JP6838241B2 - 移動体挙動予測装置 - Google Patents
移動体挙動予測装置 Download PDFInfo
- Publication number
- JP6838241B2 JP6838241B2 JP2017108909A JP2017108909A JP6838241B2 JP 6838241 B2 JP6838241 B2 JP 6838241B2 JP 2017108909 A JP2017108909 A JP 2017108909A JP 2017108909 A JP2017108909 A JP 2017108909A JP 6838241 B2 JP6838241 B2 JP 6838241B2
- Authority
- JP
- Japan
- Prior art keywords
- prediction
- prediction model
- model
- evaluation value
- driving environment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011156 evaluation Methods 0.000 claims description 207
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000006399 behavior Effects 0.000 description 112
- 238000007726 management method Methods 0.000 description 34
- 238000013528 artificial neural network Methods 0.000 description 17
- 238000013210 evaluation model Methods 0.000 description 13
- 230000000306 recurrent effect Effects 0.000 description 13
- 239000008186 active pharmaceutical agent Substances 0.000 description 12
- 238000004891 communication Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 4
- 238000013500 data storage Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/04—Traffic conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/0075—Automatic parameter input, automatic initialising or calibrating means
- B60W2050/0083—Setting, resetting, calibration
- B60W2050/0088—Adaptive recalibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/05—Type of road, e.g. motorways, local streets, paved or unpaved roads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
Description
Claims (5)
- 移動体の挙動を予測する移動体挙動予測装置であって、
外界情報を取得して走行環境を認識する走行環境認識部と、
予め用意された各予測モデルについて走行環境別に評価値を記憶する予測モデル評価値記憶部と、
前記走行環境認識部の認識する走行環境と前記予測モデル評価値記憶部に記憶されている評価値とに基づいて、前記各予測モデルの中から前記走行環境認識部の認識する走行環境に対応する予測モデルを決定する予測モデル決定部と、
前記予測モデル決定部で決定された予測モデルを用いて前記移動体の挙動を予測する挙動予測部と、
走行環境毎に安全であると推定された予測モデルを安全モデルとして少なくとも一つ以上記憶する安全モデル記憶部を備え、
前記予測モデル決定部は、予め設定される所定の条件にしたがって、前記予測モデル評価値記憶部に記憶された評価値に基づいて前記走行環境に対応する予測モデルを一つ決定するか、あるいは、前記安全モデル記憶部に前記安全モデルであるとして記憶された予測モデルの中から前記走行環境に対応する予測モデルを一つ選択する、
移動体挙動予測装置。 - 前記所定の条件とは、所定の安全状態が維持されると推定できる場合であり、
前記所定の安全状態が維持されると推定できる場合、前記予測モデル決定部は、前記安全モデル記憶部に前記安全モデルとして記憶された予測モデルの中から前記走行環境に対応する予測モデルを一つ決定し、
前記所定の安全状態が維持されると推定できない場合、前記予測モデル決定部は、前記走行環境に対応する予測モデルのうち前記予測モデル評価値記憶部に記憶された評価値が最も高い予測モデルを一つ選択する、
請求項1に記載の移動体挙動予測装置。 - 前記所定の安全状態が維持されると推定できる場合、前記予測モデル決定部は、前記安全モデル記憶部に前記安全モデルとして記憶された予測モデルの中から前記走行環境に対応する予測モデルをランダムに一つ決定する、
請求項2に記載の移動体挙動予測装置。
- 前記安全モデル記憶部に前記安全モデルとして記憶される予測モデルが安全であるか評価する安全モデル評価部をさらに備え、
前記安全モデル評価部は、前記各予測モデルへ過去の外界情報を入力した場合の挙動を前記挙動予測部により算出せしめ、その算出結果に基づいて前記各予測モデルが安全であるか評価する、
請求項1に記載の移動体挙動予測装置。 - 移動体の挙動を予測する移動体挙動予測装置であって、
外界情報を取得して走行環境を認識する走行環境認識部と、
予め用意された各予測モデルについて走行環境別に評価値を記憶する予測モデル評価値記憶部と、
前記走行環境認識部の認識する走行環境と前記予測モデル評価値記憶部に記憶されている評価値とに基づいて、前記各予測モデルの中から前記走行環境認識部の認識する走行環境に対応する予測モデルを決定する予測モデル決定部と、
前記予測モデル決定部で決定された予測モデルを用いて前記移動体の挙動を予測する挙動予測部と、
前記予測モデル評価値記憶部に記憶されている前記走行環境別の評価値を評価する予測モデル評価部であって、前記挙動予測部の予測結果に応じて、前記予測モデル評価値記憶部に記憶された評価値を更新する予測モデル評価部と、
前記予測モデル評価値記憶部に記憶される前記評価値を管理する評価値管理部であって、前記予測モデル評価値記憶部に記憶された各予測モデルについての走行環境別の評価値を管理サーバへ送信し、前記管理サーバから受信する評価値により前記予測モデル評価値記憶部に記憶された評価値を更新する評価管理部と、
前記評価値管理部が前記管理サーバから受信した評価値を基準評価値として保存する基準評価値記憶部と、
走行環境毎に安全であると推定された予測モデルを安全モデルとして少なくとも一つ以上記憶する安全モデル記憶部とを備え、
前記予測モデル決定部は、所定の安全状態が維持されると推定できる場合、前記安全モデル記憶部に前記安全モデルとして記憶された予測モデルの中から前記走行環境に対応する予測モデルを一つ決定し、前記所定の安全状態が維持されると推定できない場合、前記予測モデル決定部は、前記走行環境に対応する予測モデルのうち前記基準評価値が最も高い予測モデルを一つ選択する、
移動体挙動予測装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017108909A JP6838241B2 (ja) | 2017-06-01 | 2017-06-01 | 移動体挙動予測装置 |
PCT/JP2018/018261 WO2018221159A1 (ja) | 2017-06-01 | 2018-05-11 | 移動体挙動予測装置 |
US16/608,583 US11400941B2 (en) | 2017-06-01 | 2018-05-11 | Moving body behavior prediction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017108909A JP6838241B2 (ja) | 2017-06-01 | 2017-06-01 | 移動体挙動予測装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018205940A JP2018205940A (ja) | 2018-12-27 |
JP6838241B2 true JP6838241B2 (ja) | 2021-03-03 |
Family
ID=64455814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017108909A Active JP6838241B2 (ja) | 2017-06-01 | 2017-06-01 | 移動体挙動予測装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11400941B2 (ja) |
JP (1) | JP6838241B2 (ja) |
WO (1) | WO2018221159A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102104878B1 (ko) * | 2018-07-18 | 2020-04-27 | 충북대학교 산학협력단 | Lstm을 이용한 전기로에서의 전극봉 위치 데이터 예측 방법 |
EP3650297B1 (en) * | 2018-11-08 | 2023-06-14 | Bayerische Motoren Werke Aktiengesellschaft | Method and apparatus for determining information related to a lane change of a target vehicle, and computer program |
US11577750B2 (en) | 2018-11-08 | 2023-02-14 | Bayerische Motoren Werke Aktiengesellschaft | Method and apparatus for determining a vehicle comfort metric for a prediction of a driving maneuver of a target vehicle |
US11868132B2 (en) * | 2019-02-22 | 2024-01-09 | Honda Motor Co., Ltd. | System and method for implementing pedestrian avoidance strategies for a mobile robot |
JP2022541876A (ja) * | 2019-06-14 | 2022-09-28 | ボルボトラックコーポレーション | 車両動力学に関連付けされたモデルを検証するための方法 |
EP3983862B1 (en) * | 2019-08-06 | 2024-04-03 | Siemens Electronic Design Automation GmbH | Method, device and system for controlling autonomous vehicles |
EP3839805A1 (en) * | 2019-12-20 | 2021-06-23 | Aptiv Technologies Limited | Method for determining continuous information on an expected trajectory of an object |
CN111401531A (zh) * | 2020-04-24 | 2020-07-10 | 中国人民解放军国防科技大学 | 轨迹预测方法和系统 |
EP4162337A4 (en) * | 2020-06-05 | 2024-07-03 | Gatik Ai Inc | METHOD AND SYSTEM FOR CONTEXT-SENSITIVE DECISION-MAKING OF AN AUTONOMOUS AGENT |
CA3180994A1 (en) | 2020-06-05 | 2021-12-09 | Gautam Narang | Method and system for data-driven and modular decision making and trajectory generation of an autonomous agent |
CN115917620A (zh) * | 2020-06-29 | 2023-04-04 | 住友电气工业株式会社 | 车载装置、车辆通信系统及算法提供方法 |
JP7338582B2 (ja) * | 2020-07-30 | 2023-09-05 | 株式会社デンソー | 軌道生成装置、軌道生成方法、および軌道生成プログラム |
DE102020130886A1 (de) * | 2020-11-23 | 2022-05-25 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren, System und Computerprogrammprodukt zur Erkennung von Bewegungen des Fahrzeugsaufbaus bei einem Kraftfahrzeug |
CN113393669A (zh) * | 2021-06-11 | 2021-09-14 | 阿波罗智联(北京)科技有限公司 | 交通工具的控制方法、装置、设备、介质及程序产品 |
CA3240477A1 (en) | 2021-12-16 | 2023-06-22 | Apeksha Kumavat | Method and system for expanding the operational design domain of an autonomous agent |
CA3240409A1 (en) | 2021-12-16 | 2023-06-22 | Apeksha Kumavat | Method and system for addressing failure in an autonomous agent |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5252001B2 (ja) | 2011-02-07 | 2013-07-31 | トヨタ自動車株式会社 | 移動領域予測装置 |
JP6142492B2 (ja) * | 2012-09-28 | 2017-06-07 | アイシン精機株式会社 | 移動体動作検出装置 |
JP6074553B1 (ja) * | 2015-04-21 | 2017-02-01 | パナソニックIpマネジメント株式会社 | 情報処理システム、情報処理方法、およびプログラム |
JP6558735B2 (ja) | 2015-04-21 | 2019-08-14 | パナソニックIpマネジメント株式会社 | 運転支援方法およびそれを利用した運転支援装置、運転制御装置、車両、運転支援プログラム |
-
2017
- 2017-06-01 JP JP2017108909A patent/JP6838241B2/ja active Active
-
2018
- 2018-05-11 WO PCT/JP2018/018261 patent/WO2018221159A1/ja active Application Filing
- 2018-05-11 US US16/608,583 patent/US11400941B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11400941B2 (en) | 2022-08-02 |
WO2018221159A1 (ja) | 2018-12-06 |
US20200139975A1 (en) | 2020-05-07 |
JP2018205940A (ja) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6838241B2 (ja) | 移動体挙動予測装置 | |
CN113165652B (zh) | 使用基于网格的方法检验预测轨迹 | |
US10981564B2 (en) | Vehicle path planning | |
US11645916B2 (en) | Moving body behavior prediction device and moving body behavior prediction method | |
JP7530999B2 (ja) | 自律エージェントの不確実性推定に基づく決定論的軌道選択のための方法およびシステム | |
US10037036B2 (en) | Method and arrangement for determining safe vehicle trajectories | |
US11724708B2 (en) | Fail-safe handling system for autonomous driving vehicle | |
US10254121B2 (en) | Dynamic routing for self-driving vehicles | |
US20180373245A1 (en) | Autonomous operation for an autonomous vehicle objective in a multi-vehicle environment | |
EP3882100B1 (en) | Method for operating an autonomous driving vehicle | |
JP2019528518A (ja) | 自動運転車両の操縦システム | |
RU2750243C2 (ru) | Способ и система для формирования траектории для беспилотного автомобиля (sdc) | |
US20220105963A1 (en) | Systems and methods for imminent collision avoidance | |
US20210179097A1 (en) | Lane-attention: predicting vehicles' moving trajectories by learning their attention over lanes | |
CN114061581A (zh) | 通过相互重要性对自动驾驶车辆附近的智能体排名 | |
CN113753040B (zh) | 预测弱势道路用户乱穿马路行为 | |
US11851088B2 (en) | Method for determining capability boundary and associated risk of a safety redundancy autonomous system in real-time | |
CN113085868A (zh) | 用于运行自动化车辆的方法、设备和存储介质 | |
JP6796679B2 (ja) | 車両制御システム及び方法、並びに走行支援サーバ | |
KR102350197B1 (ko) | 주행경로 설정장치 및 주행경로 설정방법 | |
CN114217601B (zh) | 自驾车的混合决策方法及其系统 | |
US20230406362A1 (en) | Planning-impacted prediction evaluation | |
RU2790105C2 (ru) | Способ и электронное устройство для управления беспилотным автомобилем | |
US20240140486A1 (en) | Methods and apparatuses for closed-loop evaluation for autonomous vehicles | |
US20230073933A1 (en) | Systems and methods for onboard enforcement of allowable behavior based on probabilistic model of automated functional components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6838241 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |