JP6498945B2 - Power storage device and manufacturing method thereof - Google Patents

Power storage device and manufacturing method thereof Download PDF

Info

Publication number
JP6498945B2
JP6498945B2 JP2015005999A JP2015005999A JP6498945B2 JP 6498945 B2 JP6498945 B2 JP 6498945B2 JP 2015005999 A JP2015005999 A JP 2015005999A JP 2015005999 A JP2015005999 A JP 2015005999A JP 6498945 B2 JP6498945 B2 JP 6498945B2
Authority
JP
Japan
Prior art keywords
power storage
insulating layer
storage device
lightning
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015005999A
Other languages
Japanese (ja)
Other versions
JP2016134934A (en
Inventor
幹夫 福原
幹夫 福原
史彦 長谷川
史彦 長谷川
伊藤 修
修 伊藤
共之 黒田
共之 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2015005999A priority Critical patent/JP6498945B2/en
Publication of JP2016134934A publication Critical patent/JP2016134934A/en
Application granted granted Critical
Publication of JP6498945B2 publication Critical patent/JP6498945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、雷及び大気電流の蓄電を可能とする蓄電装置及びその製造方法に関する。   The present invention relates to a power storage device capable of storing lightning and atmospheric current and a method for manufacturing the same.

キャパシタは本来静電容量により電荷(電気エネルギー)を蓄えたり、放電したりする電子部品であり、パソコンや携帯電話等々のモバイル電子機器において電源の安定性、バックアップ回路、カップリング素子、ノイズフィルター等の役割を演じ、電子機器にとって不可欠の部品である。近年、携帯電話や超小型記憶装置などの高機能IT製品及び電気自動車用バッテリが急速に進化し、より一層小型で、大容量かつメモリ等の高機能を持つキャパシタの需要が高まっている。特に地球温暖化防止のためグリーンイノベーション(低炭素化)に合致した製品が求められている。   Capacitors are electronic parts that store or discharge electric charges (electric energy) by electrostatic capacity. Power supply stability, backup circuits, coupling elements, noise filters, etc. in mobile electronic devices such as personal computers and mobile phones. It is an indispensable part for electronic equipment. In recent years, high-function IT products such as mobile phones and ultra-small storage devices and batteries for electric vehicles have rapidly evolved, and the demand for capacitors that are even smaller, have a large capacity, and have high functions such as memory is increasing. In particular, products that meet green innovation (low carbonization) are required to prevent global warming.

キャパシタの用途による分類では、高電圧電力回路用と電子回路用に大別される。このうち、高電圧電力回路用の大容量コンデンサとしては、電気二重層コンデンサが注目され、最近電気貯蔵用として期待されている。具体的にはハイブリッド自動車や電気自動車の電源、コピー機の急速立ち上げ用電源や無停電電源装置、さらには鉄道用電車電源等があり、起動力約2%の確保までの実績がある。   The classification according to the use of the capacitor is roughly divided into a high voltage power circuit and an electronic circuit. Among these, as a large-capacity capacitor for a high-voltage power circuit, an electric double layer capacitor has attracted attention and has recently been expected to be used for electric storage. Specifically, there are power sources for hybrid vehicles and electric vehicles, power supplies for rapid startup of copy machines, uninterruptible power supplies, train power supplies for railways, etc., with a track record of securing a starting power of about 2%.

キャパシタを用いた蓄電体は1pFから数十mFまで広範囲に電子・電気機器の主要構成部品として利用されている。蓄電容量C(F)はC=Q/V=εA/d(Q(Q):電荷、V(V):電圧、ε:誘電率、A(m):電極面積、d(m):電極間距離)で与えられるので、電極面積が大きく電極間距離が小さいほど高電荷容量が得られる。しかしながら、電子・電気機器の軽薄短小化や、要求される蓄電容量の観点から、電極面積Aを大きくし電極間距離dを小さくして極大容量にすることや、電極面積Aを小さくし電極間距離dを大きくして極小容量にすることは現在困難である。 A power storage unit using a capacitor is widely used as a main component of electronic / electric equipment from 1 pF to several tens of mF. The storage capacity C (F) is C = Q / V = εA / d (Q (Q): electric charge, V (V): voltage, ε: dielectric constant, A (m 2 ): electrode area, d (m): Therefore, the higher the electrode area and the smaller the electrode distance, the higher the charge capacity. However, from the viewpoint of light and thin electronic / electric equipment and the required storage capacity, the electrode area A is increased to reduce the inter-electrode distance d to the maximum capacity, or the electrode area A is decreased to reduce the distance between the electrodes. It is currently difficult to increase the distance d to a minimum capacity.

蓄電体に関して、本発明者は、Al,Ti,Vを表面抽出除去させたSi−(Al,Ti,V)合金、TiO被覆Ti−Ni−Si系非晶質合金において電荷が直流、交流にかかわらず蓄積できることを発見した。Si−(Al,Ti,V)合金については非特許文献1,2、3に、TiO被覆Ti−Ni−Si系非晶質合金については非特許文献4,5に示されている。 Regarding the electric storage body, the present inventor considered that the electric charge is direct current or alternating current in a Si— (Al, Ti, V) alloy obtained by surface extraction removal of Al, Ti, V, and a TiO 2 coated Ti—Ni—Si based amorphous alloy. It was discovered that it can be accumulated regardless. The Si— (Al, Ti, V) alloy is shown in Non-Patent Documents 1, 2, and 3, and the TiO 2 coated Ti—Ni—Si-based amorphous alloy is shown in Non-Patent Documents 4 and 5.

また、物質・材料研究機構(NIMS)により膜厚10nm以下の誘電率210〜240を持つぺロブスカイトSrNb10、CaNb10のナノシート薄膜コンデンサ素子の研究が報告されている(非特許文献6)が、電極間距離が大きく、セラミックスのため電極材との接合が容易でなく接触抵抗は高い。また、化学電解液中でのMnO被覆ナノポーラスAu系非晶質合金セパレータにおいて1,160F/cmの高比容量が報告されている(非特許文献7)が、これも従来の電気化学電池の応用である。 In addition, research on nanosheet thin film capacitor elements of perovskite Sr 2 Nb 3 O 10 and Ca 2 Nb 3 O 10 having a dielectric constant of 210 to 240 with a film thickness of 10 nm or less has been reported by the National Institute for Materials Science (NIMS). (Non-Patent Document 6) has a large inter-electrode distance and is not easy to join with an electrode material due to ceramics and has high contact resistance. In addition, a high specific capacity of 1,160 F / cm 3 has been reported in a MnO 2 -coated nanoporous Au-based amorphous alloy separator in a chemical electrolyte (Non-Patent Document 7), which is also a conventional electrochemical cell. Application.

更に最近、電圧1.5V,電力500Wh/L、出力密度8kW/L、サイクル寿命10万回、動作温度範囲−25℃〜+85℃の物理的二次電池が日本のメーカーから開発された(非特許文献8)が、これは半導体のバンドギャップ中に電子捕獲準位を形成し、この準位に電位を充填するか空にするかにより充放電を行うものであり、電圧は1.5Vに制限される。   More recently, a physical secondary battery having a voltage of 1.5 V, a power of 500 Wh / L, an output density of 8 kW / L, a cycle life of 100,000 times, and an operating temperature range of −25 ° C. to + 85 ° C. has been developed by a Japanese manufacturer (non- In Patent Document 8), an electron trap level is formed in a semiconductor band gap, and charging / discharging is performed depending on whether the level is charged with electric potential or empty, and the voltage is 1.5V. Limited.

M.Fukuhara, T.Araki, K. Nagayama and H.Sakuraba, “Electric storage in de-alloyed Si-Al alloy ribbons,” EuroPhys.Lett., 99 (2012),47001.M. Fukuhara, T. Araki, K. Nagayama and H. Sakuraba, “Electric storage in de-alloyed Si-Al alloy ribbons,” EuroPhys. Lett., 99 (2012), 47001. M.Fukuhara, “Electric Charging/Discharging Characteristics of Capacitor, Using De-alloyed Si-20Al Alloy Ribbons,” Elect. Electr. Eng., 3(2), (2013), 72-76.M. Fukuhara, “Electric Charging / Discharging Characteristics of Capacitor, Using De-alloyed Si-20Al Alloy Ribbons,” Elect. Electr. Eng., 3 (2), (2013), 72-76. M.Fukuhara and H. Yoshida, “AC charging/discharging of de-alloyed Si-Al-V alloy ribbons,” J. Alloys and Comp., 586 (2014) S130-S133.M. Fukuhara and H. Yoshida, “AC charging / discharging of de-alloyed Si-Al-V alloy ribbons,” J. Alloys and Comp., 586 (2014) S130-S133. M.Fukuhara, H. Yoshida, M. Sato, K. Sugawara, T. Takeuchi, I. Seki, and T. Sueyoshi, “Superior electric storage in de-alloyed and anodic oxidized Ti-Ni-Si glassy alloy ribbons,” Phys. Stat. Sol. RRL, 7(7), (2013), 477-480.M. Fukuhara, H. Yoshida, M. Sato, K. Sugawara, T. Takeuchi, I. Seki, and T. Sueyoshi, “Superior electric storage in de-alloyed and anodic oxidized Ti-Ni-Si glassy alloy ribbons,” Phys. Stat. Sol. RRL, 7 (7), (2013), 477-480. M.Fukuhara and K. Sugawara, “Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons,”Nanoscale. Res. Lett., 9, (2014), 253.M. Fukuhara and K. Sugawara, “Electric charging / discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons,” Nanoscale. Res. Lett., 9, (2014), 253. M.Osada, K.Akatsuka,Y.Ebina,H.Funakubo,K.Ono,K.Takada and T.Sasaki, Robust high-k response in molecularly thin perovskite nanosheets, ACS NANO, 4,5225-5232 (2010).M.Osada, K.Akatsuka, Y.Ebina, H.Funakubo, K.Ono, K.Takada and T.Sasaki, Robust high-k response in molecularly thin perovskite nanosheets, ACS NANO, 4,5225-5232 (2010) . X.Y.Lang,A.Hirata,T.Fujita and M.W.Chen, Nature Nanotech., on line (Feb.20,2011).X.Y.Lang, A.Hirata, T.Fujita and M.W.Chen, Nature Nanotech., On line (Feb. 20, 2011). 株式会社日本マイクロニクス、二次電池battenice、http://www.mjc.co.jp/product/index3.htmlNihon Micronics Co., Ltd., secondary battery battenice, http://www.mjc.co.jp/product/index3.html

ところで、地球は地上50kmに亘り上層をプラス、地上をマイナスとする宇宙線による「地球コンデンサ」を形成し、無尽蔵の電気エネルギーを永久保存している。大気の電圧は100V/mの勾配で上がってゆく。低気圧の来襲や火山噴火時の火山雷は絶縁破壊による目で観察できる確かな証拠例である。この雷の放電電圧は2MV〜200MV、電流は1kA〜200kA、落雷時間は1ms〜0.5sであり、落雷電力は平均約900GW、総積算電力は250kWhである。この地球コンデンサの無尽蔵の電気エネルギーを利用することは20世紀以来多くの人達が考えてきたことである。   By the way, the earth forms an “earth capacitor” by cosmic rays with the upper layer plus 50 km above the ground and the earth minus, and stores inexhaustible electrical energy permanently. The atmospheric voltage rises with a gradient of 100 V / m. Intrusion of low pressure and volcanic lightning at the time of volcanic eruption are sure examples of evidence that can be observed visually by dielectric breakdown. The lightning discharge voltage is 2 MV to 200 MV, the current is 1 kA to 200 kA, the lightning strike time is 1 ms to 0.5 s, the lightning strike power is about 900 GW on average, and the total integrated power is 250 kWh. The use of the inexhaustible electrical energy of this earth capacitor has been thought by many since the 20th century.

また、落雷時以外の雨天時、快晴時でも300C/km年以下の大気電流が存在し、大気電流は雷電流より5倍〜60倍大きいことが報告されている(Chalmers,1967)。大気電流についても、快晴の日でも採取可能なので個人・家庭用の電気エネルギー源として期待できる。 Further, it is reported that atmospheric currents of 300 C / km 2 years or less exist even in rainy weather and clear weather other than lightning, and the atmospheric current is 5 to 60 times larger than the lightning current (Chalmers, 1967). Atmospheric current can also be collected even on a clear day, so it can be expected as an electrical energy source for individuals and homes.

ちなみに日本全土での2002年〜2008年までの雷検知回数は20万回〜100万回/年(電力中研)で1回あたりの落雷電量は10kWh〜500kWhなので、少ない年で2GWh、多い年で500GWhが概算できる。一方、大気電流は雷電流の5倍〜60倍の量なので、10GW〜30TWhと計算できる。日本の総発電量は約1,030TWh/年なので、0.001%〜3%となる。   By the way, the number of lightning detections in Japan from 2002 to 2008 is 200,000 to 1,000,000 times / year (Central Research Institute of Electric Power), and the amount of lightning strikes per time is 10 kWh to 500 kWh. 500 GWh can be estimated. On the other hand, since the atmospheric current is 5 to 60 times the lightning current, it can be calculated as 10 GW to 30 TWh. Since Japan's total power generation is about 1,030 TWh / year, it is 0.001% to 3%.

雷電流を蓄電するためには、高電圧、高電流、短時間に耐えられる耐電圧、耐電流、短時間蓄電の3条件を満たす必要がある。また、大気電流を蓄電するためには、雷電流よりも障壁は低いものの、やはり雷電流と同様の3条件を満たす必要がある。   In order to store the lightning current, it is necessary to satisfy the three conditions of high voltage, high current, withstand voltage that can withstand a short time, withstand current, and short time storage. Moreover, in order to store atmospheric current, although the barrier is lower than the lightning current, it is necessary to satisfy the same three conditions as those of the lightning current.

しかしながら、従来の蓄電体は、化学的イオン移動を利用しており応答性は遅く耐電圧も4V程度であり、上記3条件を十分満たす蓄電体はこれまで存在していない。このように、従来の蓄電体では、雷及び大気電流を効率よく蓄電することは困難であった。   However, conventional power storage units use chemical ion transfer, have low response, have a withstand voltage of about 4 V, and so far no power storage units that sufficiently satisfy the above three conditions have existed. Thus, it has been difficult to efficiently store lightning and atmospheric current with the conventional power storage unit.

上記課題を鑑み、本発明は、上述した本発明者による研究を更に発展させ、自然エネルギーである雷及び大気電流を効率よく蓄電可能な蓄電装置及びその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to further develop the above-described research by the present inventor and to provide a power storage device that can efficiently store lightning and atmospheric current, which are natural energy, and a method for manufacturing the same.

本発明の一態様によれば、雷及び大気電流を誘導可能な誘雷針と、誘雷針を介して雷及び大気電流を蓄電する物理的蓄電能を有する固体電子蓄電体とを備え、前記固体電子蓄電体が、雷及び大気電流を分流する複数の電気分布定数型キャパシタから構成され、前記各電気分布定数型キャパシタが、凹部が表面に形成された絶縁層と、前記絶縁層を挟持する一対の電極とを備え、前記凹部は、前記絶縁層の表面に均一に分布され、前記凹部の密度は、前記絶縁層の表面の面積1cm 当たり、10 10 個以上であることを特徴とする蓄電装置が提供される。固体電子蓄電体は、1kF/cm以上の巨大蓄電能を有し、雷及び大気電流を0.5s以下の瞬時に蓄電する。固体電子蓄電体は、雷及び大気電流を分流する1,000個以上の電気分布定数型キャパシタから構成される。 According to one aspect of the present invention, comprising: a lightning rod capable of inducing lightning and atmospheric current; and a solid-state electronic storage body having a physical storage capacity for storing lightning and atmospheric current through the lightning rod , The solid-state electronic storage body is composed of a plurality of electric distribution constant type capacitors that shunt lightning and atmospheric current, and each electric distribution constant type capacitor sandwiches the insulating layer with a recess formed on the surface thereof. and a pair of electrodes, said recess, said evenly distributed on the surface of the insulating layer, the density of the recess, the area 1 cm 2 per surface of the insulating layer, and wherein der Rukoto 10 10 or more A power storage device is provided. The solid-state electronic storage battery has a huge storage capacity of 1 kF / cm 3 or more, and stores lightning and atmospheric current instantaneously for 0.5 s or less. The solid-state electronic storage body is composed of 1,000 or more electric distribution constant type capacitors that shunt lightning and atmospheric current.

また、本発明の一態様において、前記凹部は、20nm以下の開口径と0.5nm〜3nm程度の深さとを有し前記絶縁層は100TΩ以下の電気抵抗を有する。絶縁層は、100MPa以上の金属又は合金の結晶体又は非晶質層を被覆している。絶縁層の凹部が形成された表面が集積ナノ構造であり、ナノコンデンサの並列集積体を構成する。絶縁層は、酸素欠陥を持つ非晶質相や有機重合ポリマーから構成される。絶縁層は1kV以上の耐電圧性を有する。固体電子蓄電体は、−269℃〜600℃で作動可能である。固体電子蓄電体は、方形、折り畳状、巻尺状又は捩巻状に構成されていてもよい。 Also, in one aspect of the present invention, the recess, and a depth of about less opening diameter 20 nm and 0.5Nm~3nm, the insulating layer that have a less electric resistance 100Tiomega. The insulating layer covers a crystalline or amorphous layer of a metal or alloy of 100 MPa or more. The surface of the insulating layer on which the recesses are formed is an integrated nanostructure, which forms a parallel integrated body of nanocapacitors. The insulating layer is composed of an amorphous phase having an oxygen defect or an organic polymer. The insulating layer has a withstand voltage of 1 kV or more. The solid state electronic storage body can operate at −269 ° C. to 600 ° C. The solid electronic power storage unit may be configured in a square shape, a folded shape, a tape measure shape, or a spiral shape.

また、本発明の一態様において、誘雷針の少なくとも先端の材質が、クロム被覆黄銅、アルミニウム又はステンレス鋼からなる。誘雷針と各電気分布定数型キャパシタとの間にそれぞれ接続され、0.4V以下の閾値電圧をそれぞれ有する複数の逆流防止ダイオードを更に備える。   In one embodiment of the present invention, the material of at least the tip of the lightning rod is made of chromium-coated brass, aluminum, or stainless steel. It further includes a plurality of backflow prevention diodes connected between the lightning rod and each of the electric distributed constant capacitors, each having a threshold voltage of 0.4 V or less.

本発明の他の態様によれば、表面に均一に分布するように凹部が形成された絶縁層であって、前記凹部の密度は、前記絶縁層の表面の面積1cm 当たり、10 10 個以上である前記絶縁層を形成する工程と、絶縁層を一対の電極で挟持することにより電気分布定数型キャパシタを作製する工程と、電気分布定数型キャパシタを複数個並列接続することにより、雷及び大気電流を蓄電する物理的蓄電能を有する固体電子蓄電体を作製する工程とを含むことを特徴とする蓄電装置の製造方法が提供される。 According to another aspect of the present invention, there is provided an insulating layer in which concave portions are formed so as to be uniformly distributed on the surface, and the density of the concave portions is 10 10 or more per 1 cm 2 of the surface area of the insulating layer. A step of forming the insulating layer , a step of manufacturing an electric distributed constant capacitor by sandwiching the insulating layer between a pair of electrodes, and a plurality of electric distributed constant type capacitors connected in parallel, whereby lightning and air And a step of producing a solid-state electronic power storage unit having a physical power storage capacity for storing a current.

また、本発明の他の態様において、絶縁層を形成する工程は、フッ素含有溶液中又は過塩素酸中の陽極酸化法を用いて、表面に凹部が形成された酸化膜を形成してもよい。或いは、絶縁層を形成する工程は、スパッタリングにより、表面に凹部が形成された有機重合ポリマーからなる絶縁層を形成してもよい。   In another embodiment of the present invention, the step of forming the insulating layer may form an oxide film having a recess formed on the surface by using an anodic oxidation method in a fluorine-containing solution or in perchloric acid. . Or the process of forming an insulating layer may form the insulating layer which consists of an organic polymerization polymer by which the recessed part was formed in the surface by sputtering.

本発明によれば、自然エネルギーである雷及び大気電流を効率よく蓄電可能な蓄電装置及びその製造方法を提供することができる。したがって、省エネルギー、新エネルギー、COの削減に大きく貢献することができる。また、中規模雷を利用した蓄電は大規模雷の発生抑制作用もあるので、災害防止、環境保護にも貢献することができる。 ADVANTAGE OF THE INVENTION According to this invention, the electrical storage apparatus which can store efficiently the lightning and atmospheric current which are natural energy, and its manufacturing method can be provided. Therefore, it can greatly contribute to energy saving, new energy, and CO 2 reduction. In addition, power storage using medium-scale lightning has the effect of suppressing the occurrence of large-scale lightning, which can contribute to disaster prevention and environmental protection.

図1は、本発明の実施形態に係る蓄電装置の一例を示す概略図である。FIG. 1 is a schematic diagram illustrating an example of a power storage device according to an embodiment of the present invention. 図2(a)は、本発明の実施形態に係る電気分布定数型キャパシタの一例を示す概略断面図であり、図2(b)は、図2(a)の部分拡大図である。FIG. 2A is a schematic cross-sectional view showing an example of an electric distributed constant capacitor according to an embodiment of the present invention, and FIG. 2B is a partially enlarged view of FIG. 図3は、平均3nmの凹部が形成された絶縁層表面の走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of the surface of the insulating layer in which concave portions with an average of 3 nm are formed. 図4は、本発明の実施形態に係る電気分布定数型キャパシタの回路図である。FIG. 4 is a circuit diagram of an electric distributed constant capacitor according to an embodiment of the present invention. 図5(a)〜図5(c)は、本発明の実施形態に係る固体電子蓄電体の形状の一例を示す概略図である。Fig.5 (a)-FIG.5 (c) are schematic which shows an example of the shape of the solid-state electrical storage body which concerns on embodiment of this invention. 図6(a)〜図6(c)は、本発明の実施形態に係る蓄電装置の製造方法の一例を示す工程断面図である。FIG. 6A to FIG. 6C are process cross-sectional views illustrating an example of a method for manufacturing a power storage device according to an embodiment of the present invention. 図7は、平均凹部寸法と直列回路における電気容量との関係を表すグラフである。FIG. 7 is a graph showing the relationship between the average concave dimension and the electric capacity in the series circuit.

以下、図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付して説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same portions are denoted by the same reference numerals, and description thereof is omitted.

<蓄電装置の構成>
本発明の実施形態に係る蓄電装置は、図1に示すように、雷及び大気電流を誘導可能な誘雷針1と、誘雷針1を介して雷及び大気電流を蓄電する物理的蓄電能を有する固体電子蓄電体2とを備える。ここで、「物理的蓄電能」とは、電気化学的なイオン移動ではなく、物理的な電子自体の移動、貯蔵を利用して蓄電する性能を意味する。
<Configuration of power storage device>
As shown in FIG. 1, a power storage device according to an embodiment of the present invention includes a lightning rod 1 capable of inducing lightning and atmospheric current, and a physical power storage capacity for storing lightning and atmospheric current through the lightning rod 1. A solid-state electronic storage battery 2 having Here, the “physical power storage capability” means the performance of storing power using the movement and storage of physical electrons themselves, not electrochemical ion migration.

誘雷針1の形状は特に限定されず、例えば従来の避雷針と同様の形状が採用可能である。誘雷針1の少なくとも先端部分には、クロム被覆黄銅、アルミニウム(Al)及びステンレス鋼等の誘雷効果が大きい物質を用いることが好ましい。これらの物質を用いることにより、雷及び大気電流を落雷時以外の雨天時、快晴時にも効率よく誘電することができる。   The shape of the lightning rod 1 is not specifically limited, For example, the shape similar to the conventional lightning rod can be employ | adopted. It is preferable to use a material having a large lightning effect such as chromium-coated brass, aluminum (Al), and stainless steel for at least the tip portion of the lightning rod 1. By using these substances, lightning and atmospheric current can be efficiently dielectrically generated even in rainy weather other than lightning and in fine weather.

誘雷針1の材質は、雷及び大気電流の極性に応じて適宜選択可能である。クロム被覆黄銅やAlは負に帯電するので、大型の正極性落電や冬場の蓄電用に適している。一方、ステンレス鋼は正に帯電するので、夏場の負極性落電や大気電流蓄電用に適している。そのため、大型の正極性落電や冬場の落雷に対してはクロム被覆黄銅やAlからなる誘雷針1を、夏場の負極性落電や大気電流蓄電にはステンレス鋼からなる誘雷針1を選択的に用いることにより、極性の異なる雷電流や大気電流を効果的に蓄電できる。   The material of the lightning rod 1 can be appropriately selected according to the polarity of lightning and atmospheric current. Since chrome-coated brass and Al are negatively charged, they are suitable for large-scale positive voltage drop and winter electricity storage. On the other hand, since stainless steel is positively charged, it is suitable for summertime negative voltage drop and atmospheric current storage. Therefore, a lightning rod 1 made of chromium-coated brass or Al is used for large positive lightning strikes or lightning strikes in winter, and a lightning striker 1 made of stainless steel is used for negative polarity lightning or atmospheric current storage in summer. By selectively using it, it is possible to effectively store lightning currents and atmospheric currents having different polarities.

誘雷針1は地球上の任意の場所に設置される。また、大気の電圧は100V/mの勾配で上がってゆくので、高い山地での蓄電は雷蓄電以外でも効果的である。特に水蒸気や雲がかかりやすい山岳地帯や海上は湿度が50%以上になり蓄電の極めて良好な条件となる。   The lightning rod 1 is installed at any place on the earth. In addition, since the atmospheric voltage rises with a gradient of 100 V / m, power storage in high mountains is effective other than lightning power storage. Especially in mountainous areas and the sea where water vapor and clouds are easily applied, the humidity becomes 50% or more, which is an extremely favorable condition for power storage.

固体電子蓄電体2は、例えば1kF/cm〜10kF/cmの巨大蓄電能を有し、雷及び大気電流の高電流に耐えうる耐電流特性を有する。なお、固体電子蓄電体2の蓄電能は、10kF/cm以上であってもよい。また、固体電子蓄電体2は、1ms〜0.5s程度、より好ましくは1ms以下の瞬時に雷及び大気電流を蓄電する。 The solid-state electronic storage body 2 has a huge storage capacity of, for example, 1 kF / cm 3 to 10 kF / cm 3 and has a current resistance characteristic that can withstand high currents of lightning and atmospheric current. Note that the power storage capacity of the solid-state electronic power storage unit 2 may be 10 kF / cm 3 or more. The solid-state electronic storage body 2 stores lightning and atmospheric current instantaneously for about 1 ms to 0.5 s, more preferably 1 ms or less.

固体電子蓄電体2は、雷及び大気電流を分流して蓄電する複数個(n個)の分流固体電子蓄電体(電気分布定数型キャパシタ(EDCC、Electric Distributed Constant Capacitor))2、2、2、・・・、2を有する。電気分布定数型キャパシタ2〜2の個数nは、例えば1,000個〜10万個であり、所望の耐電流特性等に応じて適宜選択可能である。各電気分布定数型キャパシタ2〜2は、逆流防止ダイオード(VF効果ダイオード)D、D、D、・・・、Dを介して誘雷針1に並列に接続されている。 The solid-state electronic storage battery 2 includes a plurality of (n) shunt solid-state electronic storage batteries (EDCC, Electric Distributed Constant Capacitor) 2 1 , 2 2 , which store light by dividing lightning and atmospheric current. 2 3 ... 2 n . The number n of the electric distribution constant type capacitors 2 1 to 2 n is, for example, 1,000 to 100,000, and can be appropriately selected according to desired current resistance characteristics. Each of the electric distributed constant type capacitors 2 1 to 2 n is connected in parallel to the lightning rod 1 via backflow prevention diodes (VF effect diodes) D 1 , D 2 , D 3 ,..., D n . .

逆流防止ダイオードD〜Dは、各電気分布定数型キャパシタ2〜2に蓄電した雷及び大気電流の逆流を防止する。具体的には、雷撃は雲から地面に向ってストリーマーの伸びる前駆放電と、これが地面に近づいた瞬間、同じ経路を戻って地表から雲に向って上昇する帰還電撃から成り立っている。誘雷針1に逆流防止ダイオードD〜Dを装着することにより、帰還電撃による蓄電体からの放電を防止することができる。蓄電時には順方向電圧(閾値電圧)Vfが小さい方が良いので、逆流防止ダイオードD〜Dの閾値電圧Vfは0.4V以下であることが好ましく、1V以下であることがより好ましい。 The backflow prevention diodes D 1 to D n prevent back flow of lightning and atmospheric current stored in the respective electric distribution constant type capacitors 2 1 to 2 n . Specifically, lightning strikes consist of a precursor discharge in which a streamer extends from the cloud toward the ground, and a return electric shock that rises from the ground toward the cloud as soon as it approaches the ground. By attaching the backflow prevention diodes D 1 to D n to the lightning rod 1, it is possible to prevent discharge from the power storage unit due to return electric shock. Since it is better for the forward voltage (threshold voltage) Vf to be small during power storage, the threshold voltage Vf of the backflow prevention diodes D 1 to D n is preferably 0.4 V or less, and more preferably 1 V or less.

電気分布定数型キャパシタ2〜2のそれぞれは、図2(a)に模式的に示すように、基体10と、基体10の両面を被覆する絶縁層11、12と、基体10及び絶縁層11、12を挟持した一対の電極13、14を有する。なお、図2(a)では、絶縁層11、12が基体10の両面を被覆しているが、絶縁層11、12のうちいずれか一方がなく、基体10の片面のみを被覆する構造であってもよい。その場合、基体10と、絶縁層11、12がない側の電極13、14とが直接接合されている。 Each of the electric distributed constant capacitors 2 1 to 2 n includes a base 10, insulating layers 11 and 12 covering both surfaces of the base 10, and the base 10 and the insulating layers as schematically shown in FIG. A pair of electrodes 13 and 14 sandwiching 11 and 12 is provided. In FIG. 2 (a), the insulating layers 11 and 12 cover both surfaces of the substrate 10. However, either one of the insulating layers 11 and 12 is not present and only one surface of the substrate 10 is covered. May be. In that case, the base 10 and the electrodes 13 and 14 on the side where the insulating layers 11 and 12 are not provided are directly joined.

基体10としては、金属又は合金の結晶体又は非晶質(アモルファス)、樹脂等が使用可能であり、100MPa以上の強靱な材料であることが好ましい。金属又は合金の材料としては、例えば亜鉛(Zn)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、スズ(Sn)、ニオブ(Nb)、タンタル(Ta)、タングステン(W)及びモリブデン(Mo)が挙げられる。これらの材料うち、陽極酸化法により酸化後に堅固で高抵抗の酸化膜を形成可能であり、酸化膜の表面に後述するようなサブナノメートル又はナノメートル寸法の凹部が形成可能であり、且つ安価であるため、Al、Ti、Nbの単体金属又は合金が好ましい。   As the substrate 10, a metal or alloy crystal, amorphous, or resin can be used, and a tough material of 100 MPa or more is preferable. Examples of the metal or alloy material include zinc (Zn), aluminum (Al), titanium (Ti), zirconium (Zr), hafnium (Hf), tin (Sn), niobium (Nb), tantalum (Ta), and tungsten. (W) and molybdenum (Mo). Among these materials, it is possible to form a firm and high resistance oxide film after oxidation by anodizing, and to form a sub-nanometer or nanometer-size recess as described later on the surface of the oxide film, and at a low cost. For this reason, simple metals or alloys of Al, Ti, and Nb are preferable.

絶縁層11、12の厚さは200nm〜20μm程度である。また、絶縁層11、12の電気抵抗は0.1kΩ〜100TΩ程度、好ましくは1kΩ〜100TΩ程度であり、電気抵抗は0.1kΩより小さくなるほど蓄電しにくくなり、100TΩより大きくなるほど放電性が悪化する。   The thickness of the insulating layers 11 and 12 is about 200 nm to 20 μm. The insulating layers 11 and 12 have an electrical resistance of about 0.1 kΩ to 100 TΩ, and preferably about 1 kΩ to 100 TΩ. The electrical resistance is less likely to be stored as the resistance is smaller than 0.1 kΩ, and the discharge performance is degraded as the electrical resistance is larger than 100 TΩ. .

絶縁層11、12の耐電圧性は、雷及び大気電流の高電圧に耐えるべく、例えば1kV以上であり、10kV以上であることがより好ましく、100kV以上であることがより好ましい。但し100kV以上の個数の少ない大規模雷は地上に逃がし蓄電させない方が良い。中規模雷からの蓄電は大規模雷の発生抑制作用もあるので、蓄電には中小規模の雷及び大気電流蓄電を対象とする。   The withstand voltage of the insulating layers 11 and 12 is, for example, 1 kV or more, more preferably 10 kV or more, and more preferably 100 kV or more in order to withstand high voltages of lightning and atmospheric current. However, it is better not to let large thunders with a small number of 100 kV or more escape to the ground and store them. Power storage from medium-scale lightning also has the effect of suppressing the occurrence of large-scale lightning, so power storage targets medium- and small-scale lightning and atmospheric current storage.

絶縁層11、12の材料としては、酸素欠陥を持つ非晶質相の酸化物や有機重合ポリマー等が採用可能である。酸素欠陥を持つ酸化物としては例えばアルミナ(Al)、チタニア(TiO)が挙げられる。また、絶縁層11、12は互いに同じ種類であってもよく、一方が酸化物で他方が有機重合ポリマー等の異なる種類であってもよい。 As a material of the insulating layers 11 and 12, an amorphous phase oxide having oxygen defects, an organic polymer, or the like can be used. Examples of the oxide having an oxygen defect include alumina (Al 2 O 3 ) and titania (TiO 2 ). The insulating layers 11 and 12 may be of the same type, or may be of different types, such as one being an oxide and the other being an organic polymer.

図2(a)及び図2(b)に模式的に示すように、絶縁層11、12の電極13、14と対向する側の表面には、サブナノメートル又はナノメートル寸法の開口径を有する多数の凹部11a、12aが自己組織的に形成されている。凹部11a、12aは、絶縁層11、12表面に均一に分布していることが好ましい。凹部11a、12aの密度は、絶縁層11、12表面の面積1cm当たり、1010個以上とすることが好ましく、1014個以上とすることがより好ましい。図3は、後述する実施例の試料番号2の絶縁層(酸化チタン膜)表面を走査型顕微鏡(SEM)で観察した写真を示す。 As schematically shown in FIGS. 2 (a) and 2 (b), the surface of the insulating layers 11, 12 facing the electrodes 13, 14 has a large number of sub-nanometers or nanometer-sized openings. The recesses 11a and 12a are formed in a self-organizing manner. The recesses 11a and 12a are preferably distributed uniformly on the surfaces of the insulating layers 11 and 12. The density of the recesses 11a and 12a is preferably 10 10 or more, more preferably 10 14 or more per 1 cm 2 of the surface area of the insulating layers 11 and 12. FIG. 3 shows a photograph of the surface of an insulating layer (titanium oxide film) of sample number 2 in an example described later, observed with a scanning microscope (SEM).

各凹部11a、12aは、サブナノメートル又はナノメートル寸法の開口径を有することにより、電極13、14との間で電気二重層的に電荷を蓄積する微少なコンデンサ(ナノコンデンサ)として機能する。このため、絶縁層11、12の表面全体が集積ナノ構造(セル)を有し、ナノコンデンサの並列集積体を構成する。本発明の実施形態において、「集積ナノ構造」とは、多様な機能性を有するナノメートル寸法構造の一次元ドット、ワイヤー、二次元平面、三次元立体を各種の方法で規則的に集合させた組織体を意味する。   Each recessed part 11a, 12a functions as a minute capacitor (nanocapacitor) that accumulates electric charges in an electric double layer between the electrodes 13, 14 by having an opening diameter of sub-nanometer or nanometer dimension. For this reason, the entire surfaces of the insulating layers 11 and 12 have integrated nanostructures (cells) to form a parallel assembly of nanocapacitors. In the embodiment of the present invention, the “integrated nanostructure” is a regular assembly of one-dimensional dots, wires, two-dimensional planes, and three-dimensional solids having a nanometer size structure having various functions by various methods. Means an organization.

電気分布定数型キャパシタ2〜2のそれぞれは、図4に示すように、絶縁層11、12表面全体で並列接続されたナノコンデンサCを有する分布定数回路となり、単位面積当たりの蓄電電荷量を極力大きくすることができる。ナノコンデンサCの並列接合数は絶縁層11、12及び電極13、14の面積に比例するので、極小から極大まで蓄電電荷量の調整が可能となる。 As shown in FIG. 4, each of the electric distributed constant capacitors 2 1 to 2 n becomes a distributed constant circuit having nanocapacitors C connected in parallel over the entire surfaces of the insulating layers 11 and 12, and the amount of stored charge per unit area Can be made as large as possible. Since the number of parallel junctions of the nanocapacitor C is proportional to the area of the insulating layers 11 and 12 and the electrodes 13 and 14, the amount of stored charge can be adjusted from the minimum to the maximum.

図2(b)に示すように、凹部11a、12aの開口径d1及び深さd2は、絶縁層11、12の構成元素の種類とその組成、及び形成方法等を調整することにより適宜選択可能である。凹部11a、12aの開口径d1は50nm程度以下が好ましく、20nm程度以下がより好ましい。凹部11a、12aの開口径d1は、例えば0.5nm〜50nm程度である。凹部11a、12aの開口径d1が小さいほど、凹部11a、12aで構成されるナノコンデンサの電気容量が上昇する傾向があるため、電気容量を大きくする観点からは、凹部11a、12aの開口径d1は小さいほど好ましい。なお、凹部11a、12aの開口径d1の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される数〜数十の微細孔の平均細孔径の平均値として算出するものとする。   As shown in FIG. 2B, the opening diameter d1 and depth d2 of the recesses 11a and 12a can be appropriately selected by adjusting the type and composition of the constituent elements of the insulating layers 11 and 12, the formation method, and the like. It is. The opening diameter d1 of the recesses 11a and 12a is preferably about 50 nm or less, and more preferably about 20 nm or less. The opening diameter d1 of the recesses 11a and 12a is, for example, about 0.5 nm to 50 nm. The smaller the opening diameter d1 of the recesses 11a, 12a, the higher the electric capacity of the nanocapacitor constituted by the recesses 11a, 12a. From the viewpoint of increasing the electric capacity, the opening diameter d1 of the recesses 11a, 12a. Is preferably as small as possible. The value of the opening diameter d1 of the recesses 11a and 12a is the average pore diameter of several to several tens of micropores observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It is calculated as the average value of.

凹部11a、12aの深さd2は例えばアスペクト比d2/d1が電子同士の反発回避の観点から0.5nm〜5nm程度が好ましく、更には0.5nm〜3nm程度が好ましい。なお、凹部11a、12aがナノチューブのように絶縁層11、12を貫通すると電荷のリークが起き蓄電効果は消失するため、凹部11a、12aが絶縁層11、12を貫通しないように深さd2が調整される。   The depth d2 of the recesses 11a and 12a is, for example, preferably about 0.5 nm to 5 nm, more preferably about 0.5 nm to 3 nm, from the viewpoint of avoiding repulsion between electrons in the aspect ratio d2 / d1. Note that when the recesses 11a and 12a penetrate the insulating layers 11 and 12 like nanotubes, charge leakage occurs and the storage effect disappears. Therefore, the depth d2 is set so that the recesses 11a and 12a do not penetrate the insulating layers 11 and 12. Adjusted.

電極13、14としては、凹部11、12の凸部酸化物と接着する必要のため、チタン(Ti)、クロム(Cr)、銅(Cu)、ニッケル(Ni)、金(Au)、ステンレス鋼及びモリブデン(Mo)等の導電性材料が使用可能であり、互いに同じ材料を用いてもよく、異なる材料を用いてもよい。例えば電極13が正極であり、電極14が負極である。   Since the electrodes 13 and 14 need to be bonded to the convex oxides of the concave portions 11 and 12, titanium (Ti), chromium (Cr), copper (Cu), nickel (Ni), gold (Au), stainless steel In addition, a conductive material such as molybdenum (Mo) can be used, and the same material may be used, or different materials may be used. For example, the electrode 13 is a positive electrode and the electrode 14 is a negative electrode.

固体電子蓄電体2の形状としては、種々の形状が採用可能であり、用途に応じて適宜選択可能である。例えば、各電気分布定数型キャパシタ2〜2を2次元的に敷き詰めた方形であってもよい。また、図5(a)〜図5(c)に実線で模式的に示すように、各電気分布定数型キャパシタ2〜2を積み上げていく方式(折り畳状)、2次元的に巻き上げる方式(巻尺状)、3次元的に螺旋巻きする方式(捩巻状)であってもよい。 Various shapes can be adopted as the shape of the solid-state electronic storage battery 2 and can be appropriately selected according to the application. For example, it may be a square in which the electric distribution constant type capacitors 2 1 to 2 n are two-dimensionally spread. Further, as schematically shown by solid lines in FIG. 5A to FIG. 5C, a system in which each of the electric distribution constant type capacitors 2 1 to 2 n is stacked (folded shape) and wound up two-dimensionally. A method (winding tape shape) and a three-dimensional spiral winding method (twisting shape) may be used.

また、本発明の実施形態に係る蓄電装置は、極低温(例えば−269℃)から600℃迄作動可能である。したがって、砂漠地帯や山岳地帯の過酷な環境下でも使用可能である。   In addition, the power storage device according to the embodiment of the present invention can operate from extremely low temperature (for example, −269 ° C.) to 600 ° C. Therefore, it can be used even in the harsh environment of a desert area or a mountainous area.

以上説明したように、本発明の実施形態に係る蓄電装置によれば、極微小サイズの集積ナノ構造を用いることにより、1kF/cm〜10kF/cm程度の物理的な巨大蓄電能を達成でき、−269℃程度の極低温から600℃迄作動可能な次世代の蓄電体を実現することができる。この蓄電体を電気分布定数型キャパシタ2〜2として1,000個〜10万個程度並列接続して固体電子蓄電体2を構成することにより、雷又は大気電流の高電流を分流して蓄電することができ、10kV程度までの耐電圧特性、100kA程度の耐電流性、1ms以下程度の瞬時の蓄電性を達成することができる。 As described above, according to the power storage device according to the embodiment of the present invention, a physical giant power storage capability of about 1 kF / cm 3 to 10 kF / cm 3 is achieved by using an extremely small integrated nanostructure. In addition, a next-generation power storage unit that can operate from an extremely low temperature of about −269 ° C. to 600 ° C. can be realized. By constructing the solid-state electronic storage unit 2 by connecting approximately 1,000 to 100,000 units of this storage unit as the electric distributed constant type capacitors 2 1 to 2 n , a high current of lightning or atmospheric current is shunted. It can be stored, and withstand voltage characteristics up to about 10 kV, current resistance of about 100 kA, and instantaneous power storage of about 1 ms or less can be achieved.

また、固体電子蓄電体2は固体系のため、衝撃、地震等での破損の可能性はなく、その上従来の二次電池と異なり電気化学反応を伴わない物理的蓄電能を有するため、充放電回数の制限がないこと、温度条件の厳しい山岳、砂漠環境下や耐食性を必要とする海面、海水中でも利用できるなどの利点を持っており、発電所縮小や送電線廃止にも有用である。   In addition, since the solid-state electronic storage battery 2 is a solid system, there is no possibility of damage due to impact, earthquake, etc. In addition, unlike a conventional secondary battery, the solid-state electronic storage body 2 has a physical storage capacity without an electrochemical reaction. It has advantages such as the fact that there is no limit on the number of discharges, the mountains with severe temperature conditions, the desert environment, the sea surface that requires corrosion resistance, and the use in seawater.

<蓄電装置の製造方法>
次に、図6(a)〜図6(c)を参照しながら、本発明の実施形態に係る蓄電装置の製造方法の一例を説明する。なお、以下で説明する製造方法はあくまでも一例であり、これに限定されるものではない。
<Method for manufacturing power storage device>
Next, an example of a method for manufacturing the power storage device according to the embodiment of the present invention will be described with reference to FIGS. 6 (a) to 6 (c). In addition, the manufacturing method demonstrated below is an example to the last, and is not limited to this.

まず、アルゴン(Ar)雰囲気下、所定の組成にアーク溶解した合金インゴットから、He大気圧下の単ロール液体急冷法等により、図6(a)に示すように、アモルファス合金等からなる基体10を作製する。   First, as shown in FIG. 6 (a), a substrate 10 made of an amorphous alloy or the like from an alloy ingot arc-melted to a predetermined composition in an argon (Ar) atmosphere by a single roll liquid quenching method under He atmospheric pressure or the like. Is made.

次に、図6(b)に模式的に示すように、原子状溶解除去法(デアロイング法)により、基体10を酸性溶液に浸漬させて電気化学的に卑な金属元素(例えばNi)を溶解せしめ、原子半径サイズの原子孔11b、12bを形成する。この工程により、後述する陽極酸化がしやすくなる。   Next, as schematically shown in FIG. 6B, the base 10 is immersed in an acidic solution by an atomic dissolution removal method (dealing method) to dissolve an electrochemically base metal element (for example, Ni). Thus, atomic holes 11b and 12b having an atomic radius size are formed. This step facilitates anodization described later.

次に、図6(c)に示すように、フッ素含有溶液中又は過塩素酸中の陽極酸化法を用いて、基体10の両面に、サブナノメートル又はナノメートル寸法の多数の凹部11a、12aを均一に表面に有する絶縁層(酸化膜)11、12を形成する。絶縁層11、12表面の凹部11a、12aの開口径及び深さは、構成元素の種類とその組成及び処理時間等により調整することができる。なお、凹部11a、12aの開口径が50nm程度の場合、図6(b)に示したデアロイング法による原子孔11b、12bは略消失するが、凹部11a、12aの開口径が小さい(例えば5nm以下)ときには、デアロイング法による原子孔11b、12bが表面に残存する。   Next, as shown in FIG. 6C, a large number of sub-nanometer or nanometer-sized recesses 11a and 12a are formed on both surfaces of the substrate 10 by using an anodic oxidation method in a fluorine-containing solution or in perchloric acid. Insulating layers (oxide films) 11 and 12 having a uniform surface are formed. The opening diameters and depths of the recesses 11a and 12a on the surfaces of the insulating layers 11 and 12 can be adjusted by the types of constituent elements, their compositions, processing times, and the like. In addition, when the opening diameters of the recesses 11a and 12a are about 50 nm, the atomic holes 11b and 12b by the dealloying method shown in FIG. 6B are substantially lost, but the opening diameters of the recesses 11a and 12a are small (for example, 5 nm or less). ) In some cases, the atomic holes 11b and 12b are left on the surface by the dealloying method.

なお、絶縁層11、12として有機重合ポリマーを被覆する場合には、金属又は合金等の基体10上に低電圧低温スパッタリングにより、有機重合ポリマーを表面に凹部11a、12aが形成されるように被覆すればよい。その場合の凹部11a、12aの開口径及び深さは、スパッタリングの雰囲気、圧力、基体温度、時間等は適宜調整可能である。   In the case where the organic polymer is coated as the insulating layers 11 and 12, the organic polymer is coated on the surface of the base 10 such as metal or alloy so that the concave portions 11a and 12a are formed on the surface by low-voltage low-temperature sputtering. do it. In this case, the opening diameter and depth of the recesses 11a and 12a can be appropriately adjusted in the sputtering atmosphere, pressure, substrate temperature, time, and the like.

次に、微小電気機械システム(MEMS, Micrometer Electro Mechanical System)法、スポット溶接又はファイバレーザ等を用いて、図2(a)に示すように絶縁層11、12と電極13、14とを接着することにより、各電気分布定数型キャパシタ2〜2が作製される。このようにして、必要な個数nの電気分布定数型キャパシタ2〜2を作製し、逆流防止ダイオードD〜Dを介して誘雷針1に接続することにより、図1に示した蓄電装置が完成する。 Next, the insulating layers 11 and 12 and the electrodes 13 and 14 are bonded to each other as shown in FIG. 2A by using a micro electro mechanical system (MEMS) method, spot welding, fiber laser, or the like. Thus, each of the electric distribution constant type capacitors 2 1 to 2 n is manufactured. In this way, the required number n of the electric distributed constant type capacitors 2 1 to 2 n are manufactured and connected to the lightning rod 1 through the backflow prevention diodes D 1 to D n , as shown in FIG. The power storage device is completed.

本発明の実施形態に係る蓄電装置の製造方法によれば、フッ素含有溶液中若しくは過塩素酸中の陽極酸化法、又は低電圧低温スパッタリングにより、表面にサブナノメートル又はナノメートル寸法の開口径の凹部11a、12aが均一に形成された絶縁層11、12を形成することができ、本発明の実施形態に係る蓄電装置を実現可能となる。   According to the method for manufacturing a power storage device according to the embodiment of the present invention, a recess having a sub-nanometer or nanometer-size opening diameter is formed on the surface by an anodic oxidation method in a fluorine-containing solution or perchloric acid, or low-voltage low-temperature sputtering. The insulating layers 11 and 12 in which 11a and 12a are uniformly formed can be formed, and the power storage device according to the embodiment of the present invention can be realized.

<実施例>
次に、本発明の実施形態に係る蓄電装置の固体電子蓄電体2の実施例を説明する。なお、本発明が適用される材料は、以下の実施例の材料に限定されるものではない。
<Example>
Next, examples of the solid-state electronic storage body 2 of the power storage device according to the embodiment of the present invention will be described. The material to which the present invention is applied is not limited to the materials of the following examples.

試料番号1、2、4〜6の試料として、Ar雰囲気下、各種組成にアーク溶解した合金インゴットから冷却速度10m/s以下、He大気圧下の単ロール液体急冷法(超急冷凝固法)にて急冷した後、裁断機で裁断し、幅1mm、厚さ20μmのリボン状試料(基体)を作製した。試料番号3の試料として、Ar雰囲気下、所定の組成にアーク溶解した合金インゴットから冷却速度10m/s以下、He大気圧下の双ロール液体急冷法(超急冷凝固法)にて急冷した後、幅1mm、厚さ50μmのリボン状試料(基体)を作製した。 Sample Nos. 1, 2, 4 to 6 are sampled from an alloy ingot arc-melted to various compositions in an Ar atmosphere at a cooling rate of 10 6 m / s or less and a single-roll liquid rapid cooling method under He atmospheric pressure (super rapid solidification method). ) And then cut with a cutter to produce a ribbon-shaped sample (substrate) having a width of 1 mm and a thickness of 20 μm. Sample No. 3 was rapidly cooled from an alloy ingot arc-melted to a predetermined composition under an Ar atmosphere by a twin-roll liquid quenching method (super rapid solidification method) at a cooling rate of 10 6 m / s or less and He atmospheric pressure. Thereafter, a ribbon-like sample (substrate) having a width of 1 mm and a thickness of 50 μm was produced.

試料番号7〜9として、各種結晶金属又は結晶合金を用いて、電気溶解法によりリボン状試料(基体)を作製した。試料番号10として、エポキシ樹脂を用いて、金型圧縮SMC(Sheet Molding Compound)プレス法により試料を作製した。試料番号11として、ガラス繊維強化エポキシ樹脂を用いて、繊維骨材多重積層ハンドレイアップ法によりリボン状試料(基体)を作製した。   As sample numbers 7 to 9, ribbon-like samples (substrates) were prepared by electrolysis using various crystal metals or crystal alloys. As Sample No. 10, an epoxy resin was used to prepare a sample by a mold compression SMC (Sheet Molding Compound) press method. As sample number 11, a ribbon-like sample (substrate) was prepared by a fiber-aggregate multi-layered hand lay-up method using glass fiber reinforced epoxy resin.

これらのうち、試料番号1〜9のリボン状試料(基体)については、電気分解法(陽極酸化)を用いて、基体の両面を被覆する酸化膜を形成した。電気分解法においては、事前に常温の1N HClで1日のデアロイング処理を行い、試料番号1,2,5についてはNi、試料番号3についてはNb、試料番号4についてはAl、Ni、試料番号6についてはCu、Fe、試料番号7についてはAlを除去した。試料番号2については、絶縁層11をTiO1.89、絶縁層12をポリエチレンポリマーで被覆する。 Among these, for the ribbon-shaped samples (substrates) of sample numbers 1 to 9, an oxide film covering both surfaces of the substrate was formed using an electrolysis method (anodic oxidation). In the electrolysis method, 1 day HCl treatment at room temperature is performed in advance for 1 day, Ni for sample numbers 1, 2, and 5, Nb for sample number 3, Al, Ni for sample number 4, and sample number For Cu, Fe and Cu were removed, and for Sample No. 7, Al was removed. For sample number 2, the insulating layer 11 is covered with TiO 1.89 and the insulating layer 12 is covered with a polyethylene polymer.

また、試料番号10のリボン状試料(基体)については、レーザアブレーション(MAPLE、Matrix-Assisted Pulsed Laser Evaporation)法を用いて、エチレン酢酸ビニルコポリマからなる絶縁層11、12を堆積した。試料番号11のリボン状試料(基体)については、エアロゾル蒸着プレイ堆積(ESDUS,Evaporative Spray Deposition using Ultradilute Solution)法を用いて、加硫シリコンゴムからなる絶縁層を堆積した。   Further, for the ribbon-shaped sample (substrate) of sample number 10, insulating layers 11 and 12 made of ethylene vinyl acetate copolymer were deposited by using a laser ablation (MAPLE) method. About the ribbon-shaped sample (base | substrate) of the sample number 11, the insulating layer which consists of vulcanized silicon rubber was deposited using the aerosol vapor deposition play deposition (ESDUS, Evaporative Spray Deposition using Ultradilute Solution) method.

表1は、試料番号1〜11のリボン状試料の母相(基体)の組成、基体の製造方法、基体を被覆する絶縁層、絶縁層表面の凹部の開口径の寸法、絶縁層の電気抵抗、電気容量を示す。
Table 1 shows the composition of the matrix (substrate) of the ribbon-shaped samples of sample numbers 1 to 11, the method of manufacturing the substrate, the insulating layer covering the substrate, the size of the opening diameter of the recess on the surface of the insulating layer, and the electrical resistance of the insulating layer , Indicating the electric capacity.

表2は、試料番号1〜11の絶縁層の製造方法(凹部の形成方法)、製造条件を示す。
Table 2 shows the method for manufacturing the insulating layers of Sample Nos. 1 to 11 (method for forming the recesses) and the manufacturing conditions.

これらの試料のうち、試料番号1、7、10の試料を用いて660万Vインパルス電圧発生装置(ニチコン社製)(表3において試験装置「A」と示す)、40万V直撃雷電流試験装置(ニチコン社製)(表3において試験装置「B」と示す)に対する人工雷電流蓄電実験を行った。その結果を表3に示す。
Of these samples, samples Nos. 1, 7, and 10 were used to generate a 6.6 million V impulse voltage generator (manufactured by Nichicon Corporation) (shown as test device “A” in Table 3), 400,000 V direct lightning current test. An artificial lightning current storage experiment was performed on a device (manufactured by Nichicon Corporation) (shown as test device “B” in Table 3). The results are shown in Table 3.

表3から、試料番号1、7、10の試料のそれぞれが人工雷電流を効率よく蓄電できているのが分かる。特に、比較的長い放電時間で実験した試料番号7の試料では蓄電量が大きくなっている。   From Table 3, it can be seen that each of samples Nos. 1, 7, and 10 can efficiently store the artificial lightning current. In particular, in the sample of sample number 7 that was experimented with a relatively long discharge time, the charged amount was large.

また、図7に、絶縁層11、12の平均凹部11a、12a寸法と直列回路における電気容量との関係を示す。実験値のうち、試料番号7、試料番号4のプロットは実施例の試料であり、その他のプロットは別途作製した試料である。図7から、凹部の開口部の寸法の減少に伴い、直列回路における電気容量は放物線的に上昇することが分かる。   FIG. 7 shows the relationship between the average concave portions 11a and 12a dimensions of the insulating layers 11 and 12 and the electric capacity in the series circuit. Among the experimental values, the plots of sample number 7 and sample number 4 are the samples of the example, and the other plots are samples prepared separately. From FIG. 7, it can be seen that the capacitance in the series circuit increases parabolically as the size of the opening of the recess is reduced.

(その他の実施の形態)
上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の蓄電装置は雷蓄電のみならず、メガソーラー、風力発電等の再生可能エネルギー発電力の蓄電に使え、その効果としては送電線を必要としない大電力貯蔵システムとして、不安定さを払拭することで現在の電力買い取り制度の問題を一挙に解決できる。更には雷蓄電のみならず、AD変換を必要とするが系統電力や再生可能エネルギー電力の大規模蓄電池として、その超急速放電(蓄電)能力により、各家庭用設置を含むEV用急速給電(充電)システム、及びEV用大容量蓄電池として、新たなEV利用社会を創出することができる。   The power storage device of the present invention can be used not only for lightning power storage but also for storing renewable energy generation such as mega solar and wind power generation, and as an effect, it eliminates instability as a large power storage system that does not require transmission lines. By doing so, the problems of the current power purchase system can be solved all at once. Furthermore, not only lightning storage, but also AD conversion is required, but as a large-scale storage battery for system power and renewable energy power, rapid power supply (charging) for EVs, including installation for each home, due to its ultra-rapid discharge (storage) capability ) As a system and EV high-capacity storage battery, a new EV use society can be created.

1・・・蓄電装置
2・・・固体電子蓄電体
〜2・・・分流固体電子蓄電体(電気分布定数型キャパシタ(EDCC))
10・・・基体
11、12・・・絶縁層
11a、12a・・・凹部
13、14・・・電極


DESCRIPTION OF SYMBOLS 1 ... Power storage device 2 ... Solid-state electronic storage body 2 1-2 n ... Shunt solid-state electronic storage body (electrically distributed constant capacitor (EDCC))
DESCRIPTION OF SYMBOLS 10 ... Base | substrate 11, 12 ... Insulating layer 11a, 12a ... Recessed part 13, 14 ... Electrode


Claims (16)

雷及び大気電流を誘導可能な誘雷針と、
前記誘雷針を介して雷及び大気電流を蓄電する物理的蓄電能を有する固体電子蓄電体
とを備え
前記固体電子蓄電体が、雷及び大気電流を分流する複数の電気分布定数型キャパシタから構成され、
前記各電気分布定数型キャパシタが、
凹部が表面に形成された絶縁層と、
前記絶縁層を挟持する一対の電極と
を備え、
前記凹部は、前記絶縁層の表面に均一に分布され、前記凹部の密度は、前記絶縁層の表面の面積1cm 当たり、10 10 個以上であることを特徴とする蓄電装置。
A lightning rod capable of inducing lightning and atmospheric currents;
A solid-state electronic storage battery having a physical storage capacity for storing lightning and atmospheric current through the lightning rod , and
The solid-state electronic storage body is composed of a plurality of electric distributed constant capacitors that shunt lightning and atmospheric current,
Each of the electric distributed constant capacitors is
An insulating layer having a recess formed on the surface;
A pair of electrodes sandwiching the insulating layer;
With
Said recess, said evenly distributed on the surface of the insulating layer, the density of the recess, the area of 1 cm 2 per surface of the insulating layer, 10 a power storage device according to claim 10 or more der Rukoto.
前記固体電子蓄電体が、1kF/cm以上の巨大蓄電能を有し、雷及び大気電流を0.5s以下の瞬時に蓄電することを特徴とする請求項1に記載の蓄電装置。 2. The power storage device according to claim 1, wherein the solid-state electronic power storage unit has a huge power storage capacity of 1 kF / cm 3 or more, and stores lightning and atmospheric current instantaneously for 0.5 s or less. 前記固体電子蓄電体が1,000個以上の前記電気分布定数型キャパシタから構成されることを特徴とする請求項1又は2に記載の蓄電装置。 The solid state electronic electricity storage body, the power storage device according to claim 1 or 2, characterized in that they are composed of more than 1,000 of the electrical distributed constant type capacitor. 前記凹部は、20nm以下の開口径と0.5nm〜3nm程度の深さとを有し前記絶縁層は100TΩ以下の電気抵抗を有することを特徴とする請求項1〜3のいずれか1項に記載の蓄電装置。 The recess, and a depth of about less opening diameter 20 nm and 0.5Nm~3nm, the insulating layer is any of claims 1 to 3, characterized in a Turkey which have a less electric resistance 100TΩ The power storage device according to claim 1 . 前記絶縁層が、100MPa以上の金属又は合金の結晶体又は非晶質層を被覆していることを特徴とする請求項4に記載の蓄電装置。   The power storage device according to claim 4, wherein the insulating layer covers a crystalline or amorphous layer of a metal or alloy of 100 MPa or more. 前記凹部が形成された表面が集積ナノ構造であり、ナノコンデンサの並列集積体を構成することを特徴とする請求項4又は5に記載の蓄電装置。   6. The power storage device according to claim 4, wherein a surface on which the concave portion is formed has an integrated nanostructure, and constitutes a parallel integrated body of nanocapacitors. 前記絶縁層が酸素欠陥を持つ非晶質相からなることを特徴とする請求項4〜6のいずれか1項に記載の蓄電装置。   The power storage device according to claim 4, wherein the insulating layer is made of an amorphous phase having oxygen defects. 前記絶縁層が有機重合ポリマーからなることを特徴とする請求項4〜6のいずれか1項に記載の蓄電装置。   The power storage device according to any one of claims 4 to 6, wherein the insulating layer is made of an organic polymer. 前記絶縁層が1kV以上の耐電圧性を有することを特徴とする請求項4〜7のいずれか1項に記載の蓄電装置。   The power storage device according to claim 4, wherein the insulating layer has a withstand voltage of 1 kV or more. 前記固体電子蓄電体が、−269℃〜600℃で作動可能であることを特徴とする請求項1〜9のいずれか1項に記載の蓄電装置。   10. The power storage device according to claim 1, wherein the solid-state electronic power storage unit is operable at −269 ° C. to 600 ° C. 10. 前記固体電子蓄電体が、方形、折り畳状、巻尺状又は捩巻状に構成されていることを特徴とする請求項1〜10のいずれか1項に記載の蓄電装置。   The power storage device according to any one of claims 1 to 10, wherein the solid-state electronic power storage unit is configured in a square shape, a folded shape, a tape measure shape, or a spiral shape. 前記誘雷針の少なくとも先端の材質が、クロム被覆黄銅、アルミニウム又はステンレス鋼からなることを特徴とする請求項1〜11のいずれか1項に記載の蓄電装置。   The power storage device according to any one of claims 1 to 11, wherein a material of at least a tip of the lightning rod is made of chromium-coated brass, aluminum, or stainless steel. 前記誘雷針と前記各電気分布定数型キャパシタとの間にそれぞれ接続され、0.4V以下の閾値電圧をそれぞれ有する複数の逆流防止ダイオードを更に備えることを特徴とする請求項3〜9のいずれか1項に記載の蓄電装置。   10. The device according to claim 3, further comprising a plurality of backflow prevention diodes connected between the lightning rod and each of the electric distributed constant capacitors, each having a threshold voltage of 0.4 V or less. The power storage device according to claim 1. 表面に均一に分布するように凹部が形成された絶縁層であって、前記凹部の密度は、前記絶縁層の表面の面積1cm 当たり、10 10 個以上である前記絶縁層を形成する工程と、
前記絶縁層を一対の電極で挟持することにより電気分布定数型キャパシタを作製する工程と、
前記電気分布定数型キャパシタを複数個並列接続することにより、雷及び大気電流を蓄電する物理的蓄電能を有する固体電子蓄電体を作製する工程
とを含むことを特徴とする蓄電装置の製造方法。
Forming an insulating layer having recesses formed so as to be uniformly distributed on a surface , wherein the density of the recesses is 10 10 or more per 1 cm 2 of the surface area of the insulating layer ; ,
Producing an electric distributed constant capacitor by sandwiching the insulating layer between a pair of electrodes;
Producing a solid state electronic storage body having a physical storage capacity for storing lightning and atmospheric current by connecting a plurality of the electric distributed constant capacitors in parallel.
前記絶縁層を形成する工程は、フッ素含有溶液中又は過塩素酸中の陽極酸化法を用いて、前記表面に凹部が形成された酸化膜を形成することを特徴とする請求項14に記載の蓄電装置の製造方法。   15. The step of forming the insulating layer includes forming an oxide film having a recess formed on the surface by using an anodic oxidation method in a fluorine-containing solution or in perchloric acid. A method for manufacturing a power storage device. 前記絶縁層を形成する工程は、スパッタリングにより、前記表面に凹部が形成された有機重合ポリマーからなる前記絶縁層を形成することを特徴とする請求項14に記載の蓄電装置の製造方法。   The method for manufacturing a power storage device according to claim 14, wherein in the step of forming the insulating layer, the insulating layer made of an organic polymer having a recess formed on the surface is formed by sputtering.
JP2015005999A 2015-01-15 2015-01-15 Power storage device and manufacturing method thereof Active JP6498945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015005999A JP6498945B2 (en) 2015-01-15 2015-01-15 Power storage device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015005999A JP6498945B2 (en) 2015-01-15 2015-01-15 Power storage device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016134934A JP2016134934A (en) 2016-07-25
JP6498945B2 true JP6498945B2 (en) 2019-04-10

Family

ID=56434748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015005999A Active JP6498945B2 (en) 2015-01-15 2015-01-15 Power storage device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6498945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166813A1 (en) 2020-02-18 2021-08-26 国立大学法人東北大学 Power storage material and ultra power storage body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7229472B2 (en) * 2018-10-25 2023-02-28 国立大学法人東北大学 Ultracapacitor materials and ultracapacitors
JP7400758B2 (en) * 2021-03-16 2023-12-19 株式会社村田製作所 multilayer ceramic capacitor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2590737B1 (en) * 1985-11-26 1990-04-20 Indelec Sarl LIGHTNING PROTECTION METHOD, MEANS FOR CARRYING OUT THIS METHOD AND LIGHTNING PROTECTION MATERIAL PROVIDED WITH SUCH MEANS
JPH11204287A (en) * 1998-01-13 1999-07-30 Chuo Bourai Kk Lightning rod having end tip
WO2009003250A1 (en) * 2007-07-03 2009-01-08 Robert Rener Storing electrical energy (lightning or existing network)
US7855476B2 (en) * 2008-07-14 2010-12-21 Mark Ellery Ogram Atmospheric electrical generator
US9179531B2 (en) * 2010-05-02 2015-11-03 Melito Inc Super conducting super capacitor
JP2012253321A (en) * 2011-05-09 2012-12-20 Tohoku Univ Electricity storage material and electronic component using the same
WO2013145002A1 (en) * 2012-03-28 2013-10-03 株式会社 日立製作所 Power storage system and power storage method
US20140042987A1 (en) * 2012-08-09 2014-02-13 Northern Lights Semiconductor Corp. Lightning energy storage system
JP2015057808A (en) * 2013-09-16 2015-03-26 幹夫 福原 Power storage material having insulating high specific surface area and capacitor using power storage material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166813A1 (en) 2020-02-18 2021-08-26 国立大学法人東北大学 Power storage material and ultra power storage body
KR20220136364A (en) 2020-02-18 2022-10-07 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Capacitor Materials and Ultra Capacitors

Also Published As

Publication number Publication date
JP2016134934A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
JP6019533B2 (en) Nanoporous metal core / ceramics layered composite, its manufacturing method, supercapacitor device and lithium ion battery
Lu et al. A review of negative electrode materials for electrochemical supercapacitors
JP2021108376A (en) Porous interconnected wavy carbon-based network (ICCN) composite material
Chou et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors
Zhang et al. Sandwich-like CNTs@ SnO2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries
US8863363B2 (en) Method for fabricating a supercapacitor electronic battery
KR20170019424A (en) Hybrid electrochemical cell
JP2019516236A (en) Device and method for high voltage and solar cells
US20150179356A1 (en) Hybrid electrochemical capacitor
KR20180006882A (en) Electrode material and energy storage device
US20160293956A1 (en) Hybrid carbon nanotube and graphene nanostructures
KR101922682B1 (en) Textured current collector foil
JP6498945B2 (en) Power storage device and manufacturing method thereof
US10811166B2 (en) Production and use of flexible conductive films and inorganic layers in electronic devices
JP4573033B2 (en) Electric double layer capacitor electrode manufacturing method, electric double layer capacitor electrode obtained, and electric double layer capacitor using the same
DE102010051754A1 (en) Electrical energy store for storing electrical energy generated from e.g. wind turbine, has positive and negative electrodes that are in contact with high and low work function arresters respectively
JP2012253321A (en) Electricity storage material and electronic component using the same
JP2015057808A (en) Power storage material having insulating high specific surface area and capacitor using power storage material
JP7229472B2 (en) Ultracapacitor materials and ultracapacitors
EP3634091B1 (en) Device for converting energy in the atmosphere and method for manufacturing the same
JP6628241B2 (en) Energy storage materials and energy storage devices
CN207321141U (en) A kind of efficient energy conversion and stocking system
JP6839386B2 (en) Power storage materials and storage devices
Rajni et al. Metal-based hybrid capacitors 17
Rajni et al. Metal-based hybrid capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190314

R150 Certificate of patent or registration of utility model

Ref document number: 6498945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250