JP6831422B2 - Sound reduction structure for exhaust pipe - Google Patents

Sound reduction structure for exhaust pipe Download PDF

Info

Publication number
JP6831422B2
JP6831422B2 JP2019086046A JP2019086046A JP6831422B2 JP 6831422 B2 JP6831422 B2 JP 6831422B2 JP 2019086046 A JP2019086046 A JP 2019086046A JP 2019086046 A JP2019086046 A JP 2019086046A JP 6831422 B2 JP6831422 B2 JP 6831422B2
Authority
JP
Japan
Prior art keywords
inorganic
molded body
glass fiber
thickness
fiber molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019086046A
Other languages
Japanese (ja)
Other versions
JP2020180604A (en
Inventor
森川 修
修 森川
森 正
正 森
馬渕 知樹
知樹 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Toyota Motor Corp
Original Assignee
Nichias Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp, Toyota Motor Corp filed Critical Nichias Corp
Priority to JP2019086046A priority Critical patent/JP6831422B2/en
Priority to PCT/JP2020/014391 priority patent/WO2020217862A1/en
Publication of JP2020180604A publication Critical patent/JP2020180604A/en
Application granted granted Critical
Publication of JP6831422B2 publication Critical patent/JP6831422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/24Silencing apparatus characterised by method of silencing by using sound-absorbing materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Description

本発明は、排気管用減音構造体に関する。 The present invention relates to a sound reduction structure for an exhaust pipe.

近年、自動車騒音に関する基準調和について、国連の欧州経済委員会(ECE)の自動車基準調和世界フォーラムにおいて検討され、車両構造に関する規則の制定、改訂が行われている。
自動車の車外騒音については上記ECEの規則51(ECE R51)に規制値が定められ、同規制値を定めたRegulation EU No.540/2014によれば、2016年7月迄に72dB(フェーズ1)、2020年7月迄に70dB(フェーズ2)、2024年7月迄に68dB(フェーズ3)と段階を追って厳しくなる基準が施行され、車外騒音の規制レベルを最終的には2016年7月迄の基準に対して4dB低減すること、すなわち音圧エネルギーとして約1/2.5に低減することが求められている。
In recent years, standard harmonization regarding automobile noise has been examined at the United Nations Economic Commission for Europe (ECE) World Forum for Automotive Standards Harmony, and rules regarding vehicle structure have been established and revised.
Regarding noise outside the vehicle, a regulation value is set in the above ECE Rule 51 (ECE R51), and according to Regulation EU No. 540/2014, which sets the regulation value, 72 dB (Phase 1) by July 2016. , 70 dB (Phase 2) by July 2020, 68 dB (Phase 3) by July 2024, and stricter standards will be enforced, and the regulation level of outside noise will be finally set to July 2016. It is required to reduce by 4 dB with respect to the standard, that is, to reduce the sound pressure energy to about 1 / 2.5.

上記要求は大変に厳しいものであるが、一方で上記自動車の騒音は、エンジン、モーター、トランスミッション等駆動系エンジンルームから発生する騒音のみならず、排気音、風切音、タイヤロードノイズ等が合算したものであるため各々について騒音低減対策が求められるが、ECE R51で採用された評価試験方法においては、特に排気音への対策が求められるようになっている。 The above requirements are very strict, but on the other hand, the noise of the automobile is not only the noise generated from the drive system engine room such as the engine, motor, and transmission, but also the exhaust noise, wind noise, tire road noise, etc. However, noise reduction measures are required for each of them, but in the evaluation test method adopted in the ECE R51, measures for exhaust noise are particularly required.

上記排気音は、エンジン燃焼ガスが、エンジン排気部から順次接続された、エキゾーストマニフォールド、エキマニ直下型触媒コンバータ、フロントパイプ、床下触媒コンバータ、サブマフラー(センターマフラー)、メインマフラー、テールエンドパイプ、マフラーカッター等を経て外部に放出される過程で発生するが(例えば、特許文献1参照)、上記ECE R51で採用された評価試験方法においては、従来の測定方法と比較して加速騒音の比重が高められたため、全騒音レベルの中で排気音が約1/4の割合を占めるためである。 The above exhaust noise is the exhaust manifold, exhaust manifold direct type catalytic converter, front pipe, underfloor catalytic converter, sub muffler (center muffler), main muffler, tail end pipe, muffler cutter, etc., in which the engine combustion gas is sequentially connected from the engine exhaust section. (For example, see Patent Document 1), but in the evaluation test method adopted in the above ECE R51, the specific gravity of the acceleration noise is increased as compared with the conventional measurement method. This is because the exhaust noise accounts for about 1/4 of the total noise level.

上記評価試験方法においては、速度40km/hからの加速騒音が対象となり、特に1kHz以下の比較的低周波数領域の騒音が占める比重が増大することから、その対策が急務となっている。 In the above evaluation test method, acceleration noise from a speed of 40 km / h is targeted, and in particular, the specific gravity occupied by noise in a relatively low frequency region of 1 kHz or less increases, so that countermeasures are urgently needed.

排気管マフラーへの騒音低減対策としては、従来より吸音材を設置することによる減音対策が行われているが、吸音材の設置に伴って抵抗が増大する(背圧が増加する)と共に、車両床下側の限られたスペースでの対策となるため設置すべき吸音材の厚さには限界があり、従来技術では1kHz以下の低周波数域騒音への対策は困難であった。 As a noise reduction measure for the exhaust pipe muffler, sound reduction measures have been taken by installing a sound absorbing material, but as the sound absorbing material is installed, the resistance increases (back pressure increases) and the back pressure increases. There is a limit to the thickness of the sound absorbing material to be installed because it is a countermeasure in a limited space under the floor of the vehicle, and it is difficult to take countermeasures against low frequency noise of 1 kHz or less by the conventional technology.

特開平11−81976号公報Japanese Unexamined Patent Publication No. 11-81976

このように、従来提案されてきた減音構造体では、益々厳しくなる規制水準に対し必ずしも十分な騒音抑制効果は得られ難い。 As described above, it is difficult to obtain a sufficient noise suppression effect with the conventionally proposed sound reduction structure against the increasingly strict regulation level.

このような状況下、本発明は、厚さが薄くても特に1kHz以下の低周波音に対して十分な減音性能を有するとともに耐熱性および断熱性に優れた新規な排気管用減音構造体を提供することを目的とするものである。 Under such circumstances, the present invention is a novel sound-reducing structure for an exhaust pipe, which has sufficient sound-reducing performance especially for low-frequency sounds of 1 kHz or less even if the thickness is thin, and has excellent heat resistance and heat insulation. Is intended to provide.

上記技術課題を解決するために、本発明者等がさらに検討したところ、内管および外管の同軸二重円筒構造を有する自動車用排気管の前記内管および外管間に配置された無機繊維含有マットを有する排気管用減音構造体であって、前記無機繊維含有マットが、無機繊維成形体からなる基材中に無機バインダーが分散されてなるとともに、前記ガラス繊維成形体からなる基材の片側主表面上に、通気抵抗が1.8〜2.6kPa・s/mである無機多孔質膜を有し、前記ガラス繊維成形体からなる基材が、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合が80〜100%である無機繊維のニードル加工物からなり、前記無機繊維含有マットが、固形分換算したときに、前記無機繊維成形体からなる基材95.0〜99.5質量%中に前記無機バインダー0.5〜5.0質量%が分散されてなるものであるとともに、前記無機多孔質膜が設けられた面が前記内管に面するように配置された、厚さ5〜30mmである排気管用減音構造体により上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。 As a result of further studies by the present inventors in order to solve the above technical problems, the inorganic fibers arranged between the inner pipe and the outer pipe of the automobile exhaust pipe having a coaxial double cylindrical structure of the inner pipe and the outer pipe A sound-reducing structure for an exhaust pipe having a containing mat, wherein the inorganic fiber-containing mat has an inorganic binder dispersed in a base material made of an inorganic fiber molded body and a base material made of the glass fiber molded body. An inorganic porous film having a ventilation resistance of 1.8 to 2.6 kPa · s / m is provided on one main surface, and the diameter of the base material made of the glass fiber molded body occupies all the needle-processed holes on the surface. It is composed of an inorganic fiber needle processed product having a proportion of 0.05 to 0.70 mm needle processing holes of 80 to 100%, and the inorganic fiber-containing mat is composed of the inorganic fiber molded body when converted into solid content. The inorganic binder 0.5 to 5.0% by mass is dispersed in 95.0 to 99.5% by mass of the base material, and the surface provided with the inorganic porous film is formed on the inner tube. It has been found that the above technical problem can be solved by a sound reduction structure for an exhaust pipe having a thickness of 5 to 30 mm arranged so as to face the surface, and the present invention has been completed based on the present knowledge.

すなわち、本発明は、
(1)内管および外管の同軸二重円筒構造を有する自動車用排気管の前記内管および外管間に配置された無機繊維含有マットを有する排気管用減音構造体であって、
前記無機繊維含有マットが、無機繊維成形体からなる基材中に無機バインダーが分散されてなるとともに、前記無機繊維成形体からなる基材の片側主表面上に、通気抵抗が1.8〜2.6kPa・s/mである無機多孔質膜を有し、
前記無機繊維成形体からなる基材が、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合が80〜100%である無機繊維のニードル加工物からなり、
前記無機繊維含有マットが、固形分換算したときに、前記無機繊維成形体からなる基材95.0〜99.5質量%中に前記無機バインダー0.5〜5.0質量%が分散されてなるものであるとともに、前記無機多孔質膜が設けられた面が前記内管に面するように配置された、厚さ5〜30mmのものである
ことを特徴とする排気管用減音構造体、
(2)前記無機繊維成形体からなる基材の通気抵抗が0.7〜1.5kPa・s/mである上記(1)に記載の排気管用減音構造体、
(3)前記無機繊維含有マットがガラス繊維含有マットである上記(1)または(2)に記載の排気管用減音構造体、
(4)前記無機多孔質膜がベントナイト含有膜である上記(1)〜(3)のいずれかに記載の排気管用減音構造体、
を提供するものである。
That is, the present invention
(1) A sound reduction structure for an exhaust pipe having an inorganic fiber-containing mat arranged between the inner pipe and the outer pipe of an automobile exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe.
The inorganic fiber-containing mat has an inorganic binder dispersed in a base material made of an inorganic fiber molded body, and has a ventilation resistance of 1.8 to 2 on one side main surface of the base material made of the inorganic fiber molded body. It has an inorganic porous membrane of .6 kPa · s / m and has.
The base material made of the inorganic fiber molded body is made of an inorganic fiber needle processed product in which the ratio of the needle processed holes having a hole diameter of 0.05 to 0.70 mm to all the needle processed holes on the surface is 80 to 100%.
When the inorganic fiber-containing mat is converted into a solid content, 0.5 to 5.0% by mass of the inorganic binder is dispersed in 95.0 to 99.5% by mass of a base material made of the inorganic fiber molded body. A sound-reducing structure for an exhaust pipe, characterized in that the surface provided with the inorganic porous film is arranged so as to face the inner pipe and has a thickness of 5 to 30 mm.
(2) The sound reduction structure for an exhaust pipe according to (1) above, wherein the ventilation resistance of the base material made of the inorganic fiber molded body is 0.7 to 1.5 kPa · s / m.
(3) The sound reduction structure for an exhaust pipe according to (1) or (2) above, wherein the inorganic fiber-containing mat is a glass fiber-containing mat.
(4) The sound reduction structure for an exhaust pipe according to any one of (1) to (3) above, wherein the inorganic porous membrane is a bentonite-containing membrane.
Is to provide.

本発明によれば、所定厚さを有する無機繊維成形体からなる基材によって耐熱性および断熱性とともに減音(吸音)特性を発揮させ、係る減音特性を、所定の通気抵抗を有するベントナイト含有膜の膜振動による共鳴効果、小径のニードル加工孔による音抜けの抑制および所定量の無機バインダーによる無機繊維間の結束点増加に伴う振動減衰性(無機繊維の振動による音圧エネルギーの減衰効果)により一層高めることができる。
このため、本発明によれば、厚さが薄くても特に1kHz以下の低周波音に対して十分な減音性能を有するとともに耐熱性および断熱性に優れた新規な排気管用減音構造体を提供することができる。
According to the present invention, a base material made of an inorganic fiber molded body having a predetermined thickness exerts sound reduction (sound absorption) characteristics as well as heat resistance and heat insulation, and the sound reduction characteristics include bentonite having a predetermined ventilation resistance. Resonance effect due to film vibration of the film, suppression of sound loss due to small diameter needle processing holes, and vibration attenuation due to increase in binding points between inorganic fibers due to a predetermined amount of inorganic binder (damping effect of sound pressure energy due to vibration of inorganic fibers) Can be further enhanced.
Therefore, according to the present invention, a new sound-reducing structure for an exhaust pipe, which has sufficient sound-reducing performance especially for low-frequency sounds of 1 kHz or less even if the thickness is thin, and has excellent heat resistance and heat insulation. Can be provided.

本発明に係る排気管用減音構造体の形態例を説明する断面図であり、図1(a)は車輌用排気管1の長手方向に対して直角方向の垂直断面図であり、図1(b)は車輌用排気管1の長手方向に沿った垂直断面図である。FIG. 1A is a cross-sectional view illustrating a morphological example of the sound reduction structure for an exhaust pipe according to the present invention, and FIG. 1A is a vertical cross-sectional view in a direction perpendicular to the longitudinal direction of the exhaust pipe 1 for a vehicle. b) is a vertical cross-sectional view taken along the longitudinal direction of the vehicle exhaust pipe 1. 本発明に係る排気管用減音構造体の製造例を説明する図である。It is a figure explaining the manufacturing example of the sound reduction structure for an exhaust pipe which concerns on this invention. 本発明の実施例および比較例における吸音性評価結果を示す図である。It is a figure which shows the sound absorption property evaluation result in an Example and a comparative example of this invention. 本発明の実施例および比較例における吸音性評価結果を示す図である。It is a figure which shows the sound absorption property evaluation result in an Example and a comparative example of this invention. 各周波数毎の透過損失の測定に用いた4端子法減音性能測定装置の構成を説明するための図である。It is a figure for demonstrating the structure of the 4-terminal method sound reduction performance measuring apparatus used for measuring the transmission loss for each frequency.

先ず、本発明に係る排気管用減音構造体について説明する。
本発明に係る排気管用減音構造体は、内管および外管の同軸二重円筒構造を有する自動車用排気管の前記内管および外管間に配置された無機繊維含有マットを有する排気管用減音構造体であって、前記無機繊維含有マットが、無機繊維成形体からなる基材中に無機バインダーが分散されてなるとともに、前記ガラス繊維成形体からなる基材の片側主表面上に、通気抵抗が1.8〜2.6kPa・s/mである無機多孔質膜を有し、前記ガラス繊維成形体からなる基材が、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合が80〜100%である無機繊維のニードル加工物からなり、前記無機繊維含有マットが、固形分換算したときに、前記無機繊維成形体からなる基材95.0〜99.5質量%中に前記無機バインダー0.5〜5.0質量%が分散されてなるものであるとともに、前記無機多孔質膜が設けられた面が前記内管に面するように配置された、厚さ5〜30mmのものであることを特徴とするものである。
First, the sound reduction structure for the exhaust pipe according to the present invention will be described.
The sound reduction structure for an exhaust pipe according to the present invention is a sound reduction structure for an exhaust pipe having an inorganic fiber-containing mat arranged between the inner pipe and the outer pipe of an automobile exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe. In the sound structure, the inorganic fiber-containing mat has an inorganic binder dispersed in a base material made of an inorganic fiber molded body, and is ventilated on one side main surface of the base material made of the glass fiber molded body. It has an inorganic porous film having a resistance of 1.8 to 2.6 kPa · s / m, and the base material made of the glass fiber molded body occupies all the needle-processed holes on the surface with a pore diameter of 0.05 to 0.70 mm. The base material 95.0 to 99 made of the inorganic fiber molded body when the inorganic fiber-containing mat is converted into a solid content and is made of a needle processed product of an inorganic fiber having a ratio of needle processing holes of 80 to 100%. The inorganic binder 0.5 to 5.0% by mass was dispersed in 5.5% by mass, and the surface provided with the inorganic porous film was arranged so as to face the inner tube. It is characterized in that it has a thickness of 5 to 30 mm.

本発明に係る排気管用減音構造体は、内管および外管の同軸二重円筒構造を有する自動車用排気管の内管および外管間に無機繊維含有マットが配置されてなるものである。 The sound reduction structure for an exhaust pipe according to the present invention is formed by arranging an inorganic fiber-containing mat between the inner pipe and the outer pipe of an automobile exhaust pipe having a coaxial double cylindrical structure of the inner pipe and the outer pipe.

本発明に係る減音構造体を配置する排気管としては、自動車の排気ガスを排出する配管であればとくに制限されず、例えば、センターマフラー、メインマフラー、テールエンドパイプ、マフラーカッター等から選ばれる一種以上を挙げることができる。 The exhaust pipe for arranging the sound reduction structure according to the present invention is not particularly limited as long as it is a pipe that discharges exhaust gas from an automobile. For example, a type selected from a center muffler, a main muffler, a tail end pipe, a muffler cutter, and the like. The above can be mentioned.

以下、本発明に係る排気管用減音構造体について、自動車用排気管の末端に配置されるマフラーカッターを例にとって適宜図面を参照しつつ説明するものとする。
図1は、本発明に係る排気管用減音構造体1の実施形態例を示す断面図であり、図1(a)は排気管用減音構造体1の長手方向に対して直角方向の垂直断面図であり、図1(b)は排気管用減音構造体1の長手方向に沿った垂直断面図である。
Hereinafter, the sound reduction structure for an exhaust pipe according to the present invention will be described with reference to the drawings as appropriate, taking a muffler cutter arranged at the end of an exhaust pipe for an automobile as an example.
FIG. 1 is a cross-sectional view showing an example of an embodiment of the sound reduction structure for exhaust pipe 1 according to the present invention, and FIG. 1 (a) is a vertical cross section in a direction perpendicular to the longitudinal direction of the sound reduction structure 1 for exhaust pipe. FIG. 1B is a vertical cross-sectional view of the exhaust pipe sound reduction structure 1 along the longitudinal direction.

図1に示すように、排気管用減音構造体1は内管2を有している。
本出願書類において、内管とは、内部を排気ガス(燃焼ガス)が流通する排気用配管を意味し、内管としては、内部を流通する排気ガスの温度等に対応した材質からなり、目的とする温度特性や吸音特性を発揮し得るものから適宜選択することが好ましい。
上記内管としては耐熱性を有するものが好適であり、具体的には、金属管や耐熱性樹脂からなる樹脂管を挙げることができ、金属管であることが好ましい。
As shown in FIG. 1, the sound reduction structure 1 for an exhaust pipe has an inner pipe 2.
In the documents of the present application, the inner pipe means an exhaust pipe through which exhaust gas (combustion gas) flows, and the inner pipe is made of a material corresponding to the temperature of the exhaust gas flowing inside, and the purpose is It is preferable to appropriately select from those capable of exhibiting the temperature characteristics and sound absorption characteristics.
As the inner tube, one having heat resistance is preferable, and specifically, a metal tube or a resin tube made of a heat-resistant resin can be mentioned, and a metal tube is preferable.

金属管としては、耐熱性や耐食性の観点からステンレス鋼製のもの(SUS管)が主に使用されるが、アルミニウム製のもの(アルミ管)であってもよい。 As the metal pipe, a stainless steel pipe (SUS pipe) is mainly used from the viewpoint of heat resistance and corrosion resistance, but an aluminum pipe (aluminum pipe) may be used.

内管の平均厚みは、0.5〜2.0mmであることが適当であり、0.7〜1.8mmであることがより適当であり、0.9〜1.6mmであることがさらに適当である。
なお、本出願書類において、内管の平均厚みは、ノギスにより10箇所の厚みを測定したときの算術平均値を意味する。
また、内管の外径は、20〜90mmであることが適当であり、30 〜80mmであることがより適当であり、40〜70mmであることがさらに適当である。
なお、本出願書類において、内管の外径は、ノギスにより測定した値を意味する。
The average thickness of the inner tube is preferably 0.5 to 2.0 mm, more suitable to be 0.7 to 1.8 mm, and further to be 0.9 to 1.6 mm. Appropriate.
In this application document, the average thickness of the inner tube means the arithmetic mean value when the thickness at 10 points is measured with a caliper.
Further, the outer diameter of the inner tube is preferably 20 to 90 mm, more appropriately 30 to 80 mm, and even more appropriately 40 to 70 mm.
In this application document, the outer diameter of the inner tube means a value measured by a caliper.

内管の平均厚みや内径が上記範囲内にあることにより、内管の内部および外部の温度を好適な範囲に制御し易くなる。 When the average thickness and inner diameter of the inner tube are within the above ranges, it becomes easy to control the temperatures inside and outside the inner tube within a suitable range.

内管の断面形状としても特に制限されず、図1(a)に断面図で示すように円形であってもよいし、楕円形等であってもよい。
また、内管は、その長手方向の側壁に複数の孔が設けられてなるものであってもよく、例えばパンチングメタルによって形成されてなるものであってもよい。
The cross-sectional shape of the inner tube is not particularly limited, and may be circular or elliptical as shown in the cross-sectional view in FIG. 1A.
Further, the inner tube may be formed by providing a plurality of holes in the side wall in the longitudinal direction thereof, or may be formed of, for example, punching metal.

図1に例示するように、本発明に係る排気管用減音構造体1は、内管(排気用配管)2の外周に当該内管2と同軸状に設けられた外管3を有している。 As illustrated in FIG. 1, the exhaust pipe sound reduction structure 1 according to the present invention has an outer pipe 3 provided coaxially with the inner pipe 2 on the outer periphery of the inner pipe (exhaust pipe) 2. There is.

本出願書類において、外管とは、排気用配管の内部を流通する排気ガスから放射される熱が車輌本体側に放射されることを抑制し得る筒状の遮熱板を意味し、車輌本体側に放射される熱に対応した耐熱性を有し、劣化等を生じない材質からなるものから適宜選択することが好ましく、金属製のものが好ましい。 In the application documents, the outer pipe means a tubular heat shield plate that can suppress the heat radiated from the exhaust gas flowing inside the exhaust pipe to the vehicle body side, and the vehicle body. It is preferable to appropriately select from a material having heat resistance corresponding to the heat radiated to the side and not causing deterioration or the like, and a metal one is preferable.

外管を構成する金属としては、耐熱性、耐食性、美観性等の観点からステンレス鋼(SUS)が主に使用され、また、アルミニウムであってもよいが、放射率が低く美観性も高いことからステンレス鋼が好ましい。 As the metal constituting the outer tube, stainless steel (SUS) is mainly used from the viewpoint of heat resistance, corrosion resistance, aesthetics, etc., and aluminum may be used, but the emissivity is low and the aesthetics are high. Therefore, stainless steel is preferable.

外管の平均厚みは、0.5〜2.0mmであることが適当であり、0.7〜1.8mmであることがより適当であり、0.9〜1.6mmであることがさらに適当である。
なお、本出願書類において、外管の平均厚みは、ノギスにより10箇所の厚みを測定したときの算術平均値を意味する。
また、外管の外径は、24〜114mmであることが適当であり、34〜104mmであることがより適当であり、44〜94mmであることがさらに適当である。
なお、本出願書類において、外管の外径は、ノギスにより測定した値を意味する。
The average thickness of the outer tube is preferably 0.5 to 2.0 mm, more preferably 0.7 to 1.8 mm, and further preferably 0.9 to 1.6 mm. Appropriate.
In this application document, the average thickness of the outer tube means the arithmetic mean value when the thickness at 10 points is measured with a caliper.
Further, the outer diameter of the outer tube is preferably 24 to 114 mm, more appropriately 34 to 104 mm, and even more appropriately 44 to 94 mm.
In this application document, the outer diameter of the outer tube means a value measured by a caliper.

外管の平均厚みや外径が上記範囲内にあることにより、外管の内部および外部の温度を好適な範囲に制御し易くなる。 When the average thickness and outer diameter of the outer tube are within the above ranges, it becomes easy to control the temperatures inside and outside the outer tube within a suitable range.

外管の断面形状としても特に制限されず、図1(a)に示すように概略円形であってもよいし、楕円形等であってもよい。 The cross-sectional shape of the outer tube is not particularly limited, and as shown in FIG. 1A, it may be substantially circular, oval, or the like.

上記内管または外管は、一体成形物であってもよいし、分割物の接合物であってもよい。
例えば、図2に示すように、本発明に係る排気管用減音構造体において、外管3は、筒状物を半割状にした上部遮熱板3aと、同じく筒状物を半割状にした下部遮熱板3bとの接合物からなるものであってもよい。
外管3が半割状の上部遮熱板3aと半割状の下部遮熱板3bとからなるものであることにより、無機繊維含有マットを内管に巻き付けた後、その外周に上部遮熱板3aおよび下部遮熱板3bを介装し、両者を接合することにより、本発明に係る排気管用減音構造体を容易に作製することができる。
The inner pipe or the outer pipe may be an integrally molded product or a joint product of a divided product.
For example, as shown in FIG. 2, in the sound reduction structure for an exhaust pipe according to the present invention, the outer pipe 3 has an upper heat shield plate 3a in which the tubular object is half-split and the same tubular object in half. It may be made of a joint with the lower heat shield plate 3b.
Since the outer pipe 3 is composed of a half-split upper heat shield plate 3a and a half-split lower heat shield plate 3b, after winding the inorganic fiber-containing mat around the inner pipe, the upper heat shield is applied to the outer periphery thereof. By interposing the plate 3a and the lower heat shield plate 3b and joining them together, the sound reduction structure for the exhaust pipe according to the present invention can be easily manufactured.

図1においては、マフラーカッターを例にとって説明しているが、上記内管および外管からなる同軸二重円筒構造が自動車用排気管全体に亘って形成されるかマフラカッター以外の他の部分に形成されることにより、本発明に係る排気管用減音構造体を成していてもよい。 In FIG. 1, the muffler cutter is described as an example, but the coaxial double cylindrical structure composed of the inner pipe and the outer pipe is formed over the entire exhaust pipe for an automobile or is formed in a part other than the muffler cutter. By being formed, the sound reduction structure for the exhaust pipe according to the present invention may be formed.

図1に示すように、本発明に係る排気管用減音構造体1は、内管2と該内管2と同軸状に設けられた外管3との間に配置された、無機繊維含有マット4を有するものである。 As shown in FIG. 1, the sound reduction structure 1 for an exhaust pipe according to the present invention is an inorganic fiber-containing mat arranged between an inner pipe 2 and an outer pipe 3 provided coaxially with the inner pipe 2. It has 4.

本発明に係る排気管用減音構造体において、同軸二重円筒構造を有する自動車用排気管の内管および外管間に配置される無機繊維含有マットは、無機繊維成形体を基材とするものである。 In the sound reduction structure for an exhaust pipe according to the present invention, the inorganic fiber-containing mat arranged between the inner pipe and the outer pipe of the exhaust pipe for an automobile having a coaxial double cylindrical structure is based on an inorganic fiber molded body. Is.

上記無機繊維成形体を構成する無機繊維としては、平均繊維径が、5〜20μmのものが好ましく、5〜15μmのものがより好ましく、7〜10μmのものがさらに好ましい。
なお、本出願書類において、無機繊維の平均繊維径は、走査型電子顕微鏡(SEM)による断面観察画像において任意に抽出した400箇所の断面径を測定したときの算術平均値を意味する。
As the inorganic fibers constituting the inorganic fiber molded product, those having an average fiber diameter of 5 to 20 μm are preferable, those having an average fiber diameter of 5 to 15 μm are more preferable, and those having an average fiber diameter of 7 to 10 μm are further preferable.
In this application document, the average fiber diameter of the inorganic fiber means an arithmetic mean value when the cross-sectional diameter of 400 points arbitrarily extracted in the cross-sectional observation image by a scanning electron microscope (SEM) is measured.

無機繊維成形体を構成する無機繊維としては、平均繊維長が、20〜300mmであるものが好ましく、40〜200mmであるものがより好ましく、60〜100mmであるものがさらに好ましい。
なお、本出願書類において、無機繊維の平均繊維長は、任意に抽出した400本の無機繊維の繊維長をピーコック社製ダイヤルシックネスゲージで測定したときの算術平均値を意味する。
As the inorganic fibers constituting the inorganic fiber molded product, those having an average fiber length of 20 to 300 mm are preferable, those having an average fiber length of 40 to 200 mm are more preferable, and those having an average fiber length of 60 to 100 mm are further preferable.
In the documents of the present application, the average fiber length of the inorganic fibers means the arithmetic mean value when the fiber lengths of 400 arbitrarily extracted inorganic fibers are measured with a dial thickness gauge manufactured by Peacock.

無機繊維成形体を構成する無機繊維としては、ガラス繊維、シリカ繊維、アルミナ繊維、シリカアルミナ繊維、ロックウール、バサルト繊維、ジルコニア繊維等から選ばれる一種以上を挙げることができ、経済性や入手の容易性等を考慮するとガラス繊維であることが好ましい。 Examples of the inorganic fiber constituting the inorganic fiber molded body include one or more selected from glass fiber, silica fiber, alumina fiber, silica alumina fiber, rock wool, basalt fiber, zirconia fiber and the like, which are economical and available. Glass fiber is preferable in consideration of ease of use and the like.

無機繊維含有マットの基材として無機繊維成形体を採用することにより、無機繊維間の空隙を排気音が粗密波として空気伝搬する際に、空隙壁と摩擦を生じて音圧エネルギーが熱エネルギーに変換される結果、排気音を低減することができる。 By adopting an inorganic fiber molded body as the base material of the inorganic fiber-containing mat, when the exhaust sound propagates through the voids between the inorganic fibers as a coarse and dense wave, friction with the void wall is generated and the sound pressure energy becomes thermal energy. As a result of the conversion, the exhaust noise can be reduced.

本発明に係る排気管用減音構造体において、上記無機繊維成形体としては、無機繊維をニードルパンチ加工してなるニードル加工物が使用される。
上記無機繊維成形体を製造する場合、具体的には、厚み調整ローラにより厚みを調整しながら、無機繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針)を高速で上下に往復動させ、無機繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状の成形体を得ることができる。
In the sound reduction structure for an exhaust pipe according to the present invention, as the inorganic fiber molded body, a needle processed product obtained by needle punching an inorganic fiber is used.
When producing the above-mentioned inorganic fiber molded body, specifically, while adjusting the thickness with a thickness adjusting roller, the inorganic fiber is introduced into the needle punching device, and a large number of needles having barbs (protrusions) are produced at high speed. By reciprocating up and down and entwining (entangled) the inorganic fibers with each other, a felt-like molded body having a porous shape can be obtained.

本発明に係る排気管用減音構造体において、無機繊維含有マットの基材となる無機繊維成形体は、マット厚さ方向に平均化したニードル加工孔の孔径として、全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合が80〜100%である無機繊維のニードル加工物からなり、全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合が85〜100%である無機繊維のニードル加工物からなることが好ましく、全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合が90〜100%である無機繊維のニードル加工物からなることがより好ましい。 In the sound-reducing structure for exhaust pipes according to the present invention, the inorganic fiber molded body that is the base material of the inorganic fiber-containing mat has a hole diameter of 0 in all needle-machined holes as the hole diameter of the needle-machined holes averaged in the mat thickness direction. It consists of an inorganic fiber needle processed product in which the ratio of needle processing holes of .05 to 0.70 mm is 80 to 100%, and the ratio of needle processing holes with a hole diameter of 0.05 to 0.70 mm in all needle processing holes is 85. It is preferably composed of a needle-processed product of an inorganic fiber having a diameter of about 100%, and a needle-processed product of an inorganic fiber in which the ratio of the needle-processed hole having a hole diameter of 0.05 to 0.70 mm to all the needle-processed holes is 90 to 100%. It is more preferable to consist of.

本出願書類において、無機繊維含有成形体の表面に設けられたニードル加工孔の孔径は、X線CT装置(BRUKER社製Skyscan1272Micro-CT)により測定した孔の断層写真より、無機繊維含有成形体の表面(入針面)から裏面までの孔容積を求め、上記無機繊維含有成形体の表面から裏面までの高さと同一の高さを有し上記孔容積と同一の体積を有する円柱に近似したときの円柱の直径を意味する。
また、本出願書類において、全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合(%)は、上記方法により100箇所のニードル加工孔の孔径を測定したときに、下記式により算出される値を意味する。
孔径0.05〜0.70mmのニードル加工孔の割合(%)=(孔径0.05〜0.70mmのニードル加工孔の数/100)×100
In the present application documents, the hole diameter of the needle-processed hole provided on the surface of the inorganic fiber-containing molded body is determined from the tomographic photograph of the hole measured by an X-ray CT device (Skyscan1272 Micro-CT manufactured by BRUKER). When the pore volume from the front surface (needle entry surface) to the back surface is obtained and approximated to a cylinder having the same height as the front surface to the back surface of the inorganic fiber-containing molded body and having the same volume as the pore volume. Means the diameter of the cylinder.
Further, in the present application documents, the ratio (%) of the needle-machined holes having a hole diameter of 0.05 to 0.70 mm in all the needle-machined holes is as follows when the hole diameters of 100 needle-machined holes are measured by the above method. It means the value calculated by the formula.
Percentage of needle machined holes with a hole diameter of 0.05 to 0.70 mm (%) = (number of needle machined holes with a hole diameter of 0.05 to 0.70 mm / 100) x 100

無機繊維成形体からなる基材表面における全ニードル加工孔に占める孔径0.05〜0.15mmのニードル加工孔の割合は、例えば無機繊維成形体の製造時に使用するニードルパンチ装置に装着するニードル(針)の針径を調整することにより制御することができる。 The ratio of the needle-machined holes having a hole diameter of 0.05 to 0.15 mm to the total needle-machined holes on the surface of the base material made of the inorganic fiber-molded body is, for example, a needle to be attached to a needle punching device used when manufacturing the inorganic fiber-molded body. It can be controlled by adjusting the needle diameter of the needle).

本発明に係る排気管用減音構造体において、無機繊維成形体からなる基材表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合が上記範囲内にあることにより、すなわち無機繊維成形体表面における小径のニードル加工孔の割合が高いことにより、無機繊維含有マットの基材として使用したときに、ニードル加工孔による音抜けを抑制して所望の減音(吸音)効果を容易に発揮することができる。 In the sound reduction structure for exhaust pipes according to the present invention, the ratio of the needle-machined holes having a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface of the base material made of the inorganic fiber molded body is within the above range. That is, due to the high proportion of small-diameter needle-machined holes on the surface of the inorganic fiber molded body, when used as a base material for an inorganic fiber-containing mat, sound loss due to the needle-machined holes is suppressed and desired sound reduction (sound absorption) is achieved. The effect can be easily exerted.

断熱性や遮音性を向上させる上では、上記無機繊維成形体の厚み(mm)は、上記内管と外管との距離(mm)以上の長さであることが望ましい。
上記内管と外管との距離(上記内管と外管との間に規定される隙間の幅)に対する上記無機繊維成形体の厚みの割合((無機繊維成形体の厚み(mm)/内管と外管との距離(mm))×100)は、100〜400%であることが好ましく、100〜300%であることがより好ましく、100〜200%であることがさらに好ましい。
上記無機繊維成形体の厚みは、具体的には、5〜15mmが好ましく、6〜12mmがより好ましく、8〜10mmがさらに好ましい。
なお、本出願書類において、無機繊維成形体の厚みは、無機繊維成形体の任意に抽出した10箇所の厚みをピーコック社製ダイヤルシックネスゲージで測定したときの算術平均値を意味し、上記内管と外管との距離も、ピーコック社製ダイヤルシックネスゲージにより測定した値を意味する。
In order to improve the heat insulating property and the sound insulating property, it is desirable that the thickness (mm) of the inorganic fiber molded product is a length equal to or more than the distance (mm) between the inner pipe and the outer pipe.
The ratio of the thickness of the inorganic fiber molded body to the distance between the inner tube and the outer tube (the width of the gap defined between the inner tube and the outer tube) ((thickness (mm) / inner of the inorganic fiber molded body). The distance (mm)) × 100) between the tube and the outer tube is preferably 100 to 400%, more preferably 100 to 300%, and even more preferably 100 to 200%.
Specifically, the thickness of the inorganic fiber molded product is preferably 5 to 15 mm, more preferably 6 to 12 mm, and even more preferably 8 to 10 mm.
In the documents of the present application, the thickness of the inorganic fiber molded body means the arithmetic average value when the thickness of 10 arbitrarily extracted inorganic fiber molded bodies is measured with a dial thickness gauge manufactured by Peacock Co., Ltd. The distance between the tube and the outer tube also means the value measured by the dial thickness gauge manufactured by Peacock.

本発明に係る排気管用減音構造体において、無機繊維成形体の厚みが内管および外管の距離と同等以上であることにより、無機繊維成形体を基材とする無機繊維含有マットが内管(排気用配管)と外管(筒状の遮熱板)との間で押圧された状態で保持されるため、十分な弾性(反発力)を発揮して、外管の振動を好適に抑制しつつ所望の減音性(吸音性)を発揮することができる。 In the sound reduction structure for exhaust pipes according to the present invention, the thickness of the inorganic fiber molded body is equal to or greater than the distance between the inner pipe and the outer pipe, so that the inorganic fiber-containing mat based on the inorganic fiber molded body is the inner pipe. Since it is held in a pressed state between the (exhaust pipe) and the outer pipe (cylindrical heat shield plate), it exerts sufficient elasticity (repulsive force) and appropriately suppresses the vibration of the outer pipe. While doing so, it is possible to exhibit desired sound reduction (sound absorption).

本発明に係る排気管用減音構造体において、無機繊維成形体の嵩密度は、50〜300kg/mが好ましく、80〜200kg/mがより好ましく、100〜160kg/mがさらに好ましい。
本出願書類において、無機繊維成形体の嵩密度は、100mm×100mmに切り出した無機繊維成形体の厚みをノギス等で測定して容積を求め、別途電子天秤により測定した重量を上記容積で除すことによって求めた値を意味する。
In the exhaust pipe down sound structure according to the present invention, the bulk density of the inorganic fiber molded body is preferably 50~300kg / m 3, more preferably 80~200kg / m 3, more preferably 100~160kg / m 3.
In the application documents, the bulk density of the inorganic fiber molded body is obtained by measuring the thickness of the inorganic fiber molded body cut out to 100 mm × 100 mm with a caliper or the like to determine the volume, and the weight separately measured by an electronic balance is divided by the above volume. It means the value obtained by.

本発明に係る排気管用減音構造体において、無機繊維成形体の厚みや嵩密度が上記範囲内にあることにより、無機繊維含有マットが所望の耐熱性や断熱性を発揮して、排気管用減音構造体に対向する車輌本体側の部材の熱劣化を抑制し易くなるとともに、排気管減音構造体の内部温度を容易に一定範囲に制御することができる。 In the sound reduction structure for exhaust pipes according to the present invention, when the thickness and bulk density of the inorganic fiber molded body are within the above ranges, the inorganic fiber-containing mat exhibits desired heat resistance and heat insulating properties, and is reduced for exhaust pipes. It becomes easy to suppress the thermal deterioration of the member on the vehicle body side facing the sound structure, and the internal temperature of the exhaust pipe sound reduction structure can be easily controlled within a certain range.

本発明に係る排気管用減音構造体において、無機繊維含有マットの基材となる無機繊維成形体の通気抵抗は、0.7〜1.5kPa・s/mであることが好ましく、0.8〜1.5kPa・s/mであることがより好ましく、0.8〜1.2kPa・s/mであることがさらに好ましい。 In the sound reduction structure for exhaust pipes according to the present invention, the ventilation resistance of the inorganic fiber molded body as the base material of the inorganic fiber-containing mat is preferably 0.7 to 1.5 kPa · s / m, preferably 0.8. It is more preferably ~ 1.5 kPa · s / m, and even more preferably 0.8 to 1.2 kPa · s / m.

本出願書類において、無機繊維成形体の通気抵抗は、JIS L 1096に規定する通気性A法(フラジール形法)に基づき、測定対象となる無機繊維成形体を、厚さ15mm、嵩密度130kg/mとなるように調整した上で、その主表面に対して垂直方向に差圧0.125kPaで空気を通過させたときにおける空気の流量を流れ抵抗測定器(製品名:KES−F8−AP1、カトーテック(株)製)で測定し、通気抵抗に換算したものを意味する。 In the present application documents, the airflow resistance of the inorganic fiber molded body is based on the breathable A method (Frazier type method) specified in JIS L 1096, and the inorganic fiber molded body to be measured has a thickness of 15 mm and a bulk density of 130 kg /. After adjusting to m 3 , the flow rate of air when air is passed in the direction perpendicular to the main surface at a differential pressure of 0.125 kPa flows through the flow resistance measuring instrument (product name: KES-F8-AP1). , Made by Kato Tech Co., Ltd., and converted to ventilation resistance.

無機繊維成形体として上記通気抵抗を有するものを用いた場合、所望の吸音性を発揮しつつ、優れた耐熱性および断熱性を容易に発揮することができる。 When an inorganic fiber molded product having the above-mentioned ventilation resistance is used, excellent heat resistance and heat insulating properties can be easily exhibited while exhibiting desired sound absorption.

本発明に係る排気管用減音構造体において、無機繊維含有マットは、無機繊維成形体からなる基材中に無機バインダーが分散されてなるものである。 In the sound reduction structure for an exhaust pipe according to the present invention, the inorganic fiber-containing mat is formed by dispersing an inorganic binder in a base material made of an inorganic fiber molded body.

無機バインダーとしては、ベントナイト等の粘度鉱物や、ホウ珪酸ガラス、コロイダルシリカ、コロイダルアルミナ等から選ばれる一種以上を挙げることができる。 Examples of the inorganic binder include one or more selected from viscous minerals such as bentonite, borosilicate glass, colloidal silica, colloidal alumina and the like.

本発明に係る排気管用減音構造体において、無機繊維含有マットは、固形分換算したときに、無機繊維成形体からなる基材95.0〜99.5質量%中に無機バインダー0.5〜5.0質量%が分散されてなるものであり、無機繊維成形体からなる基材97〜99質量%中に無機バインダー1.0〜3.0質量%が分散されてなるものであることが好ましく、無機繊維成形体からなる基材97〜98質量%中に無機バインダー2.0〜3.0質量%が分散されてなるものであることがさらに好ましい。 In the sound reduction structure for exhaust pipes according to the present invention, the inorganic fiber-containing mat has an inorganic binder of 0.5 to 99.5% by mass in a base material of 95.0 to 99.5 mass% made of an inorganic fiber molded body when converted into solid content. 5.0% by mass is dispersed, and 1.0 to 3.0% by mass of the inorganic binder is dispersed in 97 to 99% by mass of the base material made of the inorganic fiber molded body. It is more preferable that the inorganic binder 2.0 to 3.0% by mass is dispersed in 97 to 98% by mass of the base material made of the inorganic fiber molded body.

本発明に係る排気管用減音構造体において、無機繊維含有マットは、無機繊維成形体からなる基材中に無機バインダーが所定量分散されてなるものであることにより、基材を構成する無機繊維の交点に無機バインダーが付着して繊維同士の結束点を増加させ一体性を高めることができる。また、無機繊維含有マットを構成する無機繊維骨格に対し、排気音が粗密波及び横波として振動伝搬(固体伝搬)する際に、上記複数の結束点を中心としてマットを構成する無機繊維を振動変形することにより、機械エネルギー減衰(無機繊維の振動による音圧エネルギーの減衰)を生じさせ、無機繊維含有マットによる減音(吸音)特性を一層高めることができる。
上記固体伝搬音の減衰効果(機械エネルギー減衰効果)は、上述した無機繊維間の空隙を排気音が粗密波として伝搬する際に空隙壁と摩擦を生じて音圧エネルギーが熱エネルギーに変換される空気伝搬音の減衰効果と比較した場合、1kHz以下の低周波数領域における減衰効果が高く、特に300〜500Hzの範囲では支配的な減衰効果を示すと考えられる。
In the sound reduction structure for exhaust pipes according to the present invention, the inorganic fiber-containing mat is formed by dispersing a predetermined amount of an inorganic binder in a base material made of an inorganic fiber molded body, whereby the inorganic fibers constituting the base material are formed. Inorganic binders adhere to the intersections of the fibers to increase the binding points between the fibers and enhance the integrity. Further, when the exhaust sound vibrates (solid-propagates) as a compressional wave and a transverse wave to the inorganic fiber skeleton constituting the inorganic fiber-containing mat, the inorganic fiber constituting the mat is vibrated and deformed around the plurality of binding points. By doing so, mechanical energy attenuation (attenuation of sound pressure energy due to vibration of the inorganic fiber) can be caused, and the sound reduction (sound absorption) characteristic of the inorganic fiber-containing mat can be further enhanced.
The solid-borne sound attenuation effect (mechanical energy attenuation effect) causes friction with the void wall when the exhaust sound propagates through the voids between the inorganic fibers as a coarse and dense wave, and the sound pressure energy is converted into heat energy. Compared with the attenuation effect of airborne sound, the attenuation effect is high in the low frequency region of 1 kHz or less, and it is considered that the attenuation effect is dominant especially in the range of 300 to 500 Hz.

無機繊維成形体量(基材量)に対する無機バインダー量が少な過ぎると上記結束点を十分に形成することができず、無機繊維成形体量(基材量)に対する無機バインダー量が多過ぎると、無機繊維成形体を構成する無機繊維間の隙間全体を埋めるように無機バインダーが分散して無機繊維同士を強固に結着するために、無機繊維の振動による減衰を生じ難くなる。 If the amount of the inorganic binder is too small with respect to the amount of the inorganic fiber molded body (base material amount), the binding point cannot be sufficiently formed, and if the amount of the inorganic binder is too large with respect to the inorganic fiber molded body amount (base material amount), Since the inorganic binder is dispersed so as to fill the entire gap between the inorganic fibers constituting the inorganic fiber molded body and the inorganic fibers are firmly bonded to each other, it is difficult for the inorganic fibers to be attenuated due to vibration.

上記無機バインダーの分散は、例えば、上述した無機繊維成形体中に所望の無機バインダーを含有する分散液を含浸させた後、適宜フェルトローラー等で絞って含浸量を調整したり、乾燥処理を施すこと等により行うことができる。 To disperse the inorganic binder, for example, after impregnating the above-mentioned inorganic fiber molded body with a dispersion liquid containing a desired inorganic binder, the mixture is appropriately squeezed with a felt roller or the like to adjust the impregnation amount or to perform a drying treatment. It can be done by things such as.

本発明に係る排気管用減音構造体において、無機繊維含有マットは、無機繊維成形体からなる基材の片側主表面上に、通気抵抗が1.8〜2.6kPa・s/mである無機多孔質膜を有している。 In the sound reduction structure for exhaust pipes according to the present invention, the inorganic fiber-containing mat is an inorganic material having a ventilation resistance of 1.8 to 2.6 kPa · s / m on one main surface of a base material made of an inorganic fiber molded body. It has a porous membrane.

無機多孔質膜としては、ベントナイト含有膜等から選ばれる一種以上を挙げることができ、ベントナイト含有膜であることが好ましい。 Examples of the inorganic porous membrane include one or more selected from bentonite-containing membranes and the like, and bentonite-containing membranes are preferable.

本出願において、無機多孔質膜とは、上記ベントナイト等の無機多孔性物質を無機バインダーとして含有する膜を意味する。
ベントナイト(Bentonite)は、モンモリロナイトを主成分とし、石英、α-クリストバライト、オパール等の珪酸鉱物を副成分として、長石、マイカ、ゼオライト等の珪酸塩鉱物、カルサイト、ドロマイト、ジプサム等の炭酸塩鉱物や硫酸塩鉱物、パイライト等の硫化鉱物を含み得る弱アルカリ性粘土鉱物である。
In the present application, the inorganic porous membrane means a membrane containing an inorganic porous substance such as bentonite as an inorganic binder.
Bentonite contains montmorillonite as the main component and silicate minerals such as quartz, α-Christovalite, and opal as subcomponents, silicate minerals such as pebbles, mica, and zeolite, and carbonate minerals such as calcite, dolomite, and gypsham. It is a weakly alkaline clay mineral that can contain sulfide minerals such as sulphate minerals and pyrite.

無機多孔質膜は、無機バインダーを、85〜100質量%含むものであることが好ましく、90〜100質量%含むものであることがより好ましく、95.0〜100質量%含むものであることがさらに好ましい。 The inorganic porous membrane preferably contains an inorganic binder in an amount of 85 to 100% by mass, more preferably 90 to 100% by mass, and even more preferably 95.0 to 100% by mass.

本発明に係る排気管用減音構造体において、無機多孔質膜の厚みは、10〜1,000μmであることが好ましく、100〜1,000μmであることがより好ましく、200〜500μmであることがさらに好ましい。 In the sound reduction structure for an exhaust pipe according to the present invention, the thickness of the inorganic porous membrane is preferably 10 to 1,000 μm, more preferably 100 to 1,000 μm, and more preferably 200 to 500 μm. More preferred.

本発明に係る排気管用減音構造体において、無機多孔質膜の厚みは、無機繊維含有マットの断面をマイクロスコープで50箇所観察したときの算術平均値を意味する。 In the sound-reducing structure for exhaust pipes according to the present invention, the thickness of the inorganic porous membrane means an arithmetic mean value when the cross section of the inorganic fiber-containing mat is observed at 50 points with a microscope.

本発明に係る排気管用減音構造体において、無機多孔質膜の開孔率は、0.01〜2.00%であることが好ましく、0.01〜1.00%であることがより好ましく、0.01〜0.50%であることがさらに好ましい。
また、本発明に係る排気管用減音構造体において、無機多孔質膜の開孔径は、0.1〜400.0μmであることが好ましく、0.1〜100.0μmであることがより好ましく、0.1〜10.0μmであることがさらに好ましい。
In the sound reduction structure for exhaust pipes according to the present invention, the aperture ratio of the inorganic porous membrane is preferably 0.01 to 2.00%, more preferably 0.01 to 1.00%. , 0.01 to 0.50%, more preferably.
Further, in the sound reduction structure for an exhaust pipe according to the present invention, the opening diameter of the inorganic porous membrane is preferably 0.1 to 400.0 μm, more preferably 0.1 to 100.0 μm. It is more preferably 0.1 to 10.0 μm.

本発明に係る排気管用減音構造体において、無機多孔質膜の開孔率は、無機多孔質膜の表面をSEM(日本電子(株)、JSF−6300A)で観察した際に、(得られたSEM画像における100μm×100μmの観察範囲を画像解析処理して白黒二値化処理し、白色で表される検出粒子面積を除いて黒色部分の面積を孔部(隙間)面積として近似計算した凝集無機バインダー粒子間の孔部全面積/無機多孔質膜の面積)×100により算出される開孔割合の任意の50箇所における算術平均値を意味する。 In the sound reduction structure for exhaust pipes according to the present invention, the pore size of the inorganic porous membrane was obtained when the surface of the inorganic porous membrane was observed with SEM (JEOL Ltd., JSF-6300A). The observation range of 100 μm × 100 μm in the SEM image was subjected to image analysis processing and black-and-white binarization processing, and the area of the black portion was approximately calculated as the pore (gap) area excluding the detection particle area represented by white. It means the arithmetic average value at any 50 points of the pore opening ratio calculated by (total area of pores between inorganic binder particles / area of inorganic porous film) × 100.

また、本出願書類において、無機多孔質膜の開孔径は、無機多孔質膜の表面を上記SEM観察した際に、得られたSEM画像における100μm×100μmの観察範囲を画像解析処理して白黒二値化処理し、白色で表される検出粒子間に形成される黒色で表示される任意の50箇所の孔部の面積を各々求めた上で、各孔部面積と同一の面積を有する円の直径を凝集無機バインダー粒子間の孔部直径として個々に求めたときの、算術平均値を意味する。 Further, in the present application documents, the opening diameter of the inorganic porous film is black and white by performing image analysis processing on the observation range of 100 μm × 100 μm in the obtained SEM image when the surface of the inorganic porous film is observed by the above SEM. After digitizing and determining the area of each of the 50 holes displayed in black formed between the detection particles represented in white, a circle having the same area as each hole area. It means the arithmetic mean value when the diameter is individually calculated as the pore diameter between the aggregated inorganic binder particles.

無機多孔質膜は、特に上記膜厚の範囲内において、無機繊維成形体と同程度の柔軟性を発揮して、無機繊維含有マットの構成被膜として自動車用排気管の内管および外管間に屈曲させて配設する際も、無機繊維成形体と一体となって変形させつつ容易に配設することができる。 The inorganic porous film exhibits the same degree of flexibility as the inorganic fiber molded body, especially within the above-mentioned film thickness range, and is used as a constituent film of the inorganic fiber-containing mat between the inner pipe and the outer pipe of the exhaust pipe for automobiles. Even when it is bent and arranged, it can be easily arranged while being integrally deformed with the inorganic fiber molded body.

本発明に係る排気管用減音構造体において、無機繊維成形体からなる基材の主表面上に設けられる無機多孔質膜の通気抵抗は、1.8〜2.6kPa・s/mであり、1.8〜2.5kPa・s/mであることが好ましく、1.8〜2.3kPa・s/mであることがより好ましい。 In the sound reduction structure for an exhaust pipe according to the present invention, the ventilation resistance of the inorganic porous membrane provided on the main surface of the base material made of the inorganic fiber molded body is 1.8 to 2.6 kPa · s / m. It is preferably 1.8 to 2.5 kPa · s / m, and more preferably 1.8 to 2.3 kPa · s / m.

本出願書類において、無機多孔質膜の通気抵抗は、無機バインダーを塗布した無機繊維成形体を、厚さ15mm、嵩密度130kg/mとなるように調整した上で、JIS L1096に規定する通気性A法(フラジール形法)に基づいて、塗布面側から上記無機繊維成形体の主表面に対して垂直方向に差圧0.125kPaで空気を通過させたときにおける空気の流量を、流れ抵抗測定器(カトーテック(株)製、製品名:KES−F8−AP1)で測定し、通気抵抗に換算したものを意味する。 In the present application documents, the aeration resistance of the inorganic porous film is adjusted so that the inorganic fiber molded body coated with the inorganic binder has a thickness of 15 mm and a bulk density of 130 kg / m 3, and then the aeration specified in JIS L1096. Based on the property A method (Frazier type method), the flow resistance of the air flow rate when air is passed from the coated surface side in the direction perpendicular to the main surface of the inorganic fiber molded body at a differential pressure of 0.125 kPa. It means the one measured by a measuring instrument (manufactured by Kato Tech Co., Ltd., product name: KES-F8-AP1) and converted into airflow resistance.

本発明に係る排気管用減音構造体において、無機多孔質膜は、無機繊維成形体に無機バインダー含有液を塗布して膜形成する際に、固形分が凝集、固定して形成し得るものであり、膜を構成する微小粒子間に形成される隙間によって通気性を発揮することができる。
無機多孔質膜の通気抵抗は、無機バインダー含有液に含まれる無機バインダーの濃度を調整すること等により容易に制御することができる。
In the sound-reducing structure for an exhaust pipe according to the present invention, the inorganic porous film can be formed by aggregating and fixing the solid content when the inorganic binder-containing liquid is applied to the inorganic fiber molded body to form the film. Yes, the air permeability can be exhibited by the gaps formed between the fine particles constituting the membrane.
The ventilation resistance of the inorganic porous membrane can be easily controlled by adjusting the concentration of the inorganic binder contained in the inorganic binder-containing liquid or the like.

本発明に係る排気管用減音構造体は、上記所定の通気抵抗を有する無機多孔質膜の膜振動による共鳴効果(共振効果)により減音特性を一層向上させることができる。 The sound reduction structure for an exhaust pipe according to the present invention can further improve the sound reduction characteristics by the resonance effect (resonance effect) due to the membrane vibration of the inorganic porous film having the predetermined ventilation resistance.

片側表面に無機多孔質膜を設けた無機繊維含有マットは、Helmfortz型の膜振動(共振)特性を有すると考えられ、子安勝(遮音・吸音材料の理論と複合材料、日本複合材料学会誌 第2巻 第4号(1976))の報告に基づけば、本発明に係る無機繊維含有マットの吸音性能の共振周波数の極大値(構造共振周波数)fも、下記式(1)で表し得ると考えられる。 Inorganic fiber-containing mats with an inorganic porous film on one side are considered to have Helmfortz-type membrane vibration (resonance) characteristics, and Katsutoshi Koyasu (Theory of Sound Insulation / Absorption Materials and Composite Materials, Journal of the Japan Society for Composite Materials) Based on the report of Vol. 2, No. 4 (1976)), the maximum value (structural resonance frequency) f 0 of the resonance frequency of the sound absorption performance of the inorganic fiber-containing mat according to the present invention can also be expressed by the following equation (1). Conceivable.

(但し、f:構造共振周波数(Hz)
c :音速(m/s)
p :無機多孔質膜の開孔率
t :無機多孔質膜の厚み(m)
d :無機繊維含有マットの開孔径(m)
L :無機繊維含有マットの厚さ(m)
である。)
(However, f 0 : structural resonance frequency (Hz)
c: Speed of sound (m / s)
p: Pore opening ratio of the inorganic porous membrane t: Thickness of the inorganic porous membrane (m)
d: Opening diameter (m) of the inorganic fiber-containing mat
L: Thickness of mat containing inorganic fiber (m)
Is. )

そして、上記無機繊維含有マットの開孔径dに関し、無機繊維含有マットを構成する無機繊維成形体および無機多孔質膜のいずれもが開孔部を有する場合について鋭意検討したところ、上記無機繊維含有マットの開孔径dは、実験的に下記式(2)で近似し得ることを見出した。 Then, with respect to the opening diameter d of the inorganic fiber-containing mat, a case where both the inorganic fiber molded body and the inorganic porous film constituting the inorganic fiber-containing mat had an open portion was examined diligently. As a result, the inorganic fiber-containing mat was examined. It was found experimentally that the opening diameter d of the above can be approximated by the following equation (2).

d=−0.6892T+Tr0 (2)
(但し、d:無機繊維含有マットの開孔径(m)
:無機多孔質膜の通気抵抗(kPa・s/m)
r0:無機繊維成形体の通気抵抗(kPa・s/m)
である。)
d = -0.6892T r + T r0 (2)
(However, d: Opening diameter (m) of the inorganic fiber-containing mat
Tr : Ventilation resistance of inorganic porous membrane (kPa · s / m)
Tr0 : Ventilation resistance of inorganic fiber molded product (kPa · s / m)
Is. )

上式(1)に上式(2)を代入して整理することにより、下記式(3)が導かれる。
(但し、f:構造共振周波数(Hz)
c :音速(m/s)
p :無機多孔質膜の開孔率
t :無機多孔質膜の厚み(m)
:無機多孔質膜の通気抵抗(kPa・s/m)
r0 :無機繊維成形体の通気抵抗(kPa・s/m)
L :無機繊維含有マットの厚さ(m)
である。)
By substituting the above equation (2) into the above equation (1) and rearranging it, the following equation (3) is derived.
(However, f 0 : structural resonance frequency (Hz)
c: Speed of sound (m / s)
p: Pore opening ratio of the inorganic porous membrane t: Thickness of the inorganic porous membrane (m)
Tr : Ventilation resistance of inorganic porous membrane (kPa · s / m)
Tr0 : Ventilation resistance of inorganic fiber molded product (kPa · s / m)
L: Thickness of mat containing inorganic fiber (m)
Is. )

上式(3)より、音速cとともに、無機多孔質膜の開孔率p、無機多孔質膜の厚みt、無機繊維成形体の通気抵抗Tr0、無機繊維含有マットの厚さLが一定値を採る場合、無機多孔質膜の通気抵抗Tを制御することにより、無機繊維含有マットの共振周波数の極大値である構造共振周波数fを任意に規定し得ることが分かる。
従って、本発明に係る排気管用減音構造体においては、無機多孔質膜の通気抵抗Tを所定範囲内に制御することにより、無機繊維含有マットの構造共振周波数fを1kHz以下の周波数に制御して、1kHz以下の低周波領域における吸音特性(減音特性)を効果的に向上し得ると考えられる。
From the above equation (3), along with the sound velocity c, the pore size p of the inorganic porous membrane, the thickness t of the inorganic porous membrane, the ventilation resistance Tr0 of the inorganic fiber molded body, and the thickness L of the inorganic fiber-containing mat are constant values. It can be seen that the structural resonance frequency f 0 , which is the maximum value of the resonance frequency of the inorganic fiber-containing mat, can be arbitrarily specified by controlling the ventilation resistance Tr of the inorganic porous membrane.
Therefore, in the sound reduction structure for the exhaust pipe according to the present invention, the structural resonance frequency f 0 of the inorganic fiber-containing mat is set to a frequency of 1 kHz or less by controlling the ventilation resistance Tr of the inorganic porous membrane within a predetermined range. It is considered that the sound absorption characteristic (sound reduction characteristic) in the low frequency region of 1 kHz or less can be effectively improved by controlling.

片側主表面に無機多孔質膜を設けた無機繊維含有マットは、内部に無機バインダーが分散された無機繊維成形体の片側主表面に、無機バインダー含有液を塗布することにより作製することができる。
無機バインダー含有液としては、無機バインダーを含有する水溶液を挙げることができる。無機バインダー含有液中の無機バインダー濃度は、0.5〜5.0質量%であることが好ましい。
無機バインダー含有液の塗布方法は特に制限されず、スプレー塗布または刷毛塗りおよびローラー塗布等の方法を挙げることができる。
An inorganic fiber-containing mat provided with an inorganic porous film on one side main surface can be produced by applying an inorganic binder-containing liquid to one side main surface of an inorganic fiber molded body in which an inorganic binder is dispersed inside.
Examples of the inorganic binder-containing liquid include an aqueous solution containing an inorganic binder. The concentration of the inorganic binder in the inorganic binder-containing liquid is preferably 0.5 to 5.0% by mass.
The method of applying the inorganic binder-containing liquid is not particularly limited, and examples thereof include spray coating, brush coating, and roller coating.

本発明に係る排気管用減音構造体において、無機繊維含有マットの厚みは、5〜30mmであり、5〜20mmであることが好ましく、5〜10mmであることがより好ましい。 In the sound reduction structure for an exhaust pipe according to the present invention, the thickness of the inorganic fiber-containing mat is 5 to 30 mm, preferably 5 to 20 mm, and more preferably 5 to 10 mm.

本出願書類において、無機繊維含有マットの厚みは、無機繊維含有マットの任意に抽出した10か所の厚みをピーコック社製ダイヤルシックネスゲージで測定したときの算術平均値を意味する。 In the present application documents, the thickness of the inorganic fiber-containing mat means an arithmetic mean value when the thicknesses of 10 arbitrarily extracted inorganic fiber-containing mats are measured with a dial thickness gauge manufactured by Peacock.

本発明に係る排気管用減音構造体によれば、厚さが薄くても特に1kHz以下の低周波音に対して十分な減音性能を有するとともに優れた耐熱性および断熱性を発揮することができる。 According to the sound reduction structure for an exhaust pipe according to the present invention, even if the thickness is thin, it is possible to have sufficient sound reduction performance especially for low frequency sound of 1 kHz or less and to exhibit excellent heat resistance and heat insulation. it can.

本発明に係る排気管用減音構造体において、無機繊維含有マットは、無機多孔質膜が設けられた面が内管に面するように配置され、このように無機多孔質膜が設けられた面が内管に面するように配置されることにより、1kHz以下の低周波領域における吸音特性を効果的に向上させることができる。 In the sound reduction structure for the exhaust pipe according to the present invention, the inorganic fiber-containing mat is arranged so that the surface provided with the inorganic porous membrane faces the inner pipe, and the surface provided with the inorganic porous membrane in this way. Is arranged so as to face the inner tube, so that the sound absorption characteristics in the low frequency region of 1 kHz or less can be effectively improved.

本発明によれば、所定厚さを有する無機繊維成形体からなる基材によって耐熱性および断熱性とともに吸音(減音)特性を発揮させ、係る減音特性を、所定の通気抵抗を有する無機多孔質膜の膜振動による共鳴効果、小径のニードル加工孔による音抜けの抑制および所定量の無機バインダーによる無機繊維間の結束点増加に伴う振動減衰性(無機繊維の振動による音圧エネルギーの減衰効果)により一層高めることができる。
このため、本発明によれば、厚さが薄くても特に1kHz以下の低周波音に対して十分な減音性能を有するとともに耐熱性および断熱性に優れた新規な排気管用減音構造体を提供することができる。
According to the present invention, a base material made of an inorganic fiber molded body having a predetermined thickness exerts sound absorption (sound reduction) characteristics as well as heat resistance and heat insulation, and the sound reduction characteristics are exhibited by an inorganic porous body having a predetermined ventilation resistance. Resonance effect due to membrane vibration of the quality film, suppression of sound omission by small diameter needle processing holes, and vibration damping due to increase of binding points between inorganic fibers by a predetermined amount of inorganic binder (damping effect of sound pressure energy due to vibration of inorganic fibers) ) Can be further enhanced.
Therefore, according to the present invention, a new sound-reducing structure for an exhaust pipe, which has sufficient sound-reducing performance especially for low-frequency sounds of 1 kHz or less even if the thickness is thin, and has excellent heat resistance and heat insulation. Can be provided.

以下、本発明を実施例および比較例によりさらに詳細に説明するが、本発明は以下の例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following examples.

(実施例1)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が10質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.2mm、開孔率0.5%、通気抵抗2.3kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(Example 1)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 10% by mass is roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded body obtained in (2), and the coated surface is coated. A bentonite-containing film (thickness 0.2 mm, pore opening rate 0.5%, ventilation resistance) was formed on the inner main surface of the glass fiber molded body by winding the glass fiber molded body in a cylindrical shape and then drying the glass fiber molded body. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole was obtained, forming 3 kPa · s / m and a bentonite content of 100% by mass).

(4)ガラス繊維含有マットの充填工程
図1に示すように、内管(排気用配管)2として、長手方向の側壁全体に複数の開口部が設けられたパンチングメタル状になっているSUS管(内径38mm、外径40mm)を用意するとともに、外管(筒上の遮熱板)3として、SUS管(内径60mm、外径62mm)を用意した。
上記内管2と外管3とを同軸状に配置したとき、両者間には幅10mmの隙間が形成される。
図1に示すように、実施例1で得られたガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(4) Filling Process of Glass Fiber-Containing Mat As shown in FIG. 1, the inner pipe (exhaust pipe) 2 is a SUS pipe in the shape of a punching metal having a plurality of openings provided on the entire side wall in the longitudinal direction. (Inner diameter 38 mm, outer diameter 40 mm) was prepared, and a SUS pipe (inner diameter 60 mm, outer diameter 62 mm) was prepared as the outer pipe (heat shield plate on the cylinder) 3.
When the inner pipe 2 and the outer pipe 3 are arranged coaxially, a gap having a width of 10 mm is formed between them.
As shown in FIG. 1, by inserting the glass fiber-containing mat obtained in Example 1 into the gap between the inner tube 2 and the outer tube 3, the inner tube and the outer tube have a coaxial double cylindrical structure. A sound reduction structure 1 for an exhaust pipe in which a mat material is arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(吸音性評価)
上記排気管用減音構造体1の吸音特性を、図5に示す方法により測定した。
すなわち、図5に示すように、上記排気管用減音構造体1の両端部に、内径が内管2の内径と同径の筒状体TおよびTを内管2と同軸状に配置するとともに、筒状体TおよびTに音入射側A,B/音透過側C,Dの2本づつコンデンサーマイクMを配置した。この状態で、筒状体Tの端部にスピーカー(Fostex社製103E)Sを配置し、排気管用減音構造体1の内管2内に向けてランダムノイズを発生させたときの、排気管用減音構造体1の前後に配置したコンデンサーマイクM、M間の音圧レベルを四端子法で測定し、別途測定したマット材挿入前における音圧レベルとの差分を各周波数毎の透過損失として求めた。
周波数800Hz〜2000Hzにおける透過損失を図3に示す。
(Sound absorption evaluation)
The sound absorption characteristics of the exhaust pipe sound reduction structure 1 were measured by the method shown in FIG.
That is, as shown in FIG. 5, tubular bodies T 1 and T 2 having an inner diameter equal to the inner diameter of the inner pipe 2 are arranged coaxially with the inner pipe 2 at both ends of the exhaust pipe sound reduction structure 1. At the same time, two condenser microphones M on the sound incident side A and B / sound transmission side C and D were arranged on the tubular bodies T 1 and T 2 . In this state, when the speaker (Fostex Co. 103E) S was placed at the end of the tubular body T 1, was generated random noise toward the exhaust pipe down sound structure 1 of the inner tube 2, the exhaust The sound pressure level between the condenser microphones M and M arranged before and after the sound reduction structure 1 for pipes is measured by the four-terminal method, and the difference from the separately measured sound pressure level before inserting the mat material is the transmission loss for each frequency. Asked as.
The transmission loss at frequencies of 800 Hz to 2000 Hz is shown in FIG.

図3より、実施例1で得られた排気管用減音構造体1は、内部に所定量の無機バインダーが分散された所定のニードル加工孔を有するガラス繊維成形体からなる基材の表面にベントナイト含有膜を設けてなるものであることにより、耐熱性および断熱性に優れるとともに、厚さが薄くても特に800Hz〜1.25kHz付近の低周波領域における透過損失(減音量)に優れることが分かる。 From FIG. 3, the sound-reducing structure 1 for an exhaust pipe obtained in Example 1 has bentonite on the surface of a base material made of a glass fiber molded body having a predetermined needle-processed hole in which a predetermined amount of an inorganic binder is dispersed therein. It can be seen that the film containing the film is excellent in heat resistance and heat insulating property, and is excellent in transmission loss (volume reduction) especially in the low frequency region around 800 Hz to 1.25 kHz even if the thickness is thin. ..

上記減音特性は、ガラス繊維成形体の表面に設けたベントナイト含有膜により、Helmfortz型の膜振動(共振)特性を有するバネ効果を生じ、特に800Hzから1.25kHzの低周波数域の振動減衰がより大きくなったために生じたものと考えられる。 As for the sound reduction characteristic, the bentonite-containing film provided on the surface of the glass fiber molded body causes a spring effect having a Helmfortz type film vibration (resonance) characteristic, and particularly vibration attenuation in the low frequency range of 800 Hz to 1.25 kHz. It is probable that it was caused by the larger size.

(比較例1)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.85 mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合20%以下)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、0.3kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が5.0質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で5.0質量%になるように調整した上で、断面直径が60mmとなるように円筒状に巻き付け処理した後乾燥処理して、内部にベントナイトを含浸、分散させた全体形状が円筒形状を有する厚さ10mmの無機バインダー含有ガラス繊維成形体を得た。
(3)無機バインダー含有ガラス繊維成形体の充填工程
実施例1の(4)において、ガラス繊維含有マットに代えて上記(3)で得られた無機バインダー含有ガラス繊維成形体を内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された比較用排気管用減音構造体を作製した。
(Comparative Example 1)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.85 mm) up and down at high speed and entwining (entangled) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg /) m 3 , the ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to all needle-machined holes on the surface (20% or less) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 0.3 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 5.0% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 5.0% by mass, the glass is wound into a cylindrical shape so that the cross-sectional diameter is 60 mm, and then dried, and the inside is impregnated with bentonite and dispersed to form a cylindrical shape. An inorganic binder-containing glass fiber molded body having a thickness of 10 mm was obtained.
(3) Filling Step of Inorganic Binder-Containing Glass Fiber Molded Body In (4) of Example 1, instead of the glass fiber-containing mat, the inorganic binder-containing glass fiber molded body obtained in the above (3) is used as the inner tube 2 and the outer tube. By inserting it into the gap with the pipe 3, a sound-reducing structure for a comparative exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and a mat material arranged between the inner pipe and the outer pipe was produced. ..

(吸音性評価)
実施例1記載の吸音性評価において、排気管用減音構造体1に代えて上記比較用排気管用減音構造体を用いた以外は、実施例1と同様にして吸音性を評価した。
周波数800Hz〜2000Hzにおける透過損失を図3に示す。
(Sound absorption evaluation)
In the sound absorption evaluation described in Example 1, the sound absorption was evaluated in the same manner as in Example 1 except that the comparison exhaust pipe sound reduction structure was used instead of the exhaust pipe sound reduction structure 1.
The transmission loss at frequencies of 800 Hz to 2000 Hz is shown in FIG.

図3より、比較例1で得られた無機バインダー含有ガラス繊維成形体は、表面にベントナイト含有膜を有さないことから、特に低周波領域における減音性能に劣ることが分かる。 From FIG. 3, it can be seen that the inorganic binder-containing glass fiber molded product obtained in Comparative Example 1 is inferior in sound reduction performance particularly in the low frequency region because it does not have a bentonite-containing film on the surface.

(比較例2)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が8.5質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.2mm、開孔率0.7 %、通気抵抗1.5kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Comparative Example 2)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 8.5% by mass was roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded product obtained in (2). A bentonite-containing film (thickness 0.2 mm, pore opening rate 0.7%, ventilation resistance) is applied to the inner main surface of the glass fiber molded body by winding it in a cylindrical shape with the coated surface on the inner peripheral surface side and then drying it. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole, which formed 1.5 kPa · s / m and a bentonite content of 100% by mass) was obtained.
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(比較例3)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が9質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.2mm、開孔率0.6%、通気抵抗1.75kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Comparative Example 3)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 9% by mass is roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded body obtained in (2), and the coated surface is coated. A bentonite-containing film (thickness 0.2 mm, pore size 0.6%, ventilation resistance 1.) was formed on the inner main surface of the glass fiber molded body by winding it in a cylindrical shape with the inner peripheral surface side as the inner peripheral surface side and then drying it. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole was obtained, forming 75 kPa · s / m and having a bentonite content of 100% by mass).
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(実施例2)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58 mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が9.5質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.17mm、開孔率0.55%、通気抵抗1.83kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Example 2)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg /) m 3 , the ratio of needle-machined holes having a hole diameter of 0.05 to 0.70 mm to all needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 9.5% by mass was roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded product obtained in (2). By winding the coated surface in a cylindrical shape on the inner peripheral surface side and then drying it, a bentonite-containing film (thickness 0.17 mm, pore opening rate 0.55%, ventilation resistance) is applied to the inner main surface of the glass fiber molded body. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole was obtained, forming 1.83 kPa · s / m and bentonite content (100% by mass).
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(実施例3)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が10質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.18mm、開孔率0.55 %、通気抵抗1.9 kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Example 3)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 10% by mass is roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded body obtained in (2), and the coated surface is coated. A bentonite-containing film (thickness 0.18 mm, pore size 0.55%, ventilation resistance 1.) was formed on the inner main surface of the glass fiber molded body by winding it in a cylindrical shape with the inner peripheral surface side and then drying it. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole was obtained with 9 kPa · s / m and a bentonite content of 100% by mass).
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(実施例4)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が10質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.19mm、開孔率0.55 %、通気抵抗2.05kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Example 4)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 10% by mass is roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded body obtained in (2), and the coated surface is coated. A bentonite-containing film (thickness 0.19 mm, pore size 0.55%, ventilation resistance 2.) was formed on the inner main surface of the glass fiber molded body by winding it in a cylindrical shape with the inner peripheral surface side as the inner peripheral surface side and then drying it. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole, which formed 05 kPa · s / m and a bentonite content of 100% by mass) was obtained.
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(実施例5)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が10質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.18mm、開孔率0.5%、通気抵抗2.1 kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Example 5)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 10% by mass is roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded body obtained in (2), and the coated surface is coated. A bentonite-containing film (thickness 0.18 mm, pore size 0.5%, ventilation resistance 2.) was formed on the inner main surface of the glass fiber molded body by winding the glass fiber molded body in a cylindrical shape and then drying the glass fiber molded body. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole was obtained, which formed 1 kPa · s / m and a bentonite content of 100% by mass).
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(比較例4)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が5.0質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.2mm、開孔率2.5%、通気抵抗1.2kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Comparative Example 4)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 5.0% by mass was roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded product obtained in (2). A bentonite-containing film (thickness 0.2 mm, pore opening rate 2.5%, ventilation resistance) is applied to the inner main surface of the glass fiber molded body by winding it in a cylindrical shape with the coated surface on the inner peripheral surface side and then drying it. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole was obtained with 1.2 kPa · s / m and a bentonite content of 100% by mass).
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(比較例5)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を複数枚積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が7.5質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.2mm、開孔率2.1%、通気抵抗1.4kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Comparative Example 5)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when a plurality of the above-mentioned glass fiber molded bodies were laminated and pressurized, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 7.5% by mass was roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded product obtained in (2). A bentonite-containing film (thickness 0.2 mm, pore opening rate 2.1%, ventilation resistance) is applied to the inner main surface of the glass fiber molded body by winding it in a cylindrical shape with the coated surface on the inner peripheral surface side and then drying it. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole was obtained, forming 1.4 kPa · s / m and having a bentonite content of 100% by mass).
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(比較例6)
(1)ガラス繊維成形体の作製工程
厚み調整ローラにより厚みを調整しながら、平均繊維径10μm、平均繊維長100mmのガラス繊維をニードルパンチ装置に導入し、バーブ(突起)を有する多数のニードル(針径0.58mm)を高速で上下に往復動させ、ガラス繊維同士を絡み合わせる(交絡させる)ことにより、多孔質形状を有するフェルト状のガラス繊維成形体(厚さ6mm、嵩密度100kg/m、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合95%)を得た。
また、上記ガラス繊維成形体を積層し、加圧して、厚さ15mm、嵩密度130kg/mで通気抵抗を測定したところ、1.0kPa・s/mであった。
(2)無機バインダーの含浸工程
上記厚さ6mmのガラス繊維成形体に対し、ベントナイト含有濃度が2.5質量%である水分散液を含浸させ、フェルトローラーで絞ることで含浸量を固形分換算で2.5質量%になるように調整した後、乾燥処理して、内部にベントナイトを含浸、分散させた無機バインダー含有ガラス繊維成形体(ガラス繊維成形体の含有割合97.5質量%、ベントナイトの含有割合2.5質量%)を得た。
(3)ベントナイト含有膜の形成工程
次いで、(2)で得られた無機バインダー含有ガラス繊維成形体の片側主表面上に、ベントナイト濃度が12.5質量%である水分散液をローラ塗布し、塗布面を内周面側として円筒状に巻き付け処理した後乾燥処理することにより、ガラス繊維成形体の内側主表面にベントナイト含有膜(厚さ0.2mm、開孔率0.005%、通気抵抗2.7kPa・s/m、ベントナイト含有率100質量%)を形成した、全体形状が円筒形状を有するガラス繊維含有マット(厚さ10mm、内径40mm、外径60mm)を得た。
(4)ガラス繊維含有マットの充填工程
上記(3)で得られたガラス繊維含有マットを用い、実施例1(4)と同様にして、ガラス繊維含有マットを内管2および外管3との隙間に挿入することにより、内管および外管の同軸二重円筒構造を有し、内管および外管間にマット材が配置された排気管用減音構造体1を作製した。
なお、上記ガラス繊維含有マットを内管2および外管3間の隙間に挿入する際、ベントナイト含有膜が設けられた面が内管に面するように配置した。
(Comparative Example 6)
(1) Manufacturing process of glass fiber molded body While adjusting the thickness with a thickness adjusting roller, glass fibers having an average fiber diameter of 10 μm and an average fiber length of 100 mm are introduced into a needle punching device, and a large number of needles having barbs (protrusions) (protrusions). By reciprocating (needle diameter 0.58 mm) up and down at high speed and entwining (interlacing) the glass fibers with each other, a felt-like glass fiber molded body having a porous shape (thickness 6 mm, bulk density 100 kg / m) 3. The ratio of needle-machined holes with a hole diameter of 0.05 to 0.70 mm to the total needle-machined holes on the surface (95%) was obtained.
Further, when the above-mentioned glass fiber molded bodies were laminated and pressed, and the ventilation resistance was measured at a thickness of 15 mm and a bulk density of 130 kg / m 3 , it was 1.0 kPa · s / m.
(2) Impregnation Step of Inorganic Binder The glass fiber molded body having a thickness of 6 mm is impregnated with an aqueous dispersion having a bentonite content of 2.5% by mass and squeezed with a felt roller to convert the impregnation amount into solid content. After adjusting to 2.5% by mass, it was dried and impregnated with bentonite inside, and dispersed in an inorganic binder-containing glass fiber molded body (content ratio of glass fiber molded body 97.5% by mass, bentonite). Content ratio of 2.5% by mass) was obtained.
(3) Step of Forming Bentonite-Containing Film Next, an aqueous dispersion having a bentonite concentration of 12.5% by mass was roller-coated on one side of the main surface of the inorganic binder-containing glass fiber molded product obtained in (2). A bentonite-containing film (thickness 0.2 mm, pore size 0.005%, ventilation resistance) is formed on the inner main surface of the glass fiber molded body by winding it in a cylindrical shape with the coated surface on the inner peripheral surface side and then drying it. A glass fiber-containing mat (thickness 10 mm, inner diameter 40 mm, outer diameter 60 mm) having a cylindrical shape as a whole was obtained, forming 2.7 kPa · s / m and a bentonite content of 100% by mass).
(4) Filling Step of Glass Fiber-Containing Mat Using the glass fiber-containing mat obtained in (3) above, the glass fiber-containing mat is combined with the inner tube 2 and the outer tube 3 in the same manner as in Example 1 (4). By inserting it into the gap, a sound reduction structure 1 for an exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe and having a mat material arranged between the inner pipe and the outer pipe was produced.
When the glass fiber-containing mat was inserted into the gap between the inner tube 2 and the outer tube 3, the surface provided with the bentonite-containing film was arranged so as to face the inner tube.

(吸音性評価)
実施例1記載の吸音性評価において、実施例2〜実施例5のいずれかで得られた排気管用減音構造体1(通気抵抗が、各々、1.83kPa・s/m(実施例2)、1.9kPa・s/m(実施例3)、2.05kPa・s/m(実施例4)、2.1kPa・s/m(実施例5)であるベントナイト含有膜を有するガラス繊維含有マットを使用)を用いた以外は、実施例1と同様にして吸音性を測定した。
その上で、実施例1〜実施例5における800Hz-1.25kHz間における透過損失のOA値(dB和)を各々求めた。
上記方法により各々測定した、各排気管用減音構造体1を構成するガラス繊維含有マットの透過損失のOA値(dB和)を、各ガラス繊維含有マットの表面に設けたベントナイト含有膜の通気抵抗に対してプロットした結果を図4に示す。
また、実施例1記載の吸音性評価において、比較例2〜比較例6のいずれかで得られた排気管用減音構造体1(通気抵抗が、各々、1.5kPa・s/m(比較例2)、1.75kPa・s/m(比較例3)、1.2kPa・s/m(比較例4)、1.4kPa・s/m(比較例5)および2.7kPa・s/m(比較例6)であるベントナイト含有膜を有するガラス繊維含有マットを使用)を用いた以外は、実施例1と同様にして、吸音性を測定して、800Hz-1.25kHz間における透過損失のOA値(dB和)を各々求めた。
上記方法により各々測定した、各排気管用減音構造体1を構成するガラス繊維含有マットの透過損失のOA値(dB和)を、各ガラス繊維含有マットの表面に設けたベントナイト含有膜の通気抵抗に対してプロットした結果を図4に示す。
(Sound absorption evaluation)
In the sound absorption evaluation described in Example 1, the sound reduction structure 1 for exhaust pipes obtained in any of Examples 2 to 5 (ventilation resistance is 1.83 kPa · s / m (Example 2), respectively). A glass fiber-containing mat having a bentonite-containing film of 1.9 kPa · s / m (Example 3), 2.05 kPa · s / m (Example 4), and 2.1 kPa · s / m (Example 5). The sound absorption property was measured in the same manner as in Example 1 except that the above was used.
Then, the OA value (dB sum) of the transmission loss between 800 Hz and 1.25 kHz in Examples 1 to 5 was determined.
The OA value (dB sum) of the transmission loss of the glass fiber-containing mats constituting the sound reduction structure 1 for each exhaust pipe measured by the above methods is the ventilation resistance of the bentonite-containing film provided on the surface of each glass fiber-containing mat. The result of plotting against is shown in FIG.
Further, in the sound absorption evaluation described in Example 1, the sound reduction structure 1 for the exhaust pipe (ventilation resistance is 1.5 kPa · s / m, respectively, obtained in any of Comparative Examples 2 to 6 (Comparative Example). 2) 1.75 kPa · s / m (Comparative Example 3), 1.2 kPa · s / m (Comparative Example 4), 1.4 kPa · s / m (Comparative Example 5) and 2.7 kPa · s / m (Comparative Example 5). The sound absorption property was measured in the same manner as in Example 1 except that the glass fiber-containing mat having a bentonite-containing film (comparative example 6) was used, and the transmission loss OA between 800 Hz and 1.25 kHz was used. The values (dB sum) were calculated respectively.
The OA value (dB sum) of the transmission loss of the glass fiber-containing mats constituting the sound reduction structure 1 for each exhaust pipe measured by the above methods is the ventilation resistance of the bentonite-containing film provided on the surface of each glass fiber-containing mat. The result of plotting against is shown in FIG.

図4に示す実施例および比較例の透過損失を対比することより、特にベントナイト含有膜の通気抵抗が1.8〜2.6kPa・s/mである場合に、透過損失(減音特性)に優れることが分かる。 By comparing the transmission losses of the examples and comparative examples shown in FIG. 4, the transmission loss (sound reduction characteristic) is particularly high when the ventilation resistance of the bentonite-containing membrane is 1.8 to 2.6 kPa · s / m. It turns out to be excellent.

本発明によれば、厚さが薄くても特に1kHz以下の低周波音に対して十分な減音性能を有するとともに耐熱性および断熱性に優れた新規な排気管用減音構造体を提供することができる。 According to the present invention, it is possible to provide a novel sound-reducing structure for an exhaust pipe, which has sufficient sound-reducing performance especially for low-frequency sound of 1 kHz or less even if the thickness is thin, and has excellent heat resistance and heat insulation. Can be done.

1 排気管用減音構造体
2 内管(排気用配管)
3 外管(筒状の遮熱板)
3a 上部遮熱板
3b 下部遮熱板
4 ガラス繊維含有マット
1 Sound reduction structure for exhaust pipe 2 Inner pipe (exhaust pipe)
3 Outer pipe (cylindrical heat shield)
3a Upper heat shield 3b Lower heat shield 4 Glass fiber-containing mat

Claims (4)

内管および外管の同軸二重円筒構造を有する自動車用排気管の前記内管および外管間に配置された無機繊維含有マットを有する排気管用減音構造体であって、
前記無機繊維含有マットが、無機繊維成形体からなる基材中に無機バインダーが分散されてなるとともに、前記無機繊維成形体からなる基材の片側主表面上に、通気抵抗が1.8〜2.6kPa・s/mである無機多孔質膜を有し、
前記無機繊維成形体からなる基材が、表面における全ニードル加工孔に占める孔径0.05〜0.70mmのニードル加工孔の割合が80〜100%である無機繊維のニードル加工物からなり、
前記無機繊維含有マットが、固形分換算したときに、前記無機繊維成形体からなる基材95.0〜99.5質量%中に前記無機バインダー0.5〜5.0質量%が分散されてなるものであるとともに、前記無機多孔質膜が設けられた面が前記内管に面するように配置された、厚さ5〜30mmのものである
ことを特徴とする排気管用減音構造体。
A sound reduction structure for an exhaust pipe having an inorganic fiber-containing mat arranged between the inner pipe and the outer pipe of an automobile exhaust pipe having a coaxial double cylindrical structure of an inner pipe and an outer pipe.
The inorganic fiber-containing mat has an inorganic binder dispersed in a base material made of an inorganic fiber molded body, and has a ventilation resistance of 1.8 to 2 on one side main surface of the base material made of the inorganic fiber molded body. It has an inorganic porous membrane of .6 kPa · s / m and has.
The base material made of the inorganic fiber molded body is made of an inorganic fiber needle processed product in which the ratio of the needle processed holes having a hole diameter of 0.05 to 0.70 mm to all the needle processed holes on the surface is 80 to 100%.
When the inorganic fiber-containing mat is converted into a solid content, 0.5 to 5.0% by mass of the inorganic binder is dispersed in 95.0 to 99.5% by mass of a base material made of the inorganic fiber molded body. A sound-reducing structure for an exhaust pipe, characterized in that the surface provided with the inorganic porous film is arranged so as to face the inner pipe, and the thickness is 5 to 30 mm.
前記無機繊維成形体からなる基材の通気抵抗が0.7〜1.5kPa・s/mである請求項1に記載の排気管用減音構造体。 The sound reduction structure for an exhaust pipe according to claim 1, wherein the ventilation resistance of the base material made of the inorganic fiber molded body is 0.7 to 1.5 kPa · s / m. 前記無機繊維含有マットがガラス繊維含有マットである請求項1または請求項2に記載の排気管用減音構造体。 The sound reduction structure for an exhaust pipe according to claim 1 or 2, wherein the inorganic fiber-containing mat is a glass fiber-containing mat. 前記無機多孔質膜がベントナイト含有膜である請求項1〜請求項3のいずれかに記載の排気管用減音構造体。 The sound reduction structure for an exhaust pipe according to any one of claims 1 to 3, wherein the inorganic porous membrane is a bentonite-containing membrane.
JP2019086046A 2019-04-26 2019-04-26 Sound reduction structure for exhaust pipe Active JP6831422B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019086046A JP6831422B2 (en) 2019-04-26 2019-04-26 Sound reduction structure for exhaust pipe
PCT/JP2020/014391 WO2020217862A1 (en) 2019-04-26 2020-03-27 Noise reduction structure for exhaust pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019086046A JP6831422B2 (en) 2019-04-26 2019-04-26 Sound reduction structure for exhaust pipe

Publications (2)

Publication Number Publication Date
JP2020180604A JP2020180604A (en) 2020-11-05
JP6831422B2 true JP6831422B2 (en) 2021-02-17

Family

ID=72942025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019086046A Active JP6831422B2 (en) 2019-04-26 2019-04-26 Sound reduction structure for exhaust pipe

Country Status (2)

Country Link
JP (1) JP6831422B2 (en)
WO (1) WO2020217862A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127894B1 (en) 2021-03-08 2022-08-30 中川産業株式会社 Manufacturing method for vehicle muffler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133613A1 (en) * 2008-04-30 2009-11-05 イビデン株式会社 Mat material, process for producing the same, muffler and process for manufacturing muffler
JP2018028314A (en) * 2016-08-12 2018-02-22 ニチアス株式会社 Sound absorption structure and manufacturing method of sound absorption structure
JPWO2018174180A1 (en) * 2017-03-24 2019-12-12 イビデン株式会社 Sound absorbing material and vehicle parts

Also Published As

Publication number Publication date
JP2020180604A (en) 2020-11-05
WO2020217862A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US11608014B2 (en) Sound-absorbing material
CN110997486A (en) Protective cover
WO2020217862A1 (en) Noise reduction structure for exhaust pipes
JPWO2019004153A1 (en) Soundproofing covering and engine unit
WO2020217863A1 (en) Inorganic-fiber containing mat and noise reduction structure for exhaust pipe
JP4290376B2 (en) Soundproof insulation and method for producing the same
WO2021145366A1 (en) Sound-absorbing heat-shielding cover and engine unit
EP3605524A1 (en) Sound-absorbing material and vehicle component
JP6936597B2 (en) Vehicle parts
JP2568839B2 (en) High durability sound absorbing insulation
US11932178B2 (en) Sound-absorbing material
RU2646238C1 (en) Acoustic device
JP6929532B2 (en) Soundproof panel
CN105931630A (en) Composite sound absorption structure for improving metal fiber felt low frequency sound absorption performance
Belakova et al. Non-Wovens as Sound Reducers
CN110775240A (en) Detachable marine silencing ventilation pipe
RU2623584C2 (en) Plate noise suppressor to channel fans
JP3302497B2 (en) Three-dimensional soundproof and heat insulating plate
JP2018141431A (en) Sound reduction structure for exhaust pipe sub-muffler, and exhaust pipe sub-muffler
JP3253798B2 (en) Three-dimensional soundproof and heat insulating plate
Stodola et al. Noise reduction in the cab of a Special Vehicle
Yilmaz et al. Biocomposite Structures as Sound Absorber Materials
RU2643889C1 (en) Multi-section noise suppressor
RU2309266C2 (en) Noise silencer member
JPH08200043A (en) Muffler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210128

R150 Certificate of patent or registration of utility model

Ref document number: 6831422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250