JP6628241B2 - Energy storage materials and energy storage devices - Google Patents

Energy storage materials and energy storage devices Download PDF

Info

Publication number
JP6628241B2
JP6628241B2 JP2015163412A JP2015163412A JP6628241B2 JP 6628241 B2 JP6628241 B2 JP 6628241B2 JP 2015163412 A JP2015163412 A JP 2015163412A JP 2015163412 A JP2015163412 A JP 2015163412A JP 6628241 B2 JP6628241 B2 JP 6628241B2
Authority
JP
Japan
Prior art keywords
power storage
storage material
storage device
electric
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015163412A
Other languages
Japanese (ja)
Other versions
JP2017041578A (en
Inventor
幹夫 福原
幹夫 福原
史彦 長谷川
史彦 長谷川
共之 黒田
共之 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2015163412A priority Critical patent/JP6628241B2/en
Publication of JP2017041578A publication Critical patent/JP2017041578A/en
Application granted granted Critical
Publication of JP6628241B2 publication Critical patent/JP6628241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、蓄電材料および蓄電デバイスに関する。   The present invention relates to a power storage material and a power storage device.

コンデンサは本来、静電容量により電荷(電気エネルギー)を蓄えたり、放電したりする電子部品であり、パソコンや携帯電話等のモバイル電子機器において、電源の安定性、バックアップ回路、カップリング素子、ノイズフィルター等の役割を担い、電子機器にとって不可欠の部品である。近年、携帯電話や超小型記憶装置などの高機能IT製品および電気自動車用バッテリが急速に進化し、より一層小型で、大容量かつメモリ等の高機能を有するコンデンサの需要が高まっている。特に、地球温暖化防止のためのグリーンイノベーション(低炭素化)に合致したスマートグリッド(次世代送電網)社会に適合した製品が求められている。   Capacitors are electronic components that store or discharge electric charge (electric energy) due to their capacitance. In mobile electronic devices such as personal computers and mobile phones, the stability of power supplies, backup circuits, coupling elements, and noise It plays the role of a filter, etc., and is an indispensable part for electronic equipment. In recent years, high-performance IT products such as mobile phones and ultra-small storage devices and batteries for electric vehicles have rapidly evolved, and the demand for capacitors that are even smaller, have large capacities, and have high functions such as memories has increased. In particular, there is a need for a product that is suitable for a smart grid (next generation transmission network) society that matches green innovation (low-carbonization) for preventing global warming.

コンデンサは、用途により、高電圧電力回路(重電)用と電子・電気機器回路(弱電)用に大別される。このうち、弱電分野の電子・電気機器回路用のコンデンサとしては、主にセラミックコンデンサが用いられており、二次電池も携帯電話等の電気貯蔵用として重用されている。   Capacitors are roughly classified into high-voltage power circuits (heavy electricity) and electronic / electrical equipment circuits (light electricity), depending on the application. Among them, ceramic capacitors are mainly used as capacitors for electronic / electric equipment circuits in the field of light electricity, and secondary batteries are also heavily used for electric storage of mobile phones and the like.

コンデンサを用いた蓄電体は、1pFから数十mFまで広範囲に電子・電気機器の主要構成部品として利用されている。蓄電容量C(F)は、
C=Q/V=ε×(A/d)
(ここで、Q:電荷、V:電圧、ε:誘電率、A:電極面積、d:電極間距離)で与えられるため、電極面積が大きく、電極間距離が小さいほど高電荷容量が得られる。しかしながら、電子・電気機器の軽薄短小化や、要求される蓄電容量の観点から、電極面積Aを大きくし、電極間距離dを小さくして極大容量にすることや、電極面積Aを小さくし、電極間距離dを大きくして極小容量にすることは困難である。
Power storage units using capacitors are widely used from 1 pF to several tens of mF as main components of electronic and electrical equipment. The storage capacity C (F) is
C = Q / V = ε × (A / d)
(Here, Q: electric charge, V: voltage, ε: dielectric constant, A: electrode area, d: distance between electrodes) Therefore, the larger the electrode area and the smaller the distance between electrodes, the higher the charge capacity. . However, from the viewpoint of reducing the size and weight of electronic and electric devices and the required storage capacity, the electrode area A is increased, the distance d between the electrodes is reduced to achieve the maximum capacity, and the electrode area A is reduced. It is difficult to increase the distance d between the electrodes to minimize the capacitance.

蓄電体に関して、本発明者らは、Al,Ti,Vを表面抽出除去させたSi−(Al,Ti,V)合金やTiO被覆Ti−Ni−Si系非晶質合金において、電荷が直流、交流にかかわらず蓄積できることを発見した(例えば、非特許文献1乃至5、特許文献1、2参照)。 Regarding the power storage device, the present inventors have found that the charge of direct current is low in a Si— (Al, Ti, V) alloy or a TiO 2 coated Ti—Ni—Si amorphous alloy in which Al, Ti, and V are surface-extracted and removed. It has been found that the data can be stored regardless of the AC (for example, see Non-Patent Documents 1 to 5, and Patent Documents 1 and 2).

また、膜厚10nm以下で、誘電率210〜240を有するぺロブスカイトSrNb10、CaNb10のナノシート薄膜コンデンサ素子の研究が報告されているが(例えば、非特許文献6参照)、電極間距離が大きく、セラミックスのため、電極材との接合が容易でなく、接触抵抗は高い。また、化学電解液中でのMnO被覆ナノポーラスAu系非晶質合金セパレータにおいて1,160F/cmの高比容量が報告されているが(例えば、非特許文献7参照)、これも従来の電気化学電池の応用である。 In addition, research has been reported on nanosheet thin film capacitor elements of perovskite Sr 2 Nb 3 O 10 and Ca 2 Nb 3 O 10 having a film thickness of 10 nm or less and having a dielectric constant of 210 to 240 (for example, Non-Patent Document 6). ), The distance between the electrodes is large, and because of the ceramics, bonding with the electrode material is not easy, and the contact resistance is high. A high specific capacity of 1,160 F / cm 3 has been reported for a nanoporous Au-based amorphous alloy separator coated with MnO 2 in a chemical electrolyte (for example, see Non-Patent Document 7). This is an application of an electrochemical cell.

さらに、電圧1.5V,電力500Wh/L、出力密度8kW/L、サイクル寿命10万回、動作温度範囲−25℃〜+85℃の物理的二次電池が開発されているが(例えば、非特許文献8参照)、半導体のバンドギャップ中に電子捕獲準位を形成し、この準位に電位を充填するか空にするかにより充放電を行うショットキー接合を利用したものであり、電圧は1.5Vに制限される。   Further, a physical secondary battery having a voltage of 1.5 V, a power of 500 Wh / L, an output density of 8 kW / L, a cycle life of 100,000 times, and an operating temperature range of −25 ° C. to + 85 ° C. has been developed (for example, non-patented). Reference 8), which uses a Schottky junction in which an electron trap level is formed in a band gap of a semiconductor and charge / discharge is performed by filling or emptying the level with an electric potential. .5V.

なお、ペルフルオロ(ブテニルビニルエーテル)の5員環構造と、-(CF2-CF2)-ユニットとが交互に存在する環化重合主鎖に、例えばγ-アミノプロピルトリエトキシランのような極性官能基のアミノシランを添加剤として加えることにより、ナノメートルオーダーのアミノシランクラスタが形成され、その構造を利用することにより、表面電位が高いエレクトレットが得られている(例えば、非特許文献9または特許文献3参照)。 In addition, the cyclic polymerization main chain in which the 5-membered ring structure of perfluoro (butenyl vinyl ether) and the-(CF 2 -CF 2 )-unit are alternately present has a polar group such as γ-aminopropyltriethoxysilane. By adding aminosilane as a functional group as an additive, an aminosilane cluster on the order of nanometers is formed, and an electret having a high surface potential is obtained by utilizing its structure (for example, Non-Patent Document 9 or Patent Document 3).

M. Fukuhara, T. Araki, K. Nagayama and H. Sakuraba, “Electric storage in de-alloyed Si-Al alloy ribbons”, EuroPhys. Lett., 2012, 99 ,47001M. Fukuhara, T. Araki, K. Nagayama and H. Sakuraba, “Electric storage in de-alloyed Si-Al alloy ribbons”, EuroPhys. Lett., 2012, 99, 47001 M. Fukuhara, “Electric Charging/Discharging Characteristics of Capacitor, Using De-alloyed Si-20Al Alloy Ribbons”, Elect. Electr. Eng., 2013, 3(2), p.72-76M. Fukuhara, “Electric Charging / Discharging Characteristics of Capacitor, Using De-alloyed Si-20Al Alloy Ribbons”, Elect.Electr. Eng., 2013, 3 (2), p.72-76 M. Fukuhara and H. Yoshida, “AC charging/discharging of de-alloyed Si-Al-V alloy ribbons”, J. Alloys and Comp., 2014, 586, S130-S133M. Fukuhara and H. Yoshida, “AC charging / discharging of de-alloyed Si-Al-V alloy ribbons”, J. Alloys and Comp., 2014, 586, S130-S133 M. Fukuhara, H. Yoshida, M. Sato, K. Sugawara, T. Takeuchi, I. Seki, and T. Sueyoshi, “Superior electric storage in de-alloyed and anodic oxidized Ti-Ni-Si glassy alloy ribbons”, Phys. Stat. Sol. RRL, 2013, 7(7), p.477-480M. Fukuhara, H. Yoshida, M. Sato, K. Sugawara, T. Takeuchi, I. Seki, and T. Sueyoshi, “Superior electric storage in de-alloyed and anodic oxidized Ti-Ni-Si glassy alloy ribbons”, Phys. Stat. Sol.RRL, 2013, 7 (7), p.477-480 M. Fukuhara and K. Sugawara, “Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons”, Nanoscale. Res. Lett., 2014, 9, p.253M. Fukuhara and K. Sugawara, “Electric charging / discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons”, Nanoscale. Res. Lett., 2014, 9, p.253 M. Osada, K. Akatsuka, Y. Ebina, H. Funakubo, K. Ono, K. Takada and T. Sasaki, “Robust high-k response in molecularly thin perovskite nanosheets”, ACS NANO, 2010, 4, p.5225-5232M. Osada, K. Akatsuka, Y. Ebina, H. Funakubo, K. Ono, K. Takada and T. Sasaki, “Robust high-k response in molecularly thin perovskite nanosheets”, ACS NANO, 2010, 4, p. 5225-5232 X. Y. Lang, A. Hirata, T. Fujita and M. W. Chen, “Nanoporous metal/ oxide hybrid electrodes for electrochemical supercapacitors”, Nature Nanotechnology, 2011, 6, p.232-236X. Y. Lang, A. Hirata, T. Fujita and M. W. Chen, “Nanoporous metal / oxide hybrid electrodes for electrochemical supercapacitors”, Nature Nanotechnology, 2011, 6, p.232-236 株式会社日本マイクロニクス、二次電池battenice,〈http://www.mjc.co.jp/product/index3.html〉Japan Micronics Co., Ltd., rechargeable battery battenice, <http://www.mjc.co.jp/product/index3.html> K. Kashiwagi, K. Okano, T. Miyajima, Y. Sera, N. Tanabe, Y. Morizawa and Y. Suzuki, “Nano-cluster-enhanced high-performance perfluoro-polymer electrets for energy harvesting”, J.Micromech.Microeng., 2011, 21, 125016K. Kashiwagi, K. Okano, T. Miyajima, Y. Sera, N. Tanabe, Y. Morizawa and Y. Suzuki, “Nano-cluster-enhanced high-performance perfluoro-polymer electrets for energy harvesting”, J. Micromech. Microeng., 2011, 21, 125016

特開2012−253321号公報JP 2012-253321 A 特開2015−57808号公報JP 2015-57808 A 国際公開WO2009/128503号International Publication WO2009 / 128503

非特許文献1乃至8、ならびに、特許文献1および2に記載の、弱電分野におけるコンデンサ等の蓄電材料は、化学的イオン移動を利用しているため、応答が遅く、瞬間あるいは比較的短時間の蓄電ができないという課題があった。また、耐電圧も4V程度であり、大容量蓄電ができず、長時間放電も不可能であるという課題があった。   Non-Patent Documents 1 to 8 and Patent Documents 1 and 2 disclose that electric storage materials such as capacitors in the field of weak electricity use chemical ion transfer, and therefore have a slow response and have an instantaneous or relatively short time. There was a problem that electricity could not be stored. In addition, the withstand voltage is about 4 V, there is a problem that large-capacity power storage cannot be performed, and long-term discharge is impossible.

本発明は、このような課題に着目してなされたもので、瞬間あるいは比較的短時間の蓄電が可能で、大容量蓄電により長時間放電することができる蓄電材料および蓄電デバイスを提供することを目的とする。   The present invention has been made in view of such problems, and it is an object of the present invention to provide a power storage material and a power storage device which can store power instantaneously or for a relatively short time and can discharge for a long time by large-capacity power storage. Aim.

本発明者等は、非特許文献9および特許文献3に記載のアモルファス樹脂の構造分析を行ったところ、5員環炭素原子の周囲をフッ素原子がらせん状に覆うように配置され、CF2ユニットを介して、アミノシランが側鎖として主鎖の周辺に配置されていることを発見した。また、CF2ユニットとシラン主体との間には、フッ素/非フッ素による(化学的)相分離で形成されたカルボニル基とアミノ基とが、ナノメートルオーダーのクラスターとしてアモルファス構造を形成し、強烈な正イオンサイトとして機能していることも発見した。 The present inventors performed a structural analysis of the amorphous resin described in Non-Patent Document 9 and Patent Document 3, and found that a fluorine atom was arranged in a spiral shape around a 5-membered ring carbon atom, and the CF 2 unit It has been found that aminosilanes are arranged as side chains around the main chain. In addition, between the CF 2 unit and the silane main body, carbonyl groups and amino groups formed by (chemical) phase separation by fluorine / non-fluorine form an amorphous structure as clusters on the order of nanometers. It also found that it functions as a positive ion site.

さらに、フッ素ポリマー表面の電子吸着能の大きさの目安である仕事関数は9〜14eVと、現存する物質中最大の値が観察された。フッ素元素は、帯電列で最も大きい電子吸着能を持っていることはよく知られている。   Further, the work function as a measure of the magnitude of the electron adsorption ability on the surface of the fluoropolymer was 9 to 14 eV, which was the largest value among the existing substances. It is well known that elemental fluorine has the largest electron adsorption capacity in the charging train.

また、このフッ素/非フッ素相分離体の表面は、直径0.1〜30nmの複数の凹凸が形成されているという特徴も発見した。ここで、1GΩcm以上の高電気抵抗のフッ素または塩素樹脂表面上に、直径が0.1〜30nm、高低差が0.1〜30nmの凹凸が形成されたとき、その凸部に過剰な電子吸着現象が生じることが、既に本発明者等によって発見されている(非特許文献4参照)。これは、Au, Ag, Cu, Ptの金属粒子が100nm以下、望ましくは30nm以下のとき、最外層電子に対して内部原子の電子が急激に増大し、格子収縮を起こさせる現象であり、ナノサイズ固体表面に起こる電子遮蔽の理論によって説明される量子現象である。また、孔径がナノサイズで小さくなればなるほど、その電子吸着能は放物線的に増大する。   Further, the present inventors also discovered that the surface of the fluorine / non-fluorine phase separator had a plurality of irregularities having a diameter of 0.1 to 30 nm. Here, when irregularities having a diameter of 0.1 to 30 nm and a height difference of 0.1 to 30 nm are formed on the surface of a fluorine or chlorine resin having a high electric resistance of 1 GΩcm or more, excessive electron adsorption is caused on the projections. The occurrence of the phenomenon has already been discovered by the present inventors (see Non-Patent Document 4). This is a phenomenon that when the metal particles of Au, Ag, Cu, and Pt are 100 nm or less, desirably 30 nm or less, the electrons of internal atoms rapidly increase with respect to the outermost layer electrons, causing lattice shrinkage. This is a quantum phenomenon explained by the theory of electron shielding that occurs on the surface of a solid body. Also, the smaller the pore size is in nano size, the more the electron-adsorbing ability thereof becomes parabolically.

以上の知見に基づいて、本発明者等は、フッ素/非フッ素相分離体の表面に過剰な電子吸着現象により電荷量が増えたとしても、フッ素原子とクラスターとの間の双極子微細空間に電気二重層的に正電荷が蓄えられているため、この正電荷により電気的中性が保たれ、絶縁破壊は回避されると考え、本発明に至った。   Based on the above findings, the present inventors have found that even if the amount of charge increases due to the excessive electron adsorption phenomenon on the surface of the fluorine / non-fluorine phase separator, the dipole fine space between the fluorine atoms and the clusters will Since positive electric charges are stored in an electric double layer, it is considered that electrical neutrality is maintained by the positive electric charges and dielectric breakdown is avoided, and the present invention has been accomplished.

すなわち、本発明に係る蓄電材料は、電子親和力が290kJ/mol以上の元素を含み、(1)式で表されるアモルファスフッ素樹脂の両端に、側鎖としてアミノシリル基またはカルボニル基が接続されたアモルファスポリマーから成り、表面に、直径が0.1乃至30nm、高低差が0.1乃至30nmの複数の凹凸を有し、電気抵抗率が1GΩcm以上、吸水率が0.01%未満であることを特徴とする。
In other words, electricity storage material according to the present invention, electron affinity seen contains the above elements 290kJ / mol, (1) at both ends of the amorphous fluorine resin represented by formula, aminosilyl group or a carbonyl group is connected as a side chain It is made of an amorphous polymer, has a plurality of irregularities on the surface with a diameter of 0.1 to 30 nm, a height difference of 0.1 to 30 nm, an electric resistivity of 1 GΩcm or more, and a water absorption of less than 0.01%. It is characterized by.

本発明に係る蓄電材料は、直径が0.1乃至30nm、高低差が0.1乃至30nmの表面の複数の凹凸の凸部に生じる電子吸着現象を利用することにより、蓄電および放電を行うことができる。特に、瞬間あるいは比較的短時間の蓄電が可能で、大容量蓄電により長時間放電することができる。   The electricity storage material according to the present invention performs electricity storage and discharge by utilizing an electron adsorption phenomenon generated in a plurality of projections of unevenness on a surface having a diameter of 0.1 to 30 nm and a height difference of 0.1 to 30 nm. Can be. In particular, power can be stored instantaneously or for a relatively short time, and large-capacity power can be discharged for a long time.

本発明に係る蓄電材料は、アモルファスポリマーの表面に1mF/cm3〜10,000 F/cm3の電荷を蓄電可能であることが好ましい。また、1ms〜1分間の瞬時または短時間蓄電が可能、かつ、1日以上の長時間放電が可能であることが好ましい。また、30〜100kHzの急速応答充放電性を有していることが好ましい。アモルファスポリマーの表面積が1,000 m2/g以上の比表面積を有することが好ましい。また、アモルファスポリマーが、ポリ塩化ビニリデン基アモルファス樹脂から成っていてもよい。また、アモルファスポリマーは、光学的に透明で、光応答蓄電性を有していることが好ましい。 The power storage material according to the present invention is preferably capable of storing a charge of 1 mF / cm 3 to 10,000 F / cm 3 on the surface of the amorphous polymer. In addition, it is preferable that electric power can be stored instantaneously or in a short time for 1 ms to 1 minute, and discharge can be performed for a long time of one day or more. Further, it is preferable to have a rapid response charge / discharge property of 30 to 100 kHz. The amorphous polymer preferably has a specific surface area of 1,000 m 2 / g or more. Further, the amorphous polymer may be made of a polyvinylidene chloride-based amorphous resin. Further, it is preferable that the amorphous polymer is optically transparent and has a light-responsive electric storage property.

本発明に係る蓄電材料は、薄膜状を成し、キャスト法、溶融成形法、焼結法、スピンコート法またはスパッタ法により形成されることが好ましい。また、MEMS加工のドライエッチングにより、比表面積を10〜100倍増加可能であることが好ましい。   The electricity storage material according to the present invention preferably has a thin film shape and is formed by a casting method, a melt molding method, a sintering method, a spin coating method or a sputtering method. Further, it is preferable that the specific surface area can be increased by 10 to 100 times by dry etching in the MEMS processing.

本発明に係る蓄電デバイスは、本発明に係る蓄電材料を有することを特徴とする。
本発明に係る蓄電デバイスは、蓄電材料により、瞬間あるいは比較的短時間の蓄電が可能で、大容量蓄電により長時間放電することができる。
An electric storage device according to the present invention includes the electric storage material according to the present invention.
The power storage device according to the present invention can store power instantaneously or for a relatively short time by using a power storage material, and can discharge for a long time by large-capacity power storage.

本発明に係る蓄電デバイスで、前記蓄電材料は薄膜状であり、前記蓄電材料を挟むよう、前記蓄電材料の両面にそれぞれ設けられた1対の金属電極を有する蓄電体から成ることが好ましい。この場合、凹凸の数に対応した、各金属電極に垂直な複数のナノオーダーの微小キャパシタを有しているのと等価である。すなわち、各凹凸が高電気抵抗となり、CとRとの単純並列等価回路で表すことができる。また、微小電気機械システム(MEMS)方法により製造することができる。また、100MV/m以上の耐電圧性を有していることが好ましい。また、−269℃〜300℃で作動可能であることが好ましい。   In the power storage device according to the present invention, it is preferable that the power storage material is in the form of a thin film, and is formed of a power storage body having a pair of metal electrodes provided on both surfaces of the power storage material so as to sandwich the power storage material. In this case, it is equivalent to having a plurality of nano-order minute capacitors perpendicular to each metal electrode corresponding to the number of irregularities. That is, each concavity and convexity has a high electric resistance, and can be represented by a simple parallel equivalent circuit of C and R. Further, it can be manufactured by a micro electro mechanical system (MEMS) method. In addition, it is preferable that it has a withstand voltage of 100 MV / m or more. Further, it is preferable that the device can be operated at -269 ° C to 300 ° C.

本発明に係る蓄電デバイスは、前記蓄電体を複数積層した積層体から成っていてもよい。この場合、例えばスピンコートやディプコート等のMEMS法により並列積層化することができ、各単純並列等価回路が電気集中定数的に結合した固体電子直接蓄電体になっている。本発明に係る蓄電デバイスは、マイクロ電子回路の交流用コンデンサや、太陽電池パネルの裏面において蓄電体として利用することができる。   The power storage device according to the present invention may be formed of a laminate in which a plurality of the power storage bodies are stacked. In this case, for example, the layers can be stacked in parallel by a MEMS method such as spin coating or dip coating, and each simple parallel equivalent circuit is a solid-state electronic direct storage device in which electric lumped constants are coupled. The power storage device according to the present invention can be used as an AC capacitor of a microelectronic circuit or a power storage body on the back surface of a solar cell panel.

本発明によれば、瞬間あるいは比較的短時間の蓄電が可能で、大容量蓄電により長時間放電することができる蓄電材料および蓄電デバイスを提供することができる。   According to the present invention, it is possible to provide a power storage material and a power storage device capable of storing power instantaneously or for a relatively short time and discharging for a long time by large-capacity power storage.

本発明の実施の形態の蓄電材料の(a)表面形状原子間力顕微鏡(AFM)像、(b)走査型非接触Kelvinプローブ(SKPM)像である。2A is a surface shape atomic force microscope (AFM) image, and FIG. 2B is a scanning non-contact Kelvin probe (SKPM) image of the electricity storage material according to the embodiment of the present invention. 図1に示す蓄電材料の直流充放電特性を示す(a)自然放電のとき放電量、(b)定電流放電のときの放電量のグラフである。2A and 2B are graphs showing DC charge / discharge characteristics of the power storage material shown in FIG. 1, in which (a) a discharge amount at the time of spontaneous discharge, and (b) a discharge amount at the time of constant current discharge. 図1に示す蓄電材料の周波数特性を示す(a)交流インピーダンスのナイキスト線図、(b)ボード線図のインピーダンス図、(c)ボード線図の位相図、(d)キャパシタンス図である。2A is a Nyquist diagram of AC impedance, FIG. 2B is an impedance diagram of a Bode diagram, FIG. 3C is a phase diagram of a Bode diagram, and FIG. 図1に示す蓄電材料の表面積を変えたときの直流充放電特性を示す(a)自然放電のときの放電量、(b)定電流放電のときの放電量、(c)面積に対する放電量のグラフである。FIG. 1 shows the DC charging / discharging characteristics when the surface area of the electricity storage material shown in FIG. 1 is changed. (A) Discharge amount at spontaneous discharge, (b) Discharge amount at constant current discharge, (c) Discharge amount with respect to area. It is a graph. 本発明の実施の形態の蓄電材料を用いた、MEMS法による積層体の作製方法を示す側面図である。It is a side view showing the manufacturing method of the layered product by the MEMS method using the electric storage material of an embodiment of the invention.

以下、実施例に基づいて、本発明の実施の形態の蓄電材料および蓄電デバイスについて説明する。   Hereinafter, a power storage material and a power storage device according to an embodiment of the present invention will be described based on examples.

蓄電材料として、(1)式で表されるアモルファスフッ素樹脂の両端に、側鎖としてアミノシリル基が接続されたポリマーを用いた。この蓄電材料の化学式を(2)式に示す。ここで、(2)式中のnは自然数である。また、アモルファスフッ素樹脂として、旭硝子株式会社製の「CYTOP(登録商標)」を用いた。なお、CYTOPの体積固有抵抗は、1017Ωcmより大きく、吸水率は、0.01%未満である。また、コンデンサ・蓄電体積は、1.2×10−11、蓄電容量は、83F/mである。 As the electricity storage material, a polymer in which an aminosilyl group was connected as a side chain to both ends of an amorphous fluororesin represented by the formula (1) was used. Formula (2) shows the chemical formula of this electricity storage material. Here, n in the equation (2) is a natural number. "CYTOP (registered trademark)" manufactured by Asahi Glass Co., Ltd. was used as the amorphous fluororesin. The volume resistivity of CYTOP is greater than 10 17 Ωcm, and the water absorption is less than 0.01%. The capacitor / storage volume is 1.2 × 10 −11 m 3 , and the storage capacity is 83 F / m 3 .

用いた蓄電材料の表面形状原子間力顕微鏡(AFM)像および走査型非接触Kelvinプローブ(SKPM)像を、図1に示す。図1に示すように、表面に、比較的均一なナノサイズの凹凸を有する、高い表面電荷密度の集積微細構造(セル)が形成されているのが確認された。隣り合う凹部同士および凸部同士の間隔は、平均28nm程度であり、凹部の直径は、0.1乃至30nmであった。また、凹凸の高低差は、0.1乃至30nmであり、平均23nmであった。また、図1(b)から、仕事関数は、13.35eV[=7.7(図1(b)より)+5.65(Ptの仕事関数)]である。なお、仕事関数の絶対値は、測定時の電位0Vに、プローブ材質Ptの仕事関数値(今回の場合、5.65eV)を加えなければならない。   FIG. 1 shows a surface shape atomic force microscope (AFM) image and a scanning non-contact Kelvin probe (SKPM) image of the used electric storage material. As shown in FIG. 1, it was confirmed that an integrated microstructure (cell) having a relatively high surface charge density and having relatively uniform nano-sized unevenness was formed on the surface. The average interval between adjacent concave portions and between convex portions was about 28 nm, and the diameter of the concave portions was 0.1 to 30 nm. Further, the height difference of the unevenness was 0.1 to 30 nm, and was 23 nm on average. Also, from FIG. 1B, the work function is 13.35 eV [= 7.7 (from FIG. 1B) +5.65 (Pt work function)]. Note that the absolute value of the work function must be obtained by adding the work function value (5.65 eV in this case) of the probe material Pt to the potential of 0 V at the time of measurement.

この蓄電材料を、1mm×10mmの大きさにし、その上面および下面に銅電極を固定し、ポテンシオスタット/ガルバノスタットにより、直流充放電特性を測定した。測定では、まず、1nAで10Vまで充電し、内部抵抗2TΩで5分間の自然放電を行った。また、同様に充電した後、3nAでの定電流放電の測定も行った。これらの測定結果を、図2に示す。図2に示すように、10Vまで充電した後、自然放電では5分間、定電流放電では約0.5秒間、放電が継続した。充電電流値を増加することにより、充電時間は短時間となり、放電時間は増加するものと考えられる。   This electricity storage material was made into a size of 1 mm × 10 mm, copper electrodes were fixed on the upper and lower surfaces thereof, and the DC charge / discharge characteristics were measured with a potentiostat / galvanostat. In the measurement, first, the battery was charged to 10 V at 1 nA, and spontaneous discharge was performed at an internal resistance of 2 TΩ for 5 minutes. After charging in the same manner, measurement of constant current discharge at 3 nA was also performed. FIG. 2 shows the measurement results. As shown in FIG. 2, after charging to 10 V, the discharge continued for 5 minutes in spontaneous discharge and about 0.5 seconds in constant current discharge. It is considered that the charging time is shortened and the discharging time is increased by increasing the charging current value.

次に、この蓄電材料を、1mm×10mmの大きさにし、その上面および下面に銅電極を固定し、周波数特性の計測を行った。測定では、1mHz〜1GHzの周波数範囲での、交流インピーダンスのナイキスト線図、ボード線図(インピーダンス図、位相図)、キャパシタンス図を求め、それぞれ図3(a)〜(d)に示す。図3(a)に示すように、ほぼ虚数軸に垂直なナイキスト線図が得られている。また、周波数が増加すると、位相は−90°でほぼ変化せず(図3(c)参照)、キャパシタンスは、300MHzまで減少し、それ以上の周波数で一定値を示す(図3(d)参照)ことが確認された。このような周波数特性は、抵抗RおよびキャパシタンスCの単純直列等価回路と同じ特性を示しており、このことから、蓄電材料は直列蓄電体であるといえる。   Next, this power storage material was made to have a size of 1 mm × 10 mm, and copper electrodes were fixed to the upper and lower surfaces thereof, and frequency characteristics were measured. In the measurement, a Nyquist diagram, a Bode diagram (impedance diagram, phase diagram), and a capacitance diagram of the AC impedance in a frequency range of 1 mHz to 1 GHz are obtained, and are shown in FIGS. 3 (a) to 3 (d), respectively. As shown in FIG. 3A, a Nyquist diagram substantially perpendicular to the imaginary axis is obtained. When the frequency increases, the phase hardly changes at -90 ° (see FIG. 3C), and the capacitance decreases to 300 MHz and shows a constant value at frequencies higher than that (see FIG. 3D). ) Was confirmed. Such a frequency characteristic shows the same characteristic as a simple series equivalent circuit of the resistor R and the capacitance C, and it can be said that the power storage material is a series power storage body.

次に、この蓄電材料の表面積(Surface Area)を、150、300、450、600mmとし、それぞれ1nAで10Vまで充電し、内部抵抗で5分間の自然放電を行った。また、同様に充電した後、3nAでの定電流放電の測定も行った。これらの測定結果を、それぞれ図4(a)および(b)に示す。また、表面積増大に対する放電量をまとめ、図4(c)に示す。図4(a)および(b)に示すように、自然放電および定電流放電ともに、表面積の増大とともに放電量は増大しており、図4(c)に示すように、積層効果が認められた。このことから、この蓄電材料の表面は、無数のキャパシタが並列接合した電気分布定数回路になっているといえる。 Next, the surface area (Surface Area) of this electricity storage material was set to 150, 300, 450, and 600 mm 2 , each was charged to 10 V at 1 nA, and spontaneous discharge was performed at an internal resistance for 5 minutes. After charging in the same manner, measurement of constant current discharge at 3 nA was also performed. The measurement results are shown in FIGS. 4A and 4B, respectively. FIG. 4C shows the amount of discharge with respect to the increase in surface area. As shown in FIGS. 4A and 4B, in both the spontaneous discharge and the constant current discharge, the discharge amount increases as the surface area increases, and as shown in FIG. 4C, the laminating effect was observed. . From this, it can be said that the surface of this electricity storage material is an electric distributed constant circuit in which countless capacitors are connected in parallel.

次に、この蓄電材料からの放電を用いて、2V−100μAの赤色LEDを点灯させたところ、0.3ミリ秒の継続点灯が確認された。なお、蓄電材料として、(1)式で表されるアモルファスフッ素樹脂の両端に、側鎖としてカルボニル基が接続された(3)式のポリマーであっても、図1〜図4と同様の結果が得られると考えられる。   Next, when the red LED of 2 V-100 μA was turned on using the discharge from the power storage material, continuous lighting for 0.3 ms was confirmed. In addition, even if it is a polymer of the formula (3) in which a carbonyl group is connected as a side chain to both ends of the amorphous fluororesin represented by the formula (1) as an electricity storage material, the same results as in FIGS. Is considered to be obtained.

図5に示すように、実施例1の蓄電材料を用いて、MEMS法により積層体から成る蓄電デバイスを作製した。まず、ガラス基板(20×20×0.5mm)の表面に、スパッタによりCr(厚み20nm)/Cu層(厚み500nm)を形成し(図5(a)参照)、その上にポリイミド層(厚み5μm)をコーティングし、150℃で乾燥させた(図5(b)参照)。次に、ポリイミド層の上に、蓄電材料(厚み10μm)をスピンコートでコーティングし、200℃で乾燥させ(図5(c)参照)、ナノメートル寸法の凹凸面をドライエッチングして作製し(図5(d)参照)、その上にスパッタによりAl層(厚み500nm)を形成した(図5(e)参照)。最後にガラス基板を取り除いて(図5(f)参照)、それを1枚の蓄電層とし(図5(g)参照)、間に絶縁体を挟みながら、その蓄電層を複数枚積層させた(図5(h)参照)。   As shown in FIG. 5, a power storage device composed of a laminate was manufactured by the MEMS method using the power storage material of Example 1. First, a Cr (thickness: 20 nm) / Cu layer (thickness: 500 nm) is formed on the surface of a glass substrate (20 × 20 × 0.5 mm) by sputtering (see FIG. 5A), and a polyimide layer (thickness: 5 μm) and dried at 150 ° C. (see FIG. 5B). Next, an electricity storage material (thickness: 10 μm) is coated on the polyimide layer by spin coating, dried at 200 ° C. (see FIG. 5C), and a nanometer-sized uneven surface is dry-etched (FIG. 5C). An Al layer (thickness: 500 nm) was formed thereon by sputtering (see FIG. 5D). Finally, the glass substrate was removed (see FIG. 5 (f)), which was used as one power storage layer (see FIG. 5 (g)), and a plurality of the power storage layers were laminated with an insulator interposed therebetween. (See FIG. 5 (h)).

こうして、作製された積層体は、一番上の蓄電層のAl層と、一番下の蓄電層のCu層とを端子として、各蓄電層の蓄電材料が並列接合されたものとなっている。すなわち、図5(i)に示すように、CとRとの単純並列等価回路から成る電気分布定数回路となっている。このため、例えば、蓄電層を100段積層した積層体は、1枚の蓄電層の100倍の容量を有している。なお、Al層およびCu層は、それぞれ蓄電材料の表面全体を被覆していることが好ましい。
In this way, the laminated body thus produced is one in which the power storage materials of the respective power storage layers are joined in parallel, with the Al layer of the uppermost power storage layer and the Cu layer of the lowermost power storage layer as terminals. . That is, as shown in FIG. 5 (i), an electric distribution constant circuit composed of a simple parallel equivalent circuit of C and R is provided. Therefore, for example, a stacked body in which 100 power storage layers are stacked has 100 times the capacity of one power storage layer. Note that the Al layer and the Cu layer each preferably cover the entire surface of the power storage material.

Claims (4)

電子親和力が290kJ/mol以上の元素を含み、(1)式で表されるアモルファスフッ素樹脂の両端に、側鎖としてアミノシリル基またはカルボニル基が接続されたアモルファスポリマーから成り、表面に、直径が0.1乃至30nm、高低差が0.1乃至30nmの複数の凹凸を有し、電気抵抗率が1GΩcm以上、仕事関数が9〜14eV、吸水率が0.01%未満であることを特徴とする蓄電材料。
Electron affinity seen contains the above elements 290kJ / mol, (1) at both ends of the amorphous fluorine resin represented by formula, it consists of amorphous polymers aminosilyl group or a carbonyl group is connected as a side chain, to the surface, diameter It has a plurality of irregularities having a height of 0.1 to 30 nm and a height difference of 0.1 to 30 nm, an electric resistivity of 1 GΩcm or more, a work function of 9 to 14 eV, and a water absorption of less than 0.01%. Electricity storage material.
請求項1記載の蓄電材料を有することを特徴とする蓄電デバイス。 An electricity storage device comprising the electricity storage material according to claim 1 . 前記蓄電材料は薄膜状であり、前記蓄電材料を挟むよう、前記蓄電材料の両面にそれぞれ設けられた1対の金属電極を有する蓄電体から成ることを特徴とする請求項記載の蓄電デバイス。 The power storage device according to claim 2 , wherein the power storage material is in the form of a thin film, and includes a power storage body having a pair of metal electrodes provided on both surfaces of the power storage material so as to sandwich the power storage material. 前記蓄電体を複数積層した積層体から成ることを特徴とする請求項記載の蓄電デバイス。
The power storage device according to claim 3 , wherein the power storage device includes a stacked body in which a plurality of the power storage bodies are stacked.
JP2015163412A 2015-08-21 2015-08-21 Energy storage materials and energy storage devices Active JP6628241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163412A JP6628241B2 (en) 2015-08-21 2015-08-21 Energy storage materials and energy storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163412A JP6628241B2 (en) 2015-08-21 2015-08-21 Energy storage materials and energy storage devices

Publications (2)

Publication Number Publication Date
JP2017041578A JP2017041578A (en) 2017-02-23
JP6628241B2 true JP6628241B2 (en) 2020-01-08

Family

ID=58206670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163412A Active JP6628241B2 (en) 2015-08-21 2015-08-21 Energy storage materials and energy storage devices

Country Status (1)

Country Link
JP (1) JP6628241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220136364A (en) 2020-02-18 2022-10-07 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Capacitor Materials and Ultra Capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220136364A (en) 2020-02-18 2022-10-07 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Capacitor Materials and Ultra Capacitors

Also Published As

Publication number Publication date
JP2017041578A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
Wang et al. Engineered nanomembranes for smart energy storage devices
JP2023087098A (en) Porous interconnected wavy carbon-based network (iccn) composite material
Gu et al. High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO 2/CNT and Fe 2 O 3/CNT macrofilms
Zhang et al. An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT: PSS films for AC line-filtering
Yu et al. Flexible, sandwich-like Ag-nanowire/PEDOT: PSS-nanopillar/MnO 2 high performance supercapacitors
Sun et al. Freestanding CNT–WO 3 hybrid electrodes for flexible asymmetric supercapacitors
Deng et al. Introducing rolled‐up nanotechnology for advanced energy storage devices
CN107533925B (en) Nanostructured electrodes for energy storage devices
TWI470658B (en) All solid-state electrochemical double layer supercapacitor
TWI601330B (en) Electrode material and energy storage apparatus
JP2012054552A (en) Lithium ion capacitor
KR20160011588A (en) Silicon secondary battery
CN109216753A (en) Solid lithium ion battery
JP6628241B2 (en) Energy storage materials and energy storage devices
Kim et al. Stackable, three dimensional carbon–metal oxide composite for high performance supercapacitors
JP6498945B2 (en) Power storage device and manufacturing method thereof
JP7229472B2 (en) Ultracapacitor materials and ultracapacitors
JP2017054871A (en) Secondary battery and method for manufacturing secondary battery
JP6839386B2 (en) Power storage materials and storage devices
JP6242577B2 (en) Redox polymer energy storage system
Choy et al. Enhanced output power of a freestanding ball-based triboelectric generator through the electrophorus effect
Subudhi et al. Supercapacitors: a review on electrode materials and models based on conjugated polymers
Rajeevan et al. Polymers for supercapacitors: An overview
Gopalakrishnan Testing and evaluation of different energy storage devices for piezoelectric energy harvesting under road conditions
KR20130063365A (en) Energy harvesting device and method for producing thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191126

R150 Certificate of patent or registration of utility model

Ref document number: 6628241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250