JP6839386B2 - Power storage materials and storage devices - Google Patents

Power storage materials and storage devices Download PDF

Info

Publication number
JP6839386B2
JP6839386B2 JP2017100712A JP2017100712A JP6839386B2 JP 6839386 B2 JP6839386 B2 JP 6839386B2 JP 2017100712 A JP2017100712 A JP 2017100712A JP 2017100712 A JP2017100712 A JP 2017100712A JP 6839386 B2 JP6839386 B2 JP 6839386B2
Authority
JP
Japan
Prior art keywords
power storage
storage material
amorphous
present
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100712A
Other languages
Japanese (ja)
Other versions
JP2018195777A (en
Inventor
幹夫 福原
幹夫 福原
史彦 長谷川
史彦 長谷川
共之 黒田
共之 黒田
一弥 今野
一弥 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Institute of National Colleges of Technologies Japan
Original Assignee
Tohoku University NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Institute of National Colleges of Technologies Japan filed Critical Tohoku University NUC
Priority to JP2017100712A priority Critical patent/JP6839386B2/en
Publication of JP2018195777A publication Critical patent/JP2018195777A/en
Application granted granted Critical
Publication of JP6839386B2 publication Critical patent/JP6839386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、蓄電材料および蓄電デバイスに関する。 The present invention relates to a power storage material and a power storage device.

コンデンサは本来、静電容量により電荷(電気エネルギー)を蓄えたり、放電したりする電子部品であり、パソコンや携帯電話等のモバイル電子機器において、電源の安定性、バックアップ回路、カップリング素子、ノイズフィルター等の役割を担い、電子機器にとって不可欠の部品である。近年、携帯電話や超小型記憶装置などの高機能IT製品および電気自動車用バッテリが急速に進化し、より一層小型で、大容量かつメモリ等の高機能を有するコンデンサの需要が高まっている。特に、地球温暖化防止のためのグリーンイノベーション(低炭素化)に合致したスマートグリッド(次世代送電網)社会に適合した製品が求められている。 Capacitors are originally electronic components that store and discharge electric charges (electrical energy) due to their capacitance, and in mobile electronic devices such as personal computers and mobile phones, power supply stability, backup circuits, coupling elements, and noise. It plays the role of a filter, etc., and is an indispensable component for electronic devices. In recent years, high-performance IT products such as mobile phones and ultra-small storage devices and batteries for electric vehicles have rapidly evolved, and there is an increasing demand for capacitors that are even smaller, have a large capacity, and have high functionality such as memory. In particular, there is a demand for products that are suitable for the smart grid (next-generation power grid) society that is compatible with green innovation (low carbonization) to prevent global warming.

このようなコンデンサとしては、リチウム等の発火性元素や環境汚染物質を使用していないものが望ましい。すなわち、液体よりも固体であり、健康に無害で安価な材料が求められている。 As such a capacitor, it is desirable that it does not use a flammable element such as lithium or an environmental pollutant. That is, there is a demand for inexpensive materials that are solid rather than liquid and are harmless to health.

コンデンサは、用途により、高電圧電力回路(重電)用と電子・電気機器回路(弱電)用に大別される。このうち、弱電分野の電子・電気機器回路用のコンデンサとしては、主にセラミックコンデンサが用いられており、二次電池も携帯電話等の電気貯蔵用として重用されている。これに対し、重電分野用のコンデンサは、耐電圧性と蓄電容量が不足しているため、まだ実用化されていない。 Capacitors are roughly classified into high-voltage power circuits (heavy electricity) and electronic / electrical equipment circuits (weak electricity) depending on the application. Of these, ceramic capacitors are mainly used as capacitors for electronic / electrical equipment circuits in the field of light electricity, and secondary batteries are also heavily used for electric storage of mobile phones and the like. On the other hand, capacitors for the heavy electric field have not been put into practical use yet because they lack withstand voltage and storage capacity.

コンデンサを用いた蓄電体は、1pFから数十mFまで広範囲に電子・電気機器の主要構成部品として利用されている。蓄電容量C(F)は、
C=Q/V=ε×(A/d)
(ここで、Q:電荷、V:電圧、ε:誘電率、A:電極面積、d:電極間距離)で与えられるため、電極面積が大きく、電極間距離が小さいほど高電荷容量が得られる。しかしながら、電子・電気機器の軽薄短小化や、要求される蓄電容量の観点から、電極面積Aを大きくし、電極間距離dを小さくして極大容量にすることや、電極面積Aを小さくし、電極間距離dを大きくして極小容量にすることは困難である。
A power storage body using a capacitor is widely used as a main component of electronic / electrical equipment from 1 pF to several tens of mF. The storage capacity C (F) is
C = Q / V = ε × (A / d)
(Here, Q: charge, V: voltage, ε: permittivity, A: electrode area, d: distance between electrodes), so that the larger the electrode area and the smaller the distance between electrodes, the higher the charge capacity can be obtained. .. However, from the viewpoint of making electronic and electrical equipment lighter, thinner, shorter, and smaller, and the required storage capacity, the electrode area A is increased, the distance d between the electrodes is reduced to maximize the capacity, and the electrode area A is reduced. It is difficult to increase the distance d between the electrodes to obtain a minimum capacity.

また、蓄電方式としては、分布定数回路による方法もある。例えば、最近では、活性炭中に電界溶液を湿潤させた電気二重層コンデンサが使用されている。しかしながら、固体による電気二重層コンデンサは、まだ使用されていない。 Further, as a power storage method, there is also a method using a distributed constant circuit. For example, recently, an electric double layer capacitor in which an electric field solution is moistened in activated carbon has been used. However, solid electric double layer capacitors have not yet been used.

固体の蓄電材料に関し、本発明者らは、Al,Ti,Vを表面抽出除去させたSi−(Al,Ti,V)合金やTiO被覆Ti−Ni−Si系非晶質合金において、電荷が直流、交流にかかわらず蓄積できることを発見している(例えば、非特許文献1乃至7、特許文献1乃至3参照)。 Regarding solid storage materials, the present inventors have charged in Si- (Al, Ti, V) alloys in which Al, Ti, and V have been surface-extracted and removed, and in TiO 2- coated Ti-Ni-Si-based amorphous alloys. Has been found to be able to accumulate regardless of whether it is DC or AC (see, for example, Non-Patent Documents 1 to 7 and Patent Documents 1 to 3).

また、膜厚10nm以下で、誘電率210〜240を有するぺロブスカイトSrNb10、CaNb10のナノシート薄膜コンデンサ素子の研究が報告されているが(例えば、非特許文献8参照)、電極間距離が大きく、セラミックスのため、電極材との接合が容易でなく、接触抵抗は高い。また、化学電解液中でのMnO被覆ナノポーラスAu系非晶質合金セパレータにおいて1,160F/cmの高比容量が報告されているが(例えば、非特許文献9参照)、これも従来の電気化学電池の応用である。 Further, studies on nanosheet thin film capacitor elements of Perovskite Sr 2 Nb 3 O 10 and Ca 2 Nb 3 O 10 having a film thickness of 10 nm or less and a dielectric constant of 210 to 240 have been reported (for example, Non-Patent Document 8). (See), the distance between the electrodes is large, and because of the ceramics, it is not easy to bond with the electrode material, and the contact resistance is high. Further, a high specific capacity of 1,160 F / cm 3 has been reported in the MnO 2- coated nanoporous Au-based amorphous alloy separator in a chemical electrolytic solution (see, for example, Non-Patent Document 9), which is also a conventional method. It is an application of electrochemical batteries.

さらに、電圧1.5V,電力500Wh/L、出力密度8kW/L、サイクル寿命10万回、動作温度範囲−25℃〜+85℃の物理的二次電池が開発されているが(例えば、非特許文献10参照)、半導体のバンドギャップ中に電子捕獲準位を形成し、この準位に電位を充填するか空にするかにより充放電を行うショットキー接合を利用したものであり、電圧は1.5Vに制限される。 Further, a physical secondary battery having a voltage of 1.5 V, an electric power of 500 Wh / L, an output density of 8 kW / L, a cycle life of 100,000 times, and an operating temperature range of -25 ° C to + 85 ° C has been developed (for example, non-patented). (Refer to Reference 10), an electron capture level is formed in the band gap of a semiconductor, and a Schottky junction is used in which charging and discharging are performed depending on whether the level is filled with an electric potential or emptied, and the voltage is 1. Limited to .5V.

なお、本発明者等により、化合物粒子が40nm以下、望ましくは10nm以下になると、内部原子に対して最外層の原子の電子が急激に増大し、電子の遮蔽に対する中和化が起こり、格子膨張を起こす現象が報告されている(例えば、非特許文献11参照)。これは、ナノサイズ固体表面に起こる電子遮蔽の理論によって説明される量子現象で、「量子ナノサイズ効果」と呼ばれている。この現象を利用した蓄電材料として、アモルファスチタニアやアモルファスフッ素ポリマーの表面に、ナノサイズの凹凸が形成されたものが、本発明者等により開発されている(例えば、非特許文献4、7、12、特許文献4参照)。これらの蓄電材料では、量子ナノサイズ効果により、凸部の径がナノサイズで小さくなればなるほど、凸部の径のマイナス6乗でファンデルーワールス静電力が働き、凸部への電子吸着能が増大する(例えば、非特許文献7参照)。電子吸着能の大きさの目安である仕事関数は、アモルファスチタニアで、5.5eV(例えば、非特許文献7参照)、アモルファスフッ素ポリマーで、10.3eV〜13.35eVである(例えば、非特許文献4、特許文献4参照)。 According to the present inventors, when the compound particles are 40 nm or less, preferably 10 nm or less, the electrons of the atoms in the outermost layer rapidly increase with respect to the internal atoms, neutralization against electron shielding occurs, and lattice expansion occurs. (For example, see Non-Patent Document 11). This is a quantum phenomenon explained by the theory of electron shielding that occurs on the surface of nano-sized solids, and is called the "quantum nano-sized effect". As a power storage material utilizing this phenomenon, those in which nano-sized irregularities are formed on the surface of amorphous titania or amorphous fluoropolymer have been developed by the present inventors (for example, Non-Patent Documents 4, 7, 12). , Patent Document 4). In these power storage materials, due to the quantum nanosize effect, the smaller the diameter of the convex part is, the more the van der Ruwars electrostatic force acts at the minus 6th power of the diameter of the convex part, and the electron adsorption ability to the convex part becomes stronger. Increase (see, for example, Non-Patent Document 7). The work function, which is a measure of the magnitude of electron adsorption capacity, is 5.5 eV for amorphous titania (see, for example, Non-Patent Document 7) and 10.3 eV to 13.35 eV for amorphous fluoropolymer (for example, non-patent). Refer to Document 4 and Patent Document 4).

M. Fukuhara, T. Araki, K. Nagayama and H. Sakuraba, “Electric storage in de-alloyed Si-Al alloy ribbons”, EuroPhys. Lett., 2012, 99 ,47001M. Fukuhara, T. Araki, K. Nagayama and H. Sakuraba, “Electric storage in de-alloyed Si-Al alloy ribbons”, EuroPhys. Lett., 2012, 99, 47001 M. Fukuhara, “Electric Charging/Discharging Characteristics of Capacitor, Using De-alloyed Si-20Al Alloy Ribbons”, Elect. Electr. Eng., 2013, 3(2), p.72-76M. Fukuhara, “Electric Charging / Discharging Characteristics of Capacitor, Using De-alloyed Si-20Al Alloy Ribbons”, Elect. Electr. Eng., 2013, 3 (2), p.72-76 M. Fukuhara and H. Yoshida, “AC charging/discharging of de-alloyed Si-Al-V alloy ribbons”, J. Alloys and Comp., 2014, 586, S130-S133M. Fukuhara and H. Yoshida, “AC charging / discharging of de-alloyed Si-Al-V alloy ribbons”, J. Alloys and Comp., 2014, 586, S130-S133 M. Fukuhara, H. Yoshida, M. Sato, K. Sugawara, T. Takeuchi, I. Seki, and T. Sueyoshi, “Superior electric storage in de-alloyed and anodic oxidized Ti-Ni-Si glassy alloy ribbons”, Phys. Stat. Sol. RRL, 2013, 7(7), p.477-480M. Fukuhara, H. Yoshida, M. Sato, K. Sugawara, T. Takeuchi, I. Seki, and T. Sueyoshi, “Superior electric storage in de-alloyed and anodic oxidized Ti-Ni-Si glassy alloy ribbons”, Phys. Stat. Sol. RRL, 2013, 7 (7), p.477-480 M. Fukuhara and K. Sugawara, “Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons”, Nanoscale. Res. Lett., 2014, 9, p.253M. Fukuhara and K. Sugawara, “Electric charging / discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons”, Nanoscale. Res. Lett., 2014, 9, p.253 M. Fukuhara and K. Sugawara, “Anodic oxidization of Ti-Ni-Si amorphous alloy ribbons and their capacitive and resistive properties”, Thin Solid Films, 2015, 595, p.1-4M. Fukuhara and K. Sugawara, “Anodic oxidization of Ti-Ni-Si amorphous alloy ribbons and their capacitive and excited properties”, Thin Solid Films, 2015, 595, p.1-4 M. Fukuhara, T. Kuroda and F. Hasegawa, “Amorphous titanium-oxide supercapacitors”, Sci. Rep., 2016, 6 , 35870M. Fukuhara, T. Kuroda and F. Hasegawa, “Amorphous titanium-oxide supercapacitors”, Sci. Rep., 2016, 6, 35870 M. Osada, K. Akatsuka, Y. Ebina, H. Funakubo, K. Ono, K. Takada and T. Sasaki, “Robust high-k response in molecularly thin perovskite nanosheets”, ACS NANO, 2010, 4, p.5225-5232M. Osada, K. Akatsuka, Y. Ebina, H. Funakubo, K. Ono, K. Takada and T. Sasaki, “Robust high-k response in molecularly thin perovskite nanosheets”, ACS NANO, 2010, 4, p. 5225-5232 X. Y. Lang, A. Hirata, T. Fujita and M. W. Chen, “Nanoporous metal/ oxide hybrid electrodes for electrochemical supercapacitors”, Nature Nanotechnology, 2011, 6, p.232-236X. Y. Lang, A. Hirata, T. Fujita and M. W. Chen, “Nanoporous metal / oxide hybrid electrodes for electrochemical supercapacitors”, Nature Nanotechnology, 2011, 6, p.232-236 株式会社日本マイクロニクス、二次電池battenice,〈http://www.mjc.co.jp/product/index3.html〉MICRONICS JAPAN CO., LTD., Rechargeable battery battenice, <http://www.mjc.co.jp/product/index3.html> M. Fukuhara, “Lattice expansion of nanoscale compound particles”, Physics Letters, 2003, A313, p.427-430M. Fukuhara, “Lattice expansion of nanoscale compound particles”, Physics Letters, 2003, A313, p.427-430 M. Fukuhara, T. Kuroda, F. Hasegawa and T. Sueyoshi, “Superior electric storage on an amorphous perfluorinated polymer surface,” Sci. Rep., 2016, 6, 22012M. Fukuhara, T. Kuroda, F. Hasegawa and T. Sueyoshi, “Superior electric storage on an amorphous perfluorinated polymer surface,” Sci. Rep., 2016, 6, 22012

特開2012−253321号公報Japanese Unexamined Patent Publication No. 2012-253321 特開2015−57808号公報Japanese Unexamined Patent Publication No. 2015-578808 特開2016−134934号公報Japanese Unexamined Patent Publication No. 2016-134934 特開2017−41578号公報Japanese Unexamined Patent Publication No. 2017-415578

固体の蓄電材料として、非特許文献4、7、12に記載のものは、仕事関数が比較的大きく、大容量蓄電が可能であるが、さらに大容量の蓄電が可能な材料が求められている。 As solid storage materials, those described in Non-Patent Documents 4, 7 and 12 have a relatively large work function and can store a large amount of electricity, but there is a demand for a material capable of storing a larger amount of electricity. ..

本発明は、このような課題に着目してなされたもので、仕事関数が大きく、より大容量の蓄電が可能な蓄電材料および蓄電デバイスを提供することを目的とする。 The present invention has been made focusing on such a problem, and an object of the present invention is to provide a power storage material and a power storage device having a large work function and capable of storing a larger capacity.

本発明者等は、固体の蓄電材料として、AlOを主成分とするアモルファスに着目し、本発明に至った。すなわち、アモルファスアルミナは、陽極酸化法、ゾル−ゲル法、アルコキシド法等の湿式法や、レーザー蒸着法、プラズマ電解酸化法等の乾式法により生成されるが、いずれも主に4面体のAlOや6面体のAlOのクラスターから構成されており、蓄電効果は認められない。しかしながら、本発明者等は、8面体の酸素欠陥AlOクラスターから成るアモルファスの表面に、0.1〜50nm程度の凹凸を形成することにより、その表面に量子ナノサイズ効果により高蓄電性が発現することを見出し、本発明に至った。さらに、本発明者等は、8面体のAlOクラスターの一部が酸素欠損すると、そこに正電荷が蓄えられ、たとえ表面の吸着電荷量が増えたとしても、その正電荷により電気的中性が保たれるため、絶縁破壊は回避されると考え、本発明に至った。 The present inventors have focused on an amorphous material containing AlO 6 as a main component as a solid storage material, and have reached the present invention. That is, amorphous alumina, anodic oxidation method, a sol - gel method, and an alkoxide method and a wet method, laser deposition method, but is generated by a dry method such as plasma electrolytic oxidation method, both mainly tetrahedral AlO 4 It is composed of a hexahedral AlO 5 cluster, and no storage effect is observed. However, the present inventors, by forming irregularities of about 0.1 to 50 nm on the amorphous surface composed of octahedral oxygen-deficient AlO 6 clusters, high storage capacity is exhibited on the surface by the quantum nanosize effect. The present invention was reached. Furthermore, the present inventors, when a part of the octahedral AlO 6 cluster is oxygen-deficient, a positive charge is stored there, and even if the amount of adsorbed charge on the surface increases, the positive charge causes electrical neutrality. Therefore, it was considered that dielectric breakdown would be avoided, and the present invention was reached.

すなわち、本発明に係る蓄電材料は、表面に、AlOを主成分とするアモルファスから成り、直径が0.1乃至50nm、高低差が0.1乃至50nmの複数の凹凸を有することを特徴とする。特に、前記アモルファスは酸素欠陥状態のAlOを有することが好ましい。 That is, the energy storage material according to the present invention is characterized by having a plurality of irregularities having a diameter of 0.1 to 50 nm and a height difference of 0.1 to 50 nm on the surface thereof, which is made of an amorphous substance containing AlO 6 as a main component. To do. In particular, the amorphous material preferably has AlO 6 in an oxygen-deficient state.

本発明に係る蓄電材料は、直径が0.1乃至50nm、高低差が0.1乃至50nmの表面の複数の凹凸の凸部に生じる、量子ナノサイズ効果による電子吸着現象を利用することにより、蓄電および放電を行うことができる。AlOを主成分とするアモルファスを利用することにより、アモルファスチタニアやアモルファスフッ素ポリマーを利用した従来のものに比べて、仕事関数を大きくすることができ、より大容量の蓄電が可能である。また、本発明に係る蓄電材料は、瞬間あるいは比較的短時間の蓄電が可能であり、大容量蓄電により長時間放電することができる。 The power storage material according to the present invention utilizes an electron adsorption phenomenon due to a quantum nanosize effect that occurs in a plurality of uneven protrusions on a surface having a diameter of 0.1 to 50 nm and a height difference of 0.1 to 50 nm. It can store and discharge electricity. By using an amorphous substance containing AlO 6 as a main component, the work function can be increased and a larger capacity of electricity can be stored as compared with the conventional one using amorphous titania or an amorphous fluoropolymer. Further, the power storage material according to the present invention can store electricity instantaneously or in a relatively short time, and can be discharged for a long time by storing a large amount of electricity.

本発明に係る蓄電材料は、1000℃以上の耐熱性および10000V以上の耐電圧特性を有し、高電圧電線用碍子として使用されているアルミナを原料としているため、耐熱性および耐電圧性に優れている。具体的には、本発明に係る蓄電材料は、500℃までの耐熱性、10000V以上の耐電圧性、比重4以下の低比重を有することができる。これにより、本発明に係る蓄電材料は、重電分野や大気電流(雷)蓄電に最適の材料として使用できると考えられる。 The power storage material according to the present invention has heat resistance of 1000 ° C. or higher and withstand voltage characteristics of 10000 V or higher, and is made of alumina used as an insulator for high-voltage electric wires, and therefore has excellent heat resistance and withstand voltage. ing. Specifically, the power storage material according to the present invention can have heat resistance up to 500 ° C., withstand voltage resistance of 10,000 V or more, and low specific gravity of 4 or less. Therefore, it is considered that the electricity storage material according to the present invention can be used as an optimum material for the heavy electric field and atmospheric current (lightning) electricity storage.

本発明に係る蓄電材料で、表面の複数の凹凸は、直径が0.1乃至30nm、高低差が0.1乃至30nmであることが好ましい。また、本発明に係る蓄電材料は、薄膜状を成していることが好ましい。また、黒色系の色調を呈していることが好ましい。 In the power storage material according to the present invention, it is preferable that the plurality of irregularities on the surface have a diameter of 0.1 to 30 nm and a height difference of 0.1 to 30 nm. Further, the power storage material according to the present invention is preferably in the form of a thin film. Further, it is preferable that the color tone is blackish.

本発明に係る蓄電材料は、電気抵抗率が1TΩcm以上、より好ましくは100TΩ以上、電気容量が10000F/cm〜31000F/cmであることが好ましい。また、1ms〜1分間の瞬時もしくは短時間蓄電、および大容量蓄電により1日以上の長時間放電が可能であることが好ましい。また、30〜100kHzの急速応答充放電性を有していることが好ましい。本発明に係る蓄電材料は、AC/DCコンバーターを用いて50Hz、60Hzの交流を直流に変換することにより、50/1000〜60/1000秒ごとに発電機からの電流を蓄電できると考えられる。これにより、送電線の廃止による固体蓄電体の運搬が可能となり、自動車のみならず、船舶、飛行機等により国内外に自由に運搬することができる。 The power storage material according to the present invention preferably has an electric resistivity of 1 TΩcm or more, more preferably 100 TΩ or more, and an electric capacity of 10000 F / cm 3 to 31000 F / cm 3 . Further, it is preferable that a long-time discharge of 1 day or more is possible by instantaneous or short-time storage of 1 ms to 1 minute and large-capacity storage. Further, it preferably has a rapid response charge / discharge property of 30 to 100 kHz. It is considered that the power storage material according to the present invention can store the current from the generator every 50/1000 to 60/1000 seconds by converting the alternating current of 50 Hz and 60 Hz into direct current using an AC / DC converter. As a result, solid-state power storage bodies can be transported by abolishing power transmission lines, and can be freely transported domestically and internationally not only by automobiles but also by ships and airplanes.

本発明に係る蓄電材料は、前記表面の比表面積が、1000m/g以上であることが好ましい。また、本発明に係る蓄電材料は、MEMS加工のドライエッチングにより、比表面積を10〜100倍に増加可能であることが好ましい。 The storage material according to the present invention preferably has a specific surface area of 1000 m 2 / g or more. Further, it is preferable that the specific surface area of the electricity storage material according to the present invention can be increased 10 to 100 times by dry etching by MEMS processing.

本発明に係る蓄電デバイスは、本発明に係る蓄電材料を有することを特徴とする。
本発明に係る蓄電デバイスは、蓄電材料により、瞬間あるいは比較的短時間の蓄電が可能で、大容量蓄電により長時間放電することができる。
The power storage device according to the present invention is characterized by having the power storage material according to the present invention.
The power storage device according to the present invention can store electricity instantaneously or for a relatively short time depending on the storage material, and can discharge for a long time by storing a large amount of electricity.

本発明に係る蓄電デバイスで、前記蓄電材料は薄膜状であり、前記蓄電材料を挟むよう、前記蓄電材料の両面にそれぞれ設けられた1対の金属電極を有する蓄電体から成ることが好ましい。この場合、凹凸の数に対応した、各金属電極に垂直な複数のナノオーダーの微小キャパシタを有する分布定数型コンデンサと等価となる。すなわち、ナノオーダーの凹凸部そのものが高電気抵抗となり、CとRとの単純並列等価回路で表すことができる。また、微小電気機械システム(MEMS)方法により、Al、Cu等から成る上下の金属電極をスパッタ法やキャスト法で蓄電材料を形成することにより製造することができる。その際、各金属電極が、蓄電材料の表面形状に伴って全面に被覆されることが好ましい。また、−269℃〜500℃で作動可能であることが好ましい。 In the power storage device according to the present invention, it is preferable that the power storage material is in the form of a thin film and is composed of a power storage body having a pair of metal electrodes provided on both sides of the power storage material so as to sandwich the power storage material. In this case, it is equivalent to a distributed constant type capacitor having a plurality of nano-order minute capacitors perpendicular to each metal electrode corresponding to the number of irregularities. That is, the nano-order uneven portion itself has high electrical resistance, and can be represented by a simple parallel equivalent circuit of C and R. Further, it can be manufactured by forming a storage material by a sputtering method or a casting method on upper and lower metal electrodes made of Al, Cu or the like by a microelectromechanical system (MEMS) method. At that time, it is preferable that each metal electrode is coated on the entire surface according to the surface shape of the power storage material. Further, it is preferable that the operation can be performed at -269 ° C to 500 ° C.

本発明に係る蓄電デバイスは、前記蓄電体を複数積層した積層体から成っていてもよい。この場合、例えばスピンコートやディプコート等のMEMS法により並列積層化することができ、各単純並列等価回路が電気集中定数的に結合した固体電子直接蓄電体とすることができる。また、本発明に係る蓄電デバイスは、前記1対の金属電極の間に、前記蓄電材料を各金属電極の内側面に沿って複数並べた並列集積体から成っていてもよい。この場合、1GV/m以上の耐電圧性を得ることもできる。本発明に係る蓄電デバイスは、例えば、マイクロ電子回路の交流用コンデンサや、太陽電池パネルの裏面の蓄電体として利用することができる。 The power storage device according to the present invention may be made of a laminated body in which a plurality of the power storage bodies are laminated. In this case, for example, it can be laminated in parallel by a MEMS method such as spin coating or dip coating, and a solid electron direct storage body in which each simple parallel equivalent circuit is electrically coupled in a lumped constant can be obtained. Further, the power storage device according to the present invention may consist of a parallel aggregate in which a plurality of the power storage materials are arranged along the inner side surface of each metal electrode between the pair of metal electrodes. In this case, a withstand voltage resistance of 1 GV / m or more can be obtained. The power storage device according to the present invention can be used, for example, as an AC capacitor for a microelectronic circuit or a power storage body on the back surface of a solar cell panel.

固体を蓄電体として利用するための物理的蓄電体条件として、以下の5つの条件がある。
(1)固体の表面の仕事関数が大きく、高蓄電性を有すること
(2)固体の表面の電荷量が増えても、絶縁破壊しないこと
(3)正電荷による電気的中性が保たれるようになっていること
(4)電気抵抗が大きいこと
(5)抵抗とコンデンサの直列等価回路と同じ周波数特性を有すること
本発明に係る蓄電材料および蓄電デバイスは、これら5つの条件を全て満たすことができ、固体の蓄電材料および蓄電デバイスとして優れた性能を有している。
There are the following five conditions as physical storage body conditions for using a solid as a storage body.
(1) The work function of the surface of the solid is large and it has high storage capacity. (2) Dielectric breakdown does not occur even if the amount of charge on the surface of the solid increases. (3) Electrical neutrality due to positive charge is maintained. (4) Large electrical resistance (5) Having the same frequency characteristics as the series equivalent circuit of resistance and capacitor The power storage material and power storage device according to the present invention shall satisfy all of these five conditions. It has excellent performance as a solid power storage material and a power storage device.

本発明によれば、仕事関数が大きく、より大容量の蓄電が可能な蓄電材料および蓄電デバイスを提供することができる。 According to the present invention, it is possible to provide a power storage material and a power storage device having a large work function and capable of storing a larger capacity.

本発明の実施の形態の蓄電材料の、試料1の表面の原子間力顕微鏡(AFM)像である。It is an atomic force microscope (AFM) image of the surface of the sample 1 of the storage material of the embodiment of this invention. 本発明の実施の形態の蓄電材料の、試料2の表面の固体核磁気共鳴(NMR)による解析結果を示すスペクトルである。It is a spectrum which shows the analysis result by solid-state nuclear magnetic resonance (NMR) of the surface of the sample 2 of the electricity storage material of embodiment of this invention. 本発明の実施の形態の蓄電材料の、試料2の表面の光学顕微鏡写真である。It is an optical micrograph of the surface of the sample 2 of the storage material of the embodiment of this invention. 本発明の実施の形態の蓄電材料の、試料4の表面の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the surface of the sample 4 of the storage material of the embodiment of this invention. 本発明の実施の形態の蓄電材料の試料2、アモルファスチタニア(a−TiO)およびアモルファスフッ素ポリマー(a−PVE)の直流充放電特性を示すグラフである。It is a graph which shows the DC charge / discharge characteristic of the sample 2, the amorphous titania (a-TiO 2), and the amorphous fluoropolymer (a-PVE) of the energy storage material of the embodiment of this invention. 本発明の実施の形態の蓄電材料の、試料2の周波数特性を示す(a)交流インピーダンスのナイキスト線図、(b)ボード線図のインピーダンス図、(c)ボード線図の位相図である。It is (a) Nyquist diagram of AC impedance, (b) impedance diagram of Bode diagram, and (c) phase diagram of Bode diagram showing the frequency characteristics of sample 2 of the energy storage material of the embodiment of the present invention. 本発明の実施の形態の蓄電材料の、試料4の定電流放電による表面積(Surface Area)と、放電時間(Discharging Time)およびLED点灯時間(Lighting Time)との関係を示すグラフである。It is a graph which shows the relationship between the surface area (Surface Area) by the constant current discharge of the sample 4 and the discharge time (Discharging Time) and LED lighting time (Lighting Time) of the electricity storage material of embodiment of this invention. 本発明の実施の形態の蓄電材料を用いた、MEMS法による積層体から成る蓄電デバイスの作製方法を示す側面図である。It is a side view which shows the manufacturing method of the power storage device which consisted of the laminated body by the MEMS method using the power storage material of embodiment of this invention. 本発明の実施の形態の蓄電材料を用いた、MEMS法により作製された並列集積体から成る蓄電デバイスを示す斜視図である。It is a perspective view which shows the electricity storage device which consists of the parallel aggregate manufactured by the MEMS method using the electricity storage material of embodiment of this invention.

以下、実施例に基づいて、本発明の実施の形態の蓄電材料および蓄電デバイスについて説明する。なお、以下の実施例は、単に本発明の説明のため、その具体的な態様の参考のために提供しているものであり、本願で開示する発明の範囲を限定したり、制限したりするものではない。 Hereinafter, the power storage material and the power storage device according to the embodiment of the present invention will be described based on the examples. The following examples are provided merely for the purpose of explaining the present invention and for reference in specific embodiments thereof, and limit or limit the scope of the invention disclosed in the present application. It's not a thing.

本発明の実施の形態の蓄電材料を製造した。表1に、製造した蓄電材料の母合金組成、母合金の形状、蓄電材料の作製方法、水溶液または気体成分とその蒸着条件、電流密度・電圧・時間・温度の製造条件、製造された蓄電材料の電気抵抗率(TΩcm)、蓄電容量(F/cm)を示す。 The power storage material of the embodiment of the present invention was manufactured. Table 1 shows the composition of the mother alloy of the manufactured electricity storage material, the shape of the mother alloy, the method of producing the electricity storage material, the aqueous solution or gas component and its vapor deposition conditions, the production conditions of the current density / voltage / time / temperature, and the produced electricity storage material. The electrical resistivity (TΩcm) and storage capacity (F / cm 3 ) of the above are shown.

蓄電材料の製造では、まず、Ar雰囲気下で、表1に示す各母合金のインゴットをアーク溶解し、試料1〜3では単ロール液体急冷法により、10m/s以下の冷却速度で冷却してリボン状試料を作製し、試料4および5では双ロール液体急冷法により、10m/s以下の冷却速度で冷却して薄膜試料を作製した。次に、それぞれ表1に示す各条件で、電気分解法またはスパッタ法により、表面にサブナノメートルスケールの凹凸を有する蓄電材料を製造した。 In the production of electricity storage material, firstly, under Ar atmosphere, an ingot of each mother alloy shown in Table 1 was arc melting, the Sample 1-3 single-roll liquid quenching method, the cooling in the following cooling rates 10 6 m / s to prepare a ribbon-shaped samples by samples 4 and 5 in the twin-roll liquid quenching method, to prepare a thin film sample is cooled below the cooling rate of 10 6 m / s. Next, under each of the conditions shown in Table 1, a storage material having sub-nanometer-scale irregularities on the surface was produced by an electrolysis method or a sputtering method.

表1に示すように、試料1〜5の各蓄電材料は、電気抵抗率が80TΩcm〜200TΩであり、電気容量が10000F/cm〜31000F/cmであることが確認された。また、比重4以下の低比重であることも確認した。また、試料1〜5の各蓄電材料とも、−269°〜500℃で作動可能であることも確認した。試料1〜5の各蓄電材料は、アルミナを原料としているため、耐熱性および耐電圧性に優れていると考えられる。これらのことから、各蓄電材料は、重電分野や大気電流(雷)蓄電に最適の材料になると考えられる。 As shown in Table 1, it was confirmed that each storage material of Samples 1 to 5 had an electric resistivity of 80 TΩcm to 200 TΩ and an electric capacity of 10000 F / cm 3 to 31000 F / cm 3. It was also confirmed that the specific gravity was as low as 4 or less. It was also confirmed that each of the storage materials of Samples 1 to 5 can be operated at -269 ° to 500 ° C. Since each of the storage materials of Samples 1 to 5 is made of alumina as a raw material, it is considered that they are excellent in heat resistance and withstand voltage. From these facts, it is considered that each storage material is the most suitable material for the heavy electric field and atmospheric current (lightning) storage.

図1に、試料1の表面の原子間力顕微鏡(AFM)像を示す。図1に示すように、蓄電材料の表面に、直径が50nm以下で、高低差が50nm以下の複数の凹凸を有することが確認された。また、図2に、試料2の表面の固体核磁気共鳴(NMR)による測定結果を示す。図2に示すように、蓄電材料の表面の酸化物は、AlOのクラスターから構成されていることが確認された。 FIG. 1 shows an atomic force microscope (AFM) image of the surface of Sample 1. As shown in FIG. 1, it was confirmed that the surface of the power storage material had a plurality of irregularities having a diameter of 50 nm or less and a height difference of 50 nm or less. Further, FIG. 2 shows the measurement results by solid-state nuclear magnetic resonance (NMR) on the surface of the sample 2. As shown in FIG. 2, it was confirmed that the oxide on the surface of the electricity storage material was composed of AlO 6 clusters.

図3に、試料2の表面の光学顕微鏡写真を示す。図3に示すように、蓄電材料の表面は黒色を呈しており、酸素欠陥状態であることがわかる。なお、従来のアモルファスアルミニウム酸化物は、白色であり、主にAlOやAlOから構成されている。また、試料2では、母合金のYの成分量を増加させることにより、凹凸径を減少可能であることを確認した。 FIG. 3 shows an optical micrograph of the surface of the sample 2. As shown in FIG. 3, the surface of the power storage material is black, indicating that it is in an oxygen-deficient state. The conventional amorphous aluminum oxide is white and is mainly composed of AlO 4 and AlO 5 . Further, in Sample 2, it was confirmed that the uneven diameter can be reduced by increasing the amount of Y component of the mother alloy.

図4に、試料4の表面の走査型電子顕微鏡(SEM)写真を示す。図4に示すように、蓄電材料の表面に、直径約40nmの凸部が均一に分布していることが確認された。
以上の結果から、製造された各蓄電材料の表面の凹凸は、AlOを主成分とするアモルファスから成っていることがわかる。また、各蓄電材料の比表面積は、1000m/g以上であった。
FIG. 4 shows a scanning electron microscope (SEM) photograph of the surface of sample 4. As shown in FIG. 4, it was confirmed that the convex portions having a diameter of about 40 nm were uniformly distributed on the surface of the power storage material.
From the above results, it can be seen that the surface irregularities of each of the manufactured energy storage materials are made of amorphous material containing AlO 6 as a main component. The specific surface area of each storage material was 1000 m 2 / g or more.

試料2の蓄電材料を用いて、直流充放電特性を測定した。表面積1mm×10mmの試料2の薄膜の上下に、銅電極を機械的に固定し、ポテンショスタット/ガルバノスタットにより測定を行った。1mAで10Vまで50秒間充電した後、1nAの定電流放電を行い、放電電圧を測定した。その測定結果を、図5に示す。なお、比較のため、アモルファスチタニア(図中の「a−TiO」)およびアモルファスフッ素ポリマー(図中の「a−PVE」)を用いた材料についても同様の測定を行い、その結果も図5に示す。 The DC charge / discharge characteristics were measured using the storage material of Sample 2. Copper electrodes were mechanically fixed above and below the thin film of Sample 2 having a surface area of 1 mm × 10 mm, and measurement was performed by potentiostat / galvanostat. After charging to 10 V at 1 mA for 50 seconds, a constant current discharge of 1 nA was performed, and the discharge voltage was measured. The measurement result is shown in FIG. For comparison, the same measurement was performed for materials using amorphous titania (“a-TiO 2 ” in the figure) and amorphous fluoropolymer (“a-PVE” in the figure), and the results were also shown in FIG. Shown in.

図5に示すように、試料2の蓄電材料は、放電時間が長く、アモルファスチタニアに比べて約860倍、アモルファスフッ素ポリマーに比べて約20倍の放電時間になっていることが確認された。この結果から、本発明の実施の形態の蓄電材料は、量子ナノサイズ効果により、蓄電および放電を行うことができ、大容量の蓄電が可能であるといえる。また、瞬間あるいは比較的短時間の蓄電で、長時間放電することができるといえる。 As shown in FIG. 5, it was confirmed that the storage material of Sample 2 had a long discharge time, which was about 860 times longer than that of amorphous titania and about 20 times longer than that of the amorphous fluoropolymer. From this result, it can be said that the power storage material according to the embodiment of the present invention can store and discharge electricity due to the quantum nanosize effect, and can store a large amount of electricity. In addition, it can be said that it can be discharged for a long time by storing electricity for a moment or a relatively short time.

なお、電子吸着能の大きさの目安である仕事関数は、試料1〜5の各蓄電材料とも約20eVと計算され、アモルファスチタニアやアモルファスフッ素ポリマーの材料よりも大きくなっており、このことからも、電子吸着能が高く、大容量蓄電が可能であることが確認できた。 The work function, which is a measure of the magnitude of the electron adsorption capacity, is calculated to be about 20 eV for each storage material of Samples 1 to 5, which is larger than that of amorphous titania and amorphous fluoropolymer materials. It was confirmed that it has a high electron adsorption capacity and can store a large amount of electricity.

試料3の蓄電材料を用いて、周波数特性の測定を行った。表面積1mm×10mmの試料3の薄膜の上下に、銅電極を機械的に固定して測定を行った。測定では、1mHz〜1GHzの周波数範囲での、交流インピーダンスのナイキスト線図、および、ボード線図(インピーダンス図、位相図)を測定した。測位結果を、それぞれ図6(a)〜(c)に示す。 The frequency characteristics were measured using the storage material of Sample 3. A copper electrode was mechanically fixed above and below the thin film of Sample 3 having a surface area of 1 mm × 10 mm, and measurement was performed. In the measurement, a Nyquist diagram of AC impedance and a Bode diagram (impedance diagram, phase diagram) in the frequency range of 1 MHz to 1 GHz were measured. The positioning results are shown in FIGS. 6 (a) to 6 (c), respectively.

図6(a)に示すように、ほぼ虚数軸に垂直なナイキスト線図が得られた。また、図6(b)および(c)に示すように、絶対値インピーダンスは、周波数の増加により、−1の勾配で減少し、位相値は、周波数が変化しても、−90°でほぼ変化しないことが確認された。このような周波数特性は、抵抗RおよびキャパシタンスCの単純直列等価回路と同じ特性を示しており、このことから、蓄電材料は直列蓄電体であるといえる。 As shown in FIG. 6 (a), a Nyquist diagram substantially perpendicular to the imaginary axis was obtained. Further, as shown in FIGS. 6 (b) and 6 (c), the absolute value impedance decreases with a gradient of -1 as the frequency increases, and the phase value is approximately −90 ° at −90 ° even when the frequency changes. It was confirmed that it did not change. Such frequency characteristics show the same characteristics as the simple series equivalent circuit of the resistor R and the capacitance C, and from this, it can be said that the storage material is a series storage body.

試料4の蓄電材料を用いて、表面積の増大による積層効果を検証した。表面積を、15、30、45、60、75、80cmとし、それぞれ1nAで10Vまで充電した後、1nAの定電流放電を行い、LEDを点灯させた。このときの蓄電材料の表面積(Surface Area)と、放電時間(Discharging Time)およびLED点灯時間(Lighting Time)との関係を、図7に示す。図7(a)および(b)に示すように、表面積の増大にしたがって、放電時間もLED点灯時間も増大することが確認され、積層効果が認められた。このことから、本発明の実施の形態の蓄電材料の表面は、無数のコンデンサが並列接合した分布定数回路になっているといえる。 Using the electricity storage material of Sample 4, the lamination effect due to the increase in surface area was verified. The surface areas were set to 15, 30, 45, 60, 75, and 80 cm 2, and each was charged to 10 V with 1 nA, and then a constant current discharge of 1 nA was performed to turn on the LED. The relationship between the surface area of the storage material at this time, the discharging time (Discharging Time), and the LED lighting time (Lighting Time) is shown in FIG. As shown in FIGS. 7A and 7B, it was confirmed that the discharge time and the LED lighting time increased as the surface area increased, and the stacking effect was recognized. From this, it can be said that the surface of the power storage material according to the embodiment of the present invention is a distributed constant circuit in which innumerable capacitors are connected in parallel.

図8に示すように、試料2の蓄電材料を用いて、MEMS法により積層体から成る蓄電デバイス10を作製した。まず、ガラス基板(20×20×0.5mm)11の表面に、スパッタによりCr(厚み20nm)/Cu層(厚み500nm)12を形成し(図8.1参照)、その上にフォトレジスト13を塗布してパターニングし(図8.2参照)、エッチングを行った後、フォトレジスト13を除去した(図8.3参照)。その上にポリイミド層(厚み5μm)14をコーティングし、150℃で乾燥させた(図8.4参照)。 As shown in FIG. 8, a power storage device 10 made of a laminated body was produced by the MEMS method using the power storage material of Sample 2. First, a Cr (thickness 20 nm) / Cu layer (thickness 500 nm) 12 is formed on the surface of a glass substrate (20 × 20 × 0.5 mm) 11 by sputtering (see FIG. 8.1), and a photoresist 13 is formed on the Cr (thickness 20 nm) / Cu layer (thickness 500 nm) 12. Was applied and patterned (see FIG. 8.2), and after etching, the photoresist 13 was removed (see FIG. 8.3). A polyimide layer (thickness 5 μm) 14 was coated on the polyimide layer and dried at 150 ° C. (see FIG. 8.4).

次に、ポリイミド層14の上に、リボン状の蓄電材料15を載置し(図8.5参照)、その上にフォトレジスト16を塗布してパターニングし(図8.6参照)、さらにフォトレジスト16以外の部分にポリイミド層(厚み5μm)17をコーティングして、150℃で乾燥させた(図8.7参照)。次に、フォトレジスト16を除去し(図8.8参照)、表面にスパッタによりAl層18を形成した(図8.9参照)。ガラス基板11を取り除き、それを1枚の蓄電層とし、間に絶縁体を挟みながら、蓄電層を複数枚積層した。 Next, a ribbon-shaped power storage material 15 is placed on the polyimide layer 14 (see FIG. 8.5), a photoresist 16 is applied onto the polyimide layer 14 for patterning (see FIG. 8.6), and further, a photo A polyimide layer (thickness 5 μm) 17 was coated on a portion other than the resist 16 and dried at 150 ° C. (see FIG. 8.7). Next, the photoresist 16 was removed (see FIG. 8.8), and an Al layer 18 was formed on the surface by sputtering (see FIG. 8.9). The glass substrate 11 was removed to form one storage layer, and a plurality of storage layers were laminated with an insulator sandwiched between them.

こうして、作製された積層体は、一番上の蓄電層のAl層18と、一番下の蓄電層のCr/Cu層12のCu層とを端子として、各蓄電層の蓄電材料15が並列接合されたものとなっている。このため、例えば、蓄電層を100段積層した積層体は、1枚の蓄電層の100倍の容量を有している。なお、各蓄電層を集中定数回路により並列接合させても、蓄電量の低下は認められなかった。 In the laminated body thus produced, the storage material 15 of each storage layer is arranged in parallel with the Al layer 18 of the top storage layer and the Cu layer of the Cr / Cu layer 12 of the bottom storage layer as terminals. It is joined. Therefore, for example, a laminated body in which 100 storage layers are laminated has a capacity 100 times that of a single storage layer. Even if each storage layer was joined in parallel by a lumped constant circuit, no decrease in the amount of storage was observed.

図9に示すように、試料5の蓄電材料を用いて、MEMS法により、Al層18から成る上部金属電極と、Cr/Cu層12のCu層から成る下部金属電極との間に、各金属電極の内側面に沿って、蓄電材料15を複数並べた並列集積体から成る蓄電デバイス20を作製した。なお、各蓄電材料15にはリード線21を接続し、下部金属電極の下にはガラス基板11を設けている。 As shown in FIG. 9, each metal is placed between the upper metal electrode made of the Al layer 18 and the lower metal electrode made of the Cu layer of the Cr / Cu layer 12 by the MEMS method using the storage material of the sample 5. A power storage device 20 made of a parallel aggregate in which a plurality of power storage materials 15 are arranged along the inner surface of the electrode was produced. A lead wire 21 is connected to each storage material 15, and a glass substrate 11 is provided under the lower metal electrode.

試料5は、母合金がムライトAl13Siであり、10000V以上の耐電圧性を有しているため、蓄電デバイス20は、大型雷蓄電用に用いることができる。また、蓄電デバイス20は、各蓄電材料15にリード線21が接続された、1A以下の分散電流方式になっているため、高電流による消失・破壊を避けることができる。 Since the mother alloy of sample 5 is mullite Al 6 O 13 Si 2 and has a withstand voltage resistance of 10000 V or more, the power storage device 20 can be used for large-scale lightning power storage. Further, since the power storage device 20 has a distributed current system of 1 A or less in which a lead wire 21 is connected to each power storage material 15, it is possible to avoid disappearance or destruction due to a high current.

10、20 蓄電デバイス
11 ガラス基板
12 Cr/Cu層
13 フォトレジスト
14 ポリイミド層
15 蓄電材料
16 フォトレジスト
17 ポリイミド層
18 Al層
21 リード線
10, 20 Power storage device 11 Glass substrate 12 Cr / Cu layer 13 Photoresist 14 Polyimide layer 15 Power storage material 16 photoresist 17 Polyimide layer 18 Al layer 21 Lead wire

Claims (8)

表面に、AlOを主成分とするアモルファスから成り、直径が0.1乃至50nm、高低差が0.1乃至50nmの複数の凹凸を有することを特徴とする蓄電材料。 A power storage material having a surface formed of an amorphous substance containing AlO 6 as a main component and having a plurality of irregularities having a diameter of 0.1 to 50 nm and a height difference of 0.1 to 50 nm. 前記アモルファスは酸素欠陥状態のAlOを有することを特徴とする請求項1記載の蓄電材料。 The storage material according to claim 1, wherein the amorphous material has AlO 6 in an oxygen-deficient state. 電気抵抗率が1TΩcm以上、電気容量が10000F/cm〜31000F/cmであることを特徴とする請求項1または2記載の蓄電材料。 The power storage material according to claim 1 or 2, wherein the electrical resistivity is 1 TΩcm or more and the electrical capacity is 10000 F / cm 3 to 31000 F / cm 3. 前記表面の比表面積が、1000m/g以上であることを特徴とする請求項1乃至3のいずれか1項に記載の蓄電材料。 The power storage material according to any one of claims 1 to 3, wherein the specific surface area of the surface is 1000 m 2 / g or more. 請求項1乃至4のいずれか1項に記載の蓄電材料を有することを特徴とする蓄電デバイス。 A power storage device comprising the power storage material according to any one of claims 1 to 4. 前記蓄電材料は薄膜状であり、前記蓄電材料を挟むよう、前記蓄電材料の両面にそれぞれ設けられた1対の金属電極を有する蓄電体から成ることを特徴とする請求項5記載の蓄電デバイス。 The power storage device according to claim 5, wherein the power storage material is in the form of a thin film, and comprises a power storage body having a pair of metal electrodes provided on both sides of the power storage material so as to sandwich the power storage material. 前記蓄電体を複数積層した積層体から成ることを特徴とする請求項6記載の蓄電デバイス。 The power storage device according to claim 6, further comprising a laminated body in which a plurality of the power storage bodies are laminated. 前記1対の金属電極の間に、前記蓄電材料を各金属電極の内側面に沿って複数並べた並列集積体から成ることを特徴とする請求項6記載の蓄電デバイス。
The power storage device according to claim 6, wherein a plurality of the power storage materials are arranged in parallel between the pair of metal electrodes along the inner side surface of each metal electrode.
JP2017100712A 2017-05-22 2017-05-22 Power storage materials and storage devices Active JP6839386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100712A JP6839386B2 (en) 2017-05-22 2017-05-22 Power storage materials and storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100712A JP6839386B2 (en) 2017-05-22 2017-05-22 Power storage materials and storage devices

Publications (2)

Publication Number Publication Date
JP2018195777A JP2018195777A (en) 2018-12-06
JP6839386B2 true JP6839386B2 (en) 2021-03-10

Family

ID=64569035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100712A Active JP6839386B2 (en) 2017-05-22 2017-05-22 Power storage materials and storage devices

Country Status (1)

Country Link
JP (1) JP6839386B2 (en)

Also Published As

Publication number Publication date
JP2018195777A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
Xie et al. Electrochemical flexible supercapacitor based on manganese dioxide-titanium nitride nanotube hybrid
US10644324B2 (en) Electrode material and energy storage apparatus
Pendashteh et al. Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor
JP2023087098A (en) Porous interconnected wavy carbon-based network (iccn) composite material
JP5704726B2 (en) All-solid electrochemical double layer supercapacitor
Zhu et al. Graphene-anchored NiCoO2 nanoarrays as supercapacitor electrode for enhanced electrochemical performance
KR20170083571A (en) Printed supercapacitors based on graphene
US20130078510A1 (en) Core-shell nanoparticles in electronic battery applications
JP2006523384A (en) Charge storage device with enhanced power characteristics
Shabeeba et al. A graphene-based flexible supercapacitor using trihexyl (tetradecyl) phosphonium bis (trifluoromethanesulfonyl) imide ionic liquid electrolyte
JPWO2016063925A1 (en) Planar energy cell structure, energy cell structure array using the same, micro energy device, and manufacturing method thereof
Al-Osta et al. NiO@ CuO@ Cu bilayered electrode: two-step electrochemical synthesis supercapacitor properties
JP7229472B2 (en) Ultracapacitor materials and ultracapacitors
JP6839386B2 (en) Power storage materials and storage devices
JP6498945B2 (en) Power storage device and manufacturing method thereof
Kurra et al. Solution processed sun baked electrode material for flexible supercapacitors
TWI475583B (en) A structure and fabrication method of nano metal wires solid capacitor
JP6628241B2 (en) Energy storage materials and energy storage devices
WO2014112337A1 (en) Dielectric material and electrochemical element using same
JP2016207994A (en) High capacity capacitor device
KR102422011B1 (en) Graphene cell and manufacturing method
Srivastava et al. Layered Sb 2 Te 3 Nanoflakes as Chalcogenide Dielectrics
JP3216923U (en) Large capacity capacitor device
Rajni et al. Metal-based hybrid capacitors 17
JP2002231586A (en) Electrode for electric double-layered capacitor and electric double-layered capacitor using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210127

R150 Certificate of patent or registration of utility model

Ref document number: 6839386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250