection sensor 9 side, and the presence / absence, type, size, position of the defect is determined, and recording processing 57 is performed. The above series of operations is repeated until the end position 58 is reached (58a → 53 → 58a). When the vehicle reaches the end position 58, the traveling of the vehicle stops and the detection ends at 59a. By separating the welding control operation and the defect detection operation in this manner, defect detection can be reliably performed at a desired detection interval without being affected by welding arc light.

【0045】図11は、図5に示した実施例の溶接制御
動作P6と溶接欠陥検出動作P7の具体的な実行手順を
示す一実施例である。この実施例では、溶接中に溶接ト
ーチ5の修正及び溶接条件の補正を行う制御と、欠陥検
出用センサ9による溶接部の品質検査を連続的に行うよ
うにしている。すなわち、溶接用センサ8側より取得し
た検出情報と溶接パスプランデータ22の基準情報を基
に、トーチ位置の修正計算、溶接速度や溶接電流やウィ
ービング幅などの補正計算39を行うと共に、その修正
指令42及び補正指令45を行う。この直後に、欠陥検
出用センサ9側に溶接欠陥の検出指令55と検出結果の
報告要求56をして、欠陥の有無、種類、大きさ、位置
の判別及び記録57を行っている。溶接の制御と欠陥の
検出・判別の一連動作は、終了位置58に到達するまで
繰り返し(58b→35→58b)行われる。このように
溶接制御動作と欠陥検出動作を連結することによって、
速やかに溶接部の品質結果を明らかにでき、作業時間の
短縮に寄与することができる。
FIG. 11 is an embodiment showing a specific execution procedure of the welding control operation P6 and the welding defect detection operation P7 of the embodiment shown in FIG. In this embodiment, control for correcting the welding torch 5 and correcting welding conditions during welding and quality inspection of the welded portion by the defect detection sensor 9 are continuously performed. That is, based on the detection information obtained from the welding sensor 8 and the reference information of the welding path plan data 22, correction calculation of the torch position, correction calculation 39 such as welding speed, welding current and weaving width are performed, and the correction is performed. A command 42 and a correction command 45 are performed. Immediately after this, a weld defect detection command 55 and a report request 56 of the detection result are sent to the defect detection sensor 9 side, and the presence / absence, type, size and position of the defect are determined and recorded 57. A series of operations of welding control and defect detection / determination are repeated (58b → 35 → 58b) until the end position 58 is reached. By connecting the welding control operation and the defect detection operation in this way,
The quality results of the weld can be clarified quickly, which can contribute to shortening of the working time.

【0046】次に、アークセンサによる位置ずれ検出及
びトーチ位置の倣い制御の方法の概要について説明す
る。図12は溶接トーチ5先端の電極5aを左右に揺動
させるウィービング動作を示す概略図で、(a)は1層
1パス溶接の例、(b)は左右振分けパス溶接の例を示
す。図中の106はアークセンサユニットであり、電極
5aと溶接ワーク1a、1b間の電圧の出力信号103を
取込み、ウィービング動作102の溶接中に生じる電圧
変化から位置ずれを算出して修正するものである。
Next, an outline of a method of detecting a positional deviation by the arc sensor and controlling the scanning of the torch position will be described. FIGS. 12A and 12B are schematic diagrams showing a weaving operation for swinging the electrode 5a at the tip of the welding torch 5 right and left, where FIG. 12A shows an example of one-layer one-pass welding and FIG. In the figure, an arc sensor unit 106 takes in the output signal 103 of the voltage between the electrode 5a and the welding workpieces 1a and 1b, and calculates and corrects a positional deviation from a voltage change occurring during the welding of the weaving operation 102. is there.

【0047】図13は、本発明に係るパルスアーク溶接
の動作制御フローチャートを示す実施例であり、10
1、103は電流と電圧の波形、102はその電流及び
電圧の波形と同期しているウィービング動作、104は
左右軸の修正信号、105は上下軸の修正信号をそれぞ
れ示している。ここでは、ベース電流Ibの時間Tb中
に溶接トーチ5を左右に揺動(ウィービング幅W)させ、
ピーク電流Ipの時間Tp中に揺動を停止するように制
御している。さらに、ピーク電流Ipの立上がり直後の
時間ts(揺動停止中)の位置で左右各々の電圧EpL、
EpRを検出(各1点か複数点)すると共に、ウィービン
グ幅Wのほぼ中心位置又はベース時間Tbのほぼ中央位
置での電圧Ebを検出している。両者の検出情報を基に
して、左右方向と上下方向の位置修正制御を各々行うよ
うにしている。
FIG. 13 is an embodiment showing an operation control flowchart of pulse arc welding according to the present invention.
Reference numerals 1 and 103 denote current and voltage waveforms, 102 denotes a weaving operation synchronized with the current and voltage waveforms, 104 denotes a left and right axis correction signal, and 105 denotes a vertical axis correction signal. Here, the welding torch 5 is swung right and left (weaving width W) during the time Tb of the base current Ib,
The oscillation is controlled to stop during the time Tp of the peak current Ip. Further, at the position of time ts (while the oscillation is stopped) immediately after the rise of the peak current Ip, the left and right voltages EpL,
In addition to detecting EpR (one point or a plurality of points), the voltage Eb is detected at a substantially central position of the weaving width W or a substantially central position of the base time Tb. The position correction control in the left-right direction and the vertical direction is performed based on both pieces of detection information.

【0048】図14は左右方向の溶接トーチ位置の制御
ブロック線図を示す一実施例であり、また、図15は上
下方向の溶接トーチ位置の制御ブロック線図を示す一実
施例である。
FIG. 14 is an embodiment showing a control block diagram of a welding torch position in the horizontal direction, and FIG. 15 is an embodiment showing a control block diagram of a welding torch position in the vertical direction.

【0049】事前に設定してある各々適正な左右の基準
値108a、108bと左右の検出値107a、107b
を各々比較109a、109bして両者の差電圧△Eを求
めた後、左右方向の修正計算110を行う。そして、修
正すべき位置113で、例えば、揺動再開の時点で、左
右の位置ずれをなくす方向にトーチ位置の修正制御指令
111を溶接制御ヘッド4に発信するようにしている。
また、上下方向のトーチ位置制御は、基準値(Es)11
5とウィービング幅中央部での検出値(Eb)114の差
電圧から上下方向の修正計算117をして、位置ずれを
なくす方向(差電圧をなくす方向)にトーチ位置の修正制
御指令111を溶接制御ヘッド4に発信するようにして
いる。
Appropriate left and right reference values 108a and 108b and left and right detection values 107a and 107b, which are set in advance, respectively.
Are compared 109a and 109b to obtain a difference voltage ΔE between the two, and then a correction calculation 110 in the left-right direction is performed. Then, at the position 113 to be corrected, for example, at the time of resuming the swing, a correction control command 111 of the torch position is transmitted to the welding control head 4 in a direction to eliminate the left and right positional deviation.
The torch position control in the up-down direction is based on the reference value (Es) 11.
5 and the correction value 117 in the vertical direction is calculated from the voltage difference between the detected value (Eb) 114 at the center of the weaving width, and the torch position correction control command 111 is welded in the direction to eliminate the displacement (direction to eliminate the difference voltage). The call is transmitted to the control head 4.

【0050】図14、図15に示した各々の検出値10
7a、107b、114は1点だけでなく複数点を平均
処理して採用すると良い。例えば、図13に示した待ち
時間ts後に検出する複数点の平均値を使う、あるいは
数サイクルで検出した各値の平均値を使うと良い。左右
の修正と上下の修正は半周期の時間差で行っているが、
この時間差を短縮することも可能である。このように構
成することにより、左右及び上下方向のトーチ位置制御
を適正に行うことができる。
Each of the detected values 10 shown in FIGS.
7a, 107b and 114 are preferably obtained by averaging not only one point but also a plurality of points. For example, an average value of a plurality of points detected after the waiting time ts shown in FIG. 13 may be used, or an average value of each value detected in several cycles may be used. The left and right correction and the vertical correction are performed with a half cycle time difference,
This time difference can be reduced. With this configuration, it is possible to appropriately control the torch position in the left-right and up-down directions.

【0051】次に、溶接用センサと欠陥検出用センサの
両機能を備えた溶接及び欠陥検出兼用センサ(光切断式
センサ)による位置ずれ、開先形状の検出方法、溶接欠
陥の検出方法の概要について説明する。図16は、本発
明の自動溶接装置における溶接及び欠陥検出兼用センサ
と関連機器の構成を示す一実施例である。
Next, an outline of a method of detecting a position shift, a groove shape, and a method of detecting a welding defect by a combined use of a welding and a defect detection sensor (optical cutting sensor) having both functions of a welding sensor and a defect detection sensor. Will be described. FIG. 16 is an embodiment showing a configuration of a welding and defect detection / combination sensor and related equipment in the automatic welding apparatus of the present invention.

【0052】センサヘッド89は、開先継手2と溶接ビ
ード100のある表面部にスリット状の光64を照射す
るレーザ投光器61と、その反射像を干渉フィルタ64
を介して撮像するカメラ63を備えている。このセンサ
ヘッド89は、溶接トーチ5の前方に配置され、溶接制
御ヘッド4に搭載している。干渉フィルタ64は特定波
長のレーザ光のみを抽出する。投光受光制御器65は、
レーザ投光器61とカメラ63を制御すると共に、撮像
された光切断画像を画像処理装置66に送信する。この
画像処理装置66には、溶接を行う時に位置ずれ、開先
形状の検出情報を抽出する溶接検出プログラムと、溶接
ビード表面の品質検査を行う時に欠陥情報を抽出する欠
陥検出プログラムの両方を内臓しており、統括制御装置
17からの検出指令と検出結果の報告要求に対応できる
ようにしている。
The sensor head 89 includes a laser projector 61 for irradiating a slit-shaped light 64 on the surface where the groove joint 2 and the weld bead 100 are located, and an interference filter 64 for reflecting the reflected image.
And a camera 63 for taking an image through the camera. The sensor head 89 is disposed in front of the welding torch 5 and mounted on the welding control head 4. The interference filter 64 extracts only laser light of a specific wavelength. The light emitting / receiving controller 65 includes:
The laser projector 61 and the camera 63 are controlled, and the captured light-section image is transmitted to the image processing device 66. The image processing device 66 includes both a welding detection program for extracting positional deviation and groove shape detection information when performing welding, and a defect detection program for extracting defect information when performing quality inspection of a weld bead surface. This makes it possible to respond to a detection command and a report request of a detection result from the central control device 17.

【0053】なお、スリット状のレーザ投光器61の代
りに、スポット状のレーザ光を照射及び高速で揺動する
機構を備えた揺動式レーザ投光器を使用しても良い。図
示していないが、センサヘッド89は、過熱を防止する
水冷構造、支障のある微粒子の侵入を防止するガス流出
構造にしている。また、位置ずれの検出にアークセンサ
を使用する場合は、この溶接及び欠陥検出兼用センサの
用途は欠陥検出のみで良く、欠陥検出プログラムのみ内
臓した画像処理装置66に改めて、欠陥検出用センサと
して活用すれば良い。
Instead of the slit-shaped laser projector 61, an oscillating laser projector having a mechanism for irradiating a spot-shaped laser beam and oscillating at a high speed may be used. Although not shown, the sensor head 89 has a water cooling structure for preventing overheating and a gas outflow structure for preventing entry of troublesome fine particles. When an arc sensor is used to detect a positional deviation, the welding and defect detection combined sensor only needs to be used for defect detection, and is used as a defect detection sensor again in the image processing device 66 having only a defect detection program. Just do it.

【0054】図17は溶接トーチの位置制御及び溶接条
件制御に使用するための溶接及び欠陥検出兼用センサに
よる検出内容を示す説明図である。図中の点線は溶接前
に基準設定(トーチ位置とセンサ位置の原点合せ)してい
た開先断面、実線は溶接時に基準位置が変化した開先断
面を示している。主な検出項目は開先肩幅Ws、開先肩
の中心位置Cs、その中心位置Csと初期値との位置ず
れ△Ys、△Zs、開先深さHs、開先角度αs、未溶
接面積(開先面積)As、ビード幅又は開先底幅Bs、開
先底幅の中心位置Cb、その中心位置Cbと初期値との
位置ずれ△Yss、△Zssである。
FIG. 17 is an explanatory diagram showing the contents of detection by a welding and defect detection / combination sensor for use in position control and welding condition control of a welding torch. The dotted line in the drawing indicates the groove cross-section where the reference was set before welding (the origin of the torch position and the sensor position were matched), and the solid line indicates the groove cross-section where the reference position was changed during welding. The main detection items are the groove shoulder width Ws, the center position Cs of the groove shoulder, the positional deviation △ Ys, ΔZs between the center position Cs and the initial value, the groove depth Hs, the groove angle αs, the unwelded area ( Groove area) As, bead width or groove bottom width Bs, center position Cb of groove bottom width, and positional deviations ΔYss, ΔZss between the center position Cb and initial values.

【0055】図18は溶接部の品質検査及び溶接欠陥の
自動補修で必要な欠陥の種類と検出内容を示す概略図で
ある。
FIG. 18 is a schematic diagram showing types of defects required for quality inspection of a welded portion and automatic repair of a welding defect and details of detection.

【0056】(1)は片側(右又は左)アンダーカット、
(2)は両側アンダーカットの欠陥であり、開先斜面の
金属が欠ける点に特徴がある。(3)は片側オーバーラ
ップ、(4)両側オーバーラップの欠陥であり、開先斜
面の底部が溶けず(融合不足)に鋭角状にできやすい点に
特徴がある。(5)はビード不揃いの欠陥であり、うね
り状のビードが中央寄りにできやすい点に特徴がある。
(6)は開孔したブローホールで、寸断された大小の空
孔が中央寄りにできやすい点に特徴がある。
(1) One side (right or left) undercut,
(2) is a defect of undercut on both sides, which is characterized in that the metal on the groove slope is missing. (3) is a defect of one-sided overlap and (4) a defect of both-sided overlap, which is characterized in that the bottom of the groove slope is not easily melted (insufficiently fused) and can easily be formed into an acute angle. (5) is an irregular bead defect, which is characterized in that undulating beads are easily formed near the center.
(6) is an open blow hole, which is characterized in that large and small holes are easily formed near the center.

【0057】また、溶接割れの時は、ブローホールと異
なる幅の狭い鋭い溝が1つ中央寄りにできやすい点に特
徴がある。なお、一般鋼材やステンレス鋼材の溶接で
は、溶接割れは生じにくい。それぞれ異なる特徴点に着
目することで、各欠陥の種類分け及び発生箇所の特定が
可能となる。また、種類分けした各欠陥の検出項目は、
欠陥の深さh、面積A、幅b、ビードと接する角度θで
あり、この大きさから補修の要否と自動補修すべきか手
動補修すべきかを決めることが可能となる。
Another feature is that one sharp groove having a width different from that of the blow hole is easily formed near the center when a weld crack occurs. It should be noted that welding of general steel and stainless steel hardly causes welding cracks. By focusing on the different feature points, it is possible to classify the types of defects and to specify the locations where the defects occur. Also, the detection items for each type of defect are as follows:
The depth h of the defect, the area A, the width b, and the angle θ contacting the bead. From this size, it is possible to determine whether the repair is necessary and whether the repair should be performed automatically or manually.

【0058】なお、上記した溶接欠陥の検出手段とし
て、光切断式センサを用いた例を示したが、直視式セン
サを使っても良い。例えば、溶接ビードのある表面部を
撮像するカメラを備えた直視式センサより得られる直視
画像から、欠陥情報の抽出処理を画像処理装置で行うと
良い。抽出可能な欠陥の面積の大きさが、補修要否と自
動補修すべきか手動補修すべきかを決める情報になり得
るものと考えられる。
Although an example using a light-cutting type sensor as a means for detecting the above-mentioned welding defect has been described, a direct-viewing type sensor may be used. For example, it is preferable that the image processing device performs a process of extracting defect information from a direct-view image obtained from a direct-view sensor provided with a camera that captures an image of a surface portion of the weld bead. It is considered that the size of the extractable defect area can be information that determines whether repair is necessary and whether automatic repair or manual repair is required.

【0059】図19は光切断式センサによる検出情報を
使って溶接トーチ位置の倣い制御及び溶接条件の補正制
御を行う制御ブロック線図の一実施例である。位置ずれ
の検出値に平均化処理を加えた検出値(△Ys、△Zs)
68と目標値67から修正すべき位置ずれ(△Ym、△
Zm)の計算69をして、左右・上下の位置ずれをなく
す方向にトーチ位置の修正制御指令70を溶接制御ヘッ
ド4に発信するようにしている。一方、溶接条件の補正
制御については、未溶接面積Asとビード幅Bsの検出
値75、77を使って、補正すべき溶接速度△Vm、電
流△Im、ウィービング幅△Bmの計算78を行い、補
正すべき位置で適正になるように溶接制御ヘッド4と溶
接電源10に発信している。このように制御することに
よって、開先継手の加工誤差や位置決め誤差を伴う溶接
ワークに対しても、溶接全長に渡って適正で均一な溶接
ビード形状を得るようにすることができる。
FIG. 19 is an embodiment of a control block diagram for performing the scanning control of the welding torch position and the correction control of the welding condition by using the detection information of the optical cutting type sensor. Detected value obtained by adding averaging process to the detected value of displacement (△ Ys, △ Zs)
Position deviation to be corrected from 68 and the target value 67 (△ Ym, △
Zm) is calculated 69, and a torch position correction control command 70 is transmitted to the welding control head 4 in a direction to eliminate the left / right / up / down displacement. On the other hand, for the correction control of the welding conditions, the calculation 78 of the welding speed △ Vm, the current △ Im, and the weaving width mBm to be corrected is performed by using the detected values 75 and 77 of the unwelded area As and the bead width Bs, The signal is transmitted to the welding control head 4 and the welding power source 10 so as to be appropriate at the position to be corrected. By performing such control, it is possible to obtain an appropriate and uniform weld bead shape over the entire welding length even for a welded work having a machining error or a positioning error of the groove joint.

【0060】自動溶接では、良好な溶接結果が得られる
ように溶接の位置制御及び条件制御を行っているが、溶
接欠陥が全く出ないという保証はない。溶接部の品質検
査はそのために行っている。そして、万一、溶接欠陥が
発生した時には補修しなければならない。自動補修が可
能な溶接欠陥もあれば、それが困難な溶接欠陥もなかに
はある。
In automatic welding, welding position control and condition control are performed so as to obtain good welding results, but there is no guarantee that welding defects will not occur at all. We conduct quality inspections of welds for that purpose. If a welding defect occurs, it must be repaired. Some welding defects can be repaired automatically, while others are difficult to repair.

【0061】図20は本発明の補修方法決定処理P12
と補修溶接制御動作P13の具体的な実行手順を示す一
実施例である。この実施例では、欠陥補修の要否及び補
修の必要時に自動補修すべきか手動補修すべきかを決定
して、自動補修時は欠陥部分とその周囲を補修溶接する
ように制御を行い、手動補修時には手動操作による補修
要求表示を行う。すなわち、補修方法を決定121する
工程では、欠陥補修の基準データファイル122を基に
して、前工程で検出判別された欠陥の種類、大きさが、
例えば、第1の基準値以下の時は補修不要と判定し、第
1の基準値と第2基準値の範囲内にある時は自動補修と
判定し、第2の基準値を超える時には手動補修と判定す
る。上記欠陥補修の基準データファイル122には、欠
陥の有無、種類、大きさに応じて補修の要否、自動補修
か手動補修かを決める基準値や、欠陥部の補修範囲など
を決める基準値を記載しているもので、この詳細内容は
後述する。
FIG. 20 shows a repair method determining process P12 according to the present invention.
7 is an example showing a specific execution procedure of the repair welding control operation P13. In this embodiment, it is determined whether defect repair is necessary or not and whether it should be repaired automatically or manually when repair is necessary.At the time of automatic repair, control is performed to repair and weld the defective portion and its surroundings. A repair request is displayed by manual operation. That is, in the step 121 of determining the repair method, the type and size of the defect detected and determined in the previous process are determined based on the defect repair reference data file 122.
For example, if it is less than the first reference value, it is determined that repair is unnecessary, if it is within the range between the first reference value and the second reference value, it is determined that it is automatic repair, and if it exceeds the second reference value, it is manually repaired. Is determined. The reference data file 122 for the defect repair includes a reference value for determining whether repair is necessary according to the presence / absence, type, and size of the defect, a reference value for determining whether the repair is automatic or manual, and a reference value for determining a repair range of the defective portion. The details are described later.

【0062】上記の判定後には装置運転者に分るよう
に、補修可否、補修すべき欠陥の種類、大きさ、個数、
補修範囲、補修方法123を表示装置16に画面表示1
24する。無欠陥又は微欠陥で補修不要な時125は、
そのまま1パス終了処理144に至る。反対に、中欠陥
有りで手動補修すべき時128は、手動補修の要求表示
146をし、補修完了まで待機する。装置運転者又は溶
接作業者は、画面に表示されている手動補修すべき欠陥
内容、位置を確認し、ペンダント操作、目視監視しなが
ら手動補修147を行う。その補修が完了148すると
補修完了処理及び1パス終了処理144に至る。
After the above-mentioned judgment, whether or not repair is possible, the type, size, number of defects to be repaired,
The repair range and the repair method 123 are displayed on the display device 16 on the screen 1
24. When no repair is required due to no defect or slight defect 125,
The process directly proceeds to the one-pass end process 144. On the other hand, when manual repair is to be performed 128 with a medium defect, a request 146 for manual repair is displayed, and the process waits until the repair is completed. The device operator or welding operator checks the content and position of the defect to be manually repaired displayed on the screen, and performs the manual repair 147 while operating the pendant and visually monitoring. When the repair is completed 148, a repair completion process and a one-pass end process 144 are performed.

【0063】表2及び表3は、自動補修すべき欠陥情報
と手動補修すべき欠陥情報を画面表示する実施例であ
る。
Tables 2 and 3 show an embodiment in which defect information to be automatically repaired and defect information to be manually repaired are displayed on a screen.

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【表3】 [Table 3]

【0066】小欠陥有りで自動補修すべき時には、例え
ば、継続実行のF1キーを押すと、溶接制御ヘッド4の
移動指令129、補修条件の設定指令を出して、表2に
示した補修位置に移動し欠陥消滅の自動補修を開始13
0する。欠陥部分及びその周囲を再溶融するナメ付けの
補修溶接である。この時の補修溶接条件は、経験及び実
験に基づいて事前設定してある補修専用条件、あるいは
溶接動作の工程で使用した溶接条件(表1に記載の溶接
パスプランデータ)を一部変更して用いるようにしてい
る。主な条件変更因子は、トーチ位置のシフト量、電
流、ワイヤ送り速度、ウィービング幅であり、補修すべ
き欠陥の種類と位置に応じて決めてある各値を使分けて
用いる。
When the automatic repair is to be performed due to the presence of a small defect, for example, when the F1 key for continuous execution is pressed, a movement command 129 of the welding control head 4 and a repair condition setting command are issued, and the repair position shown in Table 2 is returned. Moved and started automatic repair of defect disappearance 13
0. This is a repair welding for slackening to re-melt the defective part and its surroundings. The repair welding conditions at this time are modified in part from the repair-only conditions preset based on experience and experiments, or the welding conditions (weld path plan data shown in Table 1) used in the welding operation process. I use it. The main condition changing factors are the shift amount of the torch position, the current, the wire feed speed, and the weaving width, and each value determined according to the type and position of the defect to be repaired is used.

【0067】例えば、オーバーラップの欠陥が右側にあ
る時は、トーチ位置を右寄りにシフトし、両側にある時
にはウィービング幅を少し広げると良い。また、アンダ
ーカットの欠陥が左側にある時は、ワイヤを少量入れる
かあるいは電流を少し下げると良い。ビード不揃いの欠
陥が中央部にある時は、トーチ位置の補正なし、ワイヤ
なしにすると良い。さらに、各種の欠陥が混在してある
時には、オーバーラップのある方向へトーチ位置をシフ
トさせるかあるいはウィービング幅を増減させると良
い。
For example, when the overlap defect is on the right side, the torch position should be shifted to the right, and when it is on both sides, the weaving width should be slightly widened. When the undercut defect is on the left side, it is advisable to insert a small amount of wire or slightly reduce the current. When there is a bead irregular defect at the center, it is preferable that the torch position is not corrected and no wire is used. Further, when various types of defects are mixed, it is preferable to shift the torch position in the direction of the overlap or increase or decrease the weaving width.

【0068】欠陥消滅の補修溶接中は、補修施工情報の
表示132を画面表示装置16へ、各軸現在位置の報告
要求133を溶接制御ヘッド4へ、条件出力値の報告要
求を溶接電源10へそれぞれ行う。この自動補修は、溶
接制御動作P6の工程で記憶した溶接位置倣い制御デー
タ28を使って、トーチ位置の修正計算134、修正位
置136での位置ずれの修正指令137を繰返し行う。
図21は自動補修中に補修施工情報を画面表示する実施
例である。溶接電源10及び溶接制御ヘッド4に各々要
求すべきピーク・ベース電流と時間、電圧、溶接速度、
ウィービング幅などの補修条件情報170、溶接トーチ
の走行X、左右中央Y、上下Zの位置情報171、位置
制御データの△Ys、△Zs、修正計算の値△Ym、△
Zmなどの位置制御情報172、補修開始及び終了の位
置θs1、θe1、欠陥の種類、発生位置などの欠陥補
修情報173、さらに、異常発生時に補修動作の自動停
止を行うと同時に、その異常内容、処置内容の情報17
4を画面表示装置16にリアルタイムで表示するように
している。
During repair welding for disappearance of defects, the display 132 of repair execution information is displayed on the screen display device 16, a request 133 for reporting the current position of each axis is transmitted to the welding control head 4, and a request for reporting a condition output value is transmitted to the welding power source 10. Do each. In this automatic repair, the torch position correction calculation 134 and the position shift correction command 137 at the correction position 136 are repeatedly performed using the welding position following control data 28 stored in the process of the welding control operation P6.
FIG. 21 shows an embodiment in which repair execution information is displayed on a screen during automatic repair. The peak base current and time, voltage, welding speed, and welding speed required for the welding power source 10 and the welding control head 4, respectively.
Repair condition information 170 such as weaving width, travel X of the welding torch, center information Y of the left and right, and position information 171 of the up and down Z, sYs, △ Zs of position control data, and values △ Ym, 修正 of correction calculation
Zm and other position control information 172, repair start and end positions θs1, θe1, defect types and defect repair information 173 such as occurrence positions, etc. Further, when an abnormality occurs, the repair operation is automatically stopped, Information of treatment content 17
4 is displayed on the screen display device 16 in real time.

【0069】これらの情報表示によって、運転作業者に
補修状況を提供することができる。なお、溶接制御動作
P6の工程でも、上記の情報から溶接中に必要な情報を
抜粋して表示すると同時に、不足している溶接用センサ
の検出情報を追加して表示すると良い。終了位置139
に到達と補修一時終了処理141に至り、次の欠陥部分
の補修位置へ移動129して再び自動補修を開始する。
上記の一連動作は全ての補修が完了142するまで繰返
し行われる。補修完了処理及び1パス終了処理144に
至ると、溶接工程での溶接制御記録データ、欠陥検出工
程での欠陥判別記録データ、補修工程での欠陥補修溶接
記録データなど必要なファイルを作成145して終了1
49となる。補修完了後の溶接品質確認を希望する時に
は、溶接パス更新の工程P5に戻る前に、欠陥検出動作
P7を再度行うようにすると良い。このように欠陥の種
類、大きさに応じて補修方法を使分けすることによっ
て、欠陥消滅の自動補修を確実に行うことができるばか
りでなく、溶接自動化のレベルアップ、信頼性の向上、
手動補修の大幅削減に寄与できる。
The repair status can be provided to the operator by displaying the information. In the process of the welding control operation P6, it is preferable that information necessary during welding is extracted from the above information and displayed, and at the same time, detection information of a missing welding sensor is additionally displayed. End position 139
, The repair temporary end processing 141 is reached, the process moves to the repair position of the next defective portion 129, and the automatic repair is started again.
The above series of operations is repeated until all repairs are completed 142. In the repair completion process and the one-pass end process 144, necessary files such as welding control record data in the welding process, defect determination record data in the defect detection process, and defect repair welding record data in the repair process are created 145. End 1
49. When it is desired to check the welding quality after the repair is completed, the defect detection operation P7 may be performed again before returning to the welding pass update process P5. By using different repair methods according to the type and size of the defect, not only can the automatic repair of the disappearance of the defect be reliably performed, but also the level of welding automation can be improved, reliability can be improved,
This can contribute to a significant reduction in manual repairs.

【0070】図22は、欠陥の有無、種類、大きさに応
じて補修の要否、自動補修か手動補修かを決める基準値
を示す一実施例である。この実施例では各欠陥の大きさ
として、例えば、深さhを4段階のレベルに分けて判定
している。アンダーカット、オーバーラップ、ビード不
揃いの欠陥時は、レベル0(無欠陥又は微欠陥)で補修不
要と判定し、レベル1、2(小欠陥)で自動補修と判定
し、レベル3(深さ2.0mm以上の中欠陥)で手動補
修と判定している。溶接割れ、開孔ブローホールの欠陥
時には、上記の欠陥より自動補修が難しくなるために、
レベル1の範囲で自動補修と判定し、その上のレベル
2、3では手動補修するように基準を変えている。アン
ダーカットとオーバーラップは、片側だけでなく両側に
生じることもある。
FIG. 22 is an embodiment showing the necessity of repair according to the presence / absence, type, and size of a defect, and a reference value for determining whether to perform automatic repair or manual repair. In this embodiment, the size of each defect is determined, for example, by dividing the depth h into four levels. For undercut, overlap, and irregular bead defects, repair is determined to be unnecessary at level 0 (no defect or fine defect), automatic repair is determined at levels 1 and 2 (small defect), and level 3 (depth 2 It is judged as manual repair for medium defect of 0.0 mm or more). At the time of welding cracks, blowhole defects are difficult to repair automatically than the above defects,
In the range of level 1, automatic repair is determined, and in levels 2 and 3 above, the standard is changed so that manual repair is performed. Undercuts and overlaps can occur on both sides as well as on one side.

【0071】他の欠陥は主に中央部に生じ易い傾向があ
る。各種の欠陥が混在してある時は、例えば、補修の優
先順位を溶接割れ、開孔ブローホール、オーバーラッ
プ、アンダーカット、ビード不揃いの順にすると良い。
欠陥の深さhの代りに、例えば、欠陥面積Aの大きさを
使って基準分け、補修判定をしても良い。さらに、充填
層後の仕上層の溶接では、品質結果をより良くするため
に、上記の厳しくすることもできる。この他、溶接材質
や要求品質に応じて基準レベルを変えても本発明に何ら
支障がないものである。
Other defects tend to occur mainly at the center. When various types of defects are mixed, for example, the priority of repair may be in the order of welding cracks, blow holes, overlaps, undercuts, and irregular beads.
Instead of the depth h of the defect, for example, the size of the defect area A may be used as a reference for the repair determination. In addition, the welding of the finishing layer after the filling layer can be rigorous, as described above, for better quality results. In addition, even if the reference level is changed according to the welding material and required quality, the present invention is not affected at all.

【0072】図23、図24は、固定円管及び平板部材
の各溶接ワークにおける欠陥位置、自動補修範囲などを
示す概略図である。この実施例では、任意の位置に補修
すべき欠陥(●印の点)が単独である時あるいは補修すべ
き欠陥が複数点在してある時に、各補修の開始位置及び
終了位置をそれぞれ示している。
FIG. 23 and FIG. 24 are schematic diagrams showing a defect position, an automatic repair range, and the like in each welding work of the fixed circular tube and the flat plate member. In this embodiment, when a defect to be repaired at an arbitrary position (point indicated by a circle) or when there are a plurality of defects to be repaired, a start position and an end position of each repair are respectively shown. I have.

【0073】図23においては、補修すべき欠陥がθx
1からθx5の位置にあり、かつ、単独の欠陥時は、そ
の欠陥位置(θx3)を前後する周囲を含む角度長さだけ
補修溶接(θs2→θe2)するようにし、複数点在の欠
陥時には、その欠陥群の初期位置(θx1)から終期位置
(θx2)の周囲を含む累計角度長さまで補修溶接(θs
1→θe1)するよにしている。時計回り方向が通常の
溶接方向である。図中の正転補修範囲(θsからθe)は
下向き姿勢から下進姿勢となる領域、逆転補修範囲は上
進姿勢となる領域を示している。上進姿勢となる領域に
補修すべき欠陥が点在する時には、補修をより良くする
ために、逆転方向に姿勢を変えて補修溶接(θs3→θ
e3)するように溶接制御ヘッドの駆動制御及び溶接電
源の出力制御を行っている。
In FIG. 23, the defect to be repaired is θx
At the position of 1 to θx5, and at the time of a single defect, repair welding (θs2 → θe2) is performed by the angle length including the surroundings before and after the defect position (θx3). From the initial position (θx1) to the end position of the defect group
Repair welding (θs2) up to the total angle length including the circumference of (θx2)
1 → θe1). The clockwise direction is the normal welding direction. In the drawing, the forward rotation repair range (θs to θe) indicates an area in which the posture changes from a downward attitude to a downward attitude, and the reverse rotation repair range indicates an area in which the upward attitude becomes. When defects to be repaired are scattered in the area of the upward posture, in order to improve the repair, the posture is changed in the reverse direction to perform repair welding (θs3 → θ
e3), the drive control of the welding control head and the output control of the welding power source are performed.

【0074】図24に示した平板部材(指定パスの溶接
ビード100a)の欠陥位置(X1からX5)の補修溶
接(s1→e1、s2→e2)も、上記と同様にして行
うことができる。さらに、万一、補修すべき欠陥が至る
所に多発して、補修累計長さが溶接全長の7割以上もあ
る時には、断続的に繰返す補修溶接動作は避けて、その
溶接全長に渡って補修溶接するように行う方が良い。こ
のように欠陥の位置、個数に応じて補修動作の使分けを
することにより、確実な欠陥消滅と作業時間の短縮を図
ることができる。
The repair welding (s1 → e1, s2 → e2) of the defect position (X1 to X5) of the flat plate member (the weld bead 100a of the designated pass) shown in FIG. 24 can be performed in the same manner as described above. In addition, if defects to be repaired occur frequently everywhere and the total repaired length is more than 70% of the total welding length, avoid repair welding operations that are repeated intermittently, and repair over the entire welding length. It is better to do it like welding. By selectively using the repair operation according to the position and the number of the defects in this manner, it is possible to reliably eliminate the defects and to shorten the operation time.

【0075】図25は自動補修で重要な溶接トーチ位置
の制御ブロック線図を示す一実施例である。この実施例
では、溶接制御動作P6の工程で記憶した位置制御デー
タ28と欠陥補修用位置補正データ162を使って、ト
ーチ位置の目標値161に対する位置ずれの修正計算を
して、修正すべき位置168で、トーチ位置の修正制御
指令166を溶接制御ヘッド4に発信するようにしてい
る。
FIG. 25 is an embodiment showing a control block diagram of an important welding torch position in the automatic repair. In this embodiment, the position control data 28 and the defect correction position correction data 162 stored in the process of the welding control operation P6 are used to calculate the correction of the positional deviation of the torch position from the target value 161 and to calculate the position to be corrected. At 168, a torch position correction control command 166 is transmitted to the welding control head 4.

【0076】図26は欠陥補修の制御結果の一実施例を
示すもので、トーチ位置を適正に補間倣い制御しながら
各欠陥部分及びその周囲(3箇所)の自動補修を適正に
行える。このように、自動補修することによって欠陥が
確実に消滅でき、健全は溶接品質を確保することができ
る。
FIG. 26 shows an embodiment of the control result of the defect repair. The automatic repair of each defective portion and its surroundings (three places) can be appropriately performed while appropriately controlling the torch position by interpolation scanning. As described above, the defect can be reliably eliminated by the automatic repair, and the sound quality can ensure the welding quality.

【0077】[0077]

【発明の効果】以上述べたように本発明によれば、これ
まで熟練溶接士の高度な技量に依存していた欠陥部の補
修溶接を自動化することができるばかりでなく、多層盛
溶接の自動制御からパス溶接毎の品質検査と欠陥判別、
補修方法の決定、欠陥補修の溶接制御まで全て自動で行
うことができるという効果がある。この高度自動化によ
って健全な溶接品質はもちろんのこと、脱技能化、信頼
性向上及び作業工数低減、さらに、装置稼動率の向上に
よる生産性向上や省力化に寄与できるという効果があ
る。
As described above, according to the present invention, not only the repair welding of a defective portion, which has been dependent on the advanced skill of a skilled welder, can be automated, but also the automatic welding of multi-layer welding can be performed. From control to quality inspection and defect determination for each pass welding,
There is an effect that determination of a repair method and welding control for defect repair can all be performed automatically. This high degree of automation has the effect of contributing not only to sound welding quality, but also to de-skilling, improvement of reliability and reduction of man-hours, as well as improvement of productivity and labor-saving by improving the equipment operation rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の自動溶接装置を示す概要構成
図である。
FIG. 1 is a schematic configuration diagram showing an automatic welding apparatus according to an embodiment of the present invention.

【図2】本発明の他の実施例の自動溶接装置を示す概要
構成図である。
FIG. 2 is a schematic configuration diagram showing an automatic welding apparatus according to another embodiment of the present invention.

【図3】本発明の実施例における溶接制御盤の構成を示
すブロック図である。
FIG. 3 is a block diagram illustrating a configuration of a welding control panel according to the embodiment of the present invention.

【図4】本発明の多層盛溶接及び欠陥発生時の補修溶接
に重要な施工手順を示す説明図である。
FIG. 4 is an explanatory view showing an important construction procedure for multi-layer welding and repair welding when a defect occurs according to the present invention.

【図5】本発明の多層盛溶接及び欠陥発生時の補修溶接
の他の施工手順を示す説明図である。
FIG. 5 is an explanatory view showing another procedure for performing multi-pass welding and repair welding when a defect occurs according to the present invention.

【図6】多層盛溶接におけるパス順序及び目標の溶接ト
ーチ位置を示す断面図である。
FIG. 6 is a sectional view showing a pass sequence and a target welding torch position in multi-pass welding.

【図7】多層盛溶接における指定パスの溶接状況を示す
断面図である。
FIG. 7 is a sectional view showing a welding state of a designated pass in multi-pass welding.

【図8】図7に示す溶接における電流とウィービング動
作を示す説明図である。
FIG. 8 is an explanatory diagram showing a current and a weaving operation in the welding shown in FIG. 7;

【図9】図4に示す溶接制御動作の実行手順を示す説明
図である。
FIG. 9 is an explanatory diagram showing an execution procedure of the welding control operation shown in FIG.

【図10】図4に示す溶接欠陥検出動作及び欠陥判別記
録処理の実行手順を示す説明図である。
FIG. 10 is an explanatory diagram showing an execution procedure of a welding defect detection operation and a defect determination recording process shown in FIG. 4;

【図11】図5に示す溶接制御動作と溶接欠陥検出動作
の実行手順を示す説明図である。
11 is an explanatory diagram showing an execution procedure of a welding control operation and a welding defect detection operation shown in FIG.

【図12】ウィービング動作と電圧の検出を示す説明図
である。
FIG. 12 is an explanatory diagram showing a weaving operation and voltage detection.

【図13】図12のウィービング動作のパルスアーク溶
接における動作制御フローチャートを示す説明図であ
る。
FIG. 13 is an explanatory diagram showing an operation control flowchart in pulse arc welding of the weaving operation in FIG. 12.

【図14】図13の制御における左右方向の溶接トーチ
位置の制御ブロック線図を示す説明図である。
14 is an explanatory diagram showing a control block diagram of a welding torch position in the left-right direction in the control of FIG. 13;

【図15】図13の制御における上下方向の溶接トーチ
位置の制御ブロック線図を示す説明図である。
15 is an explanatory diagram showing a control block diagram of a welding torch position in a vertical direction in the control of FIG. 13;

【図16】本発明の自動溶接装置の溶接及び欠陥検出兼
用センサと関連機器の構成を示す図である。
FIG. 16 is a view showing a configuration of a welding and defect detection / combination sensor and related equipment of the automatic welding apparatus according to the present invention.

【図17】溶接トーチの位置制御及び溶接条件制御用の
溶接及び欠陥検出兼用センサによる検出内容を示す説明
図である。
FIG. 17 is an explanatory diagram showing the contents detected by a welding and defect detection / combination sensor for controlling the position of a welding torch and controlling welding conditions;

【図18】溶接部の品質検査及び溶接欠陥の自動補修で
必要な欠陥の種類と検出内容を示す概略図
FIG. 18 is a schematic diagram showing types of defects required for quality inspection of a welded portion and automatic repair of a weld defect and details of detection.

【図19】光切断式センサによる検出情報を使って溶接
トーチ位置の倣い制御及び溶接条件の補正制御を行う制
御ブロック線図の一実施例である。
FIG. 19 is an embodiment of a control block diagram for performing scanning control of a welding torch position and correction control of welding conditions using detection information from a light-cut sensor.

【図20】本発明の実施例の補修方法決定処理と補修溶
接制御動作の実行手順を示す説明図である。
FIG. 20 is an explanatory diagram showing a repair method determining process and an execution procedure of a repair welding control operation according to the embodiment of the present invention.

【図21】図20の実行手順の自動補修中に補修施工情
報の画像表示を示す説明図である。
FIG. 21 is an explanatory diagram showing an image display of repair execution information during automatic repair of the execution procedure of FIG. 20;

【図22】図20の実行手順における補修要否、自動補
修か手動補修かを決定する基準値を示す説明図である。
FIG. 22 is an explanatory diagram showing the necessity of repair in the execution procedure of FIG. 20, and a reference value for determining whether to perform automatic repair or manual repair.

【図23】図20の実行手順における固定円管溶接での
欠陥位置、自動補修範囲を示す説明図である。
FIG. 23 is an explanatory diagram showing a defect position and an automatic repair range in fixed circular pipe welding in the execution procedure of FIG. 20;

【図24】図20の実行手順における平板部材溶接での
欠陥位置、自動補修範囲を示す説明図である。
FIG. 24 is an explanatory diagram showing a defect position and an automatic repair range in flat plate member welding in the execution procedure of FIG. 20;

【図25】図20の実行手順における溶接トーチ位置の
制御ブロック線図を示す説明図である。
FIG. 25 is an explanatory diagram showing a control block diagram of a welding torch position in the execution procedure of FIG. 20;

【図26】図20の実行手順における欠陥補修の制御結
果の一例を示す説明図である。
FIG. 26 is an explanatory diagram showing an example of a control result of defect repair in the execution procedure of FIG. 20;

【符号の説明】 1a、1b、1c、1d‥溶接ワーク、2‥開先継手、
3、3b‥レール、4‥溶接制御ヘッド、5‥溶接トー
チ、5a‥電極、6‥左右駆動軸、7‥ワイヤ、8‥溶
接用センサ、9‥欠陥検出用センサ、89‥溶接及び欠
陥検出兼用センサ、10‥溶接電源、11‥溶接制御
盤、12、13a、13b‥配線、14‥各軸駆動装
置、15‥操作盤、16‥画面表示盤、17‥統括制御
装置、18‥溶接情報演算装置、19‥欠陥検出演算装
置、20‥自動運転プログラム、21‥自動演算プログ
ラム、22‥溶接パスプランデータ、23‥溶接位置・
条件制御部、24‥溶接制御データファイル、25‥欠
陥補修決定制御部、26‥欠陥補修データファイル、2
7‥欠陥補修基準データファイル、28‥位置倣い制御
データファイル、29‥各種記録データファイル作成、
31‥溶接条件設定指令、32‥溶接所定位置移動指
令、33‥溶接開始・出力指令、34‥自動溶接動作の
状況表示、35‥各軸現在位置報告要求、36‥条件出
力値の報告要求、37‥溶接情報の検出指令、38検出
結果の報告要求、39‥トーチ位置、溶接条件の補正計
算、42、70‥位置ずれの修正指令、45‥溶接条件
の補正指令、52‥溶接制御ヘッドの反転移動指令、5
3‥欠陥検出動作の状況表示、55‥溶接欠陥の検出指
令、57‥欠陥検出データの情報処理、59‥終了・反
転戻り処理、 61‥レーザ投光器、62‥干渉フィル
タ、63‥カメラ、64‥スリット光、65‥レーザ投
光受光制御器、66‥画像処理装置、100‥指定パス
の溶接ビード、67‥トーチ位置の目標値、68‥トー
チ位置の検出値、69‥位置ずれの修正計算、74‥未
溶接面積の目標値、75‥未溶接面積の検出値、76‥
ウィービング幅の目標値、77‥ウィービング幅の検出
値、78‥電流、電圧、ウィービング幅の補正計算、7
9‥電流の補正指令、80‥速度、ウィービング幅の補
正指令、121‥欠陥判別及び補修方法決定処理、12
2‥欠陥補修の基準データファイル、124‥欠陥内
容、位置、補修方法の画面表示、125‥補修不要な
時、127‥自動補修すべき時、128‥手動補修すべ
き時、129‥補修位置移動指令、130‥自動補修開
始指令、131‥自動補修の状況表示、141‥補修一
時終了処理、146‥手動補修の要求表示、完了待ち、
161‥欠陥補修位置の目標値、162‥欠陥補修位置
補正データ、165‥溶接時の位置制御データ。
[Explanation of Signs] 1a, 1b, 1c, 1d welding work, 2 groove joint,
3, 3b rail, 4 welding control head, 5 welding torch, 5a electrode, 6 horizontal drive shaft, 7 wire, 8 welding sensor, 9 defect sensor, 89 welding and defect detection Shared sensor, 10 welding power source, 11 welding control panel, 12 13a, 13b wiring, 14 axis drive unit, 15 operation panel, 16 screen display panel, 17 general control device, 18 welding information Computing device, 19 Defect detection computing device, 20 Automatic operation program, 21 Automatic operation program, 22 Weld path plan data, 23 Weld position /
Condition control unit, 24 ‥ welding control data file, 25 ‥ defect repair decision control unit, 26 ‥ defect repair data file, 2
7 ‥ Defect repair reference data file, 28 ‥ Position tracking control data file, 29 ‥ Create various recording data files,
31 ‥ welding condition setting command, 32 ‥ welding predetermined position moving command, 33 ‥ welding start / output command, 34 ‥ automatic welding operation status display, 35 ‥ each axis current position report request, 36 ‥ condition output value report request, 37 ° welding information detection command, 38 detection result report request, 39 ° torch position, correction calculation of welding conditions, 42, 70 ° misalignment correction command, 45 ° welding condition correction command, 52 ° welding control head Reverse movement command, 5
3 Defect detection operation status display, 55 Weld defect detection instruction, 57 Defect detection data information processing, 59 End / return return processing, 61 Laser projection, 62 Interference filter, 63 Camera, 64 Slit light, 65 ° laser projection / reception controller, 66 ° image processing device, 100 ° welding bead of specified path, 67 ° target value of torch position, 68 ° detection value of torch position, 69 ° correction calculation of position shift, 74 ‥ Target value of unwelded area, 75 ‥ Detected value of unwelded area, 76 ‥
Target value of weaving width, 77 ° detected value of weaving width, 78 ° current, voltage, correction calculation of weaving width, 7
9 ° current correction command, 80 ° speed, weaving width correction command, 121 ° defect determination and repair method determination processing, 12
2 ‥ Reference data file for defect repair, 124 ‥ Screen display of defect content, position, repair method, 125 ‥ When repair is unnecessary, 127 ‥ Automatic repair, 128 ‥ Manual repair, 129 ‥ Move repair position Command, 130 ‥ automatic repair start command, 131 ‥ automatic repair status display, 141 ‥ repair temporary stop processing, 146 ‥ manual repair request display, waiting for completion,
161 ‥ Target value of defect repair position, 162 ‥ Defect repair position correction data, 165 ‥ Position control data at the time of welding.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 昇 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 柴田 信雄 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 森沢 潤一郎 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 日野 英司 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 水口 和彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noboru Saito 502 Kandate-cho, Tsuchiura-city, Ibaraki Pref. Machinery Research Laboratories, Hitachi, Ltd. Inside the Machinery Research Laboratory (72) Inventor Junichiro Morisawa 3-1-1, Sachimachi, Hitachi City, Ibaraki Prefecture Inside the Hitachi Plant, Hitachi, Ltd. (72) Eiji Hino Inventor 3-1-1, Sachimachi, Hitachi City, Ibaraki Stock Inside Hitachi, Ltd. Hitachi Plant (72) Inventor Kazuhiko Mizuguchi 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】溶接トーチの左右上下の移動及び溶接線方
向の往復走行が可能な溶接制御ヘッドと、溶接トーチへ
の給電及びワイヤ供給が可能な溶接電源と、溶接制御ヘ
ッドの駆動制御、溶接電源の出力制御、溶接条件及び位
置データの情報処理、溶接用センサや欠陥検出用センサ
の検出指令と検出情報処理、及び構成機器の統括管理が
可能な溶接制御装置とを用いて、円柱又は円筒形或いは
平板の部材から成る開先継手の自動溶接及び欠陥補修を
行う方法において、 前記溶接用センサによる位置ずれや開先形状の検出情報
と、溶接条件及び位置データの基準情報を基にして、1
パス溶接毎に溶接トーチの位置倣い制御や溶接条件の補
正制御を行う第1工程と、 前記第1工程の溶接過程かあるいは溶接終了後に溶接制
御ヘッドを反転移動させる時に、欠陥検出用センサによ
る溶接部の品質検査を1パス溶接毎に行うと共に、その
検出情報を処理して欠陥の有無、種類、大きさ、位置を
判別及び記録する第2工程と、 前記欠陥判別結果に基づいて、補修溶接の要否及び補修
の必要時に自動補修すべきか手動補修すべきかを決定す
る第3工程と、 前記自動補修時は欠陥部分及びその周囲を補修溶接する
ように溶接制御ヘッドの駆動制御及び溶接電源の出力制
御を行う第4工程と、前記手動補修時には手動操作によ
る補修要求表示を行う第5工程とを有することを特徴と
する自動溶接及び欠陥補修方法。
1. A welding control head capable of moving a welding torch up and down and right and left and reciprocating in a welding line direction, a welding power supply capable of supplying power and a wire to the welding torch, drive control of the welding control head, and welding. Using a power output control, information processing of welding conditions and position data, detection instructions and detection information processing of welding sensors and defect detection sensors, and a welding control device capable of comprehensively managing the components, a cylinder or cylinder In a method for performing automatic welding and defect repair of a groove joint formed of a member of a shape or a flat plate, based on detection information of displacement and a groove shape by the welding sensor, based on reference information of welding conditions and position data, 1
A first step of performing position control of a welding torch or correction control of welding conditions for each pass welding, and welding by a defect detection sensor when the welding control head is reversed during the welding process of the first step or after the end of welding. Performing a quality inspection of each part for each one-pass welding, processing the detected information to determine and record the presence / absence, type, size, and position of the defect; and repair welding based on the defect determination result. A third step of deciding whether or not to perform automatic repair or manual repair when necessary and repair, and at the time of the automatic repair, drive control of a welding control head and welding power supply so as to repair and weld a defective portion and its periphery. An automatic welding and defect repair method comprising: a fourth step of performing output control; and a fifth step of displaying a repair request by manual operation during the manual repair.
【請求項2】請求項1において、 補修が不要な時と前記第4工程或いは第5工程で補修溶
接が完了した時は、次パスの溶接動作に更新する第6工
程と、多パス溶接及び欠陥補修が全て終了した時或いは
途中で強制終了する時には、前記溶接制御ヘッドと自動
運転画面を初期位置及び初期画面に戻す第7工程とを有
することを特徴とする自動溶接及び欠陥補修方法。
2. The method according to claim 1, wherein when repair is unnecessary and when repair welding is completed in the fourth step or the fifth step, a sixth step of updating the welding operation to the next pass is provided. An automatic welding and defect repairing method, comprising: a step of returning the welding control head and the automatic operation screen to an initial position and an initial screen when all the defect repairs are completed or are forcibly terminated halfway.
【請求項3】溶接トーチの上下左右の移動及び溶接線方
向の往復走行が可能な溶接制御ヘッドと、溶接トーチへ
の給電及びワイヤ供給が可能な溶接電源と、溶接制御ヘ
ッドの駆動制御と、溶接電源の出力制御、溶接条件及び
位置データの情報処理、溶接用センサの検出情報処理、
及び構成機器の統括管理を行う溶接制御装置とを備えた
自動溶接装置において、 欠陥検出センサを備え、前記溶接用センサによる位置ず
れや開先形状の検出情報と、溶接条件及び位置データの
基準情報を用いて、1パス溶接毎に溶接トーチの位置倣
い制御、溶接条件の補正制御を行う第1の溶接制御処理
手段と、前記1パス溶接途中かまたは終了後に溶接制御
ヘッドを反転移動させる時に、前記欠陥検出センサの検
出出力の情報処理を行う第1の欠陥検出処理手段と、第
1の欠陥処理手段の検出結果から欠陥の有無、種類、大
きさ、位置を判別及び記録する欠陥判別記録手段と、前
記欠陥判別結果に基づいて、補修溶接の要否と、補修の
必要時に自動補修すべきか手動補修すべきかを決定する
補修方法決定手段と、前記自動補修時に前記溶接制御ヘ
ッドの駆動制御及び溶接電源の出力制御を行う第1の補
修制御処理手段と、手動補修時には手動操作による補修
要求表示を行う手動補修要求手段とを設けたことを特徴
とする自動溶接装置。
3. A welding control head capable of moving the welding torch up and down, left and right and reciprocating in a welding line direction, a welding power supply capable of supplying power to the welding torch and supplying wires, and drive control of the welding control head. Output control of welding power supply, information processing of welding condition and position data, detection information processing of welding sensor,
And an automatic welding apparatus including a welding control device that performs overall management of constituent devices, including a defect detection sensor, detection information of a displacement and a groove shape by the welding sensor, and reference information of welding conditions and position data. A first welding control processing means for performing position tracking control of a welding torch, correction control of welding conditions for each one-pass welding, and when the welding control head is reversely moved during or after the one-pass welding, First defect detection processing means for performing information processing of the detection output of the defect detection sensor, and defect determination recording means for determining and recording the presence / absence, type, size, and position of the defect based on the detection result of the first defect processing means And a repair method determining means for determining whether repair welding is necessary or not and whether to perform automatic repair or manual repair when necessary, based on the defect determination result, and the welding at the time of the automatic repair. An automatic welding apparatus comprising: first repair control processing means for performing drive control of a control head and output control of a welding power source; and manual repair request means for displaying a repair request by manual operation during manual repair.
【請求項4】溶接トーチの上下左右の移動及び溶接線方
向の往復走行が可能な溶接制御ヘッドと、溶接トーチへ
の給電及びワイヤ供給が可能な溶接電源と、溶接制御ヘ
ッドの駆動制御、溶接電源の出力制御、溶接条件及び位
置データの情報処理、溶接用センサの検出情報処理、及
び構成機器の統括管理を行なう溶接制御装置とを備えた
自動溶接装置において、 欠陥検出センサを備え、前記溶接用センサによる位置ず
れや開先形状の検出情報と、溶接条件及び位置データの
基準情報を用いて1パス溶接毎に溶接トーチの位置倣い
制御や溶接条件の補正制御を行う第1の溶接制御処理手
段と、前記1パス溶接過程かあるいは終了後に溶接制御
ヘッドを反転移動させる時に、前記欠陥検出用センサの
検出出力の情報処理を行う第1の欠陥検出処理手段と、
第1の欠陥検出処理手段の出力から欠陥の有無、種類、
大きさ、位置を判別及び記録する欠陥判別記録手段と、
この欠陥判別結果に基づいて、補修溶接の要否及び補修
の必要時に自動補修すべきか手動補修すべきかを決定す
る補修方法決定手段と、前記自動補修時に前記溶接制御
ヘッドの駆動制御及び溶接電源の出力制御を行う第1の
補修制御処理手段と、前記手動補修時には手動操作によ
る補修要求表示を行う手動補修要求手段と、補修が不要
な時と欠陥部の補修が完了した時は次パスの溶接動作に
更新する溶接更新処理手段と、多パス溶接及び欠陥補修
が全て終了した時或いは途中で強制終了する時には、前
記溶接制御ヘッドと自動運転画面を初期位置及び初期画
面に戻す溶接初期処理手段とを設けたことを特徴とする
自動溶接装置。
4. A welding control head capable of moving a welding torch up and down, left and right and reciprocating in a welding line direction, a welding power supply capable of supplying power to the welding torch and supplying wires, drive control of the welding control head, and welding. An automatic welding apparatus comprising: a power supply output control; information processing of welding conditions and position data; detection information processing of a welding sensor; and a welding control device that performs overall management of constituent devices. Welding control process for performing position tracking control of a welding torch and correction control of welding conditions for each one-pass welding using detection information of a positional deviation and a groove shape by a sensor for welding, and reference information of welding conditions and position data. Means and a first defect detection processing means for performing information processing of the detection output of the defect detection sensor when reversing the welding control head after or after the one-pass welding process. Steps and
From the output of the first defect detection processing means, the presence / absence, type,
Defect determination recording means for determining and recording the size and position;
A repair method determining means for determining whether repair welding is necessary or not and whether to perform automatic repair or manual repair when necessary based on the defect determination result, and drive control of the welding control head and welding power supply during the automatic repair. First repair control processing means for performing output control; manual repair request means for displaying a repair request by manual operation during the manual repair; welding for the next pass when repair is unnecessary and when repair of a defective portion is completed. Welding update processing means for updating to operation, and welding initial processing means for returning the welding control head and the automatic operation screen to the initial position and the initial screen when all the multi-pass welding and defect repair are completed or forcibly terminated in the middle. Automatic welding equipment characterized by having a.
【請求項5】溶接トーチの上下左右の移動及び溶接線方
向の往復走行が可能な溶接制御ヘッドと、溶接トーチへ
の給電及びワイヤ供給が可能な溶接電源と、溶接制御ヘ
ッドの駆動制御、溶接電源の出力制御、溶接条件及び位
置データの情報処理、溶接用センサの検出情報処理、及
び構成機器の統括管理を行なう溶接制御装置とを備えた
自動溶接装置において、 欠陥検出用センサを備え、前記溶接用センサ及び欠陥検
出用センサは、開先継手や溶接ビードのある表面部にス
リット状の光を照射するレーザ投光器あるいはスポット
状の光を照射・揺動する揺動式レーザ投光器と、そのレ
ーザ反射像を撮像するカメラとを備えた光学式センサ
と、溶接トーチ近傍で開先継手や溶接ビードのある位置
に配置したこの光学式センサより得られる光切断画像か
ら、開先形状や位置ずれなどの検出情報を抽出処理する
溶接検出プログラムと溶接ビード表面の欠陥情報を抽出
処理する欠陥検出プログラムの両方を内臓した画像処理
装置とを含んで成り、さらに、溶接条件及び位置データ
の基準情報と、前記光学式センサ及び画像処理装置によ
る開先形状や位置ずれの検出情報を基にして、1パス溶
接毎に溶接トーチ位置の修正計算と倣い制御、溶接速度
や溶接電流やウィービング幅の補正計算とこの条件補正
制御をリアルタイムで行う第2の溶接制御処理手段と、
このパス溶接の終了後に前記溶接制御ヘッドを反転移動
させる時に、前記光学式センサ及び画像処理装置の検出
指令、欠陥検出の情報処理をリアルタイムで行う第2の
欠陥検出処理手段と、この検出結果から欠陥の有無、種
類、大きさ、位置を判別及び記録する欠陥判別記録手段
と、この欠陥判別結果に基づいて、補修溶接の要否及び
補修の必要時に自動補修すべきか手動補修すべきかを決
定する補修方法決定手段と、前記自動補修時には欠陥部
分及びその周辺を補修溶接するように前記溶接制御ヘッ
ドの駆動制御及び溶接電源の出力制御を行う第1の補修
制御処理手段と、前記手動補修時には手動操作による補
修要求表示を行う手動補修要求手段とを設けたことを特
徴とする自動溶接装置。
5. A welding control head capable of moving a welding torch up and down, left and right and reciprocating in a welding line direction, a welding power supply capable of supplying power to the welding torch and supplying a wire, driving control of the welding control head, and welding. An automatic welding apparatus including a power supply output control, information processing of welding conditions and position data, detection information processing of a welding sensor, and a welding control device that performs overall management of constituent devices, comprising: a defect detection sensor; The welding sensor and the defect detection sensor are a laser projector that irradiates a slit-shaped light to the surface with the groove joint or the weld bead or an oscillating laser projector that irradiates and oscillates a spot-shaped light, and its laser. An optical sensor equipped with a camera that captures a reflection image, and an optical cutting image obtained from this optical sensor located at a position near a welding torch where a groove joint or welding bead is located. From the image, a welding detection program to extract the detection information such as groove shape and misalignment and an image processing apparatus incorporating both a defect detection program to extract and process the defect information of the weld bead surface, further comprising Correction calculation of welding torch position, scanning control, welding speed and welding speed for each pass welding based on the reference information of welding conditions and position data, and the detection information of groove shape and positional deviation by the optical sensor and image processing device. Second welding control processing means for performing correction calculation of the welding current and the weaving width and performing the condition correction control in real time;
When the welding control head is reversely moved after the completion of the pass welding, a detection command of the optical sensor and the image processing device, a second defect detection processing unit that performs information processing of defect detection in real time, and A defect discrimination recording means for discriminating and recording the presence / absence, type, size, and position of a defect, and, based on the result of the defect discrimination, whether repair welding is required and whether repair should be performed automatically or manually when necessary. Repair method determining means, first repair control processing means for performing drive control of the welding control head and output control of a welding power source so as to repair and weld a defective portion and its periphery at the time of the automatic repair, and manually at the time of the manual repair. An automatic welding apparatus comprising a manual repair request means for displaying a repair request by an operation.
JP34512798A 1998-12-04 1998-12-04 Automatic welding and defect repair method and automatic welding equipment Expired - Fee Related JP4696325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34512798A JP4696325B2 (en) 1998-12-04 1998-12-04 Automatic welding and defect repair method and automatic welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34512798A JP4696325B2 (en) 1998-12-04 1998-12-04 Automatic welding and defect repair method and automatic welding equipment

Publications (2)

Publication Number Publication Date
JP2000167666A true JP2000167666A (en) 2000-06-20
JP4696325B2 JP4696325B2 (en) 2011-06-08

Family

ID=18374475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34512798A Expired - Fee Related JP4696325B2 (en) 1998-12-04 1998-12-04 Automatic welding and defect repair method and automatic welding equipment

Country Status (1)

Country Link
JP (1) JP4696325B2 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290921A (en) * 2002-03-27 2003-10-14 Hitachi Ltd Multi-layer welding method, and multi-layer automatic welding equipment
JP2005262881A (en) * 2004-03-12 2005-09-29 Boeing Co:The Method and program enabling automatic repair of defect by material stationing machine
EP1700663A2 (en) * 2005-03-08 2006-09-13 Central Motor Wheel Co., Ltd. Welding method and welding equipment
JP2010115700A (en) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd Method and device for narrow gap welding
WO2011102142A1 (en) * 2010-02-18 2011-08-25 株式会社 東芝 Welding device and welding method
US8110774B2 (en) 2004-07-08 2012-02-07 Trumpf Laser Gmbh + Co. Kg Laser welding method and apparatus
US8569646B2 (en) 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
CN103521965A (en) * 2012-07-03 2014-01-22 通用电气公司 Automatic welding system and method
US8747116B2 (en) 2008-08-21 2014-06-10 Lincoln Global, Inc. System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback
US8834168B2 (en) 2008-08-21 2014-09-16 Lincoln Global, Inc. System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing
US8851896B2 (en) 2008-08-21 2014-10-07 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US8884177B2 (en) 2009-11-13 2014-11-11 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8911237B2 (en) 2008-08-21 2014-12-16 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US8915740B2 (en) 2008-08-21 2014-12-23 Lincoln Global, Inc. Virtual reality pipe welding simulator
JP2015033722A (en) * 2013-07-08 2015-02-19 アイシン・エィ・ダブリュ株式会社 Welding equipment and welding method
USRE45398E1 (en) 2009-03-09 2015-03-03 Lincoln Global, Inc. System for tracking and analyzing welding activity
US9011154B2 (en) 2009-07-10 2015-04-21 Lincoln Global, Inc. Virtual welding system
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US9230449B2 (en) 2009-07-08 2016-01-05 Lincoln Global, Inc. Welding training system
JP2016022532A (en) * 2014-07-24 2016-02-08 新日鉄住金エンジニアリング株式会社 Defect repair device, defect repair method and joint pipe material
US9280913B2 (en) 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9318026B2 (en) 2008-08-21 2016-04-19 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9330575B2 (en) 2008-08-21 2016-05-03 Lincoln Global, Inc. Tablet-based welding simulator
US9468988B2 (en) 2009-11-13 2016-10-18 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9483959B2 (en) 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US9685099B2 (en) 2009-07-08 2017-06-20 Lincoln Global, Inc. System for characterizing manual welding operations
US9767712B2 (en) 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US9895267B2 (en) 2009-10-13 2018-02-20 Lincoln Global, Inc. Welding helmet with integral user interface
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
US10198962B2 (en) 2013-09-11 2019-02-05 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
US10373524B2 (en) 2009-07-10 2019-08-06 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US10473447B2 (en) 2016-11-04 2019-11-12 Lincoln Global, Inc. Magnetic frequency selection for electromagnetic position tracking
US10475353B2 (en) 2014-09-26 2019-11-12 Lincoln Global, Inc. System for characterizing manual welding operations on pipe and other curved structures
US10496080B2 (en) 2006-12-20 2019-12-03 Lincoln Global, Inc. Welding job sequencer
JP2020082125A (en) * 2018-11-22 2020-06-04 東芝プラントシステム株式会社 Welding device, welding method, welding program and tank welding method
JP2020203294A (en) * 2019-06-14 2020-12-24 パナソニックIpマネジメント株式会社 Automatic repair welding system and automatic repair welding method
US10878591B2 (en) 2016-11-07 2020-12-29 Lincoln Global, Inc. Welding trainer utilizing a head up display to display simulated and real-world objects
JPWO2020262260A1 (en) * 2019-06-28 2020-12-30
JPWO2020262049A1 (en) * 2019-06-28 2020-12-30
JPWO2020262050A1 (en) * 2019-06-28 2020-12-30
US10913125B2 (en) 2016-11-07 2021-02-09 Lincoln Global, Inc. Welding system providing visual and audio cues to a welding helmet with a display
US10930174B2 (en) 2013-05-24 2021-02-23 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US10940555B2 (en) 2006-12-20 2021-03-09 Lincoln Global, Inc. System for a welding sequencer
US10997872B2 (en) 2017-06-01 2021-05-04 Lincoln Global, Inc. Spring-loaded tip assembly to support simulated shielded metal arc welding
US10994358B2 (en) 2006-12-20 2021-05-04 Lincoln Global, Inc. System and method for creating or modifying a welding sequence based on non-real world weld data
JP2021074817A (en) * 2019-11-07 2021-05-20 ファナック株式会社 Control device for determining correcting method of position or posture of robot
JPWO2021111785A1 (en) * 2019-12-06 2021-06-10
WO2021111759A1 (en) * 2019-12-06 2021-06-10 パナソニックIpマネジメント株式会社 Repair welding device and repair welding method
WO2021177365A1 (en) * 2020-03-05 2021-09-10 パナソニックIpマネジメント株式会社 Bead appearance inspection device, bead appearance inspection method, program, and bead appearance inspection system
JP2021139771A (en) * 2020-03-05 2021-09-16 パナソニックIpマネジメント株式会社 Control device, control method of display device, and program
CN113779011A (en) * 2021-09-16 2021-12-10 平安科技(深圳)有限公司 Data restoration method and device based on machine learning and computer equipment
CN114160921A (en) * 2021-11-22 2022-03-11 湖北文理学院 Welding control method and control device for welding robot and welding robot
WO2022091543A1 (en) * 2020-10-28 2022-05-05 パナソニックIpマネジメント株式会社 Repair welding segment detection method and repair welding segment detection device
WO2022107993A1 (en) * 2020-11-18 2022-05-27 한국해양대학교 산학협력단 Surface lamination method and surface lamination apparatus using direct energy deposition device without making pores between bead rows
CN114669839A (en) * 2022-03-29 2022-06-28 岭澳核电有限公司 Weld repairing method
WO2022163328A1 (en) * 2021-01-29 2022-08-04 株式会社神戸製鋼所 Manufacturing-log monitoring device, manufactured-object production system, and manufacturing-log monitoring method
US11475792B2 (en) 2018-04-19 2022-10-18 Lincoln Global, Inc. Welding simulator with dual-user configuration
US11557223B2 (en) 2018-04-19 2023-01-17 Lincoln Global, Inc. Modular and reconfigurable chassis for simulated welding training
CN115781148A (en) * 2023-01-06 2023-03-14 江苏菲达宝开电气股份有限公司 Welding robot with missing welding marking function
KR20230101312A (en) * 2021-12-29 2023-07-06 주식회사 세원정공 Manufacturing system and method for a cowl cross using laser vision sensor
KR20230101335A (en) * 2021-12-29 2023-07-06 주식회사 세원정공 Manufacturing method and system for a cowl cross using laser vision sensor
KR20230101321A (en) * 2021-12-29 2023-07-06 주식회사 세원정공 Manufacturing method and system for inspecting welding parts of a cowl cross
CN117094290A (en) * 2023-08-21 2023-11-21 安及义实业(上海)有限公司 Method for automatically grouping and generating welding records
WO2023240863A1 (en) * 2022-06-14 2023-12-21 中国核电工程有限公司 Test piece and manufacturing method therefor
US11904417B2 (en) 2019-10-15 2024-02-20 International Business Machines Corporation Automated material welding

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246964A (en) * 2017-10-17 2020-06-05 Lg电子株式会社 Welding system and method of operating the same
JP7270428B2 (en) 2019-03-19 2023-05-10 三菱重工業株式会社 Directionally solidified material, turbine rotor blade and method for repairing unidirectionally solidified material
KR102498293B1 (en) * 2021-10-24 2023-02-10 (주)에스디플렉스 Method and System for Controlling Platform Safety Door
KR102615665B1 (en) * 2021-12-29 2023-12-20 주식회사 세원정공 Manufacturing system for a cowl cross

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141370A (en) * 1983-12-28 1985-07-26 Nippon Mining Co Ltd Repair method of vessel for molten metal
JPS6368268A (en) * 1986-09-08 1988-03-28 Babcock Hitachi Kk Inspection method for welding defect
JPH01181989A (en) * 1988-01-14 1989-07-19 Toyota Motor Corp Laser welding equipment
JPH08118017A (en) * 1994-10-24 1996-05-14 Hitachi Ltd Automatic welding equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141370A (en) * 1983-12-28 1985-07-26 Nippon Mining Co Ltd Repair method of vessel for molten metal
JPS6368268A (en) * 1986-09-08 1988-03-28 Babcock Hitachi Kk Inspection method for welding defect
JPH01181989A (en) * 1988-01-14 1989-07-19 Toyota Motor Corp Laser welding equipment
JPH08118017A (en) * 1994-10-24 1996-05-14 Hitachi Ltd Automatic welding equipment

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290921A (en) * 2002-03-27 2003-10-14 Hitachi Ltd Multi-layer welding method, and multi-layer automatic welding equipment
JP2005262881A (en) * 2004-03-12 2005-09-29 Boeing Co:The Method and program enabling automatic repair of defect by material stationing machine
US8110774B2 (en) 2004-07-08 2012-02-07 Trumpf Laser Gmbh + Co. Kg Laser welding method and apparatus
EP1700663A2 (en) * 2005-03-08 2006-09-13 Central Motor Wheel Co., Ltd. Welding method and welding equipment
JP2006247663A (en) * 2005-03-08 2006-09-21 Chuo Motor Wheel Co Ltd Welding method and welding apparatus
EP1700663A3 (en) * 2005-03-08 2007-02-28 Central Motor Wheel Co., Ltd. Welding method and welding equipment
US10994358B2 (en) 2006-12-20 2021-05-04 Lincoln Global, Inc. System and method for creating or modifying a welding sequence based on non-real world weld data
US10496080B2 (en) 2006-12-20 2019-12-03 Lincoln Global, Inc. Welding job sequencer
US11980976B2 (en) 2006-12-20 2024-05-14 Lincoln Global, Inc. Method for a welding sequencer
US10940555B2 (en) 2006-12-20 2021-03-09 Lincoln Global, Inc. System for a welding sequencer
US10629093B2 (en) 2008-08-21 2020-04-21 Lincoln Global Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US10056011B2 (en) 2008-08-21 2018-08-21 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US8834168B2 (en) 2008-08-21 2014-09-16 Lincoln Global, Inc. System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing
US8851896B2 (en) 2008-08-21 2014-10-07 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US11030920B2 (en) 2008-08-21 2021-06-08 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US8911237B2 (en) 2008-08-21 2014-12-16 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US8915740B2 (en) 2008-08-21 2014-12-23 Lincoln Global, Inc. Virtual reality pipe welding simulator
US11521513B2 (en) 2008-08-21 2022-12-06 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9779635B2 (en) 2008-08-21 2017-10-03 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10916153B2 (en) 2008-08-21 2021-02-09 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US10803770B2 (en) 2008-08-21 2020-10-13 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10762802B2 (en) 2008-08-21 2020-09-01 Lincoln Global, Inc. Welding simulator
US9792833B2 (en) 2008-08-21 2017-10-17 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9779636B2 (en) 2008-08-21 2017-10-03 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US11715388B2 (en) 2008-08-21 2023-08-01 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9818311B2 (en) 2008-08-21 2017-11-14 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10249215B2 (en) 2008-08-21 2019-04-02 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US10204529B2 (en) 2008-08-21 2019-02-12 Lincoln Global, Inc. System and methods providing an enhanced user Experience in a real-time simulated virtual reality welding environment
US8747116B2 (en) 2008-08-21 2014-06-10 Lincoln Global, Inc. System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback
US9965973B2 (en) 2008-08-21 2018-05-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9928755B2 (en) 2008-08-21 2018-03-27 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US9293057B2 (en) 2008-08-21 2016-03-22 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9293056B2 (en) 2008-08-21 2016-03-22 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9318026B2 (en) 2008-08-21 2016-04-19 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9330575B2 (en) 2008-08-21 2016-05-03 Lincoln Global, Inc. Tablet-based welding simulator
US9336686B2 (en) 2008-08-21 2016-05-10 Lincoln Global, Inc. Tablet-based welding simulator
US9858833B2 (en) 2008-08-21 2018-01-02 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9483959B2 (en) 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US9836995B2 (en) 2008-08-21 2017-12-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9691299B2 (en) 2008-08-21 2017-06-27 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9754509B2 (en) 2008-08-21 2017-09-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9761153B2 (en) 2008-08-21 2017-09-12 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9818312B2 (en) 2008-08-21 2017-11-14 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
JP2010115700A (en) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd Method and device for narrow gap welding
USRE47918E1 (en) 2009-03-09 2020-03-31 Lincoln Global, Inc. System for tracking and analyzing welding activity
USRE45398E1 (en) 2009-03-09 2015-03-03 Lincoln Global, Inc. System for tracking and analyzing welding activity
US10522055B2 (en) 2009-07-08 2019-12-31 Lincoln Global, Inc. System for characterizing manual welding operations
US10347154B2 (en) 2009-07-08 2019-07-09 Lincoln Global, Inc. System for characterizing manual welding operations
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US9230449B2 (en) 2009-07-08 2016-01-05 Lincoln Global, Inc. Welding training system
US9685099B2 (en) 2009-07-08 2017-06-20 Lincoln Global, Inc. System for characterizing manual welding operations
US10068495B2 (en) 2009-07-08 2018-09-04 Lincoln Global, Inc. System for characterizing manual welding operations
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US10991267B2 (en) 2009-07-10 2021-04-27 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US9911359B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US9911360B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US9280913B2 (en) 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US10643496B2 (en) 2009-07-10 2020-05-05 Lincoln Global Inc. Virtual testing and inspection of a virtual weldment
US9836994B2 (en) 2009-07-10 2017-12-05 Lincoln Global, Inc. Virtual welding system
US9011154B2 (en) 2009-07-10 2015-04-21 Lincoln Global, Inc. Virtual welding system
US10134303B2 (en) 2009-07-10 2018-11-20 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US10373524B2 (en) 2009-07-10 2019-08-06 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US9895267B2 (en) 2009-10-13 2018-02-20 Lincoln Global, Inc. Welding helmet with integral user interface
US8884177B2 (en) 2009-11-13 2014-11-11 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9012802B2 (en) 2009-11-13 2015-04-21 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8569646B2 (en) 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8987628B2 (en) 2009-11-13 2015-03-24 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9089921B2 (en) 2009-11-13 2015-07-28 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9050678B2 (en) 2009-11-13 2015-06-09 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9050679B2 (en) 2009-11-13 2015-06-09 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9468988B2 (en) 2009-11-13 2016-10-18 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
JP5847697B2 (en) * 2010-02-18 2016-01-27 株式会社東芝 Welding apparatus and welding method
WO2011102142A1 (en) * 2010-02-18 2011-08-25 株式会社 東芝 Welding device and welding method
CN102762331A (en) * 2010-02-18 2012-10-31 株式会社东芝 Welding device and welding method
US9269279B2 (en) 2010-12-13 2016-02-23 Lincoln Global, Inc. Welding training system
CN103521965A (en) * 2012-07-03 2014-01-22 通用电气公司 Automatic welding system and method
US9767712B2 (en) 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US10748447B2 (en) 2013-05-24 2020-08-18 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US10930174B2 (en) 2013-05-24 2021-02-23 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
JP2015033722A (en) * 2013-07-08 2015-02-19 アイシン・エィ・ダブリュ株式会社 Welding equipment and welding method
US10198962B2 (en) 2013-09-11 2019-02-05 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
US11100812B2 (en) 2013-11-05 2021-08-24 Lincoln Global, Inc. Virtual reality and real welding training system and method
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US10720074B2 (en) 2014-02-14 2020-07-21 Lincoln Global, Inc. Welding simulator
JP2016022532A (en) * 2014-07-24 2016-02-08 新日鉄住金エンジニアリング株式会社 Defect repair device, defect repair method and joint pipe material
US10475353B2 (en) 2014-09-26 2019-11-12 Lincoln Global, Inc. System for characterizing manual welding operations on pipe and other curved structures
US10473447B2 (en) 2016-11-04 2019-11-12 Lincoln Global, Inc. Magnetic frequency selection for electromagnetic position tracking
US10878591B2 (en) 2016-11-07 2020-12-29 Lincoln Global, Inc. Welding trainer utilizing a head up display to display simulated and real-world objects
US10913125B2 (en) 2016-11-07 2021-02-09 Lincoln Global, Inc. Welding system providing visual and audio cues to a welding helmet with a display
US10997872B2 (en) 2017-06-01 2021-05-04 Lincoln Global, Inc. Spring-loaded tip assembly to support simulated shielded metal arc welding
US11475792B2 (en) 2018-04-19 2022-10-18 Lincoln Global, Inc. Welding simulator with dual-user configuration
US11557223B2 (en) 2018-04-19 2023-01-17 Lincoln Global, Inc. Modular and reconfigurable chassis for simulated welding training
JP2020082125A (en) * 2018-11-22 2020-06-04 東芝プラントシステム株式会社 Welding device, welding method, welding program and tank welding method
JP7329754B2 (en) 2019-06-14 2023-08-21 パナソニックIpマネジメント株式会社 Repair welding system and repair welding method
JP2020203294A (en) * 2019-06-14 2020-12-24 パナソニックIpマネジメント株式会社 Automatic repair welding system and automatic repair welding method
CN114007793A (en) * 2019-06-28 2022-02-01 松下知识产权经营株式会社 Repair welding control device and repair welding control method
CN114080291A (en) * 2019-06-28 2022-02-22 松下知识产权经营株式会社 Repair welding system, repair welding method, inspection device, and robot control device
WO2020262050A1 (en) * 2019-06-28 2020-12-30 パナソニックIpマネジメント株式会社 Repair welding examination device and repair welding examination method
CN114080291B (en) * 2019-06-28 2024-05-03 松下知识产权经营株式会社 Repair welding system, repair welding method, inspection device, and robot control device
WO2020262260A1 (en) * 2019-06-28 2020-12-30 パナソニックIpマネジメント株式会社 Repair welding system, repair welding method, inspection device, and robot control device
JP7386461B2 (en) 2019-06-28 2023-11-27 パナソニックIpマネジメント株式会社 Repair welding inspection equipment and repair welding inspection method
JP7369981B2 (en) 2019-06-28 2023-10-27 パナソニックIpマネジメント株式会社 Repair welding system, repair welding method, inspection device and robot control device
WO2020262049A1 (en) * 2019-06-28 2020-12-30 パナソニックIpマネジメント株式会社 Repair welding control device and repair welding control method
CN114025904A (en) * 2019-06-28 2022-02-08 松下知识产权经营株式会社 Repair welding inspection device and repair welding inspection method
JPWO2020262260A1 (en) * 2019-06-28 2020-12-30
EP3991901A4 (en) * 2019-06-28 2022-09-28 Panasonic Intellectual Property Management Co., Ltd. Repair welding system, repair welding method, inspection device, and robot control device
CN114025904B (en) * 2019-06-28 2023-09-12 松下知识产权经营株式会社 Repair welding inspection device and repair welding inspection method
JPWO2020262050A1 (en) * 2019-06-28 2020-12-30
JPWO2020262049A1 (en) * 2019-06-28 2020-12-30
CN114007793B (en) * 2019-06-28 2023-07-14 松下知识产权经营株式会社 Repair welding control equipment and repair welding control method
US11904417B2 (en) 2019-10-15 2024-02-20 International Business Machines Corporation Automated material welding
JP2021074817A (en) * 2019-11-07 2021-05-20 ファナック株式会社 Control device for determining correcting method of position or posture of robot
JP7359657B2 (en) 2019-11-07 2023-10-11 ファナック株式会社 A control device that determines how to correct the robot's position or posture
JP7369982B2 (en) 2019-12-06 2023-10-27 パナソニックIpマネジメント株式会社 Repair welding equipment and repair welding method
JP7289087B2 (en) 2019-12-06 2023-06-09 パナソニックIpマネジメント株式会社 Repair welding equipment and repair welding method
WO2021111785A1 (en) * 2019-12-06 2021-06-10 パナソニックIpマネジメント株式会社 Repair welding device and repair welding method
CN114746208B (en) * 2019-12-06 2024-04-02 松下知识产权经营株式会社 Repair welding equipment and repair welding method
CN114746208A (en) * 2019-12-06 2022-07-12 松下知识产权经营株式会社 Repair welding equipment and repair welding method
WO2021111759A1 (en) * 2019-12-06 2021-06-10 パナソニックIpマネジメント株式会社 Repair welding device and repair welding method
JPWO2021111785A1 (en) * 2019-12-06 2021-06-10
JP2021139771A (en) * 2020-03-05 2021-09-16 パナソニックIpマネジメント株式会社 Control device, control method of display device, and program
WO2021177365A1 (en) * 2020-03-05 2021-09-10 パナソニックIpマネジメント株式会社 Bead appearance inspection device, bead appearance inspection method, program, and bead appearance inspection system
WO2022091543A1 (en) * 2020-10-28 2022-05-05 パナソニックIpマネジメント株式会社 Repair welding segment detection method and repair welding segment detection device
WO2022107993A1 (en) * 2020-11-18 2022-05-27 한국해양대학교 산학협력단 Surface lamination method and surface lamination apparatus using direct energy deposition device without making pores between bead rows
WO2022163328A1 (en) * 2021-01-29 2022-08-04 株式会社神戸製鋼所 Manufacturing-log monitoring device, manufactured-object production system, and manufacturing-log monitoring method
CN113779011B (en) * 2021-09-16 2023-06-02 平安科技(深圳)有限公司 Data restoration method and device based on machine learning and computer equipment
CN113779011A (en) * 2021-09-16 2021-12-10 平安科技(深圳)有限公司 Data restoration method and device based on machine learning and computer equipment
CN114160921A (en) * 2021-11-22 2022-03-11 湖北文理学院 Welding control method and control device for welding robot and welding robot
KR20230101321A (en) * 2021-12-29 2023-07-06 주식회사 세원정공 Manufacturing method and system for inspecting welding parts of a cowl cross
KR102651442B1 (en) * 2021-12-29 2024-03-27 주식회사 세원정공 Manufacturing system for a cowl cross using laser vision sensor
KR102651439B1 (en) * 2021-12-29 2024-03-27 주식회사 세원정공 system for a cowl cross using laser vision sensor
KR102659416B1 (en) * 2021-12-29 2024-04-23 주식회사 세원정공 Manufacturing method for inspecting welding parts of a cowl cross
KR20230101335A (en) * 2021-12-29 2023-07-06 주식회사 세원정공 Manufacturing method and system for a cowl cross using laser vision sensor
KR20230101312A (en) * 2021-12-29 2023-07-06 주식회사 세원정공 Manufacturing system and method for a cowl cross using laser vision sensor
CN114669839A (en) * 2022-03-29 2022-06-28 岭澳核电有限公司 Weld repairing method
WO2023240863A1 (en) * 2022-06-14 2023-12-21 中国核电工程有限公司 Test piece and manufacturing method therefor
CN115781148A (en) * 2023-01-06 2023-03-14 江苏菲达宝开电气股份有限公司 Welding robot with missing welding marking function
CN117094290A (en) * 2023-08-21 2023-11-21 安及义实业(上海)有限公司 Method for automatically grouping and generating welding records
CN117094290B (en) * 2023-08-21 2024-05-14 安及义实业(上海)有限公司 Method for automatically grouping and generating welding records

Also Published As

Publication number Publication date
JP4696325B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4696325B2 (en) Automatic welding and defect repair method and automatic welding equipment
US10695868B2 (en) Laser hybrid welding control systems and methods
WO2020129618A1 (en) Welding system, and method for welding workpiece in which same is used
US8110774B2 (en) Laser welding method and apparatus
JP7422337B2 (en) Repair welding control device and repair welding control method
JP4109911B2 (en) Multi-layer welding method
JP2002331383A (en) Monitoring device for cutting
JP2005014027A (en) Weld zone image processing method, welding management system, feedback system for welding machine, and butt line detection system
JP3787401B2 (en) Control method for multilayer prime welding and multilayer prime welding apparatus
JP3323028B2 (en) Automatic welding equipment and welding method
JP3367227B2 (en) Automatic welding equipment
JP3263631B2 (en) First layer welding method
JP3326716B2 (en) Bead lap welding method and its automatic welding device
JP2021062441A (en) Repair welding device and repair welding method
JP2005279653A (en) Method and device for checking welding state
JP3837578B2 (en) Positioning control method and welding method of welding torch
JP2000167678A (en) Laser beam welding method
JPH01181989A (en) Laser welding equipment
JPH11309576A (en) Automatic welding equipment
JP3482615B2 (en) Welding position automatic profiling control device
JP6990869B1 (en) Visual inspection method and visual inspection equipment
JP2019063841A (en) Automatic welding machine and automatic welding method
JP3077931B2 (en) Welding method
Beattie Applications of Laser Seam Tracking in Welding Thick Wall Vessels
JPH091483A (en) Robot controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees