WO2014112337A1 - Dielectric material and electrochemical element using same - Google Patents

Dielectric material and electrochemical element using same Download PDF

Info

Publication number
WO2014112337A1
WO2014112337A1 PCT/JP2014/000065 JP2014000065W WO2014112337A1 WO 2014112337 A1 WO2014112337 A1 WO 2014112337A1 JP 2014000065 W JP2014000065 W JP 2014000065W WO 2014112337 A1 WO2014112337 A1 WO 2014112337A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric material
graphene oxide
graferrite
reduced graphene
electrode
Prior art date
Application number
PCT/JP2014/000065
Other languages
French (fr)
Japanese (ja)
Inventor
松本 聡
愛 渋谷
和子 伊澤
エルセット カイ
Original Assignee
学校法人 芝浦工業大学
株式会社Micc Tec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 芝浦工業大学, 株式会社Micc Tec filed Critical 学校法人 芝浦工業大学
Priority to JP2014557387A priority Critical patent/JPWO2014112337A1/en
Publication of WO2014112337A1 publication Critical patent/WO2014112337A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a dielectric material, an electrochemical element using the dielectric material, a power storage device using the electrochemical element, and the like.
  • low-emission vehicles such as electric vehicles and hybrid vehicles have been developed from the perspectives of mitigating air pollution in large cities by automobile exhaust gas, promoting the use of alternative energy for petroleum, and reducing carbon dioxide emissions that contribute to the prevention of global warming Popularization is required.
  • various power storage devices are being developed. Development to increase the withstand voltage is underway.
  • an electrochemical element used for a power storage device for example, an electric double layer capacitor capable of high density and large capacity has attracted attention.
  • activated carbon having a large surface area is generally used as the material of the polarizable electrode.
  • Activated carbon is produced by carbonizing raw materials having a high carbon content such as coconut husk, petroleum pitch, petroleum coke, etc. at a low temperature of 300 to 700 ° C. and then activating them.
  • an inorganic acid such as water vapor, hydrochloric acid, nitric acid, sulfuric acid, or a potassium salt such as potassium hydroxide is used, which contributes to an increase in production cost.
  • the granulated activated carbon is uniformly dispersed in an electrolyte such as propylene carbonate.
  • an electrolyte such as propylene carbonate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-266548
  • a pair of positive and negative electrodes formed by forming a gel electrolyte membrane on a current collector so as to cover a group of carbon nanotubes provided on the current collector
  • an “electric double layer capacitor using carbon nanotubes” characterized in that the carbon nanotube group of the positive electrode and the carbon nanotube group of the negative electrode face each other and are arranged in a non-contact manner.
  • an object of the present invention is to provide a dielectric material (a material for a polarizable electrode) that can produce an electric double layer capacitor or the like without requiring a costly and laborious manufacturing process as in the case of using carbon nanotubes. Another object is to provide a dielectric material capable of realizing an electric double layer capacitor or the like having a storage performance equal to or higher than that of the conventional one.
  • the present inventors have found that a specific carbon nanomaterial and an inorganic acid and / or Alternatively, the present inventors have found that it is extremely effective to use a dielectric material containing carbonate ester, and the present invention has been achieved.
  • the present invention Reduced graphene oxide, Containing an inorganic acid and / or a carbonate ester, A dielectric material is provided.
  • the dielectric material of the present invention may contain a lithium compound, and in the dielectric material of the present invention, the reduced graphene oxide has at least one substance selected from silver, copper, zinc oxide, and palladium. It is preferably intercalated and doped.
  • the present invention also provides: A polarizable electrode comprising at least the above dielectric material of the present invention; A separator; Including a first collector electrode and a second collector electrode; An electrochemical device is provided.
  • the dielectric material of the present invention is applied to the first collector electrode and / or the second collector electrode, and the applied dielectric material is dried, thereby the first collector electrode. It is preferable that the collector electrode and / or the second collector electrode are surface-treated.
  • electrochemical element is a concept including all elements that include the dielectric material of the present invention and whose electrical characteristics can be used chemically.
  • an electric double layer capacitor, a capacitor, A battery (including a secondary battery and a storage battery) and a device in which these are enlarged are also included in the “electrochemical element” of the present invention.
  • the present invention also provides: Including the electrochemical device of the present invention as described above, A power storage device is provided.
  • power storage device refers to electrical equipment used as a power supply source, such as an uninterruptible power supply device, an instantaneous voltage drop compensation device, and a backup power supply, and further, for example, automobiles, wind power generation devices, and solar power generation. It is a concept including a system for storing and effectively using electricity obtained from another power generation device such as a device.
  • the electrochemical device of the present invention is used in the above-mentioned electrical equipment used as a power supply source, even when handling a DC high voltage, it is not necessary to connect a large number of capacitors in a multi-stage DC manner as in the past, and it is stable. It is possible to reduce the operation and the number of parts.
  • a system for storing and effectively using electricity obtained from other power generators it is effective for storing power obtained from a power source for driving a motor or regenerative brake when used in an automobile. Can be used.
  • the power generation system using wind power or sunlight generates natural power generation unevenness because it uses natural energy.
  • this power generation unevenness is eliminated, and the difference in supply and demand. It becomes relatively easy to fill the space, and the effective use of electricity becomes possible.
  • the present invention provides Reduced graphene oxide, Mixing with inorganic acid and / or carbonate ester, A method for producing a dielectric material is provided.
  • a lithium compound may be further mixed, and at least one substance selected from silver, copper, zinc oxide, and palladium is intercalated in the reduced graphene oxide.
  • -It is preferable that it is doped.
  • a dielectric material (a material for a polarizable electrode) capable of manufacturing an electric double layer capacitor or the like without requiring a costly and laborious manufacturing process as in the case of using carbon nanotubes.
  • a dielectric material having a high electrostatic capacity capable of realizing an electric double layer capacitor having a power storage performance equal to or higher than that of the conventional one.
  • the dielectric material of the present invention is characterized by having reduced graphene oxide and an inorganic acid and / or carbonate ester.
  • the dielectric material may be in the form of powder, granules, or agglomerates after a drying step and / or a firing step.
  • Reduced graphene oxide is a monomolecular film of graphite, and reduced graphene oxide produced by various conventionally known methods can be used as long as the effects of the present invention are not impaired.
  • Graphite has a layered structure in which hexagonal mesh plane layers (reduced graphene oxide) are laminated by van der Waals force. By defeating van der Waals force between graphite layers and peeling the graphite one by one, it is reduced. Type graphene oxide can be obtained.
  • the graphite oxide is a single layer and has a large specific surface area.
  • the ⁇ -electron conjugated network is divided by the introduced oxygen-containing substituent, and the electrical conductivity is reduced, resulting in an insulating state.
  • electric conductivity can be recovered by reducing a substituent containing oxygen.
  • a chemical reduction method in which a reducing agent such as hydrazine is added in the presence of a base to a water dispersion in which graphite oxide is dispersed in water for reduction, and water dispersion in which graphite oxide is dispersed in water.
  • a thermal reduction method or the like in which a water-miscible solvent such as n-methylpyrrolidone or ethylene glycol is added to the liquid, and the mixture is heated to about 200 ° C. for reduction.
  • reduced graphene oxide examples include “Graferrite RGO” manufactured by MICC Corporation.
  • reduced graphene oxide is obtained by intercalating and doping at least one substance selected from silver, copper, zinc oxide, and palladium. The capacity can be further improved.
  • “Graferrite ag007: Silver intercalated and doped” manufactured by MICC Corporation, “Graferrite” “Cu008: Intercalate doping of copper”, “Graferrite zn009: Intercalation doping of zinc oxide”, and “Graferrite Pd010: Intercalation doping of palladium” can be preferably used.
  • “Graferrite RGO” manufactured by MICC TEC Co., Ltd. has a particle size of 4 to 80 ⁇ m, a thickness of 2 to 40 nm, and a linear shape.
  • Reduced graphene oxide can be obtained by reducing graphene oxide.
  • Graphene oxide is produced as follows. First, graphite is sulfonated. This sulfonation reaction is carried out by using concentrated sulfuric acid and concentrated nitric acid as a medium, potassium permanganate as an oxidizing agent, and carbonized D-glucose cake as a sulfonation catalyst (Human Systems Co., Ltd., product name: carbonized D-glucose 569). ). In the sulfonation reaction, a container resistant to concentrated sulfuric acid and concentrated nitric acid, which are strong acids, for example, a borosilicate heat-resistant glass container is used.
  • the graphite used in the reaction may be natural or synthetic, but a purity of 99% or more is preferable. Further, when natural graphite is used as the graphite source, it is preferable to use a product having a purity of 99% or more because impurities such as silica are present.
  • the amount of graphite used is, for example, 1 to 50 g, preferably 10 to 30 g, per 100 ml of concentrated sulfuric acid.
  • a sulfonated reaction is carried out in the presence of a metal or a metal compound.
  • a metal for example, various metals such as silver, palladium, copper, and zinc can be used.
  • a metal it can mix
  • the amount of the metal or compound thereof to be blended is suitably 0.01 to 5% by mass, preferably 0.1 to 3% by mass, for example, based on graphite.
  • the solid acid catalyst uses, for example, dehydration action or oxidation action such as concentrated sulfuric acid (eg 98%) or fuming sulfuric acid against carbon sources such as D-glucose, cellulose, naphthalene, and anthracene. Carbonized and sulfonated at a high temperature of about 200 to 300 ° C. Due to the sulphonation, the sulphonated graphite particles have an affinity for sulfuric acid, so that dispersibility due to submerged ablation can be further enhanced.
  • dehydration action or oxidation action such as concentrated sulfuric acid (eg 98%) or fuming sulfuric acid against carbon sources such as D-glucose, cellulose, naphthalene, and anthracene.
  • the amount of the solid acid catalyst is, for example, 20 g of graphite, for example, carbonized D glucose compound (manufactured by Human Systems Co., Ltd., product name: carbonized D glucose 569) as the solid acid catalyst is, for example, 0.1 to It is suitable to use 10 g, preferably 0.5 to 5 g.
  • the sulfonation reaction can be performed by performing laser ablation in a liquid while stirring graphite with a magnetic stirrer.
  • the graphite particles in the reaction vessel can be refined into a nanocolloid state and suspended.
  • Laser ablation in the liquid generates a strong pulse in the liquid for the graphite particles, thereby expanding the interlayer spacing of the graphite and the presence of the concentrated sulfuric acid, concentrated nitric acid, oxidant, and solid acid catalyst present. Due to the action, delamination and oxidation and sulfonation reactions can be performed.
  • the obtained sulfonated graphite particles are considered to exist in a state in which sulfonic acid groups enter between graphite layers and are bonded or added to a benzene ring.
  • a metal is doped, there is a high possibility that the metal exists as a form of intercalation incorporated between phases. Therefore, when the metal-doped reduced graphene oxide finally obtained is a capacitor, it is considered that the metal ions taken in and out function as a function of taking in and out charges.
  • Laser ablation is known per se and is used in water as a technique for producing a metal dispersion in which the surface of a material such as a metal is generally modified with a laser and uniformly dispersed in water in the form of nanocolloid particles and does not settle. It has come to be used.
  • a pulse laser in the visible region is used, ablation occurs in water, and a large pressure plume is formed on the surface of the material for a short time, and this pressure is used to locally deform the metal surface. It is understood. Underwater, the plume expansion is suppressed by the inertia of water, so the plume pressure is 10 to 100 times that in air, reaching several gigapascals (GPa). It is understood that this pressure generates shock waves and propagates through the material.
  • GPa gigapascals
  • a YAG laser (wavelength, for example, 1.06 ⁇ m) that can be sent into a liquid by a glass fiber can be suitably used.
  • the multilayer graphite interlayer distance is expanded by about 3 times, for example, and strong sulfonation conditions are present in the presence of a solid acid catalyst suitable for sulfonation.
  • a solid acid catalyst suitable for sulfonation it becomes possible to introduce a sulfonic group into the benzene ring of graphite, and a nano-dispersed liquid of sulfonated graphite particles can be obtained.
  • the sulfonated graphite in the sulfonated graphite nanodispersion thus obtained is then hydrolyzed and converted to graphene oxide.
  • the obtained sulfonated graphite particles can be hydrolyzed by adding water and hydrochloric acid.
  • the amount of water used is, for example, about 500 to 1200 ml, preferably about 700 to 900 ml with respect to 100 ml of concentrated sulfuric acid.
  • the concentration of concentrated hydrochloric acid used is, for example, 25 to 40% by mass, and preferably 34 to 37% by mass.
  • the amount of hydrochloric acid used is, for example, 5 to 20 g, preferably 8 to 12 g, based on 20 g of potassium permanganate. Residual potassium permanganate, carbonized D-glucose cake (manufactured by Human Systems Co., Ltd., product name: carbonized D-glucose 569) is allowed to cool naturally for about 5 to 60 minutes, preferably about 10 to 30 minutes after hydrolysis.
  • the suspended impurities are removed, and the reaction product dispersed in the medium is separated into a solid phase and a liquid phase using a centrifugal separator. Next, the supernatant is discarded, and the paste-like solid phase can be made into solid graphene oxide powder by heat drying or adding 400 ml of water, lowering the viscosity, and removing water by a spray dryer or the like.
  • graphene oxide can be confirmed by a Raman spectrum.
  • generation of metal-doped graphene oxide can be confirmed by a Raman spectrum.
  • the graphene oxide or metal-doped graphene oxide obtained as described above is then subjected to a gradual reduction, leaving a functional group such as a hydroxyl group or a carboxyl group, unlike graphene, unlike graphene.
  • Metal-undoped or metal-doped reduced graphene oxide having a morphological structure is obtained.
  • the metal undoped graphene oxide or the metal doped graphene oxide powder introduced into the reactor heated by a heating device such as a mantle heater is reduced while flowing a nitrogen stream from a nitrogen cylinder.
  • a heating device such as a mantle heater
  • a collecting device may be employed.
  • a commercially available product can be used, and for example, a silent cleaner manufactured by Osawa & Company can be appropriately used.
  • the flow rate of the inert gas can be employed without any particular limitation as long as the flow rate is such that reduction can be performed.
  • the flow rate is such that reduction can be performed.
  • it is generally 0.5 to 40 liters / minute (L / minute), preferably about 5 to 30 liters / minute.
  • the reduction temperature is generally 100 to 400 ° C., preferably 150 to 300 ° C. When this temperature reaches 1100 ° C., complete reduction occurs and graphene is formed.
  • the metal-undoped or metal-doped reduced graphene oxide obtained in this way is very dispersible in water and has completely different properties from graphene due to the hydrophilic action of the functional groups present inside. . For this reason, the difference in structure with graphene is clear. Unlike graphene, reduced graphene oxide is easily dispersed in water due to hydrophilic functional groups such as hydroxyl groups and carboxyl groups present in reduced graphene oxide. On the other hand, since graphene has no functional group, it can be dispersed only in a special and expensive lipophilic solvent. Further, the reduced graphene oxide can be confirmed to be different from the graphene oxide by the shift of the peak position from the Raman spectrum diagram.
  • the obtained reduced graphene oxide is intercalated between layers as a metal ion when the doped metal ion is a multilayered reduced graphene oxide.
  • the doped metal ion is a multilayered reduced graphene oxide.
  • it has an excellent function.
  • it is bonded to another layer by an ionic bond or the like through a functional group of the single layer.
  • inorganic acid used in the present invention various inorganic acids can be used as long as the effects of the present invention are not impaired.
  • concentrated sulfuric acid, dilute sulfuric acid, nitric acid and the like can be used.
  • carbonate ester used for this invention various carbonate ester can be used in the range which does not impair the effect of this invention, For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, etc. can be used.
  • Silicone oil covers the electrode surface and prevents corrosion of the electrode by acid. Further, the neutralizing agent eliminates the inorganic acid by a neutralization reaction and prevents corrosion of the electrode by the acid.
  • a dispersing agent such as fine particles made of an organic polymer material may be added to the dielectric material of the present invention.
  • organic polymer materials include polytetrafluoroethylene and polypropylene.
  • the dielectric material of the present invention may be mixed with a lithium compound from the viewpoint of improving voltage performance.
  • lithium compounds include lithium titanate, lithium carbonate, and lithium hydroxide.
  • lithium titanate is preferable, and is represented by the general formula: Li x Ti y O 4 , where x and y are 0.8 ⁇ x ⁇ 1.4 and 1.6 ⁇ y ⁇ 2.2, respectively. More preferably, lithium titanate having a number is used. More specifically, for example, Li 4 Ti 5 O 12 and Li 2 Ti 3 O 7 are preferable.
  • the lithium titanate represented by the general formula: Li x Ti y O 4 can be obtained, for example, by heat treating titanium oxide and a lithium compound at 760 to 1100 ° C.
  • titanium oxide either anatase type or rutile type can be used, and as the lithium compound, for example, lithium hydroxide, lithium carbonate, lithium oxide, or the like can be used.
  • the method for producing a dielectric material of the present invention is characterized by mixing reduced graphene oxide, an inorganic acid and / or a carbonate ester (and, if necessary, a lithium compound).
  • Reduced graphene oxide and inorganic acid are mixed by adding 1 to 3% of reduced graphene oxide to inorganic acid and carbonate ester, and stirring and dispersing in a glass container using a magnetic stirrer with high viscosity. This can be achieved.
  • the content of reduced graphene oxide in the dielectric material can be arbitrarily set as long as the effects of the present invention are not impaired.
  • the capacitance tends to increase as the content of reduced graphene oxide increases, but as the amount of reduced graphene oxide added increases, it becomes difficult to uniformly disperse, and the raw material cost increases. End up.
  • reduced graphene oxide examples include “Graferrite RGO” manufactured by MICC Corporation.
  • reduced graphene oxide is obtained by intercalating and doping at least one substance selected from silver, copper, zinc oxide, and palladium (graferrite ag007 manufactured by MICC TEC Co., Ltd.) , Graferrite cu008, Graferrite zn009, and Graferrite Pd010) can further improve the capacitance of the dielectric material.
  • inorganic acid various inorganic acids can be used as long as the effects of the present invention are not impaired.
  • concentrated sulfuric acid, dilute sulfuric acid, nitric acid and the like can be used.
  • the usage-amount of an inorganic acid may be small compared with the case where a lithium compound is not used.
  • carbonate ester various carbonate ester can be used in the range which does not impair the effect of this invention, For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, etc. can be used.
  • the electrochemical device of the present invention includes a polarizable electrode containing the dielectric material of the present invention, a separator, a first collector electrode, and a second collector electrode.
  • the dielectric material of the present invention is used as a so-called active material or a polarizable electrode itself, and in any case constitutes a polarizable electrode.
  • Electrochemical element 1 First, the case where it manufactures based on the manufacturing technique of an electrical double layer capacitor as an example of the electrochemical element of this invention is demonstrated.
  • the electrochemical element of the present invention is configured by sealing a polarizable electrode containing the dielectric material of the present invention, a separator, a first collector electrode, and a second collector electrode in a sealed container.
  • a polarizable electrode containing the dielectric material of the present invention a separator, a first collector electrode, and a second collector electrode in a sealed container.
  • the shape for example, any of a cylindrical shape and a box shape may be adopted, and other shapes may be employed.
  • FIG. 1 shows a schematic configuration diagram of an embodiment of the electrochemical device 1 of the present invention.
  • a first collector electrode (positive electrode) 2 and a second collector electrode (negative electrode) 4 connected to a power source a polarizable electrode 6 made of a dispersed liquid, gel or paste dielectric material of the present invention.
  • a separator 8 is provided.
  • the dielectric material of the present invention is a dispersed liquid, paste or gel and has fluidity, it is used as the polarizable electrode 6 as it is, and is locally broken down. For example, it has excellent self-healing properties and is practically useful.
  • the “positive electrode” is an electrode that adsorbs anions when a voltage is applied to the electric double layer capacitor
  • the “negative electrode” is an electrode that adsorbs cations when a voltage is applied to the electric double layer capacitor. Electrode.
  • the first collector electrode (positive electrode) 2 and the second collector electrode (negative electrode) 4 are not particularly limited as long as they are generally highly conductive materials, but at least a low electrical resistance metal material is preferably used.
  • a low electrical resistance metal material is preferably used.
  • copper, aluminum, gold, platinum, lead, tin, nickel, etc., and other organic insulating materials or conductive organic materials doped with iodine are used.
  • gold, platinum, lead, tin, nickel, etc. may be used from the viewpoint of being less susceptible to acid in consideration of the case where the inorganic acid used in the production of the dielectric material of the present invention remains. .
  • the thickness of the first collector electrode (positive electrode) 2 and the second collector electrode (negative electrode) 4 is, for example, about 10 to 50 ⁇ m, and the first collector electrode (positive electrode) 2 and the second collector electrode (negative electrode) ) 4 is provided with a tab (not shown) for lead connection, for example.
  • the first collector electrode (positive electrode) 2 and / or the second collector electrode (negative electrode) 4 is coated with the dielectric material of the present invention, and the coated dielectric material is dried, thereby surface treatment. It is preferable that after applying the dielectric material of the present invention, the surface treatment can be achieved by drying in the atmosphere at 600 to 700 ° C. for 3 to 10 minutes.
  • the polarizable electrode 6 may contain a conductive additive.
  • the conductive assistant include carbon materials other than carbon components contained in the dielectric material of the present invention such as carbon black and acetylene black, metal fine powders such as copper, nickel, stainless steel, and iron, and a mixture of metal fine powders, ITO And the like, and the like.
  • the polarizable electrode 6 may contain an electrolytic solution.
  • an electrolytic solution a solution obtained by dissolving an electrolyte in an organic solvent is used.
  • the electrolyte for example, a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate (TEA + BF4-) or triethylmonomethylammonium tetrafluoroborate (TEMA + BF4-) can be used.
  • TEA + BF4- tetraethylammonium tetrafluoroborate
  • TEMA + BF4- triethylmonomethylammonium tetrafluoroborate
  • the polarizable electrode 6 may contain a binder.
  • the binder is not particularly limited as long as it has a binding force that can maintain the shape of the polarizable electrode 6, and various binders can be used.
  • the binder include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR) and water-soluble polymers (carboxymethylcellulose, polyvinyl alcohol, sodium polyacrylate, Dextrin, gluten, etc.) and the like.
  • the separator 8 prevents ohmic contact between the first collector electrode (positive electrode) 2 side and the second collector electrode (negative electrode) 4 side of the polarizable electrode 6. It has an influence. It is desirable to have flexibility, mechanical strength, and high durability.
  • the material of the separator 8 various inorganic insulating materials and organic insulating materials can be used.
  • the inorganic insulating material include a zinc oxide material, glass and ceramics, and glass wool is preferably used.
  • examples of the organic insulating material include insulating paper used in conventional electric double layer capacitors, porous polymer films such as polyethylene and polypropylene, and non-woven fabrics.
  • insulating paper used in conventional electric double layer capacitors
  • porous polymer films such as polyethylene and polypropylene
  • non-woven fabrics there are various types of insulating paper depending on the application, but in order to achieve a high breakdown voltage, those used in equipment using a high voltage such as a transformer are preferable. Moreover, what does not swell is preferable.
  • the polarizable electrode 6 is not limited to the dielectric material of the present invention.
  • a conductive additive or a binder may be included.
  • the polarizable electrode may be divided into two and an electrolyte layer may be provided between them.
  • the electrochemical device of the present invention may have a structure as shown in FIG.
  • FIG. 2 shows an electrochemical device 10 of the present invention that employs a typical electric double layer capacitor structure, and the electrode section includes a first collector electrode (positive electrode) 12 and a second collector electrode connected to a power source. (Negative electrode) 14, and the powder, granule, or agglomerated dielectric material of the present invention fixed and connected to the first collector electrode (positive electrode) 12 and the second collector electrode (negative electrode) 14. Including solid polarizable electrodes 16a and 16b.
  • the electrolyte part includes an electrolyte filled in a space between the polarizable electrodes 16a and 16b, and the space between the first collector (positive electrode) 12 side and the second collector (negative electrode) 14 side. And a separator 18 separated from each other.
  • Each component of the electrochemical device 10 may be the same as that of the electrochemical device 1 described with reference to FIG. 1, but the polarizable electrodes 16a and 16b may be formed in the form of powder, granule or It is a solid electrode containing an agglomerated dielectric material, and thus has, for example, a configuration including at least a binder.
  • the electrochemical element 10 can be a cylinder, a square, a sheet, or the like.
  • a sheet having a thickness of 0.15 to 50 mm is lightweight and can be easily installed on a floor or a wall.
  • Electrochemical element 3 Furthermore, the electrochemical device of the present invention may have a structure as shown in FIG. FIG. 3 is a perspective view in which a part of the electrochemical device 100 of the present invention adopting a typical lead-acid battery structure is cut out.
  • the constituent elements of the electrochemical element 100 may be the same as those of the conventional lead acid battery except for a part, but each constituent element will be briefly described below.
  • the battery case 102 is partitioned into a plurality of cell chambers 106 by partition walls 104, and one electrode plate group 108 is accommodated in each cell chamber 106.
  • the electrode plate group 108 is configured by laminating a plurality of positive and negative electrode plates with a separator interposed therebetween.
  • the positive electrode plate is connected to the positive electrode connecting portion 110
  • the negative electrode plate is connected to the negative electrode connecting portion 112
  • the electrode plate group 108 is connected in series with the electrode plate group 108 in the adjacent cell chamber 106.
  • a lid 118 provided with a positive electrode terminal 114 and a negative electrode terminal 116 is attached to the upper opening of the battery case 102.
  • the liquid injection port provided in the lid 118 is provided with an exhaust plug 120 having an exhaust port for discharging gas generated inside the battery to the outside of the battery.
  • the positive electrode plate is composed of a positive electrode lattice and a positive electrode active material layer held on the positive electrode lattice.
  • the positive electrode active material layer is mainly composed of a positive electrode active material (PbO 2), and the positive electrode active material layer may contain, for example, a small amount of a conductive additive such as a carbon material, a binder, etc. in addition to the positive electrode active material.
  • the positive electrode lattice is an expanded lattice that holds the positive electrode active material layer.
  • the positive electrode lattice is made of, for example, a Pb alloy containing at least one of Ca and Sn.
  • a Pb alloy containing at least one of Ca and Sn.
  • the Pb alloy from the viewpoint of corrosion resistance and mechanical strength, a Pb—Ca alloy containing 0.01 to 0.10% by weight of Ca, a Pb—Sn alloy containing 0.05 to 3.0% by weight of Sn, Alternatively, a Pb—Ca—Sn alloy containing Ca and Sn can be used.
  • the positive grid is preferably composed of a Pb—Ca—Sn alloy containing 0.03 to 0.10 wt% Ca and 0.6 to 1.8 wt% Sn. More preferably, the Pb—Ca—Sn alloy contains 0.8 to 1.8% by weight of Sn.
  • the Pb alloy containing at least one of Ca and Sn used for the positive electrode lattice and the positive electrode connection part substantially does not contain Sb.
  • the lead alloy may contain 0.002% by weight or less of Sb as an impurity that does not adversely affect the battery performance due to an increase in the liquid reduction amount and the self-discharge amount. If the Sb content in the positive electrode grid and the positive electrode connecting member is about this level, Sb does not move to the negative electrode plate.
  • the lead alloy of the positive grid may contain 0.01 to 0.08 wt% Ba or 0.001 to 0.05 wt% Ag.
  • a lead alloy containing Ca when used, about 0.001 to 0.05% by weight of Al may be added in order to suppress the disappearance of oxidation of Ca from the molten lead alloy. Further, it may contain about 0.0005 to 0.005% by weight of Bi as an impurity.
  • the positive electrode grid preferably has a lead alloy layer containing 2.0 to 7.0% by weight of Sn on at least a part of the surface in contact with the positive electrode active material layer. Generation of a passive layer at the interface between the positive electrode active material layer and the positive electrode lattice is suppressed, and durability of the positive electrode plate against overdischarge is improved.
  • the Sn content in the lead alloy layer is preferably larger than the Sn content in the positive electrode lattice.
  • the lead alloy layer preferably contains at least 1.6% by weight of Sn, and the Sn content in the lead alloy layer is 3.0-6. More preferably, it is 0% by weight. If the Sn content of the lead alloy layer is smaller than that of the positive electrode lattice, the effect of Sn described above is reduced due to the presence of the lead alloy layer having a low Sn content at the interface between the positive electrode lattice and the positive electrode active material.
  • the negative electrode plate is composed of a negative electrode lattice and a negative electrode active material layer held by the negative electrode lattice.
  • the negative electrode active material layer is mainly composed of a negative electrode active material (Pb).
  • a shrinkage-preventing agent such as lignin and barium sulfate
  • a conductive assistant such as a carbon material, or a binder May be included in a small amount.
  • the negative electrode lattice is an expanded lattice in which the negative electrode active material layer is held.
  • the negative electrode lattice and the negative electrode connection portion are made of, for example, a Pb alloy substantially free of Sb and containing at least one of Ca and Sn.
  • the Pb alloy may contain a trace amount of Sb of less than 0.001% by weight as an impurity. If the Sb content is such an amount, the amount of self-discharge and the amount of liquid electrolyte decrease do not increase.
  • a Pb—Ca—Sn alloy may be used in the same manner as the positive electrode lattice, but the negative electrode lattice is not necessarily corroded as compared with the positive electrode plate, and therefore does not necessarily include Sn.
  • a Pb alloy containing 0.2 to 0.6% by weight of Sn may be used in the negative electrode lattice. From the viewpoint of mechanical strength, a Pb alloy containing 0.03 to 0.10% by weight of Ca may be used.
  • the negative electrode active material layer contains 0.0001 to 0.003% by weight of Sb.
  • the negative electrode active material layer contains Sb having a hydrogen overvoltage lower than that of the negative electrode active material, the charge potential of the negative electrode plate is increased, so that the charge acceptability of the negative electrode plate is greatly improved.
  • Sb in the negative electrode active material layer hardly dissolves into the electrolytic solution, corrosion of the negative electrode lattice can be suppressed.
  • the Sb content in the negative electrode active material layer is 0.0001% by weight or more, the life characteristics are improved.
  • the Sb content in the negative electrode active material layer exceeds 0.003% by weight, the corrosion of the ears of the negative electrode lattice gradually proceeds. Since the effect of suppressing the corrosion of the negative electrode lattice and the effect of suppressing the decrease in the amount of the electrolyte accompanying the charge / discharge cycle can be remarkably obtained, the Sb content in the negative electrode active material layer is 0.0001 to 0.001 wt. % Is preferred.
  • Sb for the addition of Sb to the negative electrode active material layer, for example, a compound containing Sb such as Sb, an oxide or sulfate of Sb, or an antimonate may be added to the negative electrode paste when the negative electrode paste is produced.
  • Sb can be electrodeposited on the negative electrode active material by electrolytic plating by immersing the negative electrode plate in an electrolytic solution containing Sb ions, for example, dilute sulfuric acid containing antimony sulfate or antimonate. Good.
  • a microporous polyethylene sheet is used for the separator. Carbon may be included in polyethylene in order to improve ionic conductivity.
  • the microporous polyethylene sheet has pores having a pore diameter of about 0.01 to 1 ⁇ m through which the electrolytic solution can permeate. When the pore diameter exceeds 1 ⁇ m, the active material easily passes through the separator.
  • a fiber mat having acid resistance may be used for the separator.
  • a synthetic fiber such as a glass fiber having a fiber diameter of 0.1 to 2 ⁇ m or a polypropylene resin fiber having a fiber diameter of 1 to 10 ⁇ m is used.
  • the separator is preferably made of an acid-resistant fiber mat in that the positive electrode active material is prevented from falling off the positive electrode plate and excellent cycle life characteristics are obtained.
  • each cell chamber 106 is injected with sulfuric acid, which is an electrolytic solution, so as to immerse the entire electrode plate group 108 in the same manner as a normal lead-acid battery.
  • Example 1 Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide in which silver is intercalated and doped) and sulfuric acid (30% aqueous solution) are mixed, and 0.5% by weight of graferrite ag007 is dispersed. A dielectric material 1 was obtained.
  • Example 2 In the same manner as in Example 1, a mixture of graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide in which silver is intercalated and doped) and sulfuric acid are mixed to obtain 1.0 wt% of graferrite ag007. A dispersed dielectric material 2 was obtained.
  • Example 3 In the same manner as in Example 1, a mixture of graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide in which silver is intercalated and doped) and sulfuric acid were mixed to obtain 2.0 wt% of graferrite ag007. A dispersed dielectric material 3 was obtained.
  • Example 4 In the same manner as in Example 1, GRCC ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide in which silver is intercalated and doped) and sulfuric acid are mixed, and 3.0% by weight of graferrite ag007 is obtained. A dispersed dielectric material 4 was obtained.
  • FIG. 5 shows that the capacitance increases as the content of graferrite ag007 in the dielectric material increases. Further, the increase in the capacitance is almost proportional to the content of graferrite ag007.
  • Example 5 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 1.0 wt% graferrite ag007 were dispersed. A glass wool / glass sheet used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced, and the capacitance was measured. The thickness of the carbon sheet was 0.75 mm. The obtained capacitance is shown in Table 1.
  • Example 6 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 2.0 wt% graferrite ag007 were dispersed. Glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure the capacitance. The thickness of the carbon sheet was 0.75 mm. The obtained capacitance is shown in Table 1.
  • Example 7 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. Glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure the capacitance. The thickness of the carbon sheet was 0.16 mm. The obtained capacitance is shown in Table 1.
  • Example 8 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed.
  • Example 9 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. The dielectric material is impregnated into a biaxially stretched polypropylene film (OPP) made of Oji Paper, which has a large number of holes, used as a separator, and a laminated measuring element 300 shown in FIG. 6 is manufactured to measure capacitance and internal resistance. Went. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
  • OPP biaxially stretched polypropylene film
  • Example 10 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.5% by weight of graferrite ag007 were dispersed.
  • Graferrite RGO reduced graphene oxide manufactured by MICC TEC Co., Ltd.
  • Graferrite ag007 manufactured by MICC TEC Co., Ltd.
  • sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.5% by weight of graferrite ag007 were dispersed.
  • the dielectric material is impregnated into a biaxially stretched polypropylene film (OPP) having a large number of small holes made of Oji Paper (approximately 1 ⁇ m or less, the same applies hereinafter) used as a separator to produce a laminated measuring element 300 shown in FIG.
  • OPP biaxially stretched polypropylene film
  • the capacitance and internal resistance were measured.
  • the thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
  • Example 11 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. Solid glass wool (glass cloth net type 200 ⁇ m (Pega GC), glass fiber needle mat (heat press) 2 mm (Pega NM)) used as a separator is impregnated with the dielectric material, and is shown in FIG. A laminated measuring element 300 was produced and the capacitance and internal resistance were measured. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
  • Example 12 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. A three-layered polypropylene sheet (Spred top manufactured by Maeda Kosen Co., Ltd.) used as a separator is impregnated with the dielectric material to produce a laminated measuring element 300 shown in FIG. Measurements were made. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
  • Example 13 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. A solid glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance.
  • Example 14 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. A solid glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance.
  • Graferrite RGO reduced graphene oxide manufactured by MICC TEC Co., Ltd.
  • Graferrite ag007 manufactured by MICC TEC Co., Ltd. reduced graphene oxide obtained by intercalating and doping silver
  • sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and
  • Example 15 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite pd010 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide doped with palladium intercalated) And sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.001% by weight of graferrite pd010 were dispersed. Solid glass wool (knitted) used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance.
  • Graferrite RGO reduced graphene oxide
  • Graferrite pd010 manufactured by MICC TEC Co., Ltd.
  • sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.001% by weight of graferrite pd010 were dispersed.
  • Example 16 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite zn009 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide intercalated and doped with zinc oxide) ) And sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.5% by weight of graferrite pd010 were dispersed. A solid glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance.
  • Graferrite RGO reduced graphene oxide
  • Graferrite zn009 manufactured by MICC TEC Co., Ltd.
  • sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.5% by weight of graferrite pd010 were dispersed.
  • Example 17 In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. Solid glass wool (knitted) used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance.
  • Graferrite RGO reduced graphene oxide manufactured by MICC TEC Co., Ltd.
  • Graferrite ag007 manufactured by MICC TEC Co., Ltd. reduced graphene oxide obtained by intercalating and doping silver
  • sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% grafer
  • Example 18 In the same manner as in Example 1, grafer ferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO was dispersed. A solid glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance. Here, sulfuric acid containing reduced graphene oxide was applied to the carbon plate, and the carbon plate was held in the atmosphere at 600 ° C. for 10 minutes to perform surface treatment. The thickness of the carbon sheet was 0.75 mm. Table 1 shows the obtained capacitance and internal resistance.
  • Example 19 Li 4 Ti 5 O 12 , Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd., PTFE resin (50 wt% weight dispersion: binder), and sulfuric acid are mixed, and 40 wt% A dielectric material in which Li 4 Ti 5 O 12 , 10% by weight of Graferrite RGO and 10% by weight of PTFE 50% dispersion was dispersed was obtained.
  • a glass nonwoven fabric (glass fiber sheet) as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance.
  • sulfuric acid containing reduced graphene oxide was applied to the carbon plate.
  • the thickness of the graphene sheet was 0.5 mm. Table 1 shows the obtained capacitance and internal resistance.
  • Examples 8 to 10 when using an organic insulating material as a separator (Examples 8 to 10), when using glass wool (Examples 5 to 7) and solid glass wool, which are inorganic insulating materials (Examples 11 and 13 to 17). The one has a higher capacitance. Even when an organic insulating material is used as the separator, a case where three polypropylene sheets are stacked and used (Example 12) shows a high capacitance.
  • Electrochemical element (electric double capacitor structure) 12 ... First collector electrode (positive electrode) in electric double capacitor structure 14 ... Second collector electrode (negative electrode) in electric double capacitor structure 16a, 16b ... Polarizable electrode 18 in electric double capacitor structure ... Separator 20 in electric double capacitor structure ... Electrolytic solution 100 ... Electrochemical element (lead storage battery structure) DESCRIPTION OF SYMBOLS 102 ... Battery case 104 ... Partition 106 ... Cell chamber 108 ... Electrode plate group 110 ... Positive electrode connection part 112 ...
  • Negative electrode connection part 114 Positive electrode terminal 116 ... Negative electrode terminal 118 ... Lid 120 ... Exhaust plug 200 ... Measuring element 202 ... Carbon rod 204 ... Dielectric material 206 ... Container 208 ... Plug 300 ... Multilayer measuring element 302 ... Carbon plate 304 ... Carbon sheet 306 ... Dielectric material impregnated separator

Abstract

The present invention provides: a dielectric material which enables the production of an electric double layer capacitor without requiring a costly and time-consuming production procedure; and a dielectric material which is capable of providing an electric double layer capacitor or the like having an electricity storage performance equal to or higher than that of a conventional electric double layer capacitor or the like. A dielectric material of the present invention is characterized by containing a reducing graphene oxide, an inorganic acid and/or a carbonic acid ester.

Description

誘電材料及びこれを用いた電気化学素子Dielectric material and electrochemical device using the same
 本発明は、誘電材料及びこれを用いた電気化学素子、並びに当該電気化学素子を用いた蓄電装置等に関する。 The present invention relates to a dielectric material, an electrochemical element using the dielectric material, a power storage device using the electrochemical element, and the like.
 近年、自動車の排気ガスによる大都市の大気汚染の緩和、石油代替エネルギーの利用促進、地球温暖化防止に資する二酸化炭素の排出量低減等の観点から、電気自動車やハイブリッド自動車等の低公害車の普及が求められている。また、電力システムへの太陽光や風力、水力等の自然エネルギーに基づく分散電源の導入に伴い、様々な蓄電装置の開発が進められており、特に、蓄電装置の高密度化、大容量化と高耐圧化を図る開発が進められている。そして、蓄電装置に用いられる電気化学素子として、例えば、高密度・大容量を可能とした電気二重層キャパシタが注目されている。 In recent years, low-emission vehicles such as electric vehicles and hybrid vehicles have been developed from the perspectives of mitigating air pollution in large cities by automobile exhaust gas, promoting the use of alternative energy for petroleum, and reducing carbon dioxide emissions that contribute to the prevention of global warming Popularization is required. In addition, with the introduction of distributed power sources based on natural energy such as solar power, wind power, and hydropower to power systems, various power storage devices are being developed. Development to increase the withstand voltage is underway. And as an electrochemical element used for a power storage device, for example, an electric double layer capacitor capable of high density and large capacity has attracted attention.
 電気二重層キャパシタの容量は、分極性電極の表面積に比例することから、当該分極性電極の材料として、表面積の大きな活性炭が一般に用いられている。活性炭は、ヤシガラ、石油ピッチ、石油コークス等の炭素含有量の多い原料を、300~700℃の低温で炭化し、その後賦活させることによって生成する。賦活には、例えば水蒸気、塩酸、硝酸、硫酸等の無機酸、又は水酸化カリウム等のカリウム塩等が使用され、製造コストを高騰させる一因となっている。 Since the capacity of the electric double layer capacitor is proportional to the surface area of the polarizable electrode, activated carbon having a large surface area is generally used as the material of the polarizable electrode. Activated carbon is produced by carbonizing raw materials having a high carbon content such as coconut husk, petroleum pitch, petroleum coke, etc. at a low temperature of 300 to 700 ° C. and then activating them. For the activation, for example, an inorganic acid such as water vapor, hydrochloric acid, nitric acid, sulfuric acid, or a potassium salt such as potassium hydroxide is used, which contributes to an increase in production cost.
 更に、従来の電気二重層キャパシタにおいては、分極性電極の表面積を大きくすることを意図して、粒状化した活性炭をプロピレンカーボネート等の電解液中に均一に分散させることが行われているが、活性炭を電解液中に均一に分散させることは実際には難しく、活性炭が本来有している表面積を有効活用しにくいという問題がある。 Furthermore, in the conventional electric double layer capacitor, in order to increase the surface area of the polarizable electrode, the granulated activated carbon is uniformly dispersed in an electrolyte such as propylene carbonate. In practice, it is difficult to uniformly disperse the activated carbon in the electrolytic solution, and there is a problem that it is difficult to effectively utilize the surface area inherent to the activated carbon.
 そこで、分極性電極を構成する材料として、活性炭に換えてカーボンナノチューブを用い、このカーボンナノチューブの一本一本を同方向に配置して大容量化を図る技術等が注目されている。 Therefore, a technique for increasing the capacity by using carbon nanotubes instead of activated carbon as a material constituting the polarizable electrode and arranging the carbon nanotubes one by one in the same direction has attracted attention.
 例えば、特許文献1(特開2007-266548号公報)においては、衝撃や曲げ荷重等に起因する変形による漏液の恐れがなく、さらに薄型で大容量の電気を蓄えることが可能な電気二重層キャパシタを提供することを意図して、「集電体上に設けられたカーボンナノチューブ群を覆うように集電体上にゲル状電解質膜を形成してなる正負一対の電極を、容器内に、正極のカーボンナノチューブ群と負極のカーボンナノチューブ群が互いに向き合うように、かつ非接触状に配置することを特徴とする、カーボンナノチューブを用いた電気二重層キャパシタ」が提案されている。 For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-266548), there is no risk of leakage due to deformation caused by impact or bending load, and the electric double layer is thin and can store a large amount of electricity. In order to provide a capacitor, “a pair of positive and negative electrodes formed by forming a gel electrolyte membrane on a current collector so as to cover a group of carbon nanotubes provided on the current collector, There has been proposed an “electric double layer capacitor using carbon nanotubes”, characterized in that the carbon nanotube group of the positive electrode and the carbon nanotube group of the negative electrode face each other and are arranged in a non-contact manner.
特開2007-266548号公報JP 2007-266548 A
 しかし、上記特許文献1において提案されているように、正極のカーボンナノチューブ群と負極のカーボンナノチューブ群が互いに向き合うように、かつ非接触状に配置された構造を採用することは、製造工程上も非常に煩雑であり、結果的に最終製品のコストを高くすることになる。 However, as proposed in Patent Document 1 above, adopting a structure in which the carbon nanotube group of the positive electrode and the carbon nanotube group of the negative electrode face each other and are arranged in a non-contact manner is also in the manufacturing process. This is very cumbersome and results in an increase in the cost of the final product.
 加えて、蓄電装置の大容量化に対する要求から、静電容量等の電気的性能の更なる向上が求められている。 In addition, further improvement in electrical performance such as capacitance has been demanded due to the demand for large capacity storage devices.
 そこで、本発明の目的は、カーボンナノチューブを用いる場合のようなコストと手間のかかる製造工程を必要とせずに、電気二重層キャパシタ等を作製することができる誘電材料(分極性電極の材料)を提供すること、並びに、従来と同等以上の蓄電性能を有する電気二重層キャパシタ等を実現できる誘電材料を提供することにある。 Therefore, an object of the present invention is to provide a dielectric material (a material for a polarizable electrode) that can produce an electric double layer capacitor or the like without requiring a costly and laborious manufacturing process as in the case of using carbon nanotubes. Another object is to provide a dielectric material capable of realizing an electric double layer capacitor or the like having a storage performance equal to or higher than that of the conventional one.
 本発明者は上記目的を達成すべく、種々の誘電材料について鋭意研究を重ねた結果、簡便な製造プロセスと十分な蓄電性能とを両立させるためには、特定のカーボンナノ材料と無機酸及び/又は炭酸エステルとを含む誘電材料を使用することが、極めて有効であることを見出し、本発明に到達した。 As a result of intensive studies on various dielectric materials in order to achieve the above object, the present inventors have found that a specific carbon nanomaterial and an inorganic acid and / or Alternatively, the present inventors have found that it is extremely effective to use a dielectric material containing carbonate ester, and the present invention has been achieved.
 即ち、本発明は、
 還元型酸化グラフェンと、
 無機酸及び/又は炭酸エステルと、を含むこと、
 を特徴とする誘電材料を提供する。
That is, the present invention
Reduced graphene oxide,
Containing an inorganic acid and / or a carbonate ester,
A dielectric material is provided.
 本発明の誘電材料は、リチウム化合物を含んでいてもよく、また、本発明の誘電材料においては、前記還元型酸化グラフェンに銀、銅、酸化亜鉛、及びパラジウムから選択される少なくとも1つの物質がインターカレート・ドープされていることが好ましい。 The dielectric material of the present invention may contain a lithium compound, and in the dielectric material of the present invention, the reduced graphene oxide has at least one substance selected from silver, copper, zinc oxide, and palladium. It is preferably intercalated and doped.
 また、本発明は、
 少なくとも上記の本発明の誘電材料を含む分極性電極と、
 セパレータと、
 第一の集電極及び第二の集電極と、を含むこと、
 を特徴とする電気化学素子を提供する。
The present invention also provides:
A polarizable electrode comprising at least the above dielectric material of the present invention;
A separator;
Including a first collector electrode and a second collector electrode;
An electrochemical device is provided.
 本発明の電気化学素子においては、前記第一の集電極及び/又は前記第二の集電極に、少なくとも本発明の誘電材料を塗布し、前記塗布した誘電材料を乾燥させることにより、前記第一の集電極及び/又は前記第二の集電極が表面処理されていること、が好ましい。 In the electrochemical device of the present invention, at least the dielectric material of the present invention is applied to the first collector electrode and / or the second collector electrode, and the applied dielectric material is dried, thereby the first collector electrode. It is preferable that the collector electrode and / or the second collector electrode are surface-treated.
 ここでいう「電気化学素子」とは、本発明の誘電材料が含まれ、かつその電気的特性が化学的に使用され得る全ての素子を含む概念であり、例えば、電気二重層キャパシタ、コンデンサ及び電池(二次電池及び蓄電池も含む。)、並びにこれらを大型化した装置も本発明の「電気化学素子」に含まれる。 The term “electrochemical element” as used herein is a concept including all elements that include the dielectric material of the present invention and whose electrical characteristics can be used chemically. For example, an electric double layer capacitor, a capacitor, A battery (including a secondary battery and a storage battery) and a device in which these are enlarged are also included in the “electrochemical element” of the present invention.
 また、本発明は、
 上記の本発明の電気化学素子を含むこと、
 を特徴とする蓄電装置を提供する。
The present invention also provides:
Including the electrochemical device of the present invention as described above,
A power storage device is provided.
 ここでいう「蓄電装置」とは、例えば無停電電源装置、瞬時電圧低下補償装置及びバックアップ電源等の、電力供給源として使用される電気機器、更には、例えば自動車、風力発電装置及び太陽光発電装置等の、他の発電装置から得られた電気を蓄えて有効利用するためのシステムを含む概念である。 The term “power storage device” as used herein refers to electrical equipment used as a power supply source, such as an uninterruptible power supply device, an instantaneous voltage drop compensation device, and a backup power supply, and further, for example, automobiles, wind power generation devices, and solar power generation. It is a concept including a system for storing and effectively using electricity obtained from another power generation device such as a device.
 電力供給源として使用される上記電気機器に本発明の電気化学素子を用いれば、直流高電圧を扱う場合であっても、従来のように多数のコンデンサを多段直流接続する必要がなく、安定した動作及び部品点数の低減化の実現が可能となる。 If the electrochemical device of the present invention is used in the above-mentioned electrical equipment used as a power supply source, even when handling a DC high voltage, it is not necessary to connect a large number of capacitors in a multi-stage DC manner as in the past, and it is stable. It is possible to reduce the operation and the number of parts.
 他の発電装置から得られた電気を蓄えて有効利用するためのシステムに関しては、自動車に利用する場合には、モーターを駆動するための動力源や回生ブレーキにより得た電力の蓄電等に有効に利用することができる。また、風力又は太陽光を利用した発電システムは、自然エネルギーを利用するため発電ムラが生じてしまうが、本発明の電気化学素子を利用することにより、この発電ムラを解消し、需要供給の差を埋めることが比較的容易となり、電気の有効利用が可能となる。 As for a system for storing and effectively using electricity obtained from other power generators, it is effective for storing power obtained from a power source for driving a motor or regenerative brake when used in an automobile. Can be used. In addition, the power generation system using wind power or sunlight generates natural power generation unevenness because it uses natural energy. By using the electrochemical element of the present invention, this power generation unevenness is eliminated, and the difference in supply and demand. It becomes relatively easy to fill the space, and the effective use of electricity becomes possible.
 更に本発明は、
 還元型酸化グラフェンと、
 無機酸及び/又は炭酸エステルと、を混合すること、
 を特徴とする誘電材料の製造方法を提供する。
Furthermore, the present invention provides
Reduced graphene oxide,
Mixing with inorganic acid and / or carbonate ester,
A method for producing a dielectric material is provided.
 本発明の誘電材料の製造方法においては、更にリチウム化合物を混合してもよく、また、前記還元型酸化グラフェンに銀、銅、酸化亜鉛、及びパラジウムから選択される少なくとも1つの物質がインターカレート・ドープされていること、が好ましい。 In the method for producing a dielectric material according to the present invention, a lithium compound may be further mixed, and at least one substance selected from silver, copper, zinc oxide, and palladium is intercalated in the reduced graphene oxide. -It is preferable that it is doped.
 本発明によれば、カーボンナノチューブを用いる場合のようなコストと手間のかかる製造工程を必要とせずに、電気二重層キャパシタ等を製造することができる誘電材料(分極性電極の材料)を提供すること、並びに、従来と同等以上の蓄電性能を有する電気二重層キャパシタ等を実現できる、高静電容量を有する誘電材料を提供することができる。 According to the present invention, there is provided a dielectric material (a material for a polarizable electrode) capable of manufacturing an electric double layer capacitor or the like without requiring a costly and laborious manufacturing process as in the case of using carbon nanotubes. In addition, it is possible to provide a dielectric material having a high electrostatic capacity capable of realizing an electric double layer capacitor having a power storage performance equal to or higher than that of the conventional one.
本発明の電気化学素子の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the electrochemical element of this invention. 本発明の電気化学素子の別の実施形態(電気二重層キャパシタ)の概略構成図である。It is a schematic block diagram of another embodiment (electric double layer capacitor) of the electrochemical element of this invention. 本発明の電気化学素子の更に別の実施形態(鉛蓄電池)の一部を切り欠いた概略斜視図である。It is the schematic perspective view which notched some other embodiment (lead storage battery) of the electrochemical element of this invention. 本発明の実施例において誘電材料の静電容量を測定するために作製した測定用電気化学素子の概略断面図である。It is a schematic sectional drawing of the electrochemical element for a measurement produced in order to measure the electrostatic capacitance of a dielectric material in the Example of this invention. 本発明の誘電材料の静電容量を示したグラフである。It is the graph which showed the electrostatic capacitance of the dielectric material of this invention. 本発明の実施例において誘電材料の静電容量を測定するために作製した積層型測定用電気化学素子の概略断面図である。It is a schematic sectional drawing of the electrochemical element for laminated | stacked measurement produced in order to measure the electrostatic capacitance of a dielectric material in the Example of this invention.
 以下、一部図面を参照しながら、本発明の誘電材料及びこれを用いた電気化学素子の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, representative embodiments of the dielectric material of the present invention and electrochemical devices using the same will be described in detail with reference to some drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.
≪誘電材料≫
 本発明の誘電材料は、還元型酸化グラフェンと無機酸及び/又は炭酸エステルとを有することを特徴とするものである。当該誘電材料は、乾燥工程及び/又は焼成工程を経て、粉末状、顆粒状、集塊状であっても構わない。
≪Dielectric material≫
The dielectric material of the present invention is characterized by having reduced graphene oxide and an inorganic acid and / or carbonate ester. The dielectric material may be in the form of powder, granules, or agglomerates after a drying step and / or a firing step.
 還元型酸化グラフェンとは、グラファイトの単分子膜であり、本発明の効果を損なわない範囲で従来公知の種々の方法で製造された還元型酸化グラフェンを用いることができる。 Reduced graphene oxide is a monomolecular film of graphite, and reduced graphene oxide produced by various conventionally known methods can be used as long as the effects of the present invention are not impaired.
 グラファイトは六角網目平面層(還元型酸化グラフェン)がファンデルワールス力により積層された層状構造を有しており、グラファイトの層間のファンデルワールス力を打ち破り、グラファイトを一枚ずつ剥がすことで、還元型酸化グラフェンを得ることができる。 Graphite has a layered structure in which hexagonal mesh plane layers (reduced graphene oxide) are laminated by van der Waals force. By defeating van der Waals force between graphite layers and peeling the graphite one by one, it is reduced. Type graphene oxide can be obtained.
 還元型酸化グラフェンを得るには、グラファイトを粘着テープで機械的に剥離する方法が知られているが、この方法では、確実性が低く、大面積の還元型酸化グラフェンが得られず、大量生産が困難である。そのため、最近ではグラファイトを酸化する方法が行なわれている。 In order to obtain reduced graphene oxide, a method is known in which graphite is mechanically peeled off with an adhesive tape. However, this method is low in reliability and large-scale reduced graphene oxide cannot be obtained because large-area reduced graphene oxide cannot be obtained. Is difficult. Therefore, recently, a method for oxidizing graphite has been performed.
 即ち、グラファイトに水中で過マンガン酸カリウム、硫酸等の強力な酸化剤を作用させると、グラファイトの各層の表面の炭素が酸化され、表面に酸素を含む置換基(カルボキシル基、ヒドロキシル基、エポキシド等)を有するグラファイト酸化物が得られる。グラファイト酸化物はこれらの置換基の存在によって親水性を示し、水中に分散すると剥離し、単層の還元型酸化グラフェン酸化物の水分散液が得られる。更に、超音波処理することにより、グラファイト酸化物はより均一に単層のグラファイト酸化物に剥離し、長期間、安定に分散する。従って、この方法ではグラファイト酸化物を安価で大量に、かつ容易に製造することができる。 That is, when a strong oxidizing agent such as potassium permanganate or sulfuric acid is allowed to act on graphite in water, carbon on the surface of each layer of graphite is oxidized, and substituents containing oxygen on the surface (carboxyl group, hydroxyl group, epoxide, etc.) Is obtained. Graphite oxide exhibits hydrophilicity due to the presence of these substituents, and peels when dispersed in water, whereby an aqueous dispersion of reduced-type graphene oxide oxide having a single layer is obtained. Furthermore, by sonication, the graphite oxide is more uniformly exfoliated into a single layer of graphite oxide and stably dispersed for a long period of time. Therefore, in this method, the graphite oxide can be easily produced at a low cost and in large quantities.
 上記グラファイト酸化物は、単層であり、比表面積は大きいが、導入された酸素を含む置換基によりπ電子共役網が分断され、電気伝導性が減少し絶縁状態になっているため電極材料としては使用できない。ここで、酸素を含む置換基を還元することにより、電気伝導性を回復させることができる。例えば、グラファイト酸化物が水中に分散されている水分散液に、塩基の存在下で、ヒドラジン等の還元剤を添加して還元する化学還元法、グラファイト酸化物が水中に分散している水分散液に、n-メチルピロリドン、エチレングリコール等の水混和性溶剤を添加し、約200℃に加熱して還元する熱還元法等が存在する。 The graphite oxide is a single layer and has a large specific surface area. However, the π-electron conjugated network is divided by the introduced oxygen-containing substituent, and the electrical conductivity is reduced, resulting in an insulating state. Cannot be used. Here, electric conductivity can be recovered by reducing a substituent containing oxygen. For example, a chemical reduction method in which a reducing agent such as hydrazine is added in the presence of a base to a water dispersion in which graphite oxide is dispersed in water for reduction, and water dispersion in which graphite oxide is dispersed in water. There is a thermal reduction method or the like in which a water-miscible solvent such as n-methylpyrrolidone or ethylene glycol is added to the liquid, and the mixture is heated to about 200 ° C. for reduction.
 ここで、好適に使用できる還元型酸化グラフェンとしては、株式会社MICC TEC製の「グラフェライトRGO」を挙げることができる。また、還元型酸化グラフェンの代わりに、還元型酸化グラフェンに銀、銅、酸化亜鉛、及びパラジウムから選択される少なくとも1つの物質をインターカレート・ドープしたものを用いることで、誘電材料の静電容量を、更に向上させることができる。なお、銀、銅、酸化亜鉛、及びパラジウムを還元型酸化グラフェンにインターカレート・ドープしたものとしては、株式会社MICC TEC製の「グラフェライトag007:銀をインターカレート・ドープ」、「グラフェライトcu008:銅をインターカレート・ドープ」、「グラフェライトzn009:酸化亜鉛をインターカレート・ドープ」、及び「グラフェライトPd010:パラジウムをインターカレート・ドープ」をそれぞれ好適に用いることができる。株式会社MICC TEC製の「グラフェライトRGO」は、粒度が4~80μm、厚みが2~40nmであり、線状に繋がった形状を有している。 Here, examples of the reduced graphene oxide that can be suitably used include “Graferrite RGO” manufactured by MICC Corporation. In addition, instead of reduced graphene oxide, reduced graphene oxide is obtained by intercalating and doping at least one substance selected from silver, copper, zinc oxide, and palladium. The capacity can be further improved. In addition, as what intercalated and doped silver, copper, zinc oxide, and palladium to reduced graphene oxide, “Graferrite ag007: Silver intercalated and doped” manufactured by MICC Corporation, “Graferrite” “Cu008: Intercalate doping of copper”, “Graferrite zn009: Intercalation doping of zinc oxide”, and “Graferrite Pd010: Intercalation doping of palladium” can be preferably used. “Graferrite RGO” manufactured by MICC TEC Co., Ltd. has a particle size of 4 to 80 μm, a thickness of 2 to 40 nm, and a linear shape.
 還元型酸化グラフェンは、酸化グラフェンを還元することによって得ることができる。酸化グラフェンは、以下のようにして製造される。まず、グラファイトをスルフォン化する。このスルフォン化反応は、グラファイトに対して、濃硫酸及び濃硝酸を媒体として、酸化剤として過マンガン酸カリ、スルフォン化触媒として炭化Dグルコース (株式会社ヒューマンシステム販売元、製品名:炭化Dグルコース569)を導入する。スルフォン化反応に際しては、強酸である濃硫酸及び濃硝酸に対して耐性のある容器、例えば、硼珪酸耐熱性ガラス製の容器などを使用する。 Reduced graphene oxide can be obtained by reducing graphene oxide. Graphene oxide is produced as follows. First, graphite is sulfonated. This sulfonation reaction is carried out by using concentrated sulfuric acid and concentrated nitric acid as a medium, potassium permanganate as an oxidizing agent, and carbonized D-glucose cake as a sulfonation catalyst (Human Systems Co., Ltd., product name: carbonized D-glucose 569). ). In the sulfonation reaction, a container resistant to concentrated sulfuric acid and concentrated nitric acid, which are strong acids, for example, a borosilicate heat-resistant glass container is used.
 ここで反応に使用されるグラファイトは、天然のものであっても、合成のものであっても、使用することができるが、純度99%以上が好ましい。また、グラファイト源として、天然グラファイトを使用する場合、シリカなどの不純物が存在しているので、純度99%以上の製品を使用することが好ましい。グラファイトの使用量は、例えば、濃硫酸100ml中に対し1~50g、好ましくは、10~30gで使用することが好適である。 Here, the graphite used in the reaction may be natural or synthetic, but a purity of 99% or more is preferable. Further, when natural graphite is used as the graphite source, it is preferable to use a product having a purity of 99% or more because impurities such as silica are present. The amount of graphite used is, for example, 1 to 50 g, preferably 10 to 30 g, per 100 ml of concentrated sulfuric acid.
 更に、金属ドープ還元型酸化グラフェンを製造する場合には、金属又は金属化合物を併存させて、スルフォン化反応を行う。金属としては、例えば、銀や、パラジウム、銅、亜鉛など各種の金属を使用することができる。また、金属としては、金属の酸化物(酸化亜鉛など)、水酸化物、塩など、各種の形態で配合することができる。配合される金属又はその化合物の量は、金属として、例えば、グラファイトに対して、0.01~5質量%、好ましくは、0.1~3質量%の量で配合することが好適である。 Furthermore, when producing metal-doped reduced graphene oxide, a sulfonated reaction is carried out in the presence of a metal or a metal compound. As the metal, for example, various metals such as silver, palladium, copper, and zinc can be used. Moreover, as a metal, it can mix | blend with various forms, such as a metal oxide (zinc oxide etc.), a hydroxide, and a salt. The amount of the metal or compound thereof to be blended is suitably 0.01 to 5% by mass, preferably 0.1 to 3% by mass, for example, based on graphite.
 固体酸触媒は、例えば、D-グルコースや、セルロース、ナフタレン、アントラセンなどの炭素源に対して、濃硫酸(例えば、98%など)や発煙硫酸などの脱水作用、酸化作用を用いて、例えば、200~300℃程度の高温下において、炭化及びスルフォン化したものである。スルフォン化により、スルフォン化グラファイト粒子は、硫酸との親和性を有することにより、液中アブレーションによる分散性をより高められる。固体酸触媒の量は、例えば、グラファイト20gに対して、例えば、固体酸触媒としての炭化Dグルコース化合物(株式会社ヒューマンシステム販売元、製品名:炭化Dグルコース569)は、例えば、0.1~10g、好ましくは、0.5~5gを使用することが好適である。 The solid acid catalyst uses, for example, dehydration action or oxidation action such as concentrated sulfuric acid (eg 98%) or fuming sulfuric acid against carbon sources such as D-glucose, cellulose, naphthalene, and anthracene. Carbonized and sulfonated at a high temperature of about 200 to 300 ° C. Due to the sulphonation, the sulphonated graphite particles have an affinity for sulfuric acid, so that dispersibility due to submerged ablation can be further enhanced. The amount of the solid acid catalyst is, for example, 20 g of graphite, for example, carbonized D glucose compound (manufactured by Human Systems Co., Ltd., product name: carbonized D glucose 569) as the solid acid catalyst is, for example, 0.1 to It is suitable to use 10 g, preferably 0.5 to 5 g.
 スルフォン化反応は、グラファイトを、マグネチックスターラーで攪拌しながら、液中にて、レーザアブレーションを行うことにより行うことができる。液中でのレーザアブレーションにより、反応容器内のグラファイト粒子は、ナノコロイド状態にまで微細化され、懸濁させることができる。液中でのレーザアブレーションは、グラファイト粒子に対して、液中で強力なパルスを発生させ、これによりグラファイトの層間隔は拡張し、存在する濃硫酸、濃硝酸、酸化剤、及び固体酸触媒の作用により、層間剥離と酸化及びスルフォン化反応を行うことができる。 The sulfonation reaction can be performed by performing laser ablation in a liquid while stirring graphite with a magnetic stirrer. By the laser ablation in the liquid, the graphite particles in the reaction vessel can be refined into a nanocolloid state and suspended. Laser ablation in the liquid generates a strong pulse in the liquid for the graphite particles, thereby expanding the interlayer spacing of the graphite and the presence of the concentrated sulfuric acid, concentrated nitric acid, oxidant, and solid acid catalyst present. Due to the action, delamination and oxidation and sulfonation reactions can be performed.
 得られたスルフォン化グラファイト粒子は、スルフォン酸基が、グラファイトの層間に入り込み、ベンゼン環に結合又は付加した状態で存在するものと考えられる。また、金属をドーピングした場合には、金属は、相間に取り込まれたインターカレーションの形態として存在している可能性が高い。そのため、最終的に得られる金属ドープ還元型酸化グラフェンは、キャパシタとした場合に、取り込まれた金属イオンが、出入りすることにより、電荷の出し入れを行う機能するものと考えられる。 The obtained sulfonated graphite particles are considered to exist in a state in which sulfonic acid groups enter between graphite layers and are bonded or added to a benzene ring. In addition, when a metal is doped, there is a high possibility that the metal exists as a form of intercalation incorporated between phases. Therefore, when the metal-doped reduced graphene oxide finally obtained is a capacitor, it is considered that the metal ions taken in and out function as a function of taking in and out charges.
 レーザアブレーションは、それ自体公知であり、また、水中において使用され、一般に、金属などの材料表面をレーザで改質し、ナノコロイド粒子状態で水中に均一分散され、沈降しない金属分散の製造技術として利用されるようになっている。可視領域のパルスレーザを使用すると、水中においてアブレーションを起こし、短時間ではあるが、大きな圧力のプルームが材料の表面に形成され、この圧力を利用して、金属の表面を局所的に変形させるものと理解されている。水中では、水の慣性によって、プルームの膨張が抑制されるため、プルームの圧力は、空気中の10~100倍となり、数ギガパスカル(GPa)にも達する。この圧力によって衝撃波が発生し、材料中を伝播すると理解されている。 Laser ablation is known per se and is used in water as a technique for producing a metal dispersion in which the surface of a material such as a metal is generally modified with a laser and uniformly dispersed in water in the form of nanocolloid particles and does not settle. It has come to be used. When a pulse laser in the visible region is used, ablation occurs in water, and a large pressure plume is formed on the surface of the material for a short time, and this pressure is used to locally deform the metal surface. It is understood. Underwater, the plume expansion is suppressed by the inertia of water, so the plume pressure is 10 to 100 times that in air, reaching several gigapascals (GPa). It is understood that this pressure generates shock waves and propagates through the material.
 レーザアブレーションに使用するレーザとして、ガラスファイバーで液中まで送れるYAGレーザ(波長、例えば、1.06μm)を好適に利用することができる。液媒体中の撹拌下において、液中でレーザアブレーションを行うことにより、多層グラファイト層間距離が、例えば、約3倍に拡張し、スルフォン化に好適な固体酸触媒の存在下において、強いスルフォン化条件で、グラファイトのベンゼン環にスルフォン基を導入することが可能となり、スルフォン化グラファイト粒子のナノ分散液が得られる。 As a laser used for laser ablation, a YAG laser (wavelength, for example, 1.06 μm) that can be sent into a liquid by a glass fiber can be suitably used. By performing laser ablation in liquid under stirring in a liquid medium, the multilayer graphite interlayer distance is expanded by about 3 times, for example, and strong sulfonation conditions are present in the presence of a solid acid catalyst suitable for sulfonation. Thus, it becomes possible to introduce a sulfonic group into the benzene ring of graphite, and a nano-dispersed liquid of sulfonated graphite particles can be obtained.
 このようにして得られたスルフォン化グラファイトのナノ分散液中のスルフォン化グラファイトは、次いで、加水分解され、酸化グラフェンに変換される。得られたスルフォン化グラファイト粒子の加水分解は、水及び塩酸を加えることにより行うことができる。 The sulfonated graphite in the sulfonated graphite nanodispersion thus obtained is then hydrolyzed and converted to graphene oxide. The obtained sulfonated graphite particles can be hydrolyzed by adding water and hydrochloric acid.
 使用される水の量は、濃硫酸100mlに対して、例えば、500~1200ml、好ましくは、700~900ml程度である。使用される濃塩酸の濃度は、例えば、25~40質量%であり、好ましくは、34~37質量%である。使用される塩酸の量は、過マンガン酸カリウム20gに対して、例えば、5~20g、好ましくは、8~12gであることが好適である。加水分解後、5分~60分、好ましくは、10~30分程度自然放冷することによって残留過マンガン酸カリウム、炭化Dグルコース (株式会社ヒューマンシステム販売元、製品名:炭化Dグルコース569)を分解し、不純物を浮上させる。浮遊した不純物を取り除き、媒体に分散された反応生成物を遠心分離離装置を使用して、固相と、液相とに分離する。次いで上清は廃棄し、ペースト状の固相は、加熱乾燥や又は水を400ml加え、粘度を下げスプレイドライヤーなどにより水分を飛ばし、固体の酸化グラフェン粉末とすることができる。 The amount of water used is, for example, about 500 to 1200 ml, preferably about 700 to 900 ml with respect to 100 ml of concentrated sulfuric acid. The concentration of concentrated hydrochloric acid used is, for example, 25 to 40% by mass, and preferably 34 to 37% by mass. The amount of hydrochloric acid used is, for example, 5 to 20 g, preferably 8 to 12 g, based on 20 g of potassium permanganate. Residual potassium permanganate, carbonized D-glucose cake (manufactured by Human Systems Co., Ltd., product name: carbonized D-glucose 569) is allowed to cool naturally for about 5 to 60 minutes, preferably about 10 to 30 minutes after hydrolysis. Decomposes and raises impurities. The suspended impurities are removed, and the reaction product dispersed in the medium is separated into a solid phase and a liquid phase using a centrifugal separator. Next, the supernatant is discarded, and the paste-like solid phase can be made into solid graphene oxide powder by heat drying or adding 400 ml of water, lowering the viscosity, and removing water by a spray dryer or the like.
 酸化グラフェンの生成は、ラマンスペクトルにより、確認することができる。同様に金属ドープ型酸化グラフェンの生成についても、ラマンスペクトルにより確認することができる。 The formation of graphene oxide can be confirmed by a Raman spectrum. Similarly, the generation of metal-doped graphene oxide can be confirmed by a Raman spectrum.
 上記のようにして得られた酸化グラフェン又は金属ドープ酸化グラフェンは、次いで、ゆるやかな還元を行うことにより、グラフェンとは異なり、酸化グラフェンに比べて、水酸基や、カルボキシル基などの官能基を残した形態の構造を有する金属非ドープ又は金属ドープ還元型酸化グラフェンが得られる。 The graphene oxide or metal-doped graphene oxide obtained as described above is then subjected to a gradual reduction, leaving a functional group such as a hydroxyl group or a carboxyl group, unlike graphene, unlike graphene. Metal-undoped or metal-doped reduced graphene oxide having a morphological structure is obtained.
 以下、金属非ドープ又は金属ドープ還元型酸化グラフェンの製造工程について説明する。好ましくは、窒素ボンベから窒素気流を流しながら、マントルヒーターなどの加熱装置で加熱された反応器に導入された金属非ドープ酸化グラフェン又は金属ドープ酸化グラフェン粉末を還元する。この場合、得られる金属非ドープ又は金属ドープ還元型酸化グラフェンは、非常に微細でかつ嵩高いため、得られた金属非ドープ又は金属ドープ還元型酸化グラフェンを効率よく収集するために、2つの捕集装置を採用してもよい。このような捕集装置としては、市販品を使用することができ、例えば、オオサワ&カンパニー製のサイレントクリーナーなどを適宜使用することができる。 Hereinafter, a process for producing metal-undoped or metal-doped reduced graphene oxide will be described. Preferably, the metal undoped graphene oxide or the metal doped graphene oxide powder introduced into the reactor heated by a heating device such as a mantle heater is reduced while flowing a nitrogen stream from a nitrogen cylinder. In this case, since the obtained metal undoped or metal doped reduced graphene oxide is very fine and bulky, in order to efficiently collect the obtained metal undoped or metal doped reduced graphene oxide, two traps are collected. A collecting device may be employed. As such a collecting device, a commercially available product can be used, and for example, a silent cleaner manufactured by Osawa & Company can be appropriately used.
 不活性ガスを使用する場合には、不活性ガスの流量は、還元を行うことができる程度の流量であれば、特に制限なく採用することができる。流用としては、例えば、一般に、0.5~40リットル/分(L/分)、好ましくは、5~30L/分程度であることが好適である。反応中、金属非ドープ酸化グラフェン又は金属ドープ酸化グラフェンは、還元されながら、不活性ガスに搬送され、捕集装置へと移動する。還元温度は、一般に100~400℃、好ましくは、150~300℃であることが好適である。この温度が、1100℃となると、完全な還元が起こり、グラフェンが形成する。 In the case of using an inert gas, the flow rate of the inert gas can be employed without any particular limitation as long as the flow rate is such that reduction can be performed. For diversion, for example, it is generally 0.5 to 40 liters / minute (L / minute), preferably about 5 to 30 liters / minute. During the reaction, the metal-undoped graphene oxide or the metal-doped graphene oxide is transported to the inert gas while being reduced and moves to the collection device. The reduction temperature is generally 100 to 400 ° C., preferably 150 to 300 ° C. When this temperature reaches 1100 ° C., complete reduction occurs and graphene is formed.
 このようにして得られた金属非ドープ又は金属ドープ還元型酸化グラフェンは、その内部に存在する官能基の親水性作用により、水に対して非常に分散性がよく、グラフェンと全く異なる性質を有する。このため、グラフェンとの構造の差異が明瞭である。還元型酸化グラフェンは、グラフェンとは異なり、還元型酸化グラフェン中に存在する水酸基やカルボキシル基などの親水性官能基のために、水に対して容易に分散する。これに対して、グラフェンは、官能基がないため、特殊でかつ高価な親油性の溶媒にしか分散させることができない。また、還元型酸化グラフェンは、酸化グラフェンに対して、ラマンスペクトル図により、ピーク位置のずれによって相違が確認できる。 The metal-undoped or metal-doped reduced graphene oxide obtained in this way is very dispersible in water and has completely different properties from graphene due to the hydrophilic action of the functional groups present inside. . For this reason, the difference in structure with graphene is clear. Unlike graphene, reduced graphene oxide is easily dispersed in water due to hydrophilic functional groups such as hydroxyl groups and carboxyl groups present in reduced graphene oxide. On the other hand, since graphene has no functional group, it can be dispersed only in a special and expensive lipophilic solvent. Further, the reduced graphene oxide can be confirmed to be different from the graphene oxide by the shift of the peak position from the Raman spectrum diagram.
 得られた還元型酸化グラフェンは、特に金属ドープ還元型酸化グラフェンは、ドープされた金属イオンが、多層構造の還元型酸化グラフェンである場合には、層間において、金属が金属イオンとして、インターカレートされた状態となっており、キャパシタとして使用する場合には、優れた機能を有するものである。また、単層であっても、別の層との間で、単層の官能基を介してイオン結合などにより結合しており、電流の負荷などによって、金属イオンが移動し、電荷の移動を果たすことができる。 The obtained reduced graphene oxide, particularly the metal-doped reduced graphene oxide, is intercalated between layers as a metal ion when the doped metal ion is a multilayered reduced graphene oxide. When used as a capacitor, it has an excellent function. In addition, even if it is a single layer, it is bonded to another layer by an ionic bond or the like through a functional group of the single layer. Can fulfill.
 本発明に用いる無機酸としては、本発明の効果を損なわない範囲で種々の無機酸を用いることができ、例えば、濃硫酸、希硫酸、硝酸等を用いることができる。また、本発明に用いる炭酸エステルとしては、本発明の効果を損なわない範囲で種々の炭酸エステルを用いることができ、例えば、炭酸エチレン、炭酸プロピレン、炭酸ジメチル等を用いることができる。 As the inorganic acid used in the present invention, various inorganic acids can be used as long as the effects of the present invention are not impaired. For example, concentrated sulfuric acid, dilute sulfuric acid, nitric acid and the like can be used. Moreover, as carbonate ester used for this invention, various carbonate ester can be used in the range which does not impair the effect of this invention, For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, etc. can be used.
 なお、本発明の誘電材料には、本発明の効果を損なわない範囲で、例えば、電解液(電解質溶液)、導電助剤及びバインダ等、任意成分として種々の材料を添加してもよい。例えば、本発明の誘電材料がコンデンサ等の電気化学素子に用いられる場合に、金属製の電極を酸による腐食から保護するために、シリコーン油又は無機酸の中和剤を添加することが考えられる。 It should be noted that various materials such as an electrolytic solution (electrolyte solution), a conductive additive, and a binder may be added to the dielectric material of the present invention as long as the effects of the present invention are not impaired. For example, when the dielectric material of the present invention is used in an electrochemical element such as a capacitor, it is conceivable to add a silicone oil or an inorganic acid neutralizing agent to protect the metal electrode from acid corrosion. .
 シリコーン油は電極の表面を覆い、酸による電極の腐食を防止する。また、中和剤は、中和反応により無機酸を消滅させて、酸による電極の腐食を防止する。 Silicone oil covers the electrode surface and prevents corrosion of the electrode by acid. Further, the neutralizing agent eliminates the inorganic acid by a neutralization reaction and prevents corrosion of the electrode by the acid.
 また、本発明の誘電材料には、例えば有機高分子材料からなる微粒子等の分散剤(凝集防止剤)を添加してもよい。かかる有機高分子材料としては、例えば、ポリテトラフルオロエチレン及びポリプロピレン等が挙げられる。このような分散剤(凝集防止剤)を誘電材料に加えれば、誘電材料中に分散している還元型酸化グラフェンの凝集を防止でき、還元型酸化グラフェンの表面積の低下、短絡及び耐電圧の低下を抑制することができる。 In addition, a dispersing agent (anti-aggregation agent) such as fine particles made of an organic polymer material may be added to the dielectric material of the present invention. Examples of such organic polymer materials include polytetrafluoroethylene and polypropylene. When such a dispersant (anti-aggregation agent) is added to the dielectric material, aggregation of the reduced graphene oxide dispersed in the dielectric material can be prevented, and the surface area of the reduced graphene oxide is reduced, the short circuit and the withstand voltage are reduced. Can be suppressed.
 更に、本発明の誘電材料には、電圧性能を向上させるという観点から、リチウム化合物を混合しても構わない。このようなリチウム化合物としては、例えばチタン酸リチウム、炭酸リチウム及び水酸化リチウム等が挙げられる。なかでもチタン酸リチウムが好ましく、一般式:LixTiy4で表され、xとyがそれぞれ、0.8≦x≦1.4、1.6≦y≦2.2の化学量論数を持つチタン酸リチウムを用いるのが更に好ましい。より具体的には、例えばLi4Ti512及びLi2Ti37等が好ましい。 Furthermore, the dielectric material of the present invention may be mixed with a lithium compound from the viewpoint of improving voltage performance. Examples of such lithium compounds include lithium titanate, lithium carbonate, and lithium hydroxide. Of these, lithium titanate is preferable, and is represented by the general formula: Li x Ti y O 4 , where x and y are 0.8 ≦ x ≦ 1.4 and 1.6 ≦ y ≦ 2.2, respectively. More preferably, lithium titanate having a number is used. More specifically, for example, Li 4 Ti 5 O 12 and Li 2 Ti 3 O 7 are preferable.
 なお、前記一般式:LixTiy4で表されるチタン酸リチウムは、例えば、酸化チタンとリチウム化合物とを760~1100℃で熱処理することによって得ることができる。また、前記酸化チタンとしては、アナターゼ型、ルチル型のいずれも使用可能であり、リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウム等を用いることができる。 The lithium titanate represented by the general formula: Li x Ti y O 4 can be obtained, for example, by heat treating titanium oxide and a lithium compound at 760 to 1100 ° C. As the titanium oxide, either anatase type or rutile type can be used, and as the lithium compound, for example, lithium hydroxide, lithium carbonate, lithium oxide, or the like can be used.
≪本発明の誘電材料の製造方法≫
 本発明の誘電材料の製造方法は、還元型酸化グラフェンと、無機酸及び/又は炭酸エステルと、(更には必要に応じてリチウム化合物と)、を混合すること、を特徴とするものである。
<< Production Method of Dielectric Material of the Present Invention >>
The method for producing a dielectric material of the present invention is characterized by mixing reduced graphene oxide, an inorganic acid and / or a carbonate ester (and, if necessary, a lithium compound).
 還元型酸化グラフェンと無機酸との混合は、還元型酸化グラフェンを無機酸及び炭酸エステルに1~3%添加し、高粘度対応のマグネチックスターラ―を用いてガラス容器にて真空状態で撹拌分散することで達成することができる。 Reduced graphene oxide and inorganic acid are mixed by adding 1 to 3% of reduced graphene oxide to inorganic acid and carbonate ester, and stirring and dispersing in a glass container using a magnetic stirrer with high viscosity. This can be achieved.
 誘電材料における還元型酸化グラフェンの含有量については、本発明の効果を損なわない範囲で任意に設定することができる。静電容量は還元型酸化グラフェン含有量の増加に伴って上昇する傾向となるが、還元型酸化グラフェンの添加量が多くなると均一分散させるのが困難となるだけでなく、原料コストが高くなってしまう。 The content of reduced graphene oxide in the dielectric material can be arbitrarily set as long as the effects of the present invention are not impaired. The capacitance tends to increase as the content of reduced graphene oxide increases, but as the amount of reduced graphene oxide added increases, it becomes difficult to uniformly disperse, and the raw material cost increases. End up.
 ここで、好適に使用できる還元型酸化グラフェンとしては、株式会社MICC TEC製の「グラフェライトRGO」を挙げることができる。また、還元型酸化グラフェンの代わりに、還元型酸化グラフェンに銀、銅、酸化亜鉛、及びパラジウムから選択される少なくとも1つの物質をインターカレート・ドープしたもの(株式会社MICC TEC製のグラフェライトag007、グラフェライトcu008、グラフェライトzn009、及びグラフェライトPd010)を用いることで、誘電材料の静電容量を、更に向上させることができる。 Here, examples of the reduced graphene oxide that can be suitably used include “Graferrite RGO” manufactured by MICC Corporation. Further, instead of reduced graphene oxide, reduced graphene oxide is obtained by intercalating and doping at least one substance selected from silver, copper, zinc oxide, and palladium (graferrite ag007 manufactured by MICC TEC Co., Ltd.) , Graferrite cu008, Graferrite zn009, and Graferrite Pd010) can further improve the capacitance of the dielectric material.
 無機酸としては、本発明の効果を損なわない範囲で種々の無機酸を用いることができ、例えば、濃硫酸、希硫酸、硝酸等を用いることができる。なお、リチウム化合物を用いる場合、リチウム化合物を用いない場合に比べて、無機酸の使用量は少なくてもよい。また、炭酸エステルとしては、本発明の効果を損なわない範囲で種々の炭酸エステルを用いることができ、例えば、炭酸エチレン、炭酸プロピレン、炭酸ジメチル等を用いることができる。 As the inorganic acid, various inorganic acids can be used as long as the effects of the present invention are not impaired. For example, concentrated sulfuric acid, dilute sulfuric acid, nitric acid and the like can be used. In addition, when using a lithium compound, the usage-amount of an inorganic acid may be small compared with the case where a lithium compound is not used. Moreover, as carbonate ester, various carbonate ester can be used in the range which does not impair the effect of this invention, For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, etc. can be used.
≪電気化学素子≫
 本発明の電気化学素子は、上記本発明の誘電材料を含む分極性電極と、セパレータと、第一の集電極及び第二の集電極と、を含むこと、を特徴とする。ここで、本発明の誘電材料は、いわゆる活物質又は分極性電極そのものとして用いられ、いずれにしても、分極性電極を構成する。
≪Electrochemical element≫
The electrochemical device of the present invention includes a polarizable electrode containing the dielectric material of the present invention, a separator, a first collector electrode, and a second collector electrode. Here, the dielectric material of the present invention is used as a so-called active material or a polarizable electrode itself, and in any case constitutes a polarizable electrode.
(1)電気化学素子1
 まず、本発明の電気化学素子の一例として、電気二重層キャパシタの製造技術に基づいて製造する場合を説明する。本発明の電気化学素子は、上記本発明の誘電材料を含む分極性電極と、セパレータと、第一の集電極及び第二の集電極と、が密閉容器に封入されることにより構成される。形状については、例えば、円筒型、箱型のいずれの形状を採用してもよく、それら以外の形状であってもよい。
(1) Electrochemical element 1
First, the case where it manufactures based on the manufacturing technique of an electrical double layer capacitor as an example of the electrochemical element of this invention is demonstrated. The electrochemical element of the present invention is configured by sealing a polarizable electrode containing the dielectric material of the present invention, a separator, a first collector electrode, and a second collector electrode in a sealed container. As for the shape, for example, any of a cylindrical shape and a box shape may be adopted, and other shapes may be employed.
 ここで、図1に本発明の電気化学素子1の一実施形態の概略構成図を示す。電源に接続された第一の集電極(正極)2と第二の集電極(負電極)4との間に、本発明の分散液状、ゲル状又はペースト状の誘電材料からなる分極性電極6を挟み、かつ、セパレータ8を備えている。 Here, FIG. 1 shows a schematic configuration diagram of an embodiment of the electrochemical device 1 of the present invention. Between a first collector electrode (positive electrode) 2 and a second collector electrode (negative electrode) 4 connected to a power source, a polarizable electrode 6 made of a dispersed liquid, gel or paste dielectric material of the present invention. And a separator 8 is provided.
 また、図1に示す電気化学素子1においては、本発明の誘電材料が分散液状、ペースト状又はゲル状で流動性を有するものであるため、そのまま分極性電極6として用いられ、局部的絶縁破壊などに対しても優れた自己回復性を備え、実用上有益である。 Further, in the electrochemical element 1 shown in FIG. 1, since the dielectric material of the present invention is a dispersed liquid, paste or gel and has fluidity, it is used as the polarizable electrode 6 as it is, and is locally broken down. For example, it has excellent self-healing properties and is practically useful.
 なお、「正極」とは、電気二重層キャパシタに電圧を印加した際に、アニオンが吸着する電極であり、「負極」とは、電気二重層キャパシタに電圧を印加した際に、カチオンが吸着する電極である。 The “positive electrode” is an electrode that adsorbs anions when a voltage is applied to the electric double layer capacitor, and the “negative electrode” is an electrode that adsorbs cations when a voltage is applied to the electric double layer capacitor. Electrode.
 第一の集電極(正極)2と第二の集電極(負電極)4としては、一般的に高い導電性を有する材料であれば特に限定されないが、少なくとも低電気抵抗の金属材料が好ましく用いられ、例えば、銅、アルミニウム、金、白金、鉛、錫、ニッケル等、その他、ヨウ素をドーピングした有機絶縁材料や導電性有機材料等が用いられる。なかでも、本発明の誘電材料の製造時に使用した無機酸が残存している場合を考慮して、酸に侵されにくいという観点からは、金、白金、鉛、錫、ニッケル等を用いればよい。 The first collector electrode (positive electrode) 2 and the second collector electrode (negative electrode) 4 are not particularly limited as long as they are generally highly conductive materials, but at least a low electrical resistance metal material is preferably used. For example, copper, aluminum, gold, platinum, lead, tin, nickel, etc., and other organic insulating materials or conductive organic materials doped with iodine are used. Of these, gold, platinum, lead, tin, nickel, etc. may be used from the viewpoint of being less susceptible to acid in consideration of the case where the inorganic acid used in the production of the dielectric material of the present invention remains. .
 第一の集電極(正極)2と第二の集電極(負電極)4の厚みは、例えば10~50μm程度であり、第一の集電極(正極)2と第二の集電極(負電極)4には、例えばリード接続用のタブ(図示せず)が設けられている。 The thickness of the first collector electrode (positive electrode) 2 and the second collector electrode (negative electrode) 4 is, for example, about 10 to 50 μm, and the first collector electrode (positive electrode) 2 and the second collector electrode (negative electrode) ) 4 is provided with a tab (not shown) for lead connection, for example.
 また、第一の集電極(正極)2及び/又は第二の集電極(負電極)4は、上記の本発明の誘電材料を塗布し、当該塗布した誘電材料を乾燥させることにより、表面処理されていることが好ましい。例えば、本発明の誘電材料を塗布した後、600~700℃の大気中で3~10分間乾燥させることで、表面処理を達成することができる。 Further, the first collector electrode (positive electrode) 2 and / or the second collector electrode (negative electrode) 4 is coated with the dielectric material of the present invention, and the coated dielectric material is dried, thereby surface treatment. It is preferable that For example, after applying the dielectric material of the present invention, the surface treatment can be achieved by drying in the atmosphere at 600 to 700 ° C. for 3 to 10 minutes.
 分極性電極6には、導電助剤が含まれていてもよい。かかる導電助剤としては、例えば、カーボンブラック、アセチレンブラック等の本発明の誘電材料に含まれる炭素成分以外の炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、及び金属微粉の混合物、ITO等の導電性酸化物等が挙げられる。 The polarizable electrode 6 may contain a conductive additive. Examples of the conductive assistant include carbon materials other than carbon components contained in the dielectric material of the present invention such as carbon black and acetylene black, metal fine powders such as copper, nickel, stainless steel, and iron, and a mixture of metal fine powders, ITO And the like, and the like.
 また、分極性電極6には、電解液が含まれていてもよい。電解液としては、電解質を有機溶媒に溶解させたものが使用される。電解質としては、例えば、テトラエチルアンモニウムテトラフルオロボレート(TEA+BF4-)、トリエチルモノメチルアンモニウムテトラフルオロボレート(TEMA+BF4-)等の4級アンモニウム塩を用いることができる。 Moreover, the polarizable electrode 6 may contain an electrolytic solution. As the electrolytic solution, a solution obtained by dissolving an electrolyte in an organic solvent is used. As the electrolyte, for example, a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate (TEA + BF4-) or triethylmonomethylammonium tetrafluoroborate (TEMA + BF4-) can be used.
 更に、分極性電極6には、バインダが含まれていてもよい。バインダとしては、分極性電極6の形状を維持できる程度の結着力を有するものであれば特に限定されず種々の結着剤を使用できる。バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、スチレン-ブタジエンゴム(SBR)と水溶性高分子(カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸ナトリウム、デキストリン、グルテン等)との混合物等が挙げられる。 Furthermore, the polarizable electrode 6 may contain a binder. The binder is not particularly limited as long as it has a binding force that can maintain the shape of the polarizable electrode 6, and various binders can be used. Examples of the binder include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR) and water-soluble polymers (carboxymethylcellulose, polyvinyl alcohol, sodium polyacrylate, Dextrin, gluten, etc.) and the like.
 セパレータ8は、分極性電極6の第一の集電極(正極)2側と第二の集電極(負電極)4側とのオーミックな接触を防ぐものであり、電気化学素子1の耐電圧に影響を与えるものである。柔軟性があり、機械的強度があり、耐久性が高いことが望ましい。 The separator 8 prevents ohmic contact between the first collector electrode (positive electrode) 2 side and the second collector electrode (negative electrode) 4 side of the polarizable electrode 6. It has an influence. It is desirable to have flexibility, mechanical strength, and high durability.
 セパレータ8の材料としては、種々の無機絶縁材料及び有機絶縁材料を用いることができる。無機絶縁材料としては、例えば、酸化亜鉛材料、ガラス及びセラミックス等が挙げられるが、グラスウールを用いることが好ましい。 As the material of the separator 8, various inorganic insulating materials and organic insulating materials can be used. Examples of the inorganic insulating material include a zinc oxide material, glass and ceramics, and glass wool is preferably used.
 また、有機絶縁材料としては、例えば、従来の電気二重層キャパシタにおいても用いられている絶縁紙や、ポリエチレン、ポリプロピレンなどの多孔質ポリマーフィルムや不織布等が挙げられる。例えば、絶縁紙には用途に応じて種々あるが、高耐圧化を図るためには、変圧器などの高電圧を使用する機器に用いられているものが好ましい。また、膨潤しないものが好ましい。 Also, examples of the organic insulating material include insulating paper used in conventional electric double layer capacitors, porous polymer films such as polyethylene and polypropylene, and non-woven fabrics. For example, there are various types of insulating paper depending on the application, but in order to achieve a high breakdown voltage, those used in equipment using a high voltage such as a transformer are preferable. Moreover, what does not swell is preferable.
 なお、本発明の誘電材料が粉末状、顆粒状又は集塊状で、分極性電極6の活物質として使用される場合には、分極性電極6は、本発明の誘電材料の他に上記電解液を含み、その他に導電助剤やバインダを含んでもよい。分極性電極を2つに分割し、両者の間に電解液層を設けてもよい。 When the dielectric material of the present invention is in the form of powder, granules, or agglomerates and is used as the active material of the polarizable electrode 6, the polarizable electrode 6 is not limited to the dielectric material of the present invention. In addition, a conductive additive or a binder may be included. The polarizable electrode may be divided into two and an electrolyte layer may be provided between them.
(2)電気化学素子2
 また、本発明の電気化学素子は、図2に示すような構造を有していてもよい。図2は、典型的な電気二重層キャパシタの構造を採用した本発明の電気化学素子10であり、電極部は、電源に接続された第一の集電極(正極)12及び第二の集電極(負電極)14と、第一の集電極(正極)12及び第二の集電極(負電極)14にそれぞれ固定・接続された、本発明の粉末状、顆粒状又は集塊状の誘電材料を含む固体状の分極性電極16a、16bと、で構成されている。
(2) Electrochemical element 2
Moreover, the electrochemical device of the present invention may have a structure as shown in FIG. FIG. 2 shows an electrochemical device 10 of the present invention that employs a typical electric double layer capacitor structure, and the electrode section includes a first collector electrode (positive electrode) 12 and a second collector electrode connected to a power source. (Negative electrode) 14, and the powder, granule, or agglomerated dielectric material of the present invention fixed and connected to the first collector electrode (positive electrode) 12 and the second collector electrode (negative electrode) 14. Including solid polarizable electrodes 16a and 16b.
 また、電解質部は、分極性電極16a、16bの間の空間に充填された電解液と、当該空間を第一の集電極(正極)12側と第二の集電極(負電極)14側とに隔てるセパレータ18と、で構成されている。この第一の集電極(正極)2と第二の集電極(負電極)4との間に電圧を印加することにより、電解液と分極性電極16a、16bとの界面(電気二重層)で分極が起こり、ここに電荷(電気容量)が蓄積される。 The electrolyte part includes an electrolyte filled in a space between the polarizable electrodes 16a and 16b, and the space between the first collector (positive electrode) 12 side and the second collector (negative electrode) 14 side. And a separator 18 separated from each other. By applying a voltage between the first collector electrode (positive electrode) 2 and the second collector electrode (negative electrode) 4, at the interface (electric double layer) between the electrolyte and the polarizable electrodes 16a and 16b. Polarization occurs, and charges (electric capacity) are accumulated here.
 この電気化学素子10の各構成要素は、図1を用いて説明した上記電気化学素子1の場合と同様であればよいが、分極性電極16a、16bは、本発明の粉末状、顆粒状又は集塊状の誘電材料を含む固体状の電極であり、したがって、例えば、少なくともバインダを含んだ構成を有している。 Each component of the electrochemical device 10 may be the same as that of the electrochemical device 1 described with reference to FIG. 1, but the polarizable electrodes 16a and 16b may be formed in the form of powder, granule or It is a solid electrode containing an agglomerated dielectric material, and thus has, for example, a configuration including at least a binder.
 電気化学素子10は、円柱、角型、及びシート状等とすることができる。特に、厚さが0.15~50mmのシート状の場合は軽量となるため、床や壁に容易に設置することが可能となる。 The electrochemical element 10 can be a cylinder, a square, a sheet, or the like. In particular, a sheet having a thickness of 0.15 to 50 mm is lightweight and can be easily installed on a floor or a wall.
 (3)電気化学素子3
 更にまた、本発明の電気化学素子は、図3に示すような構造を有していてもよい。図3は、典型的な鉛蓄電池の構造を採用した本発明の電気化学素子100の一部を切り欠いた斜視図である。電気化学素子100の構成要素は、一部を除き従来の鉛蓄電池と同じであればよいが、以下においては各構成要素について簡単に説明する。
(3) Electrochemical element 3
Furthermore, the electrochemical device of the present invention may have a structure as shown in FIG. FIG. 3 is a perspective view in which a part of the electrochemical device 100 of the present invention adopting a typical lead-acid battery structure is cut out. The constituent elements of the electrochemical element 100 may be the same as those of the conventional lead acid battery except for a part, but each constituent element will be briefly described below.
 電気化学素子100においては、電槽102が隔壁104によって複数のセル室106に仕切られており、各セル室106には極板群108が1つずつ収納されている。極板群108は、図示しないが、複数枚の正極板及び負極板を、セパレータを介して積層することにより構成されている。正極板は正極接続部110に接続され、負極板は負極接続部112に接続され、極板群108は隣接するセル室106内の極板群108と直列に接続されている。 In the electrochemical element 100, the battery case 102 is partitioned into a plurality of cell chambers 106 by partition walls 104, and one electrode plate group 108 is accommodated in each cell chamber 106. Although not shown, the electrode plate group 108 is configured by laminating a plurality of positive and negative electrode plates with a separator interposed therebetween. The positive electrode plate is connected to the positive electrode connecting portion 110, the negative electrode plate is connected to the negative electrode connecting portion 112, and the electrode plate group 108 is connected in series with the electrode plate group 108 in the adjacent cell chamber 106.
 電槽102の上部開口部には、正極端子114及び負極端子116が設けられた蓋118が装着されている。蓋118に設けられた注液口には、電池内部で発生したガスを電池外に排出するための排気口を有する排気栓120が設けられている。 A lid 118 provided with a positive electrode terminal 114 and a negative electrode terminal 116 is attached to the upper opening of the battery case 102. The liquid injection port provided in the lid 118 is provided with an exhaust plug 120 having an exhaust port for discharging gas generated inside the battery to the outside of the battery.
 正極板は、正極格子と、正極格子に保持された正極活物質層と、からなる。正極活物質層は主として正極活物質(PbO2)で構成され、正極活物質層中には正極活物質以外に、例えば、炭素材料等の導電助剤やバインダ等が少量含まれていてもよい。正極格子は、正極活物質層を保持するエキスパンド格子である。 The positive electrode plate is composed of a positive electrode lattice and a positive electrode active material layer held on the positive electrode lattice. The positive electrode active material layer is mainly composed of a positive electrode active material (PbO 2), and the positive electrode active material layer may contain, for example, a small amount of a conductive additive such as a carbon material, a binder, etc. in addition to the positive electrode active material. The positive electrode lattice is an expanded lattice that holds the positive electrode active material layer.
 正極格子は、例えばCa及びSnの少なくとも1つを含むPb合金で構成されている。Pb合金としては、耐食性及び機械的強度の観点から、0.01~0.10重量%のCaを含むPb-Ca合金、0.05~3.0重量%のSnを含むPb-Sn合金、又はCa及びSnを含むPb-Ca-Sn合金を用いることができる。正極格子は、0.03~0.10重量%のCa及び0.6~1.8重量%のSnを含むPb-Ca-Sn合金からなるのが好ましい。更に好ましくは、Pb-Ca-Sn合金は、Snを0.8~1.8重量%含む。 The positive electrode lattice is made of, for example, a Pb alloy containing at least one of Ca and Sn. As the Pb alloy, from the viewpoint of corrosion resistance and mechanical strength, a Pb—Ca alloy containing 0.01 to 0.10% by weight of Ca, a Pb—Sn alloy containing 0.05 to 3.0% by weight of Sn, Alternatively, a Pb—Ca—Sn alloy containing Ca and Sn can be used. The positive grid is preferably composed of a Pb—Ca—Sn alloy containing 0.03 to 0.10 wt% Ca and 0.6 to 1.8 wt% Sn. More preferably, the Pb—Ca—Sn alloy contains 0.8 to 1.8% by weight of Sn.
 なお、正極格子や正極接続部に用いられるCa及びSnの少なくとも1つを含むPb合金は、実質上Sbを含まない。ただし、鉛合金中に、減液量および自己放電量の増大による電池性能への悪影響がない程度のSbを不純物として0.002重量%以下含んでいてもよい。正極格子及び正極接続部材中のSb含有量がこの程度であれば、Sbが負極板へ移動することはない。 In addition, the Pb alloy containing at least one of Ca and Sn used for the positive electrode lattice and the positive electrode connection part substantially does not contain Sb. However, the lead alloy may contain 0.002% by weight or less of Sb as an impurity that does not adversely affect the battery performance due to an increase in the liquid reduction amount and the self-discharge amount. If the Sb content in the positive electrode grid and the positive electrode connecting member is about this level, Sb does not move to the negative electrode plate.
 また、正極格子の耐食性を改善するために、正極格子体の鉛合金が0.01~0.08重量%のBaや0.001~0.05重量%のAgを含んでいてもよい。Caを含む鉛合金を用いる場合、溶融鉛合金からのCaの酸化消失を抑制するために0.001~0.05重量%程度のAlを添加してもよい。また、0.0005~0.005重量%程度のBiを不純物として含んでいてもよい。 Further, in order to improve the corrosion resistance of the positive grid, the lead alloy of the positive grid may contain 0.01 to 0.08 wt% Ba or 0.001 to 0.05 wt% Ag. When a lead alloy containing Ca is used, about 0.001 to 0.05% by weight of Al may be added in order to suppress the disappearance of oxidation of Ca from the molten lead alloy. Further, it may contain about 0.0005 to 0.005% by weight of Bi as an impurity.
 正極格子は、正極活物質層と接する表面の少なくとも一部に、2.0~7.0重量%のSnを含む鉛合金層を有するのが好ましい。正極活物質層と正極格子との界面における不働態層の生成が抑制され、正極板の過放電に対する耐久性が向上する。 The positive electrode grid preferably has a lead alloy layer containing 2.0 to 7.0% by weight of Sn on at least a part of the surface in contact with the positive electrode active material layer. Generation of a passive layer at the interface between the positive electrode active material layer and the positive electrode lattice is suppressed, and durability of the positive electrode plate against overdischarge is improved.
 正極格子がSnを含む場合、鉛合金層中のSn含有量は正極格子中のSn含有量よりも多いのが好ましい。例えば、正極格子がSnを1.6重量%含む場合、鉛合金層は少なくとも1.6重量%を超えるSnを含むのが好ましく、更に鉛合金層中のSn含有量は3.0~6.0重量%であるのがより好ましい。正極格子よりも鉛合金層のほうがSn含有量が少ないと、正極格子と正極活物質との界面においてSn含有量の少ない鉛合金層が存在することにより、上記のSnによる効果が小さくなる。 When the positive electrode lattice contains Sn, the Sn content in the lead alloy layer is preferably larger than the Sn content in the positive electrode lattice. For example, when the positive electrode lattice contains 1.6% by weight of Sn, the lead alloy layer preferably contains at least 1.6% by weight of Sn, and the Sn content in the lead alloy layer is 3.0-6. More preferably, it is 0% by weight. If the Sn content of the lead alloy layer is smaller than that of the positive electrode lattice, the effect of Sn described above is reduced due to the presence of the lead alloy layer having a low Sn content at the interface between the positive electrode lattice and the positive electrode active material.
 次に、負極板は、負極格子と、負極格子に保持された負極活物質層と、で構成される。負極活物質層は主として負極活物質(Pb)で構成され、負極活物質層中には負極活物質以外に、例えば、リグニンや硫酸バリウム等の防縮剤、炭素材料等の導電助剤、又はバインダが少量含まれていてもよい。負極格子は、負極活物質層が保持されたエキスパンド格子である。 Next, the negative electrode plate is composed of a negative electrode lattice and a negative electrode active material layer held by the negative electrode lattice. The negative electrode active material layer is mainly composed of a negative electrode active material (Pb). In the negative electrode active material layer, in addition to the negative electrode active material, for example, a shrinkage-preventing agent such as lignin and barium sulfate, a conductive assistant such as a carbon material, or a binder May be included in a small amount. The negative electrode lattice is an expanded lattice in which the negative electrode active material layer is held.
 負極格子及び負極接続部は、例えば、実質上Sbを含まず、Ca及びSnの少なくとも1つを含むPb合金からなる。ただし、Pb合金中に0.001重量%未満の微量のSbを不純物として含んでいてもよい。Sb含有量がこの程度の量であれば、自己放電量および電解液の減液量は増大しない。 The negative electrode lattice and the negative electrode connection portion are made of, for example, a Pb alloy substantially free of Sb and containing at least one of Ca and Sn. However, the Pb alloy may contain a trace amount of Sb of less than 0.001% by weight as an impurity. If the Sb content is such an amount, the amount of self-discharge and the amount of liquid electrolyte decrease do not increase.
 負極格子には、正極格子と同様にPb-Ca-Sn合金を用いてもよいが、負極格子は正極板に比べて腐食しにくいため、Snを必ずしも含む必要はない。負極格子の強度を向上させたり、格子作製時の溶融鉛の湯流れ性を改善したりするために、負極格子にSnを0.2~0.6重量%含むPb合金を用いてもよい。また、機械的強度の観点から、Caを0.03~0.10重量%含むPb合金を用いてもよい。 As the negative electrode lattice, a Pb—Ca—Sn alloy may be used in the same manner as the positive electrode lattice, but the negative electrode lattice is not necessarily corroded as compared with the positive electrode plate, and therefore does not necessarily include Sn. In order to improve the strength of the negative electrode lattice or improve the flowability of molten lead in the production of the lattice, a Pb alloy containing 0.2 to 0.6% by weight of Sn may be used in the negative electrode lattice. From the viewpoint of mechanical strength, a Pb alloy containing 0.03 to 0.10% by weight of Ca may be used.
 負極活物質層は、0.0001~0.003重量%のSbを含む。負極活物質層が負極活物質よりも水素過電圧の低いSbを含むことにより、負極板の充電電位が上昇するため、負極板の充電受入性が大幅に改善される。また、負極活物質層中のSbは電解液中に溶出しにくいため、負極格子の腐食を抑制することができる。 The negative electrode active material layer contains 0.0001 to 0.003% by weight of Sb. When the negative electrode active material layer contains Sb having a hydrogen overvoltage lower than that of the negative electrode active material, the charge potential of the negative electrode plate is increased, so that the charge acceptability of the negative electrode plate is greatly improved. Moreover, since Sb in the negative electrode active material layer hardly dissolves into the electrolytic solution, corrosion of the negative electrode lattice can be suppressed.
 特に、負極活物質層中のSb含有量が、0.0001重量%以上であると寿命特性が改善される。一方、負極活物質層中のSb含有量が0.003重量%を超えると、負極格子の耳の腐食が徐々に進行する。負極格子の腐食を抑制する効果及び充放電サイクルにともなう電解液量の減少を抑制する効果が顕著に得られるため、負極活物質層中のSbの含有量は、0.0001~0.001重量%であるのが好ましい。 Particularly, when the Sb content in the negative electrode active material layer is 0.0001% by weight or more, the life characteristics are improved. On the other hand, when the Sb content in the negative electrode active material layer exceeds 0.003% by weight, the corrosion of the ears of the negative electrode lattice gradually proceeds. Since the effect of suppressing the corrosion of the negative electrode lattice and the effect of suppressing the decrease in the amount of the electrolyte accompanying the charge / discharge cycle can be remarkably obtained, the Sb content in the negative electrode active material layer is 0.0001 to 0.001 wt. % Is preferred.
 負極活物質層へのSbの添加は、例えば、負極ペースト作製時に負極ペースト中にSb、Sbの酸化物もしくは硫酸塩、またはアンチモン酸塩等のSbを含む化合物を添加すればよい。また、これ以外に、負極板をSbイオンを含む電解液、例えば、硫酸アンチモンやアンチモン酸塩を含む希硫酸に浸漬して電解めっきすることにより、負極活物質上にSbを電析させてもよい。 For the addition of Sb to the negative electrode active material layer, for example, a compound containing Sb such as Sb, an oxide or sulfate of Sb, or an antimonate may be added to the negative electrode paste when the negative electrode paste is produced. In addition to this, Sb can be electrodeposited on the negative electrode active material by electrolytic plating by immersing the negative electrode plate in an electrolytic solution containing Sb ions, for example, dilute sulfuric acid containing antimony sulfate or antimonate. Good.
 セパレータには、一般的には、微多孔性のポリエチレンシートが用いられる。イオン伝導性を向上させるために、ポリエチレンにカーボンを含ませてもよい。微多孔性のポリエチレンシートは、電解液が透過可能である、孔径が0.01~1μm程度の細孔を有する。孔径が1μmを超えると、活物質がセパレータを通過し易くなる。 Generally, a microporous polyethylene sheet is used for the separator. Carbon may be included in polyethylene in order to improve ionic conductivity. The microporous polyethylene sheet has pores having a pore diameter of about 0.01 to 1 μm through which the electrolytic solution can permeate. When the pore diameter exceeds 1 μm, the active material easily passes through the separator.
 また、セパレータには、耐酸性を有する繊維マットを用いてもよい。繊維には、繊維径が0.1~2μmであるガラス繊維または繊維径が1~10μmであるポリプロピレン樹脂繊維などの合成繊維が用いられる。正極活物質の正極板からの脱落が抑制され、優れたサイクル寿命特性が得られる点で、セパレータは耐酸性を有する繊維マットからなるのが好ましい。 Further, a fiber mat having acid resistance may be used for the separator. As the fiber, a synthetic fiber such as a glass fiber having a fiber diameter of 0.1 to 2 μm or a polypropylene resin fiber having a fiber diameter of 1 to 10 μm is used. The separator is preferably made of an acid-resistant fiber mat in that the positive electrode active material is prevented from falling off the positive electrode plate and excellent cycle life characteristics are obtained.
 ここで、各セル室106には、通常の鉛蓄電池と同様に、極板群108の全体を漬漬するように電解液である硫酸が注入されている。 Here, each cell chamber 106 is injected with sulfuric acid, which is an electrolytic solution, so as to immerse the entire electrode plate group 108 in the same manner as a normal lead-acid battery.
 以上、本発明の誘電材料及びこれを用いた電気化学素子の代表的な例について説明したが、本発明はこれらのみに限定されるわけではなく、本発明の技術的思想の範囲内で、種々の設計変更が可能であり、かかる設計変更も全て本発明に含まれるものである。以下、実施例を用いて本発明の誘電材料をより具体的に説明するが、本発明がかかる実施例に限定されないものであることは言うまでもない。 As mentioned above, although the typical example of the dielectric material of this invention and the electrochemical element using the same was demonstrated, this invention is not limited only to these, In the range of the technical idea of this invention, various. This design change is possible, and all such design changes are included in the present invention. Hereinafter, although the dielectric material of this invention is demonstrated more concretely using an Example, it cannot be overemphasized that this invention is not what is limited to this Example.
≪実施例1≫
 株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸(30%水溶液)と、を混合し、0.5重量%のグラフェライトag007が分散した誘電材料1を得た。
Example 1
Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide in which silver is intercalated and doped) and sulfuric acid (30% aqueous solution) are mixed, and 0.5% by weight of graferrite ag007 is dispersed. A dielectric material 1 was obtained.
≪実施例2≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と硫酸とを混合し、1.0重量%のグラフェライトag007が分散した誘電材料2を得た。
<< Example 2 >>
In the same manner as in Example 1, a mixture of graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide in which silver is intercalated and doped) and sulfuric acid are mixed to obtain 1.0 wt% of graferrite ag007. A dispersed dielectric material 2 was obtained.
≪実施例3≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と硫酸とを混合し、2.0重量%のグラフェライトag007が分散した誘電材料3を得た。
Example 3
In the same manner as in Example 1, a mixture of graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide in which silver is intercalated and doped) and sulfuric acid were mixed to obtain 2.0 wt% of graferrite ag007. A dispersed dielectric material 3 was obtained.
≪実施例4≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と硫酸とを混合し、3.0重量%のグラフェライトag007が分散した誘電材料4を得た。
Example 4
In the same manner as in Example 1, GRCC ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide in which silver is intercalated and doped) and sulfuric acid are mixed, and 3.0% by weight of graferrite ag007 is obtained. A dispersed dielectric material 4 was obtained.
[静電容量の測定]
 上記実施例1~4で得られた誘電材料1~4を用いて、図4に示す測定用素子200を作製し、静電容量を測定した。また、比較例として、誘電材料1~4の代わりに硫酸のみを用いて、同様の測定を行った。測定は各4回実施し、得られた結果を図5に示した。
[Capacitance measurement]
Using the dielectric materials 1 to 4 obtained in Examples 1 to 4, the measurement element 200 shown in FIG. 4 was produced, and the capacitance was measured. As a comparative example, the same measurement was performed using only sulfuric acid instead of the dielectric materials 1 to 4. Each measurement was carried out 4 times, and the obtained results are shown in FIG.
 図5より、誘電材料中のグラフェライトag007含有量の増加に伴い、静電容量が増加しいていることが分かる。また、当該静電容量の増加は、グラフェライトag007含有量にほぼ比例している。 FIG. 5 shows that the capacitance increases as the content of graferrite ag007 in the dielectric material increases. Further, the increase in the capacitance is almost proportional to the content of graferrite ag007.
≪実施例5≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び1.0重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いるグラスウール/グラスシートに当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量の測定を行った。なお、炭素シートの厚さは0.75mmとした。得られた静電容量を表1に示す。
Example 5
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 1.0 wt% graferrite ag007 were dispersed. A glass wool / glass sheet used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced, and the capacitance was measured. The thickness of the carbon sheet was 0.75 mm. The obtained capacitance is shown in Table 1.
≪実施例6≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び2.0重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いるグラスウールに当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量の測定を行った。なお、炭素シートの厚さは0.75mmとした。得られた静電容量を表1に示す。
Example 6
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 2.0 wt% graferrite ag007 were dispersed. Glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure the capacitance. The thickness of the carbon sheet was 0.75 mm. The obtained capacitance is shown in Table 1.
≪実施例7≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いるグラスウールに当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量の測定を行った。なお、炭素シートの厚さは0.16mmとした。得られた静電容量を表1に示す。
Example 7
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. Glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure the capacitance. The thickness of the carbon sheet was 0.16 mm. The obtained capacitance is shown in Table 1.
≪実施例8≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いる、王子製紙株式会社製の中孔(概ね1μmから10μm位、以下同様)が少ない二軸延伸ポリプロピレンフィルム(OPP)に当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
Example 8
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. A multilayer measuring element 300 shown in FIG. 6 is impregnated with a biaxially stretched polypropylene film (OPP) having a small number of medium holes (generally about 1 μm to 10 μm, hereinafter the same) made by Oji Paper Co., Ltd., used as a separator. The capacitance and internal resistance were measured. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例9≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いる、王子製紙製の中孔が多い二軸延伸ポリプロピレンフィルム(OPP)に当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
Example 9
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. The dielectric material is impregnated into a biaxially stretched polypropylene film (OPP) made of Oji Paper, which has a large number of holes, used as a separator, and a laminated measuring element 300 shown in FIG. 6 is manufactured to measure capacitance and internal resistance. Went. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
 ≪実施例10≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いる、王子製紙製の小孔(概ね1μm以下、以下同様)が多い二軸延伸ポリプロピレンフィルム(OPP)に当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
Example 10
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.5% by weight of graferrite ag007 were dispersed. The dielectric material is impregnated into a biaxially stretched polypropylene film (OPP) having a large number of small holes made of Oji Paper (approximately 1 μm or less, the same applies hereinafter) used as a separator to produce a laminated measuring element 300 shown in FIG. The capacitance and internal resistance were measured. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例11≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いる、株式会社ヒューマンシステム製の固形グラスウール(ガラスクロス網型200μm(ペガGC)、グラスファイバーのニードルマット(熱プレス)2mm(ペガNM))に当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
Example 11
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. Solid glass wool (glass cloth net type 200 μm (Pega GC), glass fiber needle mat (heat press) 2 mm (Pega NM)) used as a separator is impregnated with the dielectric material, and is shown in FIG. A laminated measuring element 300 was produced and the capacitance and internal resistance were measured. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例12≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いる、3枚重ねにしたポリプロピレンシート(前田工繊株式会社製スプリトップ)に当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
Example 12
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. A three-layered polypropylene sheet (Spred top manufactured by Maeda Kosen Co., Ltd.) used as a separator is impregnated with the dielectric material to produce a laminated measuring element 300 shown in FIG. Measurements were made. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例13≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いる、固形グラスウールに当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。ここで、炭素板には還元型酸化グラフェンを含有する硫酸を塗布し、600℃の大気中で10分間保持し、表面処理を施した。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
Example 13
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. A solid glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance. Here, sulfuric acid containing reduced graphene oxide was applied to the carbon plate, and the carbon plate was held in the atmosphere at 600 ° C. for 10 minutes to perform surface treatment. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例14≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いる、固形グラスウールに当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。ここで、炭素板には還元型酸化グラフェンを含有する硫酸を塗布し、600℃の大気中で3分間保持し、表面処理を施した。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
<< Example 14 >>
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. A solid glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance. Here, sulfuric acid containing reduced graphene oxide was applied to the carbon plate, and the carbon plate was kept in the atmosphere at 600 ° C. for 3 minutes to perform surface treatment. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例15≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトpd010(還元型酸化グラフェンにパラジウムがインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.001重量%のグラフェライトpd010が分散した誘電材料を得た。セパレータとして用いる、固形グラスウール(編み込み)に当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。ここで、炭素板には還元型酸化グラフェンを含有する硫酸を塗布し、600℃の大気中で10分間保持し、表面処理を施した。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
Example 15
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite pd010 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide doped with palladium intercalated) And sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.001% by weight of graferrite pd010 were dispersed. Solid glass wool (knitted) used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance. Here, sulfuric acid containing reduced graphene oxide was applied to the carbon plate, and the carbon plate was held in the atmosphere at 600 ° C. for 10 minutes to perform surface treatment. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例16≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトzn009(還元型酸化グラフェンに酸化亜鉛がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトpd010が分散した誘電材料を得た。セパレータとして用いる、固形グラスウールに当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。ここで、炭素板には還元型酸化グラフェンを含有する硫酸を塗布し、600℃の大気中で10分間保持し、表面処理を施した。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
<< Example 16 >>
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite zn009 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide intercalated and doped with zinc oxide) ) And sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO and 0.5% by weight of graferrite pd010 were dispersed. A solid glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance. Here, sulfuric acid containing reduced graphene oxide was applied to the carbon plate, and the carbon plate was held in the atmosphere at 600 ° C. for 10 minutes to perform surface treatment. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例17≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、株式会社MICC TEC製のグラフェライトag007(還元型酸化グラフェンに銀がインターカレート・ドープしたもの)と、硫酸と、を混合し、3.0重量%のグラフェライトRGO及び0.5重量%のグラフェライトag007が分散した誘電材料を得た。セパレータとして用いる、固形グラスウール(編み込み)に当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。ここで、炭素板には還元型酸化グラフェンを含有する硫酸を塗布し、600℃の大気中で10分間保持し、表面処理を施した。なお、炭素シートの厚さは0.16mmとした。得られた静電容量及び内部抵抗を表1に示す。
<< Example 17 >>
In the same manner as in Example 1, Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and Graferrite ag007 manufactured by MICC TEC Co., Ltd. (reduced graphene oxide obtained by intercalating and doping silver) And sulfuric acid were mixed to obtain a dielectric material in which 3.0 wt% graferrite RGO and 0.5 wt% graferrite ag007 were dispersed. Solid glass wool (knitted) used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance. Here, sulfuric acid containing reduced graphene oxide was applied to the carbon plate, and the carbon plate was held in the atmosphere at 600 ° C. for 10 minutes to perform surface treatment. The thickness of the carbon sheet was 0.16 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例18≫
 実施例1と同様にして、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、硫酸と、を混合し、3.0重量%のグラフェライトRGOが分散した誘電材料を得た。セパレータとして用いる、固形グラスウールに当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。ここで、炭素板には還元型酸化グラフェンを含有する硫酸を塗布し、600℃の大気中で10分間保持し、表面処理を施した。なお、炭素シートの厚さは0.75mmとした。得られた静電容量及び内部抵抗を表1に示す。
<< Example 18 >>
In the same manner as in Example 1, grafer ferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd. and sulfuric acid were mixed to obtain a dielectric material in which 3.0% by weight of graferrite RGO was dispersed. A solid glass wool used as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance. Here, sulfuric acid containing reduced graphene oxide was applied to the carbon plate, and the carbon plate was held in the atmosphere at 600 ° C. for 10 minutes to perform surface treatment. The thickness of the carbon sheet was 0.75 mm. Table 1 shows the obtained capacitance and internal resistance.
≪実施例19≫
 Li4Ti512と、株式会社MICC TEC製のグラフェライトRGO(還元型酸化グラフェン)と、PTFE樹脂(50重量%重量分散液:バインダ)と、硫酸と、を混合し、40重量%のLi4Ti512、10重量%のグラフェライトRGO及び10重量%のPTFE50%分散液が分散した誘電材料を得た。セパレータとしてのガラス不織布(ガラス繊維シート)に当該誘電材料を含浸させ、図6に示す積層型測定用素子300を作製して静電容量及び内部抵抗の測定を行った。ここで、炭素板には還元型酸化グラフェンを含有する硫酸を塗布した。なお、グラフェンシートの厚さは0.5mmとした。得られた静電容量及び内部抵抗を表1に示す。
Example 19
Li 4 Ti 5 O 12 , Graferrite RGO (reduced graphene oxide) manufactured by MICC TEC Co., Ltd., PTFE resin (50 wt% weight dispersion: binder), and sulfuric acid are mixed, and 40 wt% A dielectric material in which Li 4 Ti 5 O 12 , 10% by weight of Graferrite RGO and 10% by weight of PTFE 50% dispersion was dispersed was obtained. A glass nonwoven fabric (glass fiber sheet) as a separator was impregnated with the dielectric material, and a laminated measuring element 300 shown in FIG. 6 was produced to measure capacitance and internal resistance. Here, sulfuric acid containing reduced graphene oxide was applied to the carbon plate. The thickness of the graphene sheet was 0.5 mm. Table 1 shows the obtained capacitance and internal resistance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、3.0%のグラフェライトRGOにグラフェライトag007を添加したものはいずれも高い静電容量を有しているが、積層型測定用素子では、静電容量はグラフェライトag007の添加量にそれ程影響されていない(実施例5~7)。 From the results shown in Table 1, all of the products obtained by adding graferrite ag007 to 3.0% graferrite RGO have a high capacitance. It is not so much affected by the added amount of ag007 (Examples 5 to 7).
 また、セパレータとして有機絶縁材料を用いた場合(実施例8~10)よりも、無機絶縁材料であるグラスウール(実施例5~7)及び固形グラスウールを用いた場合(実施例11、13~17)の方が、高い静電容量を有している。なお、セパレータとして有機絶縁材料を用いた場合でも、ポリプロピレンシートを3枚重ねて使用した場合(実施例12)は高い静電容量を示している。 In addition, when using an organic insulating material as a separator (Examples 8 to 10), when using glass wool (Examples 5 to 7) and solid glass wool, which are inorganic insulating materials (Examples 11 and 13 to 17). The one has a higher capacitance. Even when an organic insulating material is used as the separator, a case where three polypropylene sheets are stacked and used (Example 12) shows a high capacitance.
 また、集電極である炭素板に表面処理を施した場合(実施例13及び14)は、表面処理を施していない場合と比較して高い静電容量を示している。加えて、表面処理の時間以外は同一とした場合、炭素板に塗布した誘電材料を乾燥させる時間を3分とした場合(実施例14)は、10分とした場合(実施例13)よりも高い静電容量を示している。 Further, when the surface treatment was performed on the carbon plate as the collecting electrode (Examples 13 and 14), the capacitance was higher than that when the surface treatment was not performed. In addition, when the time other than the surface treatment time is the same, when the time for drying the dielectric material applied to the carbon plate is 3 minutes (Example 14), it is 10 minutes than when the time is 10 minutes (Example 13). High capacitance is shown.
 グラフェライトRGOのみの場合(実施例18)と比較して、還元型酸化グラフェンに、銀、銅、酸化亜鉛、及びパラジウムから選択される少なくとも1つの物質がインターカレート・ドープされたものを添加した場合は、より高い静電容量を示している。 Addition of reduced graphene oxide intercalated and doped with at least one substance selected from silver, copper, zinc oxide, and palladium as compared with the case of only graferrite RGO (Example 18) If this is the case, the capacitance is higher.
 また、リチウム化合物を含む誘電材料を用いると、積層型で性能(静電容量)が著しく向上することがわかる(実施例19)。 It can also be seen that when a dielectric material containing a lithium compound is used, the performance (capacitance) is remarkably improved in the laminated type (Example 19).
1・・・電気化学素子
2・・・第一の集電極(正極)
4・・・第二の集電極(負極)
6・・・分極性電極
8・・・セパレータ
10・・・電気化学素子(電気二重キャパシタ構造)
12・・・電気二重キャパシタ構造における第一の集電極(正極)
14・・・電気二重キャパシタ構造における第二の集電極(負極)
16a、16b・・・電気二重キャパシタ構造における分極性電極
18・・・電気二重キャパシタ構造におけるセパレータ
20・・・電解液
100・・・電気化学素子(鉛蓄電池構造)
102・・・電槽
104・・・隔壁
106・・・セル室
108・・・極板群
110・・・正極接続部
112・・・負極接続部
114・・・正極端子
116・・・負極端子
118・・・蓋
120・・・排気栓
200・・・測定用素子
202・・・炭素棒
204・・・誘電材料
206・・・容器
208・・・栓
300・・・積層型測定用素子
302・・・炭素板
304・・・炭素シート
306・・・誘電材料含浸セパレータ
DESCRIPTION OF SYMBOLS 1 ... Electrochemical element 2 ... 1st collector electrode (positive electrode)
4 ... Second collector (negative electrode)
6 ... Polarizable electrode 8 ... Separator 10 ... Electrochemical element (electric double capacitor structure)
12... First collector electrode (positive electrode) in electric double capacitor structure
14 ... Second collector electrode (negative electrode) in electric double capacitor structure
16a, 16b ... Polarizable electrode 18 in electric double capacitor structure ... Separator 20 in electric double capacitor structure ... Electrolytic solution 100 ... Electrochemical element (lead storage battery structure)
DESCRIPTION OF SYMBOLS 102 ... Battery case 104 ... Partition 106 ... Cell chamber 108 ... Electrode plate group 110 ... Positive electrode connection part 112 ... Negative electrode connection part 114 ... Positive electrode terminal 116 ... Negative electrode terminal 118 ... Lid 120 ... Exhaust plug 200 ... Measuring element 202 ... Carbon rod 204 ... Dielectric material 206 ... Container 208 ... Plug 300 ... Multilayer measuring element 302 ... Carbon plate 304 ... Carbon sheet 306 ... Dielectric material impregnated separator

Claims (9)

  1.  還元型酸化グラフェンと、
     無機酸及び/又は炭酸エステルと、を含むこと、
     を特徴とする誘電材料。
    Reduced graphene oxide,
    Containing an inorganic acid and / or a carbonate ester,
    A dielectric material characterized by
  2.  更にリチウム化合物を含むこと、
     を特徴とする請求項1に記載の誘電材料。
    Further containing a lithium compound,
    The dielectric material according to claim 1.
  3.  前記還元型酸化グラフェンに、銀、銅、酸化亜鉛、及びパラジウムから選択される少なくとも1つの物質がインターカレート・ドープされていること、
     を特徴とする請求項1又は2に記載の誘電材料。
    The reduced graphene oxide is intercalated and doped with at least one substance selected from silver, copper, zinc oxide, and palladium;
    The dielectric material according to claim 1, wherein:
  4.  少なくとも請求項1~3のうちのいずれかに記載の誘電材料を含む分極性電極と、
     セパレータと、
     第一の集電極及び第二の集電極と、を含むこと、
     を特徴とする電気化学素子。
    A polarizable electrode comprising at least the dielectric material according to any one of claims 1 to 3;
    A separator;
    Including a first collector electrode and a second collector electrode;
    An electrochemical element characterized by the above.
  5.  前記第一の集電極及び/又は前記第二の集電極に、少なくとも請求項1~3のうちいずれかに記載の誘電材料を塗布し、前記塗布した誘電材料を乾燥させることにより、前記第一の集電極及び/又は前記第二の集電極が表面処理されていること、
     を特徴とする請求項3に記載の電気化学素子。
    The dielectric material according to any one of claims 1 to 3 is applied to the first collector electrode and / or the second collector electrode, and the applied dielectric material is dried, thereby allowing the first collector electrode to dry. The collector electrode and / or the second collector electrode are surface-treated,
    The electrochemical device according to claim 3.
  6.  請求項4又は5に記載の電気化学素子を含むこと、
     を特徴とする蓄電装置。
    Including the electrochemical element according to claim 4 or 5,
    A power storage device characterized by the above.
  7.  還元型酸化グラフェンと、
     無機酸及び/又は炭酸エステルと、を混合すること、
     を特徴とする誘電材料の製造方法。
    Reduced graphene oxide,
    Mixing with inorganic acid and / or carbonate ester,
    A method for producing a dielectric material characterized by the above.
  8.  更にリチウム化合物を含むこと、
     を特徴とする請求項7に記載の誘電材料の製造方法。
    Further containing a lithium compound,
    The method for producing a dielectric material according to claim 7.
  9.  前記還元型酸化グラフェンが粉末状であり、銀、銅、酸化亜鉛、及びパラジウムから選択される少なくとも1つの物質がインターカレート・ドープされていること、
     を特徴とする請求項7又は8に記載の誘電材料の製造方法。
    The reduced graphene oxide is in powder form, and at least one substance selected from silver, copper, zinc oxide, and palladium is intercalated and doped;
    The method for producing a dielectric material according to claim 7 or 8, wherein:
PCT/JP2014/000065 2013-01-15 2014-01-09 Dielectric material and electrochemical element using same WO2014112337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014557387A JPWO2014112337A1 (en) 2013-01-15 2014-01-09 Dielectric material and electrochemical device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013004227 2013-01-15
JP2013-004227 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014112337A1 true WO2014112337A1 (en) 2014-07-24

Family

ID=51209435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000065 WO2014112337A1 (en) 2013-01-15 2014-01-09 Dielectric material and electrochemical element using same

Country Status (2)

Country Link
JP (1) JPWO2014112337A1 (en)
WO (1) WO2014112337A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158410A (en) * 2016-08-20 2016-11-23 海南师范大学 A kind of preparation method of zinc oxide/Graphene composite electrode material for super capacitor
WO2019176933A1 (en) 2018-03-14 2019-09-19 株式会社Nbcメッシュテック Mesh member, sieve, and screen printing plate
JP7399407B2 (en) 2019-09-04 2023-12-18 時空化学株式会社 Pouch type supercapacitor, positive electrode material and negative electrode material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044310A1 (en) * 2009-10-07 2011-04-14 Miltec Corporation Actinic and electron beam radiation curable electrode binders and electrodes incorporating same
WO2011078462A2 (en) * 2009-12-22 2011-06-30 Suh Kwang Suck Graphene dispersion and graphene-ionic liquid polymer compound
JP2012250880A (en) * 2011-06-03 2012-12-20 Semiconductor Energy Lab Co Ltd Graphene, electric storage device and electric equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044310A1 (en) * 2009-10-07 2011-04-14 Miltec Corporation Actinic and electron beam radiation curable electrode binders and electrodes incorporating same
WO2011078462A2 (en) * 2009-12-22 2011-06-30 Suh Kwang Suck Graphene dispersion and graphene-ionic liquid polymer compound
JP2012250880A (en) * 2011-06-03 2012-12-20 Semiconductor Energy Lab Co Ltd Graphene, electric storage device and electric equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158410A (en) * 2016-08-20 2016-11-23 海南师范大学 A kind of preparation method of zinc oxide/Graphene composite electrode material for super capacitor
CN106158410B (en) * 2016-08-20 2018-07-03 海南师范大学 A kind of preparation method of zinc oxide/graphene composite electrode material for super capacitor
WO2019176933A1 (en) 2018-03-14 2019-09-19 株式会社Nbcメッシュテック Mesh member, sieve, and screen printing plate
JP7399407B2 (en) 2019-09-04 2023-12-18 時空化学株式会社 Pouch type supercapacitor, positive electrode material and negative electrode material

Also Published As

Publication number Publication date
JPWO2014112337A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US10741335B2 (en) Partially surface-mediated lithium ion-exchanging cells and method for operating same
JP5322435B2 (en) Negative electrode active material for electricity storage devices
US10566668B2 (en) Sodium ion-based internal hybrid electrochemical energy storage cell
US9349542B2 (en) Stacks of internally connected surface-mediated cells and methods of operating same
Naoi et al. Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices
US8889298B2 (en) Surface-mediated lithium ion-exchanging energy storage device
TWI429131B (en) Storage element
US11545310B2 (en) High capacitance composites
US20130171502A1 (en) Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
KR102235565B1 (en) 2 dimension nickel-metal-organic frameworks/rGO and electrode for secondary battery or super capacitor comprising the same
WO2019070568A2 (en) Lithium ion- or sodium ion-based internal hybrid electrochemical energy storage cell
JP2013054958A (en) Negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
ES2734883T3 (en) High performance energy storage and collection devices containing exfoliated nanotubes that have attached nanoscale particles
JP2009205918A (en) Power storage device
Zeng et al. Nano-Sn doped carbon-coated rutile TiO 2 spheres as a high capacity anode for Li-ion battery
Aristote et al. General overview of sodium, potassium, and zinc-ion capacitors
KR20130028423A (en) Electrode for supercapacitor using graphene/metal oxide nanocomposite
WO2014112337A1 (en) Dielectric material and electrochemical element using same
WO2020080520A1 (en) Capacitor, and capacitor electrode
Parangi et al. Titanium dioxide as energy storage material: A review on recent advancement
KR20110000099A (en) Supercapacitor and method for making the same
JP2006310412A (en) Lithium-ion capacitor
KR101940405B1 (en) Active material for Anode, And Lithium Ion Secondary Battery and Lithium Ion Capacitor including the Same
Prabakaran et al. Innovative PANI/g-C3N4@ rGO nanocomposite electrode for improved energy storage and conversion applications
KR101627438B1 (en) Crystallized carbon structure, method for fabricating the same, and energy storage device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14741058

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014557387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14741058

Country of ref document: EP

Kind code of ref document: A1