JP6834462B2 - Heat dissipation board - Google Patents

Heat dissipation board Download PDF

Info

Publication number
JP6834462B2
JP6834462B2 JP2016248697A JP2016248697A JP6834462B2 JP 6834462 B2 JP6834462 B2 JP 6834462B2 JP 2016248697 A JP2016248697 A JP 2016248697A JP 2016248697 A JP2016248697 A JP 2016248697A JP 6834462 B2 JP6834462 B2 JP 6834462B2
Authority
JP
Japan
Prior art keywords
thickness
copper
layer
copper layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016248697A
Other languages
Japanese (ja)
Other versions
JP2018101766A (en
Inventor
直明 北川
直明 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016248697A priority Critical patent/JP6834462B2/en
Publication of JP2018101766A publication Critical patent/JP2018101766A/en
Application granted granted Critical
Publication of JP6834462B2 publication Critical patent/JP6834462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、放熱基板に関する。 The present invention relates to a heat dissipation substrate.

近年、電子機器の高性能化、小型化の要求に伴い、半導体等の電子部品の高密度化、高機能化が要求されている。この要求に対応するために、各種電子部品を実装する回路基板もまた小型・高密度化が求められている。その結果、スイッチング素子等の相対的に発熱量の多い(例えば数十A以上の大電流を制御する)パワー半導体等と、相対的に発熱量の少ない(例えば数十mAの信号電流を制御する)制御用半導体等の一般電子部品を、それぞれの用途に適した回路基板にそれぞれ実装し、これらを互いに接続することが求められている。 In recent years, with the demand for higher performance and smaller size of electronic devices, higher density and higher functionality of electronic components such as semiconductors are required. In order to meet this demand, circuit boards on which various electronic components are mounted are also required to be smaller and have higher densities. As a result, a power semiconductor or the like having a relatively large calorific value (for example, controlling a large current of several tens of A or more) and a signal current having a relatively small calorific value (for example, controlling a signal current of several tens of mA or more) are controlled. ) It is required to mount general electronic components such as control semiconductors on circuit boards suitable for each application and connect them to each other.

このようなパワー半導体デバイス実用化には、種々の課題が指定されているが、最も大きな課題として放熱問題がある。高出力・高密度で作動させるため高温となり、その信頼性の低下を招いてしまう。 Various problems have been specified for the practical use of such power semiconductor devices, but the biggest problem is the heat dissipation problem. Since it operates at high output and high density, it becomes hot and its reliability is lowered.

また、制御用半導体等の汎用電子部品を同じ基板に実装することにより小型化・高密度化を図る要求を同時に達成するためにも、これらの発熱をいかに速く効率的に放熱することが重要な課題となっている。 In addition, in order to simultaneously meet the demand for miniaturization and high density by mounting general-purpose electronic components such as control semiconductors on the same substrate, it is important how quickly and efficiently these heats are dissipated. It has become a challenge.

このような問題に対応するため、種々の放熱シート材料を基板として利用することが検討されている。 In order to deal with such a problem, it is considered to use various heat radiating sheet materials as a substrate.

例えば、高熱伝導の樹脂を利用した放熱シートは加工性と柔軟性に優れ積層も可能という利点があるがセラミック基板と比較し熱伝導性が低いという問題がある。そこで熱伝導性樹脂と高熱伝導性を持つ無機フィラーを含有させて高熱伝導シートを作製することが行われている。 For example, a heat radiating sheet using a resin having high thermal conductivity has an advantage of being excellent in workability and flexibility and capable of being laminated, but has a problem of low thermal conductivity as compared with a ceramic substrate. Therefore, a high thermal conductivity sheet is produced by containing a thermosetting resin and an inorganic filler having high thermal conductivity.

特許文献1には、球状アルミナ粉末とそれより微粒かつ平均球形が大きいシリカ粉末をエポキシ樹脂に充填することが開示されている。これは熱伝導性を高めるにはセラミック粉末をより多く入れる必要がある。その結果、高価なセラミック粉末をより多く使うため熱電基板が高価になるのとエポキシ組成物、基板の機械的強度が低下してしまう。 Patent Document 1 discloses that an epoxy resin is filled with spherical alumina powder and silica powder having finer particles and a larger average spherical shape. This requires more ceramic powder to increase thermal conductivity. As a result, the thermoelectric substrate becomes expensive because more expensive ceramic powder is used, and the mechanical strength of the epoxy composition and the substrate decreases.

特許文献2には、熱伝導性シートの熱伝導性粒子の使用量を増大させることなく熱伝導性を向上させるシートが開示されている。これは熱伝導性粒子を樹脂層に吸収させて硬化させ、厚み方向に熱電粒子を偏析させることにより達成できるが、均一分散していないので放熱効果は粒子が集まった箇所に集中し、効率的な放熱は難しい。 Patent Document 2 discloses a sheet that improves thermal conductivity without increasing the amount of thermally conductive particles used in the thermally conductive sheet. This can be achieved by absorbing the heat conductive particles in the resin layer and curing them, and segregating the thermoelectric particles in the thickness direction. However, since the heat conductive particles are not uniformly dispersed, the heat dissipation effect is concentrated on the place where the particles are gathered, which is efficient. It is difficult to dissipate heat.

特開2003−306594号公報JP-A-2003-306594 特開2013−58700号公報Japanese Unexamined Patent Publication No. 2013-58700

本発明は、高密度実装された電子機器や回路の放熱性を高め、電子機器を熱から守る放熱性に優れた、高周波制御と電力供給の機能を併せ持つ基板を提供することを目的とする。 An object of the present invention is to provide a substrate having both high frequency control and power supply functions, which enhances heat dissipation of high-density mounted electronic devices and circuits and has excellent heat dissipation to protect electronic devices from heat.

本発明者は、上記課題を解決すべく鋭意検討を行った結果、1300W/mk以上1600W/mk以下の平面方向熱伝導率と、3W/mk以上6W/mk以下の縦方向熱伝導率を有するグラファイトシートを基材とし、該基材の一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層が配置され、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層が配置されることにより、極めて放熱性に優れ、高周波制御と電力供給の機能を併せ持つ放熱基板を得ることができるという知見を得た。 As a result of diligent studies to solve the above problems, the present inventor has a planar thermal conductivity of 1300 W / mk or more and 1600 W / mk or less and a longitudinal thermal conductivity of 3 W / mk or more and 6 W / mk or less. A graphite sheet is used as a base material, a copper layer of a conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less is arranged on one surface of the base material, and power is supplied on the other surface with a thickness of 5 μm or more and 16 μm or less. It was found that by arranging the copper layer of the conductive layer for electric power, it is possible to obtain a heat radiating substrate having extremely excellent heat dissipation and having both high frequency control and power supply functions.

上記構成の放熱基板は、極めて放熱性に優れており、小型化・高密度化の実現に有効な基板を提供することができる。 The heat dissipation substrate having the above configuration is extremely excellent in heat dissipation, and can provide a substrate effective for realizing miniaturization and high density.

以下に、本発明の一実施の形態における放熱基板についてさらに詳細に説明する。 The heat radiating substrate according to the embodiment of the present invention will be described in more detail below.

[1.放熱基板]
本発明の放熱基板は、1300W/mk以上1600W/mk以下の平面方向熱伝導率、3W/mk以上6W/mk以下の縦方向熱伝導率を有するグラファイトシートを基材とし、その一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層が配置され、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層が配置されている。
[1. Heat dissipation board]
The heat radiating substrate of the present invention uses a graphite sheet as a base material having a planar thermal conductivity of 1300 W / mk or more and 1600 W / mk or less and a longitudinal thermal conductivity of 3 W / mk or more and 6 W / mk or less on one surface thereof. A copper layer of a conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less is arranged, and a copper layer of a conductive layer for power supply having a thickness of 5 μm or more and 16 μm or less is arranged on the other surface.

[1−1.基材]
放熱性に優れる基材を作製するには熱伝導性に優れる材料を用いる必要がある。本発明では、1300W/mk以上1600W/mk以下の平面方向熱伝導率、3W/mk以上6W/mk以下の縦方向熱伝導率を有すグラファイトシートを選択したが、これはポリイミドを熱処理してグラファイト化することにより得られる熱伝導率がきわめて高い材料である。
[1-1. Base material]
In order to produce a base material having excellent heat dissipation, it is necessary to use a material having excellent thermal conductivity. In the present invention, a graphite sheet having a planar thermal conductivity of 1300 W / mk or more and 1600 W / mk or less and a longitudinal thermal conductivity of 3 W / mk or more and 6 W / mk or less was selected, but this is obtained by heat-treating the polyimide. It is a material with extremely high thermal conductivity obtained by graphitization.

一般に、熱伝導性が高い材料として金属が挙げられるが、例えば、銅(熱伝導率398W/mk)、アルミニウム(熱伝導率237W/mk)であるが、グラファイトシートはその数倍の熱伝導性を有する材料である。さらに密度は2g/cmと軽量であるため、小型・高密度化には有利な材料といえる。 Generally, metal is mentioned as a material having high thermal conductivity. For example, copper (thermal conductivity 398 W / mk) and aluminum (thermal conductivity 237 W / mk), but graphite sheet has several times the thermal conductivity. It is a material having. Furthermore, since the density is as light as 2 g / cm 3 , it can be said that it is an advantageous material for miniaturization and high density.

平面方向熱伝導率が1300W/mk以上1600W/mk以下で、縦方向熱伝導率が3W/mk以上6W/mk以下のグラファイトシートは、パナソニック株式会社や株式会社カネカから市販されているため、これを入手して使用することができる。 Graphite sheets with a planar thermal conductivity of 1300 W / mk or more and 1600 W / mk or less and a longitudinal thermal conductivity of 3 W / mk or more and 6 W / mk or less are commercially available from Panasonic Corporation and Kaneka Co., Ltd. Can be obtained and used.

また、グラファイトシートを作製するには、通常ポリイミドに代表される高分子フィルムを不活性ガス中で1000℃以上の温度に加熱して炭化させることにより得られる。また、2600℃以上の高温に加熱することがグラファイト化には好ましい。 Further, in order to produce a graphite sheet, it is usually obtained by heating a polymer film typified by polyimide to a temperature of 1000 ° C. or higher in an inert gas and carbonizing it. Further, heating to a high temperature of 2600 ° C. or higher is preferable for graphitization.

[1−2.銅層]
この基材をベースとして銅配線を形成することにより放熱性に優れた基板を得ることができる。すなわち、本発明に係る放熱基板は、グラファイトシートを基材として用いて、その両面に銅層を配置している。
[1-2. Copper layer]
By forming copper wiring based on this base material, a substrate having excellent heat dissipation can be obtained. That is, the heat radiating substrate according to the present invention uses a graphite sheet as a base material, and copper layers are arranged on both sides thereof.

本発明においては、基材の一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層が配置され、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層が配置される構成としている。 In the present invention, a copper layer of a high frequency control conductive layer having a thickness of 2 μm or more and 4 μm or less is arranged on one surface of the base material, and a power supply conductive layer having a thickness of 5 μm or more and 16 μm or less is arranged on the other surface. The copper layer is arranged.

高周波制御用導電層の銅層は、後述するようにスパッタリング法による下地層を形成し、その後めっき法により所定の厚さに成膜しているため、アモルファスの下地層としていることからめっき法で成膜した銅層もエッチング性に優れた銅層である。 As described later, the copper layer of the conductive layer for high frequency control is formed by a sputtering method, and then a film is formed to a predetermined thickness by a plating method. Therefore, since it is an amorphous base layer, the plating method is used. The formed copper layer is also a copper layer having excellent etching properties.

また、電解銅箔をラミネート法による貼り付け法によらないため、薄い膜とすることができ、良好なエッチング性を有することから細線化が可能というメリットもある。 Further, since the electrolytic copper foil is not attached by the laminating method, a thin film can be formed, and since it has good etching properties, there is an advantage that the wire can be thinned.

[2.放熱基板の製造方法]
次に、本発明に係る放熱基板の製造方法について説明する。
[2. Manufacturing method of heat dissipation board]
Next, a method for manufacturing a heat radiating substrate according to the present invention will be described.

本発明に係る放熱基板は、まず基材のグラファイトシートを準備し、基材のグラファイトシートの一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層を成膜し、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層を成膜することにより得られる。 In the heat dissipation substrate according to the present invention, first, a graphite sheet as a base material is prepared, and a copper layer of a conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less is formed on one surface of the graphite sheet of the base material. It is obtained by forming a copper layer of a conductive layer for power supply having a thickness of 5 μm or more and 16 μm or less on one surface.

[2−1.グラファイトシートの準備]
本発明の放熱基板に使用する基材のグラファイトシートは、株式会社カネカやパナソニック株式会社などから高熱伝導性グラファイトシートが市販されている。従って、これらの市販品を使用することで基材とすることができる。
[2-1. Preparation of graphite sheet]
As the graphite sheet of the base material used for the heat dissipation substrate of the present invention, a high thermal conductivity graphite sheet is commercially available from Kaneka Corporation, Panasonic Corporation and the like. Therefore, it can be used as a base material by using these commercially available products.

また、グラファイトシートを作製するには、例えば代表的な高分子フィルムであるポリイミドフィルムを不活性ガス中で1000℃以上の温度に加熱して炭化させることにより得られる。また、フィルムの破損を防止するためには、アルゴンガス中で500℃から1000℃まで徐々に昇温して予備加熱を行った後に2600℃以上の高温に加熱し、より好ましくは3000℃以上の高温にすることがグラファイト化には好ましい。熱処理温度が高いほど高熱伝導率のグラファイトシートを得ることができる。 Further, in order to produce a graphite sheet, for example, it is obtained by heating a polyimide film, which is a typical polymer film, to a temperature of 1000 ° C. or higher in an inert gas and carbonizing it. Further, in order to prevent the film from being damaged, the temperature is gradually raised from 500 ° C. to 1000 ° C. in argon gas, preheating is performed, and then the film is heated to a high temperature of 2600 ° C. or higher, more preferably 3000 ° C. or higher. High temperature is preferable for graphitization. The higher the heat treatment temperature, the higher the thermal conductivity of the graphite sheet can be obtained.

[2−2.スパッタリング法による下地層の銅層の形成]
次に、基材であるグラファイトシートの一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層を成膜し、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層を成膜することにより本発明の放熱基板を作製するが、まずグラファイトシートの両面に下地層の銅層をスパッタリング法により形成する。
[2-2. Formation of copper layer of base layer by sputtering method]
Next, a copper layer of a conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less is formed on one surface of a graphite sheet as a base material, and power is supplied to the other surface with a thickness of 5 μm or more and 16 μm or less. The heat-dissipating substrate of the present invention is produced by forming a copper layer of a conductive layer for use. First, copper layers of a base layer are formed on both sides of a graphite sheet by a sputtering method.

下地層の銅層の成膜法としては、電子銃で加熱して蒸発させる蒸着法、銅ターゲットを用いてアルゴンイオンを加速させ銅ターゲットの銅原子をたたき出し、フィルムに成膜するスパッタリング法があげられるが膜が緻密で基材との密着性に優れるスパッタリング法を用いるのが望ましい。スパッタリング法で成膜した銅層は平滑で、基材と強く化学的結合するため高い密着性が得られる。 Examples of the method for forming a copper layer of the base layer include a vapor deposition method in which the copper layer is heated by an electron gun to evaporate, and a sputtering method in which argon ions are accelerated using a copper target to knock out copper atoms of the copper target to form a film on the film. However, it is desirable to use a sputtering method in which the film is dense and the adhesion to the substrate is excellent. The copper layer formed by the sputtering method is smooth and has a strong chemical bond with the base material, so that high adhesion can be obtained.

基材と下地層の銅層をより密着性を向上させるためには、例えばアルゴンイオンで基材表面を洗浄する方法、酸素プラズマを発生させ基材表面に活性基を付ける方法を行うことができる。 In order to further improve the adhesion between the base material and the copper layer of the base layer, for example, a method of cleaning the base material surface with argon ions or a method of generating oxygen plasma to attach an active group to the base material surface can be performed. ..

次に、基材のグラファイトシートに下地層の銅層を成膜する。基材と銅層の密着性をより高めるために、クロム、ニッケル、ニクロム合金の20nmから100nmの薄膜を成膜してから銅層を50nmから300nmの厚さで積層することで密着力をさらに上げることができる。 Next, a copper layer as a base layer is formed on the graphite sheet of the base material. In order to further improve the adhesion between the base material and the copper layer, a thin film of 20 nm to 100 nm of a chromium, nickel, or nichrome alloy is formed, and then the copper layer is laminated to a thickness of 50 nm to 300 nm to further enhance the adhesion. Can be raised.

[2−3.導電層の銅層の形成]
最後に、基材の一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層と、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層を形成する。導電層として上記厚さの銅層を形成するには、めっき法で銅を所定の膜厚にするのが望ましい。
[2-3. Formation of copper layer of conductive layer]
Finally, one surface of the base material has a copper layer of a conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less, and the other surface has a copper layer of a conductive layer for power supply having a thickness of 5 μm or more and 16 μm or less. Form. In order to form a copper layer having the above thickness as the conductive layer, it is desirable to make copper a predetermined film thickness by a plating method.

下地層の銅層を形成したグラファイトシートを両面銅めっき装置に投入し銅を両面めっきする。銅めっきには毒性がなく操作性に優れる硫酸銅を用いる酸化浴が望ましい。 The graphite sheet on which the copper layer of the base layer is formed is put into a double-sided copper plating apparatus, and copper is plated on both sides. For copper plating, an oxidation bath using copper sulfate, which is not toxic and has excellent operability, is desirable.

高周波制御用導電層と電力供給用導電層で必要な厚さが違うため、高周波制御用導電層は厚さを2μm以上4μm以下とし、電力供給用導電層は厚さを5μm以上16μm以下となるように電解漕に流す電流値を設定する。具体的なめっき条件としては、例えば浴温度は45℃、電圧は5V、電流密度は3A/dm2から10A/dm2とすることで好適に銅めっきを行うことができる。 Since the required thickness is different between the high frequency control conductive layer and the power supply conductive layer, the high frequency control conductive layer has a thickness of 2 μm or more and 4 μm or less, and the power supply conductive layer has a thickness of 5 μm or more and 16 μm or less. Set the current value to be passed through the electrolytic tank. As specific plating conditions, for example, the bath temperature is 45 ° C., the voltage is 5 V, and the current density is 3 A / dm 2 to 10 A / dm 2 , so that copper plating can be preferably performed.

以上のように処理して本発明の放熱基板を作製するが、スパッタリング法で銅層を下地層として形成してからめっき法により銅を導電層とすることにより、通常より薄く銅層を形成できるので、エッチング性に優れるので細線化が可能であり、さらに平坦な膜なので、高周波制御に有効な基板といえる。 The heat-dissipating substrate of the present invention is produced by the above treatment, but a copper layer can be formed thinner than usual by forming a copper layer as a base layer by a sputtering method and then using copper as a conductive layer by a plating method. Therefore, it can be said that it is an effective substrate for high-frequency control because it has excellent etching properties and can be thinned, and because it is a flat film.

以下に実施例を挙げて本発明についてより具体的に説明するが、本発明はこれらの実施例に限定されるわけではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.

(実施例1)
基材には、市販品の株式会社カネカ製グラファイトシート(平面方向熱伝導率:1500W/mk、縦方向熱伝導率:5W/mk、厚さ:40μm、サイズ:20cm四角)を用いた。グラファイトシートをスパッタリング装置(芝浦製作所製、型式:CFS−4ES)にセットして、その両面にニクロム合金層および銅層の下地層を成膜した。ターゲットはニクロム合金と銅の3インチ径の純度99.9%ターゲットを用いた。スパッタリング条件として、到達真空度は6.5×10-3Pa、DC出力は200Wの条件で行った。反応ガスとして、アルゴンガスを15sccm導入した。上記条件でグラファイトシートの両面にまずニクロム合金を厚さが20nmとなるように成膜した。続いて銅をDC出力300Wとして、他の条件は同じ条件で銅層を厚さが100nmとなるように成膜した。
(Example 1)
A commercially available graphite sheet manufactured by Kaneka Co., Ltd. (planar thermal conductivity: 1500 W / mk, vertical thermal conductivity: 5 W / mk, thickness: 40 μm, size: 20 cm square) was used as the base material. A graphite sheet was set in a sputtering apparatus (manufactured by Shibaura Seisakusho, model: CFS-4ES), and a nichrome alloy layer and a copper layer underlayer were formed on both surfaces thereof. The target used was a nichrome alloy and a copper 3 inch diameter 99.9% pure target. As the sputtering conditions, the ultimate vacuum degree was 6.5 × 10 -3 Pa, and the DC output was 200 W. As a reaction gas, argon gas was introduced in an amount of 15 sccm. Under the above conditions, a nichrome alloy was first formed on both sides of the graphite sheet so as to have a thickness of 20 nm. Subsequently, the copper was formed with a DC output of 300 W, and the copper layer was formed to have a thickness of 100 nm under the same conditions under other conditions.

このようにして得られたグラファイトシートを、硫酸銅を用いためっき装置にセットした。浴温度を45℃、電圧を5V、片面の電流密度を3A/dm2、もう片面の電流密度を15A/dm2にして15分間銅めっき処理を行った。その結果、高周波制御用導電層の銅層は4μm、電力供給用導電層の銅層は16μmの厚さが得られた。 The graphite sheet thus obtained was set in a plating apparatus using copper sulfate. The bath temperature was 45 ° C., the voltage was 5 V, the current density on one side was 3 A / dm 2 , and the current density on the other side was 15 A / dm 2 , and the copper plating treatment was performed for 15 minutes. As a result, the thickness of the copper layer of the conductive layer for high frequency control was 4 μm, and the thickness of the copper layer of the conductive layer for power supply was 16 μm.

得られた放熱基板を機器に貼り付けて1時間動作させたところ、機器の温度は室温から40℃に温度上昇したことが分かった。 When the obtained heat-dissipating substrate was attached to the device and operated for 1 hour, it was found that the temperature of the device increased from room temperature to 40 ° C.

(実施例2)
銅めっきの条件の電流密度において、片面の電流密度は3A/dm2、もう片面の電流密度は15A/dm2と設定したのを、片面の電流密度は3A/dm2、もう片面の電流密度は10A/dm2に変更した以外は実施例1と同じようにして放熱基板を得た。得られた放熱基板の高周波制御用導電層の銅層は4μm、電力供給用導電層の銅層は10μmの厚さが得られた。
(Example 2)
At a current density conditions of copper plating, one side of the current density is 3A / dm 2, that the other side of the current density was set to 15A / dm 2, one side of the current density is 3A / dm 2, the other surface current density A heat dissipation substrate was obtained in the same manner as in Example 1 except that the current value was changed to 10 A / dm 2. The thickness of the copper layer of the high-frequency control conductive layer of the obtained heat-dissipating substrate was 4 μm, and the thickness of the copper layer of the power supply conductive layer was 10 μm.

得られた放熱基板を機器に貼り付けて1時間動作させたところ、機器の温度は室温から45℃に温度上昇したことが分かった。 When the obtained heat radiating substrate was attached to the device and operated for 1 hour, it was found that the temperature of the device rose from room temperature to 45 ° C.

(比較例1)
基材として、グラファイトシートに代えて、厚さ100μmでサイズが20cm四角のポリイミドフィルムを使用した以外は実施例1と同じようにして放熱基板を得た。得られた放熱基板の高周波制御用導電層の銅層は4μm、電力供給用導電層の銅層は16μmの銅層が得られた。
(Comparative Example 1)
A heat-dissipating substrate was obtained in the same manner as in Example 1 except that a polyimide film having a thickness of 100 μm and a size of 20 cm was used as the base material instead of the graphite sheet. The obtained copper layer of the conductive layer for high frequency control of the heat radiation substrate was 4 μm, and the copper layer of the conductive layer for power supply was 16 μm.

得られた放熱基板を機器に貼り付けて1時間動作させたところ、機器の温度は室温から70℃に温度上昇したことが分かった。 When the obtained heat-dissipating substrate was attached to the device and operated for 1 hour, it was found that the temperature of the device rose from room temperature to 70 ° C.

上記の結果から、本発明の放熱基板は、効率的に発生する熱を放熱し、機器の温度上昇を抑制していることが分かった。
From the above results, it was found that the heat radiating substrate of the present invention efficiently dissipates the heat generated and suppresses the temperature rise of the device.

Claims (2)

1300W/mk以上1600W/mk以下の平面方向熱伝導率と、3W/mk以上6W/mk以下の縦方向熱伝導率を有するグラファイトシートを基材とし、該基材の一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層が配置され、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層が配置されることを特徴とする放熱基板。 A graphite sheet having a planar thermal conductivity of 1300 W / mk or more and 1600 W / mk or less and a longitudinal thermal conductivity of 3 W / mk or more and 6 W / mk or less is used as a base material, and one surface of the base material has a thickness. A heat dissipation substrate characterized in that a copper layer of a conductive layer for high frequency control of 2 μm or more and 4 μm or less is arranged, and a copper layer of a conductive layer for power supply having a thickness of 5 μm or more and 16 μm or less is arranged on the other surface. 前記基材及び前記高周波制御用導電層の銅層の間と前記基材及び前記電力供給用導電層の銅層の間とに、クロム、ニッケル、ニクロム合金の群から選択される厚さが20nmから100nmの薄膜が配置されることを特徴とする請求項1に記載の放熱基板。 A thickness selected from the group of chromium, nickel, and nichrome alloys is 20 nm between the copper layer of the base material and the conductive layer for high frequency control and between the copper layer of the base material and the conductive layer for power supply. The heat-dissipating substrate according to claim 1, wherein a thin film having a thickness of 100 nm is arranged.
JP2016248697A 2016-12-22 2016-12-22 Heat dissipation board Active JP6834462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016248697A JP6834462B2 (en) 2016-12-22 2016-12-22 Heat dissipation board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248697A JP6834462B2 (en) 2016-12-22 2016-12-22 Heat dissipation board

Publications (2)

Publication Number Publication Date
JP2018101766A JP2018101766A (en) 2018-06-28
JP6834462B2 true JP6834462B2 (en) 2021-02-24

Family

ID=62714513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248697A Active JP6834462B2 (en) 2016-12-22 2016-12-22 Heat dissipation board

Country Status (1)

Country Link
JP (1) JP6834462B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284566B2 (en) * 2018-10-29 2023-05-31 ローム株式会社 semiconductor equipment
CN112339359A (en) * 2020-09-23 2021-02-09 中国电子科技集团公司第二十九研究所 Aluminum-graphite aluminum composite material structure for enhancing longitudinal heat conductivity coefficient
JP7352753B2 (en) 2020-10-14 2023-09-28 ローム株式会社 semiconductor module
WO2022080122A1 (en) 2020-10-14 2022-04-21 ローム株式会社 Semiconductor module
DE202021004370U1 (en) 2020-10-14 2023-12-12 Rohm Co., Ltd. Semiconductor module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177024A (en) * 1999-12-21 2001-06-29 Ts Heatronics Co Ltd Heat diffusing composite plate
JP5175435B2 (en) * 2005-10-25 2013-04-03 株式会社カネカ Heat dissipation substrate and light emitting diode substrate
JP6424036B2 (en) * 2014-07-24 2018-11-14 株式会社カネカ Graphite bonding method and laminate for bonding graphite
WO2016104759A1 (en) * 2014-12-25 2016-06-30 株式会社カネカ Heat transport structure and manufacturing method therefor

Also Published As

Publication number Publication date
JP2018101766A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6834462B2 (en) Heat dissipation board
US20120118615A1 (en) Metal clad laminate, method of manufacturing the same, and heat-radiating substrate
JP5080295B2 (en) Heat dissipating mounting board and manufacturing method thereof
US20100012354A1 (en) Thermally conductive polymer based printed circuit board
JP2012533882A (en) Anisotropic heat conducting element and method for producing the same
JPH10330177A (en) Metal/graphite composite and radiator using the same
JP2010163598A (en) Prepreg, method for producing the same, and printed wiring board using the same
CN102917534A (en) DLC (Diamond like Carbon) thin film coating-based ceramic substrate
JP5086174B2 (en) High heat dissipation carbon material and electronic parts using the same
JP2018160636A (en) High-frequency substrate
CN103917043B (en) Patterned multi-insulating-material circuit substrate
WO2019172023A1 (en) Wiring circuit and production method therefor
JP5695780B1 (en) High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder
JP2012064914A (en) Heat dissipation substrate and manufacturing method of the same
JP2012004527A (en) Heat-radiating substrate and method of manufacturing the same
KR101361105B1 (en) Heat radiation tape having excellent thermal conductivity
JP2020053613A (en) Composite substrate
JP2013004733A (en) Heat dissipation substrate
JP2018107154A (en) Heat dissipation substrate
CN202918581U (en) Ceramic substrate based on DLC thin film coating
JP2005119887A (en) High thermal conductivity member, its producing method, and heat dissipation system using the member
JP2018160637A (en) High-frequency substrate
WO2019106874A1 (en) Insulating substrate and heat dissipation device
JP2008277507A (en) Heat radiation printed wiring board, manufacturing method thereof, and module using the board
JP2018160639A (en) High-frequency substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150