JP2018101766A - Heat dissipation plate - Google Patents
Heat dissipation plate Download PDFInfo
- Publication number
- JP2018101766A JP2018101766A JP2016248697A JP2016248697A JP2018101766A JP 2018101766 A JP2018101766 A JP 2018101766A JP 2016248697 A JP2016248697 A JP 2016248697A JP 2016248697 A JP2016248697 A JP 2016248697A JP 2018101766 A JP2018101766 A JP 2018101766A
- Authority
- JP
- Japan
- Prior art keywords
- copper layer
- heat dissipation
- thickness
- substrate
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910052802 copper Inorganic materials 0.000 claims abstract description 60
- 239000010949 copper Substances 0.000 claims abstract description 60
- 239000000758 substrate Substances 0.000 claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 26
- 239000010439 graphite Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 25
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910001120 nichrome Inorganic materials 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 9
- 238000007747 plating Methods 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- -1 argon ions Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Laminated Bodies (AREA)
- Carbon And Carbon Compounds (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Structure Of Printed Boards (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、放熱基板に関する。 The present invention relates to a heat dissipation substrate.
近年、電子機器の高性能化、小型化の要求に伴い、半導体等の電子部品の高密度化、高機能化が要求されている。この要求に対応するために、各種電子部品を実装する回路基板もまた小型・高密度化が求められている。その結果、スイッチング素子等の相対的に発熱量の多い(例えば数十A以上の大電流を制御する)パワー半導体等と、相対的に発熱量の少ない(例えば数十mAの信号電流を制御する)制御用半導体等の一般電子部品を、それぞれの用途に適した回路基板にそれぞれ実装し、これらを互いに接続することが求められている。 In recent years, along with the demand for higher performance and smaller size of electronic devices, higher density and higher functionality of electronic components such as semiconductors have been demanded. In order to meet this demand, circuit boards on which various electronic components are mounted are also required to be small and high in density. As a result, a power semiconductor or the like having a relatively large amount of heat generation (for example, controlling a large current of several tens of A or more) such as a switching element and a signal current having a relatively small amount of heat generation (for example, several tens of mA) are controlled. ) It is required to mount general electronic parts such as control semiconductors on circuit boards suitable for respective applications and connect them to each other.
このようなパワー半導体デバイスに実用化には、種々の課題が指定されているが、最も大きな課題として放熱問題がある。高出力・高密度で作動させるため高温となり、その信頼性の低下を招いてしまう。 Various problems have been specified for practical use in such power semiconductor devices, but the biggest problem is a heat dissipation problem. Since it is operated at high output and high density, the temperature becomes high and the reliability is lowered.
また、制御用半導体等の汎用電子部品を同じ基板に実装することにより小型化・高密度化を図る要求を同時に達成するためにも、これらの発熱をいかに早く効率的に放熱することが重要な課題となっている。 It is also important to quickly and efficiently dissipate these heat generations in order to simultaneously achieve the demand for miniaturization and high density by mounting general-purpose electronic components such as control semiconductors on the same substrate. It has become a challenge.
このような問題に対応するため、種々の放熱シート材料を基板として利用することが検討されている。 In order to cope with such a problem, use of various heat dissipation sheet materials as a substrate has been studied.
例えば、高熱伝導の樹脂を利用した放熱シートは加工性と柔軟性に優れ積層も可能という利点があるがセラミック基板と比較し熱伝導性が低いという問題がある。そこで熱伝導性樹脂と高熱伝導性を持つ無機フィラーを含有させて高熱伝導シートを作製することが行われている。 For example, a heat-dissipating sheet using a resin having high thermal conductivity has an advantage that it is excellent in workability and flexibility and can be laminated, but has a problem that thermal conductivity is lower than that of a ceramic substrate. Therefore, a highly heat conductive sheet is produced by containing a heat conductive resin and an inorganic filler having high heat conductivity.
特許文献1には、球状アルミナ粉末とそれより微粒かつ平均球形が大きいシリカ粉末をエポキシ樹脂に充填することが開示されている。これは熱伝導性を高めるにはセラミック粉末をより多く入れる必要がある。その結果、高価なセラミック粉末をより多く使うため熱電基板が高価になるのとエポキシ組成物、基板の機械的強度が低下してしまう。 Patent Document 1 discloses that an epoxy resin is filled with a spherical alumina powder and a silica powder having a finer average particle size than that of the spherical alumina powder. This requires more ceramic powder to increase thermal conductivity. As a result, the more expensive ceramic powder is used, the more expensive the thermoelectric substrate, the lower the mechanical strength of the epoxy composition and substrate.
特許文献2には、熱伝導性シートの熱伝導性粒子の使用量を増大させることなく熱伝導性を向上させるシートが開示されている。これは熱伝導性粒子を樹脂層に吸収させて硬化させ、厚み方向に熱電粒子を偏析させることにより達成できるが、均一分散していないので放熱効果は粒子が集まった箇所に集中し、効率的な放熱は難しい。 Patent Document 2 discloses a sheet that improves thermal conductivity without increasing the amount of thermally conductive particles used in the thermally conductive sheet. This can be achieved by absorbing the thermally conductive particles in the resin layer and curing them, and segregating the thermoelectric particles in the thickness direction, but since they are not uniformly dispersed, the heat dissipation effect is concentrated at the location where the particles gather and is efficient. Heat dissipation is difficult.
本発明は、高密度実装された電子機器や回路の放熱性を高め、電子機器を熱から守る放熱性に優れた、高周波伝送と電力供給の機能を併せ持つ基板を提供することを目的とする。 An object of the present invention is to provide a substrate having both high-frequency transmission and power supply functions, which improves heat dissipation of electronic devices and circuits mounted at high density, and has excellent heat dissipation to protect the electronic devices from heat.
本発明者は、上記課題を解決すべく鋭意検討を行った結果、1300W/mk以上1600W/mk以下の平面方向熱伝導率と、3W/mk以上6W/mk以下の縦方向熱伝導率を有するグラファイトシートを基材とし、該基材の一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層が配置され、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層が配置されることにより、極めて放熱性に優れ、高周波伝送と電力供給の機能を併せ持つ放熱基板を得ることができるという知見を得た。 As a result of intensive studies to solve the above problems, the inventor has a planar thermal conductivity of 1300 W / mk to 1600 W / mk and a longitudinal thermal conductivity of 3 W / mk to 6 W / mk. A graphite sheet is used as a base material, a copper layer of a conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less is disposed on one surface of the base material, and a power supply having a thickness of 5 μm or more and 16 μm or less is provided on the other surface. It has been found that by disposing the copper layer of the conductive layer for use, it is possible to obtain a heat dissipating substrate that is extremely excellent in heat dissipation and has both high frequency transmission and power supply functions.
上記構成の放熱基板は、極めて放熱性に優れており、小型化・高密度化の実現に有効な基板を提供することができる。 The heat dissipation substrate having the above configuration is extremely excellent in heat dissipation, and can provide a substrate that is effective in realizing miniaturization and high density.
以下に、本発明の一実施の形態における放熱基板についてさらに詳細に説明する。 Hereinafter, the heat dissipation substrate in one embodiment of the present invention will be described in more detail.
[1.放熱基板]
本発明の放熱基板は、1300W/mk以上1600W/mk以下の平面方向熱伝導率、3W/mk以上6W/mk以下の縦方向熱伝導率を有するグラファイトシートを基材とし、その一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層が配置され、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層が配置されている。
[1. Heat dissipation board]
The heat dissipation substrate of the present invention is based on a graphite sheet having a planar thermal conductivity of 1300 W / mk or more and 1600 W / mk or less and a longitudinal thermal conductivity of 3 W / mk or more and 6 W / mk or less on one surface. A copper layer of a conductive layer for high frequency control having a thickness of 2 μm to 4 μm is disposed, and a copper layer of a conductive layer for power supply having a thickness of 5 μm to 16 μm is disposed on the other surface.
[1−1.基材]
放熱性に優れる基材を作製するには熱伝導性に優れる材料を用いる必要がある。本発明では、1300W/mk以上1600W/mk以下の平面方向熱伝導率、3W/mk以上6W/mk以下の縦方向熱伝導率を有すグラファイトシートを選択したが、これはポリイミドを熱処理してグラファイト化することにより得られる熱伝導率がきわめて高い材料である。
[1-1. Base material]
In order to produce a substrate having excellent heat dissipation, it is necessary to use a material having excellent thermal conductivity. In the present invention, a graphite sheet having a planar thermal conductivity of 1300 W / mk or more and 1600 W / mk or less and a longitudinal thermal conductivity of 3 W / mk or more and 6 W / mk or less was selected. It is a material with extremely high thermal conductivity obtained by graphitization.
一般に、熱伝導性が高い材料として金属が挙げられるが、例えば、銅(熱伝導率398W/mk)、アルミニウム(熱伝導率237W/mk)であるが、グラファイトシートはその数倍の熱伝導性を有する材料である。さらに密度は2g/cm3と軽量であるため、小型・高密度化には有利な材料といえる。 In general, metals are cited as materials having high thermal conductivity. For example, copper (thermal conductivity 398 W / mk) and aluminum (thermal conductivity 237 W / mk) are used, but a graphite sheet has several times higher thermal conductivity. It is the material which has. Furthermore, since the density is as light as 2 g / cm 3 , it can be said to be an advantageous material for miniaturization and high density.
平面方向熱伝導率が1300W/mk以上1600W/mk以下で、縦方向熱伝導率が3W/mk以上6W/mk以下のグラファイトシートは、パナソニック株式会社や株式会社カネカから市販されているため、これを入手して使用することができる。 Graphite sheets having a planar thermal conductivity of 1300 W / mk to 1600 W / mk and a longitudinal thermal conductivity of 3 W / mk to 6 W / mk are commercially available from Panasonic Corporation and Kaneka Corporation. Can be obtained and used.
また、グラファイトシートを作製するには、通常ポリイミドに代表される高分子フィルムを不活性ガス中で1000℃以上の温度に加熱して炭化させることにより得られる。また、2600℃以上の高温に加熱することがグラファイト化には好ましい。 In order to produce a graphite sheet, it is usually obtained by heating and carbonizing a polymer film typified by polyimide at a temperature of 1000 ° C. or higher in an inert gas. Heating to a high temperature of 2600 ° C. or higher is preferable for graphitization.
[1−2.銅層]
この基材をベースとして銅配線を形成することにより放熱性に優れた基板を得ることができる。すなわち、本発明に係る放熱基板は、グラファイトシートを基材として用いて、その両面に銅層を配置している。
[1-2. Copper layer]
A substrate having excellent heat dissipation can be obtained by forming copper wiring based on this base material. That is, the heat dissipation board according to the present invention uses a graphite sheet as a base material and has copper layers disposed on both sides thereof.
本発明においては、基材の一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層が配置され、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層が配置される構成としている。 In the present invention, the copper layer of the conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less is disposed on one surface of the substrate, and the conductive layer for supplying power having a thickness of 5 μm or more and 16 μm or less on the other surface. The copper layer is arranged.
高周波制御用導電層の銅層は、後述するようにスパッタリング法による下地層を形成し、その後めっき法により所定の厚さに成膜しているため、アモルファスの下地層としていることからめっき法で成膜した銅層もエッチング性に優れた銅層である。 As described later, the copper layer of the high-frequency control conductive layer is formed by sputtering to a predetermined thickness, and is then formed to a predetermined thickness by plating. The formed copper layer is also a copper layer having excellent etching properties.
また、電解銅箔をラミネート法による貼り付け法によらないため、薄い膜とすることができ、良好なエッチング性を有することから細線化が可能というメリットもある。 Further, since the electrolytic copper foil is not based on a laminating method, it can be formed into a thin film, and since it has good etching properties, there is an advantage that thinning is possible.
[2.放熱基板の製造方法]
次に、本発明に係る放熱基板の製造方法について説明する。
[2. Manufacturing method of heat dissipation board]
Next, a method for manufacturing a heat dissipation board according to the present invention will be described.
本発明に係る放熱基板は、まず基材のグラファイトシートを準備し、基材のグラファイトシートの一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層を成膜し、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層を成膜することにより得られる。 In the heat dissipation substrate according to the present invention, first, a graphite sheet as a base material is prepared, and a copper layer of a conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less is formed on one surface of the graphite sheet of the base material. It is obtained by forming a copper layer of a conductive layer for power supply having a thickness of 5 μm or more and 16 μm or less on one surface.
[2−1.グラファイトシートの準備]
本発明の放熱基板に使用する基材のグラファイトシートは、株式会社カネカやパナソニック株式会社などから高熱伝導性グラファイトシートが市販されている。従って、これらの市販品を使用することで基材とすることができる。
[2-1. Preparation of graphite sheet]
As the base graphite sheet used for the heat dissipation substrate of the present invention, highly heat conductive graphite sheets are commercially available from Kaneka Corporation and Panasonic Corporation. Therefore, it can be set as a base material by using these commercially available products.
また、グラファイトシートを作製するには、例えば代表的な高分子フィルムであるポリイミドフィルムを不活性ガス中で1000℃以上の温度に加熱して炭化させることにより得られる。また、フィルムの破損を防止するためには、アルゴンガス中で500℃から1000℃まで徐々に昇温して予備加熱を行った後に2600℃以上の高温に加熱し、より好ましくは3000℃以上の高温にすることがグラファイト化には好ましい。熱処理温度が高いほど高熱伝導率のグラファイトシートを得ることができる。 Moreover, in order to produce a graphite sheet, for example, a polyimide film, which is a typical polymer film, is obtained by heating to a temperature of 1000 ° C. or higher in an inert gas and carbonizing. In order to prevent the film from being damaged, the temperature is gradually raised from 500 ° C. to 1000 ° C. in argon gas and preheated, and then heated to a high temperature of 2600 ° C. or more, more preferably 3000 ° C. or more. A high temperature is preferable for graphitization. The higher the heat treatment temperature, the higher the thermal conductivity graphite sheet can be obtained.
[2−2.スパッタリング法による下地層の銅層の形成]
次に、基材であるグラファイトシートの一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層を成膜し、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層を成膜することにより本発明の放熱基板を作製するが、まずグラファイトシートの両面に下地層の銅層をスパッタリング法により形成する。
[2-2. Formation of underlying copper layer by sputtering]
Next, a copper layer of a conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less is formed on one surface of a graphite sheet as a base material, and power is supplied on the other surface of a thickness of 5 μm or more and 16 μm or less. The heat-dissipating substrate of the present invention is produced by forming a copper layer as a conductive layer for use. First, a copper layer as a base layer is formed on both surfaces of a graphite sheet by a sputtering method.
下地層の銅層の成膜法としては、電子銃で加熱して蒸発させる蒸着法、銅ターゲットを用いてアルゴンイオンを加速させ銅ターゲットの銅原子をたたき出し、フィルムに成膜するスパッタリング法があげられるが膜が緻密で基材との密着性に優れるスパッタリング法を用いるのが望ましい。スパッタリング法で成膜した銅層は平滑で、基材と強く化学的結合するため高い密着性が得られる。 Examples of the method for forming the copper layer of the underlayer include a vapor deposition method in which it is heated by an electron gun to evaporate, and a sputtering method in which argon ions are accelerated using a copper target to knock out copper atoms in the copper target and form a film on the film. However, it is desirable to use a sputtering method in which the film is dense and has excellent adhesion to the substrate. The copper layer formed by the sputtering method is smooth and has strong adhesion because it is strongly chemically bonded to the substrate.
基材と下地層の銅層をより密着性を向上させるためには、例えばアルゴンイオンで基材表面を洗浄する方法、酸素プラズマを発生させ基材表面に活性基を付ける方法を行うことができる。 In order to further improve the adhesion between the base material and the copper layer of the base layer, for example, a method of cleaning the base material surface with argon ions, a method of generating oxygen plasma and attaching an active group to the base material surface can be performed. .
次に、基材のグラファイトシートに下地層の銅層を成膜する。基材と銅層の密着性をより高めるために、クロム、ニッケル、ニクロム合金の20nmから100nmの薄膜を成膜してから銅層を50nmから300nmの厚さで積層することで密着力をさらに上げることができる。 Next, a copper layer as a base layer is formed on a graphite sheet as a base material. In order to further improve the adhesion between the base material and the copper layer, a thin film of chromium, nickel, or nichrome alloy having a thickness of 20 nm to 100 nm is formed, and then the copper layer is laminated with a thickness of 50 nm to 300 nm to further increase the adhesion. Can be raised.
[2−3.導電層の銅層の形成]
最後に、基材の一方の面に厚さが2μm以上4μm以下の高周波制御用導電層の銅層と、もう一方の面に厚さが5μm以上16μm以下の電力供給用導電層の銅層を形成する。導電層として上記厚さの銅層を形成するには、めっき法で銅を所定の膜厚にするのが望ましい。
[2-3. Formation of copper layer of conductive layer]
Finally, the copper layer of the conductive layer for high frequency control having a thickness of 2 μm or more and 4 μm or less on one surface of the substrate and the copper layer of a conductive layer for power supply having a thickness of 5 μm or more and 16 μm or less on the other surface Form. In order to form a copper layer with the above thickness as the conductive layer, it is desirable to form copper with a predetermined thickness by plating.
下地層の銅層を形成したグラファイトシートを両面銅めっき装置に投入し銅を両面めっきする。銅めっきには毒性がなく操作性に優れる硫酸銅を用いる酸化浴が望ましい。 The graphite sheet on which the copper layer of the underlayer is formed is put into a double-sided copper plating apparatus, and copper is double-sided plated. For copper plating, an oxidation bath using copper sulfate that is non-toxic and excellent in operability is desirable.
高周波伝送用導電層と電力供給用導電層で必要な厚さが違うため、高周波伝送用導電層は厚さを2μm以上4μm以下とし、電力供給用導電層は厚さを5μm以上16μm以下となるように電解漕に流す電流値を設定する。具体的なめっき条件としては、例えば浴温度は45℃、電圧は5V、電流密度は3A/dm2から10A/dm2とすることで好適に銅めっきを行うことができる。 Since the required thickness is different between the high-frequency transmission conductive layer and the power supply conductive layer, the high-frequency transmission conductive layer has a thickness of 2 μm to 4 μm, and the power supply conductive layer has a thickness of 5 μm to 16 μm. Set the current value to flow through the electrolytic bath. As specific plating conditions, for example, the bath temperature is 45 ° C., the voltage is 5 V, and the current density is 3 A / dm 2 to 10 A / dm 2 , so that copper plating can be suitably performed.
以上のように処理して本発明の放熱基板を作製するが、スパッタリング法で銅層を下地層として形成してからめっき法により銅を導電層とすることにより、通常より薄く銅層を形成できるので、エッチング性に優れるので細線化が可能であり、さらに平坦な膜なので、高周波伝送に有効な基板といえる。 The heat-dissipating substrate of the present invention is produced by processing as described above, but a copper layer can be formed thinner than usual by forming a copper layer as a base layer by a sputtering method and then using copper as a conductive layer by a plating method. Therefore, since it is excellent in etching property, it can be thinned, and since it is a flat film, it can be said to be an effective substrate for high-frequency transmission.
以下に実施例を挙げて本発明についてより具体的に説明するが、本発明はこれらの実施例に限定されるわけではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
(実施例1)
基材には、市販品の株式会社カネカ製グラファイトシート(平面方向熱伝導率:1500W/mk、縦方向熱伝導率:5W/mk、厚さ:40μm、サイズ:20cm四角)を用いた。グラファイトシートをスパッタリング装置(芝浦製作所製、型式:CFS−4ES)にセットして、その両面にニクロム合金層および銅層の下地層を成膜した。ターゲットはニクロム合金と銅の3インチ径の純度99.9%ターゲットを用いた。スパッタリング条件として、到達真空度は6.5×10-3Pa、DC出力は200Wの条件で行った。反応ガスとして、アルゴンガスを15sccm導入した。上記条件でグラファイトシートの両面にまずニクロム合金を厚さが20nmとなるように成膜した。続いて銅をDC出力300Wとして、他の条件は同じ条件で銅層を厚さが100nmとなるように成膜した。
Example 1
A commercially available graphite sheet manufactured by Kaneka Corporation (planar thermal conductivity: 1500 W / mk, longitudinal thermal conductivity: 5 W / mk, thickness: 40 μm, size: 20 cm square) was used as the substrate. The graphite sheet was set in a sputtering apparatus (manufactured by Shibaura Seisakusho, model: CFS-4ES), and a Nichrome alloy layer and a copper underlayer were formed on both sides thereof. The target used was a 9-inch purity 99.9% target of nichrome alloy and copper. As the sputtering conditions, the ultimate vacuum was 6.5 × 10 −3 Pa and the DC output was 200 W. As a reaction gas, 15 sccm of argon gas was introduced. Under the above conditions, a nichrome alloy was first formed on both surfaces of the graphite sheet so as to have a thickness of 20 nm. Subsequently, copper was formed at a DC output of 300 W and the copper layer was formed to a thickness of 100 nm under the same conditions as other conditions.
このようにして得られたグラファイトシートを、硫酸銅を用いためっき装置にセットした。浴温度を45℃、電圧を5V、片面の電流密度を3A/dm2、もう片面の電流密度を15A/dm2にして15分間銅めっき処理を行った。その結果、高周波伝送用導電層の銅層は4μm、電力供給用導電層の銅層は16μmの厚さが得られた。 The graphite sheet thus obtained was set in a plating apparatus using copper sulfate. Copper plating was performed at a bath temperature of 45 ° C., a voltage of 5 V, a current density on one side of 3 A / dm 2 , and a current density on the other side of 15 A / dm 2 for 15 minutes. As a result, the copper layer of the high-frequency transmission conductive layer was 4 μm, and the copper layer of the power supply conductive layer was 16 μm.
得られた放熱基板を機器に貼り付けて1時間動作させたところ、機器の温度は室温から40℃に温度上昇したことが分かった。 When the obtained heat dissipation substrate was attached to the device and operated for 1 hour, it was found that the temperature of the device increased from room temperature to 40 ° C.
(実施例2)
銅めっきの条件の電流密度において、片面の電流密度は3A/dm2、もう片面の電流密度は15A/dm2と設定したのを、片面の電流密度は3A/dm2、もう片面の電流密度は10A/dm2に変更した以外は実施例1と同じようにして放熱基板を得た。得られた放熱基板の高周波伝送用導電層の銅層は4μm、電力供給用導電層の銅層は10μmの厚さが得られた。
(Example 2)
At a current density conditions of copper plating, one side of the current density is 3A / dm 2, that the other side of the current density was set to 15A / dm 2, one side of the current density is 3A / dm 2, the other surface current density A heat dissipation substrate was obtained in the same manner as in Example 1 except that 10 A / dm 2 was changed. The copper layer of the conductive layer for high frequency transmission of the obtained heat dissipation substrate was 4 μm, and the copper layer of the conductive layer for power supply was 10 μm.
得られた放熱基板を機器に貼り付けて1時間動作させたところ、機器の温度は室温から45℃に温度上昇したことが分かった。 When the obtained heat dissipation substrate was attached to the device and operated for 1 hour, it was found that the temperature of the device increased from room temperature to 45 ° C.
(比較例1)
基材として、グラファイトシートに代えて、厚さ100μmでサイズが20cm四角のポリイミドフィルムを使用した以外は実施例1と同じようにして放熱基板を得た。得られた放熱基板の高周波伝送用導電層の銅層は4μm、電力供給用導電層の銅層は16μmの銅層が得られた。
(Comparative Example 1)
A heat radiating substrate was obtained in the same manner as in Example 1 except that a polyimide film having a thickness of 100 μm and a size of 20 cm square was used in place of the graphite sheet. The copper layer of the conductive layer for high frequency transmission of the obtained heat dissipation substrate was 4 μm, and the copper layer of the conductive layer for power supply was 16 μm.
得られた放熱基板を機器に貼り付けて1時間動作させたところ、機器の温度は室温から70℃に温度上昇したことが分かった。 When the obtained heat dissipation substrate was attached to the device and operated for 1 hour, it was found that the temperature of the device increased from room temperature to 70 ° C.
上記の結果から、本発明の放熱基板は、効率的に発生する熱を放熱し、機器の温度上昇を抑制していることが分かった。
From the above results, it was found that the heat dissipation substrate of the present invention dissipates the heat generated efficiently and suppresses the temperature rise of the device.
Claims (2)
A thin film having a thickness of 20 nm to 100 nm selected from the group consisting of chromium, nickel, and nichrome alloy between the base material and the copper layer for high frequency control and between the base material and the copper layer for power supply The heat dissipating board according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016248697A JP6834462B2 (en) | 2016-12-22 | 2016-12-22 | Heat dissipation board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016248697A JP6834462B2 (en) | 2016-12-22 | 2016-12-22 | Heat dissipation board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018101766A true JP2018101766A (en) | 2018-06-28 |
JP6834462B2 JP6834462B2 (en) | 2021-02-24 |
Family
ID=62714513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016248697A Active JP6834462B2 (en) | 2016-12-22 | 2016-12-22 | Heat dissipation board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6834462B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020072106A (en) * | 2018-10-29 | 2020-05-07 | ローム株式会社 | Semiconductor device |
CN112339359A (en) * | 2020-09-23 | 2021-02-09 | 中国电子科技集团公司第二十九研究所 | Aluminum-graphite aluminum composite material structure for enhancing longitudinal heat conductivity coefficient |
US11955452B2 (en) | 2020-10-14 | 2024-04-09 | Rohm Co., Ltd. | Semiconductor module |
US11955414B2 (en) | 2020-10-14 | 2024-04-09 | Rohm Co., Ltd. | Semiconductor module |
US11961790B2 (en) | 2020-10-14 | 2024-04-16 | Rohm Co., Ltd. | Semiconductor module |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001177024A (en) * | 1999-12-21 | 2001-06-29 | Ts Heatronics Co Ltd | Heat diffusing composite plate |
JP2007123348A (en) * | 2005-10-25 | 2007-05-17 | Kaneka Corp | Heat dissipation substrate and substrate for light emitting diode |
JP2016022730A (en) * | 2014-07-24 | 2016-02-08 | 株式会社カネカ | Conjugate of graphite and graphite, conjugate of graphite and metal, laminate for graphite adhesion and manufacturing method thereof |
WO2016104759A1 (en) * | 2014-12-25 | 2016-06-30 | 株式会社カネカ | Heat transport structure and manufacturing method therefor |
-
2016
- 2016-12-22 JP JP2016248697A patent/JP6834462B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001177024A (en) * | 1999-12-21 | 2001-06-29 | Ts Heatronics Co Ltd | Heat diffusing composite plate |
JP2007123348A (en) * | 2005-10-25 | 2007-05-17 | Kaneka Corp | Heat dissipation substrate and substrate for light emitting diode |
JP2016022730A (en) * | 2014-07-24 | 2016-02-08 | 株式会社カネカ | Conjugate of graphite and graphite, conjugate of graphite and metal, laminate for graphite adhesion and manufacturing method thereof |
WO2016104759A1 (en) * | 2014-12-25 | 2016-06-30 | 株式会社カネカ | Heat transport structure and manufacturing method therefor |
US20170368795A1 (en) * | 2014-12-25 | 2017-12-28 | Kaneka Corporation | Heat transport structure and manufacturing method thereof |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020072106A (en) * | 2018-10-29 | 2020-05-07 | ローム株式会社 | Semiconductor device |
JP7284566B2 (en) | 2018-10-29 | 2023-05-31 | ローム株式会社 | semiconductor equipment |
CN112339359A (en) * | 2020-09-23 | 2021-02-09 | 中国电子科技集团公司第二十九研究所 | Aluminum-graphite aluminum composite material structure for enhancing longitudinal heat conductivity coefficient |
US11955452B2 (en) | 2020-10-14 | 2024-04-09 | Rohm Co., Ltd. | Semiconductor module |
US11955414B2 (en) | 2020-10-14 | 2024-04-09 | Rohm Co., Ltd. | Semiconductor module |
US11955451B2 (en) | 2020-10-14 | 2024-04-09 | Rohm Co., Ltd. | Semiconductor module |
US11955413B2 (en) | 2020-10-14 | 2024-04-09 | Rohm Co., Ltd. | Semiconductor module |
US11961790B2 (en) | 2020-10-14 | 2024-04-16 | Rohm Co., Ltd. | Semiconductor module |
US12057426B2 (en) | 2020-10-14 | 2024-08-06 | Rohm Co., Ltd. | Semiconductor module |
US12068230B2 (en) | 2020-10-14 | 2024-08-20 | Rohm Co., Ltd. | Semiconductor module |
Also Published As
Publication number | Publication date |
---|---|
JP6834462B2 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6834462B2 (en) | Heat dissipation board | |
JP7053579B2 (en) | Heat transfer member and heat dissipation structure including it | |
JP5080295B2 (en) | Heat dissipating mounting board and manufacturing method thereof | |
US20120118615A1 (en) | Metal clad laminate, method of manufacturing the same, and heat-radiating substrate | |
JP2012074703A (en) | Heat dissipation substrate, manufacturing method therefor, and light-emitting element package including the heat dissipation substrate | |
JP2012253167A (en) | Thermally conductive insulation sheet, metal base substrate and circuit board | |
JP2011023475A (en) | Insulating substrate, insulating circuit board, semiconductor device, method of manufacturing the insulating substrate, and method of manufacturing the insulating circuit board | |
CN103917043B (en) | Patterned multi-insulating-material circuit substrate | |
JP2012072405A (en) | Polymer resin composition, and insulating film manufactured using the composition, and method for manufacturing the film | |
JP2008120065A (en) | Heat radiating film | |
JPWO2018030124A1 (en) | Surface-roughened hexagonal boron nitride particles, method for producing the same, composition, resin sheet, prepreg, metal foil-clad laminate, printed wiring board | |
CN105984179A (en) | Heat sink material and preparation method thereof | |
JP4611758B2 (en) | Conductive noise suppressor and electronic component with conductive noise suppressor | |
CN102917534A (en) | DLC (Diamond like Carbon) thin film coating-based ceramic substrate | |
JP2018160636A (en) | High-frequency substrate | |
JP5695780B1 (en) | High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder | |
JP2012004527A (en) | Heat-radiating substrate and method of manufacturing the same | |
KR101361105B1 (en) | Heat radiation tape having excellent thermal conductivity | |
JP2018107154A (en) | Heat dissipation substrate | |
JP2020053613A (en) | Composite substrate | |
CN202918581U (en) | Ceramic substrate based on DLC thin film coating | |
CN209472831U (en) | A kind of high heat dissipation FR-4 single-side coated copper plate | |
CN112501660A (en) | Preparation method of high-coarsening electrolytic copper foil | |
JP2018160637A (en) | High-frequency substrate | |
JP2018160638A (en) | High-frequency substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200929 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6834462 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |