JP6823398B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP6823398B2
JP6823398B2 JP2016153088A JP2016153088A JP6823398B2 JP 6823398 B2 JP6823398 B2 JP 6823398B2 JP 2016153088 A JP2016153088 A JP 2016153088A JP 2016153088 A JP2016153088 A JP 2016153088A JP 6823398 B2 JP6823398 B2 JP 6823398B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
current collector
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016153088A
Other languages
Japanese (ja)
Other versions
JP2017033937A (en
Inventor
水野 雄介
雄介 水野
健一 川北
健一 川北
都藤 靖泰
靖泰 都藤
康裕 進藤
康裕 進藤
大澤 康彦
康彦 大澤
雄樹 草地
雄樹 草地
佐藤 一
一 佐藤
赤間 弘
弘 赤間
堀江 英明
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Publication of JP2017033937A publication Critical patent/JP2017033937A/en
Application granted granted Critical
Publication of JP6823398B2 publication Critical patent/JP6823398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は電池セルを複数積層してなる積層型電池モジュールを有する電池に関する。 The present invention relates to a battery having a stacked battery module formed by stacking a plurality of battery cells.

リチウムイオン(二次)電池は、高容量で小型軽量な二次電池として、近年様々な用途に多用されている。一般的なリチウムイオン電池は、正極及び負極を構成する略平板状の集電体の一面に正極活物質及び負極活物質をそれぞれ設けた後で熱処理してこれら正極活物質及び負極活物質を乾燥させ、正極活物質と負極活物質との間に必要であればセパレータを挾んでこれら正極活物質と負極活物質を積層することで略平板状のリチウム二次単電池を製造し、このリチウム二次単電池を複数層積層して積層型電池モジュールとして構成されていた。 Lithium-ion (secondary) batteries have been widely used in various applications in recent years as high-capacity, compact and lightweight secondary batteries. In a general lithium ion battery, a positive electrode active material and a negative electrode active material are provided on one surface of a substantially flat current collector constituting the positive electrode and the negative electrode, and then heat treatment is performed to dry the positive electrode active material and the negative electrode active material. Then, if necessary, a separator is sandwiched between the positive electrode active material and the negative electrode active material, and these positive electrode active materials and the negative electrode active material are laminated to produce a substantially flat lithium secondary cell. It was configured as a stacked battery module by stacking multiple layers of next cell cells.

リチウム二次単電池を複数層積層して積層型電池モジュールのリチウムイオン電池を構成する場合、使用時にリチウム二次単電池相互の位置関係がずれると積層型電池モジュールの特性に変動が生じる可能性があるので、積層型電池モジュールの製造時にこれらリチウム二次単電池の相対的位置関係を固定しておくことが好ましい。このため、リチウム二次単電池の厚さ方向に貫通する貫通孔を形成してこの貫通孔に電極端子を設け、この電極端子により積層されたリチウム二次単電池を一体化する技術が提案されている(特許文献1参照)。 When a lithium-ion battery of a stacked battery module is constructed by stacking multiple layers of lithium secondary batteries, the characteristics of the stacked battery module may fluctuate if the positional relationship between the lithium secondary batteries deviates during use. Therefore, it is preferable to fix the relative positional relationship of these lithium secondary batteries at the time of manufacturing the laminated battery module. Therefore, a technique has been proposed in which a through hole penetrating in the thickness direction of the lithium secondary cell is formed, an electrode terminal is provided in the through hole, and the lithium secondary cell laminated by the electrode terminal is integrated. (See Patent Document 1).

特開平9−259860号公報Japanese Unexamined Patent Publication No. 9-259860

しかしながら、上述した従来のリチウム二次単電池の厚さ方向に貫通孔を形成して積層されたリチウム二次単電池の相対的な位置関係を固定する手法を採用した場合、正極、負極活物質はバインダー樹脂によって固定されているため、ドリル等によりリチウム二次単電池に貫通孔を形成する際に正極、負極活物質層にひびが入る、割れる等の欠陥が生じる可能性があり、また貫通孔を形成しても積層するリチウム二次単電池の相対的位置関係を固定することが困難であるという課題があった。 However, when the above-mentioned method of forming through holes in the thickness direction of the conventional lithium secondary batteries to fix the relative positional relationship of the laminated lithium secondary batteries is adopted, the positive electrode and negative electrode active materials are used. Is fixed by a binder resin, so when a through hole is formed in the lithium secondary cell by a drill or the like, defects such as cracks and cracks in the positive electrode and negative electrode active material layers may occur, and penetration may occur. There is a problem that it is difficult to fix the relative positional relationship of the lithium secondary batteries to be laminated even if the holes are formed.

上述した課題は、リチウムイオン電池に限らず、活物質をバインダーで固定した電池セルを複数積層してなる積層型電池モジュール及びこの積層型電池モジュールを用いた電池一般に当てはまる課題である。 The above-mentioned problems are not limited to lithium-ion batteries, but are generally applicable to a laminated battery module in which a plurality of battery cells in which an active material is fixed with a binder are laminated, and a battery using the laminated battery module.

本発明は上述した課題に鑑みてなされたものであり、正極、負極活物質層に欠陥を生じることなく、積層された状態の電池セルの相対的位置決め及び固定を容易にすることの可能な電池の提供を、その目的の一つとしている。 The present invention has been made in view of the above-mentioned problems, and a battery capable of facilitating relative positioning and fixing of stacked battery cells without causing defects in the positive electrode and negative electrode active material layers. Is one of the purposes.

本発明は、電池セルを直列に複数積層してなる積層電池セル構造を含む積層型電池モジュールを有する電池であって、電池セルが、正極集電体の表面に正極電極活物質と電解液とを含む正極電極組成物層が形成された平板状正極と、負極集電体の表面に負極電極活物質と電解液とを含む負極電極組成物層が形成された平板状負極とがセパレータを介して積層されてなる。正極電極組成物層及び負極電極組成物層は、活物質の表面の少なくとも一部に被覆用樹脂を含む被覆層を有する被覆活物質を含有する。そして、電池セルに、正極集電体と負極集電体とを貫いて前記電池セルの厚さ方向に延在し、内壁が貫通孔とされた筒状のシール部材と、シール部材の端面にそれぞれ形成された第1及び第2の係合部とを設け、すくなくとも2つの電池セルが、それぞれの電池セルの正極集電体と負極集電体とが隣接するように積層された際に、それぞれの電池セルに設けられた貫通孔が一体に連なり、かつ、一方の電池セルの第1の係合部と第2の係合部とが互いに係合され、さらに、積層型電池モジュールを、積層型電池モジュールを貫通する貫通孔に挿入された締結具と電池外装容器に設けられた固定孔とにより電池外装容器に固定することにより、上述の課題の少なくとも一つを解決している。 The present invention is a battery having a laminated battery module including a laminated battery cell structure in which a plurality of battery cells are laminated in series, and the battery cell has a positive electrode active material and an electrolytic solution on the surface of a positive electrode current collector. A flat plate-shaped positive electrode on which a positive electrode composition layer containing the above is formed and a flat plate-shaped negative electrode on which a negative electrode composition layer containing a negative electrode active material and an electrolytic solution are formed on the surface of a negative electrode current collector are interposed via a separator. It is laminated. The positive electrode composition layer and the negative electrode composition layer contain a coating active material having a coating layer containing a coating resin on at least a part of the surface of the active material. Then, in the battery cell, a tubular seal member that penetrates the positive and negative current collectors and extends in the thickness direction of the battery cell and has an inner wall as a through hole, and an end face of the seal member. When the first and second engaging portions formed respectively are provided and at least two battery cells are laminated so that the positive and negative current collectors of the respective battery cells are adjacent to each other. Through holes provided in each battery cell are integrally connected, and the first engaging portion and the second engaging portion of one battery cell are engaged with each other, and further, a laminated battery module is provided. At least one of the above-mentioned problems is solved by fixing to the battery outer container by the fastener inserted into the through hole penetrating the laminated battery module and the fixing hole provided in the battery outer container.

以上の構成を有する電池は、貫通孔の端部の近傍にそれぞれ形成された第1及び第2の係合部が互いに係合した状態で積層され、かつ、それぞれの電池セルに設けられた貫通孔が一体に連なる。 The batteries having the above configuration are laminated in a state where the first and second engaging portions formed in the vicinity of the end portions of the through holes are engaged with each other, and are provided in the respective battery cells. The holes are connected together.

ここで、第1の係合部が突部であり、前記第2の係合部が凹部であることが好ましい。 Here, the first engagement portion is a projection, it said second engaging portion is concave der Rukoto preferred.

さらに、正極電極組成物層及び負極電極組成物層は導電性繊維を含むことが好ましく、さらに、導電性繊維は炭素繊維であることが好ましい。

Further, the positive electrode composition layer and the negative electrode composition layer preferably contain conductive fibers, and further, the conductive fibers are preferably carbon fibers.

本発明によれば、積層された状態の電池セルの相対的位置決め及び固定を容易にすることの可能な電池を正極、負極活物質層に欠陥を生じることなく提供することができる。
According to the present invention, it is possible to provide a battery capable of facilitating relative positioning and fixing of stacked battery cells without causing defects in the positive electrode and negative electrode active material layers.

本発明の一実施形態であるリチウム二次単電池を示す一部破断斜視図である。It is a partially broken perspective view which shows the lithium secondary cell which is one Embodiment of this invention. 一実施形態のリチウム二次単電池の製造工程の概略を示す図である。It is a figure which shows the outline of the manufacturing process of the lithium secondary cell of one Embodiment. 一実施形態のリチウム二次単電池が適用された積層型電池モジュールを示す断面図である。It is sectional drawing which shows the laminated battery module to which the lithium secondary cell of one Embodiment was applied. 一実施形態のリチウム二次単電池が適用されたリチウムイオン電池を示す断面図である。It is sectional drawing which shows the lithium ion battery to which the lithium secondary cell of one Embodiment was applied. 一実施形態のリチウムイオン電池が自動車に収納された状態を示す概念図である。It is a conceptual diagram which shows the state which the lithium ion battery of one Embodiment is housed in an automobile. 一実施形態のリチウムイオン電池が住宅に設置された状態を示す斜視図である。It is a perspective view which shows the state which the lithium ion battery of one Embodiment is installed in a house.

(一実施形態)
図1、図3及び図4を参照して、本発明の一実施形態である電池セル、積層型電池モジュール及びこの積層型電池モジュールが適用された電池について説明する。
(One Embodiment)
A battery cell, a stacked battery module, and a battery to which the stacked battery module is applied according to an embodiment of the present invention will be described with reference to FIGS. 1, 3 and 4.

図1は、本発明の一実施形態であるリチウム二次単電池を示す一部破断斜視図、図3は一実施形態のリチウム二次単電池が適用された積層型電池モジュールを示す断面図、図4は一実施形態のリチウム二次単電池が適用されたリチウムイオン電池を示す断面図である。 FIG. 1 is a partially cutaway perspective view showing a lithium secondary battery according to an embodiment of the present invention, and FIG. 3 is a sectional view showing a laminated battery module to which the lithium secondary battery of one embodiment is applied. FIG. 4 is a cross-sectional view showing a lithium ion battery to which the lithium secondary cell of one embodiment is applied.

これら図において、本発明が適用される電池である、本実施形態のリチウムイオン電池Lは、本発明が適用される電池セルである外形略平板状のリチウム二次単電池1が複数枚直列に積層されてなる積層型電池モジュール20が、リチウムイオン電池Lの外殻をなす中空の箱状の電池外装容器21内に収納されて構成されている。 In these figures, the lithium ion battery L of the present embodiment, which is the battery to which the present invention is applied, has a plurality of substantially flat plate-shaped lithium secondary cell 1s, which are the battery cells to which the present invention is applied, in series. The laminated battery module 20 formed by stacking is housed in a hollow box-shaped battery outer container 21 forming the outer shell of the lithium ion battery L.

ここで、本発明においてリチウム二次単電池とは、正極電極活物質と電解液とを含む正極電極組成物層を正極集電体の表面に形成した正極と、負極電極活物質と電解液とを含む負極電極組成物層を負極集電体の表面に形成した負極とがセパレータを介して積層された構造を有し、電池容器、端子配置及び電子制御装置等を備えていない電池である。なお、リチウム二次単電池は単電池と略する場合がある。 Here, in the present invention, the lithium secondary cell is a positive electrode having a positive electrode composition layer containing a positive electrode active material and an electrolytic solution formed on the surface of a positive electrode current collector, and a negative electrode active material and an electrolytic solution. It is a battery having a structure in which a negative electrode having a negative electrode composition layer containing the above electrode formed on the surface of a negative electrode current collector is laminated via a separator, and is not provided with a battery container, a terminal arrangement, an electronic control device, or the like. The lithium secondary cell may be abbreviated as a cell.

リチウム二次単電池1は、図1に詳細を示すように、略矩形平板状の正極集電体7の表面に正極電極活物質と電解液とを含む略平板状の正極電極組成物層5が形成された正極2と、同様に略矩形平板状の負極集電体8の表面に負極電極活物質と電解液とを含む略平板状の負極電極組成物層6が形成された負極3とが、同様に略平板状のセパレータ4を介して積層されて構成され、全体として略矩形平板状に形成されている。これにより、対向する正極集電体7及び負極集電体8を最外層に有するリチウム二次単電池1が構成される。 As shown in detail in FIG. 1, the lithium secondary cell 1 has a substantially flat plate-shaped positive electrode composition layer 5 containing a positive electrode active material and an electrolytic solution on the surface of a substantially rectangular flat plate-shaped positive electrode current collector 7. And the negative electrode 3 in which the substantially flat plate-shaped negative electrode composition layer 6 containing the negative electrode active material and the electrolytic solution is formed on the surface of the substantially rectangular flat plate-shaped negative electrode current collector 8. However, similarly, they are laminated with each other via a substantially flat plate-shaped separator 4, and are formed in a substantially rectangular flat plate shape as a whole. As a result, the lithium secondary cell 1 having the opposite positive electrode current collector 7 and the negative electrode current collector 8 in the outermost layer is configured.

より詳細には、正極電極組成物層5及び負極電極組成物層6は、リチウム二次単電池1の厚さ方向に延在する外形略矩形枠状のシール部材9内に形成されており、また、セパレータ4の端部もこのシール部材9内に埋め込まれている。そして、正極集電体7及び負極集電体8は、それぞれ図1において正極電極組成物層5の上面及び負極電極組成物層6の下面を覆うように設けられているとともに、シール部材9の上面及び下面も覆うように設けられている。 More specifically, the positive electrode composition layer 5 and the negative electrode composition layer 6 are formed in a seal member 9 having a substantially rectangular frame shape extending in the thickness direction of the lithium secondary cell 1. Further, the end portion of the separator 4 is also embedded in the seal member 9. The positive electrode current collector 7 and the negative electrode current collector 8 are provided so as to cover the upper surface of the positive electrode composition layer 5 and the lower surface of the negative electrode composition layer 6 in FIG. 1, respectively, and the seal member 9 is provided. It is provided so as to cover the upper surface and the lower surface.

正極電極組成物層5及び負極電極組成物層6は、それぞれ活物質の表面の少なくとも一部に被覆用樹脂を含む被覆層を有する被覆活物質を含有する。 The positive electrode composition layer 5 and the negative electrode composition layer 6 each contain a coating active material having a coating layer containing a coating resin on at least a part of the surface of the active material.

正極集電体7及び負極集電体8は、シール部材9により所定間隔をもって対向するように位置決めされているとともに、セパレータ4と正極集電体7及び負極集電体8もシール部材9により所定間隔をもって対向するように位置決めされている。 The positive electrode current collector 7 and the negative electrode current collector 8 are positioned so as to face each other at predetermined intervals by the seal member 9, and the separator 4, the positive electrode current collector 7, and the negative electrode current collector 8 are also predetermined by the seal member 9. They are positioned so as to face each other at intervals.

正極集電体7とセパレータ4との間の間隔、及び、負極集電体8とセパレータ4との間の間隔はリチウムイオン電池の容量に応じて調整され、これら正極集電体7、負極集電体8及びセパレータ4の位置関係は必要な間隔が得られるように定められている。 The distance between the positive electrode current collector 7 and the separator 4 and the distance between the negative electrode current collector 8 and the separator 4 are adjusted according to the capacity of the lithium ion battery, and these positive electrode current collector 7 and the negative electrode collector are adjusted. The positional relationship between the electric body 8 and the separator 4 is determined so that the required spacing can be obtained.

図1及び図3に示すように、リチウム二次単電池1には、正極2、負極3及びセパレータ4を貫通してリチウム二次単電池1の厚さ方向に延在する円筒形のシール部材10が、その積層方向に挿入されている。そして、円筒形のシール部材10の周壁により、正極2、負極3及びセパレータ4を貫通する貫通孔11が形成されている。図1に最もよく示されるように、正極集電体7には(及び図示されていないが負極集電体8にも)、シール部材10に対応する部分に孔7aが形成されており、これにより、シール部材10の図1及び図3において上下端面は正極及び負極集電体7、8から露出されている。 As shown in FIGS. 1 and 3, the lithium secondary cell 1 has a cylindrical sealing member that penetrates the positive electrode 2, the negative electrode 3, and the separator 4 and extends in the thickness direction of the lithium secondary cell 1. 10 is inserted in the stacking direction. Then, a through hole 11 penetrating the positive electrode 2, the negative electrode 3, and the separator 4 is formed by the peripheral wall of the cylindrical seal member 10. As best shown in FIG. 1, the positive electrode current collector 7 (and also the negative electrode current collector 8 (not shown)) has a hole 7a formed in a portion corresponding to the seal member 10. As a result, the upper and lower end surfaces of the seal member 10 in FIGS. 1 and 3 are exposed from the positive electrode and negative electrode current collectors 7 and 8.

そして、貫通孔11の両端部であるシール部材10の図1及び図3において上下端面のそれぞれには、互いに係合可能な第1の係合部である凸部12及び第2の係合部である凹部13が形成されている。より詳細には、シール部材10の凸部12は、シール部材10本体より小径の円筒状に形成されているとともに、シール部材10の凹部13は、この凸部12の直径と略同一またはやや小径の円筒状に形成されている。これにより、図3に示すように、リチウム二次単電池1が上下に積層された状態で、上下に隣り合うリチウム二次単電池1の凸部12及び凹部13が互いに係合され、その積層位置が位置決めされる。そして、図3に示すように、シール部材10に形成された貫通孔11は上下方向に連なり、略一体化された貫通孔が形成される。 Then, in FIGS. 1 and 3 of the seal member 10 which is both ends of the through hole 11, the convex portions 12 and the second engaging portions, which are the first engaging portions that can be engaged with each other, are attached to the upper and lower end surfaces, respectively. The recess 13 is formed. More specifically, the convex portion 12 of the seal member 10 is formed in a cylindrical shape having a smaller diameter than the main body of the seal member 10, and the concave portion 13 of the seal member 10 has substantially the same or slightly smaller diameter as the diameter of the convex portion 12. It is formed in the shape of a cylinder. As a result, as shown in FIG. 3, in a state where the lithium secondary cell 1s are stacked one above the other, the convex portions 12 and the concave portions 13 of the vertically adjacent lithium secondary cell 1s are engaged with each other, and the stacking thereof is performed. The position is positioned. Then, as shown in FIG. 3, the through holes 11 formed in the seal member 10 are connected in the vertical direction to form substantially integrated through holes.

加えて、リチウム二次単電池1の四隅にあたるシール部材9の4つの隅部9aは、それぞれ図1に示すように内方に(つまり正極2、負極3に向かって)膨出され、膨出された隅部9aにも、貫通孔11と同様な貫通孔14が形成されている。本実施形態では、シール部材9の隅部9aは円柱の一部をなすような形状に形成されている。また、図1に最もよく示されるように、正極集電体7には(及び図示されていないが負極集電体8にも)、シール部材9の隅部9aに対応する部分に切欠7bが形成されており、これにより、シール部材9の隅部9aの図1及び図3において上下端面は正極及び負極集電体7、8から露出されている。 In addition, the four corners 9a of the seal member 9, which correspond to the four corners of the lithium secondary cell 1, are each bulged inward (that is, toward the positive electrode 2 and the negative electrode 3) as shown in FIG. A through hole 14 similar to the through hole 11 is also formed in the corner portion 9a. In the present embodiment, the corner portion 9a of the seal member 9 is formed in a shape forming a part of a cylinder. Further, as best shown in FIG. 1, the positive electrode current collector 7 (and the negative electrode current collector 8 (not shown) also has a notch 7b in a portion corresponding to the corner 9a of the seal member 9. As a result, the upper and lower end surfaces of the corner portion 9a of the seal member 9 are exposed from the positive electrode and negative electrode current collectors 7 and 8 in FIGS. 1 and 3.

そして、このシール部材9の隅部9aの図1において上下端面のそれぞれには、互いに係合可能な第1の係合部である凸部15及び第2の係合部である凹部16が形成されている。より詳細には、シール部材9の隅部9aの凸部15及び凹部16は、上述のシール部材10の凸部12及び凹部13と略同一形状に形成されており、これにより、リチウム二次単電池1が上下に積層された状態で、上下に隣り合うリチウム二次単電池1の凸部15及び凹部16、さらには凸部12及び凹部13が互いに係合され、その積層位置が位置決めされる。そして、図示は省略するが、シール部材9の隅部9aに形成された貫通孔14も上下方向に連なり、略一体化された貫通孔が形成される。 Then, in FIG. 1 of the corner portion 9a of the seal member 9, a convex portion 15 which is a first engaging portion and a concave portion 16 which is a second engaging portion are formed on each of the upper and lower end surfaces. Has been done. More specifically, the convex portion 15 and the concave portion 16 of the corner portion 9a of the seal member 9 are formed to have substantially the same shape as the convex portion 12 and the concave portion 13 of the seal member 10 described above, whereby the lithium secondary unit is formed. In a state where the batteries 1 are stacked one above the other, the convex portions 15 and the concave portions 16 of the lithium secondary cell 1s adjacent to each other, and the convex portions 12 and the concave portions 13 are engaged with each other, and the laminated positions thereof are positioned. .. Although not shown, the through holes 14 formed in the corners 9a of the seal member 9 are also connected in the vertical direction to form substantially integrated through holes.

本実施形態では、1つのリチウム二次単電池1に設けられた凸部12、15及び凹部13、16は、図1に示すように計6個であるが、その個数及び形成位置に限定はなく、図3のように上下に重畳されたリチウム二次単電池1の積層位置が位置決めされることを条件に、任意の個数及び形成位置が選択可能である。好ましくは、後述するように積層型電池モジュール20及びリチウムイオン電池Lの一体化及び熱拡散の観点からは、正極2、負極3及びセパレータ4を貫通する位置に少なくとも一つのシール部材10及び凸部12、凹部13が形成されることが好ましい。 In the present embodiment, the convex portions 12, 15 and the concave portions 13 and 16 provided in one lithium secondary cell 1 are a total of six as shown in FIG. 1, but the number and formation position thereof are limited. Instead, as shown in FIG. 3, an arbitrary number and formation positions can be selected on condition that the stacking positions of the lithium secondary batteries 1 superimposed on the top and bottom are positioned. Preferably, as will be described later, from the viewpoint of integration and heat diffusion of the laminated battery module 20 and the lithium ion battery L, at least one sealing member 10 and a convex portion are positioned so as to penetrate the positive electrode 2, the negative electrode 3 and the separator 4. 12. It is preferable that the recess 13 is formed.

正極電極活物質を構成する正極活物質粒子としては、リチウムと遷移金属との複合酸化物(例えばLiCoO2、LiNiO2、LiMnO2及びLiMn24)、遷移金属酸化物(例えばMnO2及びV25)、遷移金属硫化物(例えばMoS2及びTiS2)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ−p−フェニレン及びポリカルバゾール)等が挙げられる。 The positive electrode active material particles constituting the positive electrode active material include composite oxides of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), and transition metal oxides (for example, MnO 2 and V). 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene and polycarbazole) and the like.

また、負極電極活物質を構成する負極活物質粒子としては、黒鉛、難黒鉛化性炭素、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリキノリン等)、スズ、シリコン、及び金属合金(例えばリチウム−スズ合金、リチウム−シリコン合金、リチウム−アルミニウム合金及びリチウム−アルミニウム−マンガン合金等)、リチウムと遷移金属との複合酸化物(例えばLi4Ti512等)等が挙げられる。 The negative electrode active material particles constituting the negative electrode active material include graphite, non-graphitizable carbon, amorphous carbon, a fired polymer compound (for example, a calcined phenol resin, furan resin, etc. and carbonized). Coke (eg pitch coke, needle coke and petroleum coke), carbon fibers, conductive polymers (eg polyacetylene and polyquinolin), tin, silicon, and metal alloys (eg lithium-tin alloys, lithium-silicon alloys, lithium) -Aluminum alloys and lithium-aluminum-manganese alloys, etc.), composite oxides of lithium and transition metals (eg, Li 4 Ti 5 O 12, etc.) and the like.

本実施形態のリチウム二次単電池1において、正極電極組成物層5及び負極電極組成物層6は、それぞれ正極、負極活物質粒子の表面の少なくとも一部に被覆用樹脂を含む被覆層を有する被覆活物質を含む。活物質の表面にある被覆層は、貫通孔を空ける時に生じる応力を緩和することができるため、正極及び負極活物質層である正極電極組成物層5及び負極電極組成物層6に、欠陥を生じることなく、固定用の貫通孔を設けることが可能となる。 In the lithium secondary cell 1 of the present embodiment, the positive electrode composition layer 5 and the negative electrode composition layer 6 have a coating layer containing a coating resin on at least a part of the surfaces of the positive electrode and negative electrode active material particles, respectively. Contains coating active material. Since the coating layer on the surface of the active material can relieve the stress generated when the through holes are formed, defects are formed in the positive electrode composition layer 5 and the negative electrode composition layer 6 which are the positive electrode and negative electrode active material layers. It is possible to provide a through hole for fixing without occurring.

活物質粒子の表面が被覆用樹脂で被覆されていると、電極の体積変化が緩和され、電極の膨脹を抑制することができる。
被覆用樹脂としては、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート等が挙げられる。電解液の吸液性と貫通孔の加工性等の観点から、これらの中ではビニル樹脂、ウレタン樹脂、ポリエステル樹脂又はポリアミド樹脂が好ましく、電解液に浸漬した際の吸液率が10%以上であるものが更に好ましい。
When the surface of the active material particles is coated with the coating resin, the volume change of the electrode is alleviated and the expansion of the electrode can be suppressed.
Examples of the coating resin include vinyl resin, urethane resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, silicone resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, and polycarbonate. From the viewpoint of the liquid absorption property of the electrolytic solution and the processability of the through holes, vinyl resin, urethane resin, polyester resin or polyamide resin is preferable, and the liquid absorption rate when immersed in the electrolytic solution is 10% or more. Some are more preferred.

電解液に浸漬した際の吸液率は、電解液に浸漬する前、浸漬した後の被覆用樹脂の重量を測定して、以下の式で求められる。
吸液率(%)=[(電解液浸漬後の被覆用樹脂の重量−電解液浸漬前の被覆用樹脂の重量)/電解液浸漬前の被覆用樹脂の重量]×100
吸液率を求めるための電解液としては、好ましくはエチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液を用いる。
吸液率を求める際の電解液への浸漬は、50℃、3日間行う。50℃、3日間の浸漬を行うことにより高分子化合物が飽和吸液状態となる。なお、飽和吸液状態とは、それ以上電解液に浸漬しても被覆用樹脂の重量が増えない状態をいう。
なお、リチウムイオン電池を製造する際に使用する電解液は、上記電解液に限定されるものではなく、他の電解液を使用してもよい。
The liquid absorption rate when immersed in the electrolytic solution is calculated by the following formula by measuring the weight of the coating resin before and after the immersion in the electrolytic solution.
Liquid absorption rate (%) = [(Weight of coating resin after immersion in electrolyte solution-Weight of coating resin before immersion in electrolyte solution) / Weight of coating resin before immersion in electrolyte solution] × 100
The electrolytic solution for determining the liquid absorption rate is preferably a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed in a volume ratio of EC: DEC = 3: 7 and LiPF 6 as an electrolyte is 1 mol / mol /. An electrolytic solution dissolved so as to have a concentration of L is used.
Immersion in the electrolytic solution for determining the liquid absorption rate is performed at 50 ° C. for 3 days. By immersing at 50 ° C. for 3 days, the polymer compound is in a saturated liquid absorbing state. The saturated liquid absorbing state means a state in which the weight of the coating resin does not increase even if it is further immersed in the electrolytic solution.
The electrolytic solution used in manufacturing the lithium ion battery is not limited to the above electrolytic solution, and other electrolytic solutions may be used.

吸液率が10%以上であると、リチウムイオンが被覆用樹脂を容易に透過することができるため、電極組成物層内でのイオン抵抗を低く保つことができる。吸液率が10%未満であると、リチウムイオンの伝導性が低くなり、リチウムイオン電池としての性能が充分に発揮されないことがある。
吸液率は20%以上であることが好ましく、30%以上であることがより好ましい。
また、吸液率の好ましい上限値としては、400%であり、より好ましい上限値としては300%である。
When the liquid absorption rate is 10% or more, lithium ions can easily permeate the coating resin, so that the ion resistance in the electrode composition layer can be kept low. If the liquid absorption rate is less than 10%, the conductivity of lithium ions becomes low, and the performance as a lithium ion battery may not be sufficiently exhibited.
The liquid absorption rate is preferably 20% or more, and more preferably 30% or more.
The preferred upper limit of the liquid absorption rate is 400%, and the more preferable upper limit is 300%.

正極電極組成物層5及び負極電極組成物層6はそれぞれ、互いに結着されていない正極活物質及び、互いに結着されていない負極活物質を含んでなることが好ましい。活物質が互いに結着されていないと、電極組成物層の厚さを厚くした場合であっても、貫通孔を設けることによる結着状態の破壊がなく、活物質層の剥離やクラックが起こらず好ましい。
本発明の正極電極組成物層5及び負極電極組成物層6が含む被覆活物質は、活物質の表面の一部又は全部が、被覆用樹脂を含んでなる極被覆層によって被覆されたものであるため、被覆活物質同士が接触すると可逆的に接着して固定化されるため、バインダーを用いることなく電極組成物中に活物質を固定することが可能である。この場合、被覆活物質同士が接触したとしても、接触面において被覆層同士が不可逆的に接着されることはなく、接着は一時的なもので、容易に手でほぐすことができるものであるから、被覆活物質を含んでなる電極組成物層は、活物質が互いに結着されているものではない。
It is preferable that the positive electrode composition layer 5 and the negative electrode composition layer 6 each contain a positive electrode active material that is not bound to each other and a negative electrode active material that is not bound to each other. If the active materials are not bound to each other, even if the thickness of the electrode composition layer is increased, the bound state is not destroyed by providing the through holes, and the active material layer is peeled off or cracked. Is preferable.
The coating active material contained in the positive electrode composition layer 5 and the negative electrode composition layer 6 of the present invention is a coating active material in which a part or all of the surface of the active material is coated with a polar coating layer containing a coating resin. Therefore, when the coating active materials come into contact with each other, they are reversibly adhered and fixed, so that the active material can be fixed in the electrode composition without using a binder. In this case, even if the coating active materials come into contact with each other, the coating layers are not irreversibly bonded to each other on the contact surface, and the bonding is temporary and can be easily loosened by hand. In the electrode composition layer containing the coating active material, the active materials are not bonded to each other.

被覆活物質が有する被覆層は、更に導電助剤を含んでもよく、導電助剤としては、導電性を有する材料から選択される。 The coating layer contained in the coating active material may further contain a conductive auxiliary agent, and the conductive auxiliary agent is selected from materials having conductivity.

具体的には、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック、単層カーボンナノチューブ及び多層カーボンナノチューブ等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。 Specifically, metals [aluminum, stainless steel (SUS), silver, gold, copper and titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, single layer) Carbon nanotubes, multi-walled carbon nanotubes, etc.), etc.], and mixtures thereof, etc., but are not limited thereto.

これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、金、銅、チタン及びこれらの混合物であり、より好ましくは銀、金、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電助剤とは、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をメッキ等でコーティングしたものでもよい。 These conductive aids may be used alone or in combination of two or more. Moreover, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, gold, copper, titanium and mixtures thereof are preferable, silver, gold, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. is there. Further, these conductive auxiliaries may be those obtained by coating a conductive material (a metal one among the above-mentioned conductive auxiliary materials) around a particle-based ceramic material or a resin material by plating or the like.

導電助剤として導電性繊維を用いることも可能である。導電性繊維としては、炭素繊維(PAN系炭素繊維、及びピッチ系炭素繊維等の炭素繊維等)、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。 It is also possible to use conductive fibers as the conductive auxiliary agent. The conductive fibers include carbon fibers (PAN-based carbon fibers, carbon fibers such as pitch-based carbon fibers, etc.), conductive fibers in which highly conductive metals and graphite are uniformly dispersed in synthetic fibers, and stainless steel. Examples thereof include metal fibers obtained by fiberizing metal such as steel, conductive fibers in which the surface of organic fibers is coated with metal, and conductive fibers in which the surface of organic fibers is coated with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferable.

被覆層が含有する被覆用樹脂と導電助剤との合計重量の割合は、活物質の重量に対して0.1〜25重量%であることが好ましく、活物質の重量に対する被覆用樹脂の重量の割合は、0.1〜20重量%であることが好ましく、導電助剤を用いる場合に活物質の重量に対する導電助剤の重量の割合は、1〜10重量%であることが好ましい。 The ratio of the total weight of the coating resin and the conductive auxiliary agent contained in the coating layer is preferably 0.1 to 25% by weight based on the weight of the active material, and the weight of the coating resin with respect to the weight of the active material. The ratio of the weight of the conductive auxiliary agent is preferably 0.1 to 20% by weight, and when the conductive auxiliary agent is used, the ratio of the weight of the conductive auxiliary agent to the weight of the active material is preferably 1 to 10% by weight.

被覆活物質は、例えば、活物質粒子を万能混合機に入れて30〜500rpmで撹拌した状態で、被覆用樹脂を含む樹脂溶液を1〜90分かけて滴下混合し、さらに導電助剤を混合し、撹拌したまま50〜200℃に昇温し、0.007〜0.04MPaまで減圧した後に10〜150分保持することにより得ることができる。 For the coating active material, for example, in a state where the active material particles are placed in a universal mixer and stirred at 30 to 500 rpm, a resin solution containing a coating resin is added dropwise over 1 to 90 minutes, and a conductive additive is further mixed. It can be obtained by raising the temperature to 50 to 200 ° C. with stirring, reducing the pressure to 0.007 to 0.04 MPa, and then holding the mixture for 10 to 150 minutes.

正極電極組成物層5及び負極電極組成物層6はそれぞれ、被覆活物質が含む活物質と、後述する電解液又は後述する非水溶媒との混合物を正極集電体7及び負極集電体8それぞれの表面に塗布することで得ることができる。前記混合物は、さらにバインダー(ポリビニルピロリドン、カルボキシメチルセルロース及びSBRラテックス等)を含んでもよいが、正極電極組成物層5及び負極電極組成物層6が互いに結着されていない正極活物質及び、互いに結着されていない負極活物質を含んでなることが好ましいことから、バインダーを含まないことが好ましい。なお、混合物に非水溶媒を用いた場合には、正極集電体7及び負極集電体8それぞれの表面に混合物を塗布した後、必要に応じて非水溶媒を乾燥除去した後、電解液を含浸することで正極電極組成物層5及び負極電極組成物層6を得ることができる。
正極電極組成物層5及び負極電極組成物層6の厚さは、100〜10000μmであることが好ましい。
The positive electrode composition layer 5 and the negative electrode composition layer 6 each contain a mixture of the active material contained in the coating active material and an electrolytic solution described later or a non-aqueous solvent described later in the positive electrode current collector 7 and the negative electrode current collector 8. It can be obtained by applying it to each surface. The mixture may further contain a binder (polyvinylpyrrolidone, carboxymethyl cellulose, SBR latex, etc.), but the positive electrode composition layer 5 and the negative electrode composition layer 6 are not bound to each other, and the positive electrode active material is bound to each other. Since it is preferable that it contains an uncoated negative electrode active material, it is preferable that it does not contain a binder. When a non-aqueous solvent is used for the mixture, the mixture is applied to the surfaces of the positive electrode current collector 7 and the negative electrode current collector 8, and if necessary, the non-aqueous solvent is dried and removed, and then the electrolytic solution is used. The positive electrode composition layer 5 and the negative electrode composition layer 6 can be obtained by impregnating with.
The thickness of the positive electrode composition layer 5 and the negative electrode composition layer 6 is preferably 100 to 10000 μm.

正極電極組成物層5及び負極電極組成物層6はそれぞれ、被覆層が有してよい導電助剤とは異なる導電性繊維をさらに含むことが好ましい。被覆層が有してよい導電助剤とは異なる導電性繊維は、被覆活物質の表面に存在し、活物質の固定を補助すること同時に電極組成物中での伝導度を下げることができるため好ましい。導電性繊維としては、前記の導電助剤で例示したものと同じ導電性繊維があげられ、好ましいものも同じである。 It is preferable that each of the positive electrode composition layer 5 and the negative electrode composition layer 6 further contains conductive fibers different from the conductive auxiliary agent that the coating layer may have. Conductive fibers, which are different from the conductive auxiliary agents that the coating layer may have, are present on the surface of the coating active material, and can assist in fixing the active material and at the same time reduce the conductivity in the electrode composition. preferable. Examples of the conductive fibers include the same conductive fibers as those exemplified in the above-mentioned conductive auxiliary agent, and preferred ones are also the same.

電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する電解液を使用することができる。 As the electrolytic solution, an electrolytic solution containing an electrolyte and a non-aqueous solvent used in the production of a lithium ion battery can be used.

電解質としては、リチウムイオン電池用電解液に用いられているもの等が使用でき、例えば、LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO22、LiN(C25SO22及びLiC(CF3SO23等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPF6である。 As the electrolyte, those used in the electrolytic solution for lithium ion batteries can be used, for example, lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN (CF 3 SO). 2 ) Examples include lithium salts of organic acids such as 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Of these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

非水溶媒としては、リチウムイオン電池用電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 As the non-aqueous solvent, those used in the electrolytic solution for lithium ion batteries can be used, and for example, a lactone compound, a cyclic or chain carbonate, a chain carboxylic acid ester, a cyclic or chain ether, or a phosphoric acid ester can be used. , A nitrile compound, an amide compound, a sulfone, a sulfolane and the like, and mixtures thereof can be used.

非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。 One type of non-aqueous solvent may be used alone, or two or more types may be used in combination.

非水溶媒の内、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、より好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、さらに好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。特に好ましいのはプロピレンカーボネート(PC)、またはエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。 Among the non-aqueous solvents, lactone compounds, cyclic carbonates, chain carbonates and phosphate esters are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and lactone compounds, cyclic carbonates and chains are more preferable. A carbonic acid ester is preferable, and a mixed solution of a cyclic carbonic acid ester and a chain carbonic acid ester is more preferable. Particularly preferred is propylene carbonate (PC) or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC).

セパレータ4としては、ポリエチレン、ポリプロピレン等、ポリオレフィン製の微多孔膜フィルム、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。 The separator 4 includes a microporous film film made of polyolefin such as polyethylene and polypropylene, a multilayer film of a porous polyethylene film and polypropylene, a non-woven fabric made of polyester fiber, aramid fiber, glass fiber and the like, and silica on their surfaces. Examples thereof include those to which ceramic fine particles such as alumina and titania are attached.

正極、負極集電体7、8としては、金属集電体や樹脂集電体を用いることができる。金属集電体としては、公知の金属集電体を用いることができる。たとえば、金属集電体は、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、およびこれらの一種以上を含む合金、ならびにステンレス合金からなる群から選択される一種以上からなる集電体が好ましい。金属集電体は薄板または金属箔から形成されてもよいし、基材の表面にスパッタリング、電着、塗布等の手法により金属層を形成してもよい。 As the positive electrode and negative electrode current collectors 7 and 8, a metal current collector or a resin current collector can be used. As the metal current collector, a known metal current collector can be used. For example, metal collectors are selected from the group consisting of copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and alloys containing one or more of these, as well as stainless alloys. A current collector consisting of one or more types is preferable. The metal current collector may be formed from a thin plate or a metal foil, or a metal layer may be formed on the surface of a base material by a method such as sputtering, electrodeposition, or coating.

樹脂集電体を構成する高分子材料は、導電性高分子であってもよいし、導電性を有さない高分子であってもよい。 The polymer material constituting the resin current collector may be a conductive polymer or a polymer having no conductivity.

高分子材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。 Examples of the polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetrafluoroethylene (PTFE). , Styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethylacrylate (PMA), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin, or a mixture thereof.

電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。 From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).

また、樹脂集電体は、導電性の高分子材料を含む樹脂集電体の導電性を向上させる目的、あるいは、導電性を有さない高分子材料を含む樹脂集電体に導電性を付与する目的から、導電性フィラーを含んでいると好ましい。導電性フィラーは、導電性を有する材料から選択される。好ましくは、集電体内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料を用いるのが好ましい。具体的には、カーボン材料、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、ニッケルなどが挙げられるが、これらに限定されるものではない。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。また、ステンレス(SUS)等のこれらの合金材が用いられてもよい。耐食性の観点から、好ましくはアルミニウム、ステンレス、カーボン材料、ニッケル、より好ましくはカーボン材料である。また、これらの導電性フィラーは、粒子系セラミック材料や樹脂材料の周りに、上記で示される金属をメッキ等でコーティングしたものであってもよい。 Further, the resin current collector has the purpose of improving the conductivity of the resin current collector containing the conductive polymer material, or imparts conductivity to the resin current collector containing the non-conductive polymer material. It is preferable to contain a conductive filler for the purpose of The conductive filler is selected from materials having conductivity. Preferably, from the viewpoint of suppressing ion permeation in the current collector, it is preferable to use a material having no conductivity with respect to ions used as a charge transfer medium. Specific examples thereof include, but are not limited to, carbon materials, aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimonide, titanium, and nickel. These conductive fillers may be used alone or in combination of two or more. Further, these alloy materials such as stainless steel (SUS) may be used. From the viewpoint of corrosion resistance, aluminum, stainless steel, carbon material, nickel, and more preferably carbon material are preferable. Further, these conductive fillers may be a particle-based ceramic material or a resin material coated with the metal shown above by plating or the like.

樹脂集電体の具体例としては、ポリプロピレンに導電性フィラーとしてアセチレンブラックを5〜20部分散させた後、熱プレス機で圧延したものが挙げられる。また、その厚みも特に制限されず、公知のものと同様、あるいは適宜変更して適用することができる。 Specific examples of the resin current collector include those obtained by dispersing 5 to 20 parts of acetylene black as a conductive filler in polypropylene and then rolling it with a hot press. Further, the thickness thereof is not particularly limited, and the same as known ones or appropriately modified ones can be applied.

シール部材9、10を構成する材料としては、正極、負極集電体7、8との接着性を有し、電解液に対して耐久性のある材料であれば特に限定されないが、高分子材料、特に熱硬化性樹脂が好ましい。具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリフッ化ビニデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。 The material constituting the sealing members 9 and 10 is not particularly limited as long as it has adhesiveness to the positive electrode and negative electrode current collectors 7 and 8 and is durable against the electrolytic solution, but is not particularly limited. , Particularly a thermosetting resin is preferable. Specific examples thereof include epoxy-based resins, polyolefin-based resins, polyurethane-based resins, and polyvinylidene fluoride resins, and epoxy-based resins are preferable because they have high durability and are easy to handle.

以上の構成のリチウム二次単電池1は、図3に示すように、上下に隣り合うリチウム二次単電池1の正極集電体7及び負極集電体8が互いに接し、さらに、凸部12、15及び凹部13、16が互いに係合することでその積層位置が位置決めされた状態で上下に積層されて、積層型電池モジュール20が形成される。そして、図4に示すように、この積層型電池モジュール20が電池外装容器21内に収納されて、本実施形態のリチウムイオン電池Lが構成される。本実施形態では、電池外装容器21は中空の箱状に形成され、その側部において上下に分割されて上容器21a及び下容器21bが構成されている。積層型電池モジュール20をこの電池外装容器21内に収納する際には、上容器21aと下容器21bとを分離して積層型電池モジュール20を内部に収納し、上容器21aと下容器21bとを再度組み立てればよい。 In the lithium secondary cell 1 having the above configuration, as shown in FIG. 3, the positive electrode current collector 7 and the negative electrode current collector 8 of the lithium secondary cell 1 adjacent to each other are in contact with each other, and the convex portion 12 is further formed. , 15 and the recesses 13 and 16 are engaged with each other so that the stacking positions are positioned and stacked vertically to form the stacked battery module 20. Then, as shown in FIG. 4, the laminated battery module 20 is housed in the battery outer container 21, and the lithium ion battery L of the present embodiment is configured. In the present embodiment, the battery outer container 21 is formed in a hollow box shape, and is divided into upper and lower parts on the side thereof to form an upper container 21a and a lower container 21b. When the laminated battery module 20 is stored in the battery outer container 21, the upper container 21a and the lower container 21b are separated and the laminated battery module 20 is stored inside, and the upper container 21a and the lower container 21b are stored. Can be reassembled.

電池外装容器21(上容器21a)の上面には、シール部材10の貫通孔11に対応する位置に凹部22が形成されているとともに、この凹部22の底部には固定孔23が形成されている。同様に、容器21(下容器21b)の下面にも、シール部材10の貫通孔11に対応する位置に固定孔24が形成されている。そして、ボルト、ねじ等の締結具25がシール部材10の貫通孔11及び固定孔23、24に挿入され、この締結具25の頭部25aが凹部22に収納されるとともに、端部25bがリチウムイオン電池Lを取り付けるべき本体Hに締結されることで、電池外装容器21が本体Hに固着されるとともに、電池外装容器21内に収納された積層型電池モジュール20も電池外装容器21と一体となって本体Hに固着される。 A recess 22 is formed on the upper surface of the battery outer container 21 (upper container 21a) at a position corresponding to the through hole 11 of the seal member 10, and a fixing hole 23 is formed at the bottom of the recess 22. .. Similarly, a fixing hole 24 is formed on the lower surface of the container 21 (lower container 21b) at a position corresponding to the through hole 11 of the sealing member 10. Then, the fastener 25 such as a bolt or a screw is inserted into the through hole 11 and the fixing holes 23, 24 of the seal member 10, the head portion 25a of the fastener 25 is housed in the recess 22, and the end portion 25b is lithium. By fastening the ion battery L to the main body H to which the ion battery L is to be attached, the battery outer container 21 is fixed to the main body H, and the laminated battery module 20 housed in the battery outer container 21 is also integrated with the battery outer container 21. It is fixed to the main body H.

なお、本実施形態では、シール部材10の貫通孔11内に、積層型電池モジュール20と略同じ高さの円筒状のスペーサ26が挿入されているので、締結具25により作用する締結力は、上容器21aからスペーサ26を介して下容器21bを経由して本体Hに作用し、積層型電池モジュール20に直接作用しない。このため、積層型電池モジュール20に過度の力が作用しないという利点がある。 In the present embodiment, since the cylindrical spacer 26 having substantially the same height as the laminated battery module 20 is inserted in the through hole 11 of the seal member 10, the fastening force acting by the fastener 25 is increased. It acts on the main body H from the upper container 21a via the spacer 26 via the lower container 21b, and does not act directly on the laminated battery module 20. Therefore, there is an advantage that an excessive force does not act on the laminated battery module 20.

電池外装容器21を構成する材料は、電池外装容器21内に積層型電池モジュール20を収納しうる材料であれば、任意の材料が好適に適用可能である。但し、積層型電池モジュール20からの発熱を速やかに拡散して放熱することを考慮すると、金属等の熱伝導率が高い材料であることが好ましい。但し、積層型電池モジュール20と電池外装容器21とが直接接触することにより短絡が生じる可能性があるため、電池外装容器21の内面に絶縁物層等を形成することが好ましい。 As the material constituting the battery outer container 21, any material can be preferably applied as long as the material can accommodate the laminated battery module 20 in the battery outer container 21. However, considering that the heat generated from the laminated battery module 20 is rapidly diffused and dissipated, a material having high thermal conductivity such as metal is preferable. However, since a short circuit may occur due to direct contact between the laminated battery module 20 and the battery outer container 21, it is preferable to form an insulating layer or the like on the inner surface of the battery outer container 21.

次に、以上の構成を有するリチウム二次単電池1の製造方法について、図2を参照して説明する。 Next, a method for manufacturing the lithium secondary cell 1 having the above configuration will be described with reference to FIG.

まず、図2(a)に示すように、負極集電体8の孔8aに、下部30aが凹部13に対応する円柱状に形成されたピン30を、下部30aがこの孔8aに嵌まるように挿入し、この状態で、負極集電体8の図中上面にシール部材9、10を形成する。負極集電体8の上面にシール部材9、10を形成する手法は任意であるが、一例として、インクジェット機や3Dプリンタ等、ノズルを所定箇所に移動制御して所定量の部材を吐出できる機構によりシール部材9、10を形成する部材を吐出する手法が好適に挙げられる。 First, as shown in FIG. 2A, a pin 30 having a lower portion 30a formed in a columnar shape corresponding to the recess 13 is fitted into the hole 8a of the negative electrode current collector 8 so that the lower portion 30a fits into the hole 8a. In this state, the seal members 9 and 10 are formed on the upper surface of the negative electrode current collector 8 in the drawing. The method of forming the seal members 9 and 10 on the upper surface of the negative electrode current collector 8 is arbitrary, but as an example, a mechanism such as an inkjet machine or a 3D printer that can control the movement of the nozzle to a predetermined location to eject a predetermined amount of members. A method of discharging the members forming the seal members 9 and 10 is preferably mentioned.

次に、図2(b)に示すように、負極電極組成物層6を形成すべき高さまでシール部材9、10を形成したら、負極電極活物質と電解液とを含む負極電極組成物6を負極集電体8の上面に形成して負極3を形成する。負極3を形成する手法は任意であり、負極集電体8のそれぞれの表面に負極電極組成物6を塗布する、負極集電体8のそれぞれの表面に、ノズル等を介して負極電極組成物6を載置した後に所定厚になるようにヘラ等で均す、など、種々の手法が挙げられる。 Next, as shown in FIG. 2B, when the sealing members 9 and 10 are formed to a height at which the negative electrode composition layer 6 should be formed, the negative electrode composition 6 containing the negative electrode active material and the electrolytic solution is formed. It is formed on the upper surface of the negative electrode current collector 8 to form the negative electrode 3. The method of forming the negative electrode 3 is arbitrary, and the negative electrode composition 6 is applied to each surface of the negative electrode current collector 8, and the negative electrode composition is applied to each surface of the negative electrode current collector 8 via a nozzle or the like. Various methods can be mentioned, such as placing 6 on the plate and then leveling it with a spatula or the like so as to have a predetermined thickness.

次に、図2(c)に示すように、負極3を形成する負極電極組成物6の図中上面を覆い、端部がシール部材9の端部に載置するように、セパレータ4を載置する。ここで、セパレータ4には孔4aが形成されており、ピン30の上端部30bがこの孔4aを貫通するようにセパレータ4が負極電極組成物6の上面に載置される。セパレータ4を負極電極組成物6の上面に載置する手法は任意であり、一例として、真空チャック31によりセパレータ4の上面を保持し、この真空チャック31を用いてセパレータ4を負極電極組成物6の上面に載置した後、チャック31をセパレータ4から外すような手法が好適に挙げられる。 Next, as shown in FIG. 2C, the separator 4 is placed so as to cover the upper surface of the negative electrode composition 6 forming the negative electrode 3 in the drawing and to place the end portion on the end portion of the seal member 9. Place. Here, a hole 4a is formed in the separator 4, and the separator 4 is placed on the upper surface of the negative electrode composition 6 so that the upper end portion 30b of the pin 30 penetrates the hole 4a. The method of placing the separator 4 on the upper surface of the negative electrode composition 6 is arbitrary. As an example, the upper surface of the separator 4 is held by a vacuum chuck 31, and the separator 4 is mounted on the negative electrode composition 6 by using the vacuum chuck 31. A method of removing the chuck 31 from the separator 4 after placing the chuck 31 on the upper surface of the separator 4 is preferably used.

次に、図2(d)に示すように、セパレータ4の図中上面にシール部材9、10を形成し、正極電極組成物層5を形成すべき高さまでシール部材9、10を形成したら、図2(e)に示すように、正極電極活物質と電解液とを含む正極電極組成物5をセパレータ4の上面に形成して正極2を形成する。正極2を形成する手法は、負極3を形成する手法と略同一であるので、ここではその説明を省略する。 Next, as shown in FIG. 2D, the sealing members 9 and 10 are formed on the upper surface of the separator 4 in the drawing, and the sealing members 9 and 10 are formed to a height at which the positive electrode composition layer 5 should be formed. As shown in FIG. 2E, the positive electrode composition 5 containing the positive electrode active material and the electrolytic solution is formed on the upper surface of the separator 4 to form the positive electrode 2. Since the method of forming the positive electrode 2 is substantially the same as the method of forming the negative electrode 3, the description thereof will be omitted here.

次に、図2(f)に示すように、正極2を形成する正極電極組成物5の図中上面を覆い、端部がシール部材9の端部に載置するように、正極集電体7を載置する。上述のように正極集電体7には孔7aが形成されているので、ピン30の上端部30bがこの孔7aを貫通するように正極集電体7が正極電極組成物5の上面に載置される。正極集電体7を正極電極組成物5の上面に載置する手法は、セパレータ4を負極電極組成物6の上面に載置する手法と略同一であるので、ここではその説明を省略する。 Next, as shown in FIG. 2 (f), the positive electrode current collector covers the upper surface of the positive electrode composition 5 forming the positive electrode 2 in the drawing, and the end portion is placed on the end portion of the seal member 9. Place 7 on it. Since the hole 7a is formed in the positive electrode current collector 7 as described above, the positive electrode current collector 7 is placed on the upper surface of the positive electrode composition 5 so that the upper end portion 30b of the pin 30 penetrates the hole 7a. Be placed. Since the method of placing the positive electrode current collector 7 on the upper surface of the positive electrode composition 5 is substantially the same as the method of placing the separator 4 on the upper surface of the negative electrode composition 6, the description thereof will be omitted here.

次に、図2(g)に示すように、下面に凸部12に対応する形状の凹部32aが形成され、中心部にピン30の上端部30bが挿入可能な貫通孔32bが形成された型押し部材32を、シール部材10の上面に押圧してシール部材10の上面に凸部12を形成し、その後、図2(h)に示すように、ピン30及び型押し部材32をそれぞれ外すことにより、図1に示すリチウム二次単電池1を製造することができる。 Next, as shown in FIG. 2 (g), a mold in which a concave portion 32a having a shape corresponding to the convex portion 12 is formed on the lower surface and a through hole 32b into which the upper end portion 30b of the pin 30 can be inserted is formed in the central portion. The pushing member 32 is pressed against the upper surface of the sealing member 10 to form a convex portion 12 on the upper surface of the sealing member 10, and then the pin 30 and the embossing member 32 are removed as shown in FIG. 2 (h). Therefore, the lithium secondary cell 1 shown in FIG. 1 can be manufactured.

本実施形態のリチウムイオン電池Lは、一例として図5に示すように、自動車40のシート41の下部に収納され、あるいは、図6に示すように、家屋42の壁面43を構成する構造体パネルとして、締結具44により家屋42を構成する構造体の一部として取り付けられる。図5に示す例であると、リチウムイオン電池Lからの発熱は、自動車40の構造体(フレーム等)に速やかに伝達されて放熱がされる。また、図6に示す例であると、家屋42の構造体を兼ねてリチウムイオン電池Lを設置することができ、家屋42に大容量の電源を確保することができるとともに、設置スペースの削減を図ることができる。 As an example, the lithium ion battery L of the present embodiment is housed in the lower part of the seat 41 of the automobile 40 as shown in FIG. 5, or as shown in FIG. 6, the structure panel constituting the wall surface 43 of the house 42. As a part of the structure constituting the house 42, it is attached by the fastener 44. In the example shown in FIG. 5, the heat generated from the lithium ion battery L is rapidly transmitted to the structure (frame or the like) of the automobile 40 to dissipate heat. Further, in the example shown in FIG. 6, the lithium ion battery L can be installed also as the structure of the house 42, a large capacity power source can be secured in the house 42, and the installation space can be reduced. Can be planned.

従って、本実施形態のリチウム二次単電池1によれば、凸部12、15及び凹部13、16を互いに係合させることで、上下に隣り合うリチウム二次単電池1の積層位置の位置決めを容易に行うことができる。これにより、積層された状態のリチウム二次単電池1の相対的位置決め及び固定を容易にすることの可能なリチウム二次単電池1及びリチウムイオン電池Lを実現することができる。 Therefore, according to the lithium secondary cell 1 of the present embodiment, the convex portions 12, 15 and the concave portions 13 and 16 are engaged with each other to position the laminated positions of the lithium secondary cell 1s adjacent to each other. It can be done easily. Thereby, it is possible to realize the lithium secondary cell 1 and the lithium ion battery L which can facilitate the relative positioning and fixing of the lithium secondary cell 1 in the laminated state.

更に、本実施形態のリチウム二次単電池1によれば、凸部12、15及び凹部13、16を互いに係合させる構造であることにより、経時での位置ズレを防止することもできる。これにより、電気自動車等、長期間にわたって振動を受ける用途においても、安定した性能を長期間維持することの可能なリチウム二次単電池1及びリチウムイオン電池Lを実現することができる。 Further, according to the lithium secondary cell 1 of the present embodiment, the structure in which the convex portions 12, 15 and the concave portions 13 and 16 are engaged with each other can prevent the positional deviation with time. As a result, it is possible to realize the lithium secondary cell 1 and the lithium ion battery L that can maintain stable performance for a long period of time even in an application that receives vibration for a long period of time such as an electric vehicle.

なお、本発明の電池セル、積層型電池モジュール及び電池は、その細部が上述の一実施形態に限定されず、種々の変形例が可能である。一例として、上述の一実施形態ではリチウム二次単電池1を複数積層して積層型電池モジュール20を構成し、この積層型電池モジュール20を電池外装容器21内に収納してリチウムイオン電池Lを構成していたが、リチウム二次単電池1以外の電池セル、さらにこの電池セルを用いた電池についても本発明は好適に適用可能である。 The details of the battery cell, the laminated battery module, and the battery of the present invention are not limited to the above-described embodiment, and various modifications are possible. As an example, in the above-described embodiment, a plurality of lithium secondary cells 1 are stacked to form a laminated battery module 20, and the laminated battery module 20 is housed in a battery outer container 21 to form a lithium ion battery L. Although it has been configured, the present invention can be suitably applied to a battery cell other than the lithium secondary cell 1 and a battery using this battery cell.

L リチウムイオン電池
1 リチウム二次単電池(電池セル)
2 正極
3 負極
4 セパレータ
5 正極電極組成物
6 負極電極組成物
7 正極集電体
8 負極集電体
9、10 シール部材
11、14 貫通孔
12、15 凸部
13、16 凹部
20 積層型電池モジュール
21 電池外装容器
L Lithium-ion battery 1 Lithium secondary cell (battery cell)
2 Positive electrode 3 Negative electrode 4 Separator 5 Positive electrode composition 6 Negative electrode composition 7 Positive electrode current collector 8 Negative electrode current collector 9, 10 Sealing members 11, 14 Through holes 12, 15 Convex parts 13, 16 Concave parts 20 Laminated battery module 21 Battery outer container

Claims (4)

電池セルを直列に複数積層してなる積層電池セル構造を含む積層型電池モジュールを有する電池であって、
前記電池セルは、
正極集電体の表面に正極電極活物質と電解液とを含む正極電極組成物層が形成された平板状正極と、負極集電体の表面に負極電極活物質と電解液とを含む負極電極組成物層が形成された平板状負極とがセパレータを介して積層されてなり、
前記正極電極組成物層及び前記負極電極組成物層が、活物質の表面の少なくとも一部に被覆用樹脂を含む被覆層を有する被覆活物質を含有し、
さらに、前記電池セルは、
前記正極集電体と前記負極集電体とを貫いて前記電池セルの厚さ方向に延在し、内壁が貫通孔とされた筒状のシール部材と、
前記シール部材の端面にそれぞれ形成された第1及び第2の係合部とを備え、
すくなくとも2つの前記電池セルが、それぞれの前記電池セルの前記正極集電体と前記負極集電体とが隣接するように積層された際に、それぞれの前記電池セルに設けられた前記貫通孔が一体に連なり、かつ、一方の前記電池セルの前記第1の係合部と他方の前記電池セルの前記第2の係合部とが互いに係合され、さらに、
前記積層型電池モジュールが前記積層型電池モジュールを貫通する前記貫通孔に挿入された締結具と電池外装容器に設けられた固定孔とにより電池外装容器に固定されていることを特徴とする電池。
A battery having a laminated battery module including a laminated battery cell structure in which a plurality of battery cells are laminated in series.
The battery cell is
A flat positive electrode having a positive electrode composition layer containing a positive electrode active material and an electrolytic solution formed on the surface of a positive electrode current collector, and a negative electrode containing a negative electrode active material and an electrolytic solution on the surface of a negative electrode current collector. The flat negative electrode on which the composition layer is formed is laminated via the separator.
The positive electrode composition layer and the negative electrode composition layer contain a coating active material having a coating layer containing a coating resin on at least a part of the surface of the active material.
Further, the battery cell is
A tubular seal member that penetrates the positive electrode current collector and the negative electrode current collector and extends in the thickness direction of the battery cell and has an inner wall as a through hole.
A first and second engaging portions formed on the end faces of the sealing member are provided.
When at least two of the battery cells are laminated so that the positive electrode current collector and the negative electrode current collector of the respective battery cells are adjacent to each other, the through holes provided in the respective battery cells are formed. The first engaging portion of one of the battery cells and the second engaging portion of the other battery cell are integrally connected to each other, and further, the second engaging portion of the battery cell is engaged with each other.
A battery characterized in that the laminated battery module is fixed to the battery outer container by a fastener inserted into the through hole penetrating the laminated battery module and a fixing hole provided in the battery outer container.
請求項1に記載の電池において、
前記第1の係合部が突部であり、前記第2の係合部が凹部であることを特徴とする電池。
In the battery according to claim 1,
It said first engagement portion is a projection, battery and the second engaging portion and said recess der Rukoto.
請求項1または2に記載の電池において、
前記正極電極組成物層及び前記負極電極組成物層はさらに導電性繊維を含むことを特徴とする電池。
In the battery according to claim 1 or 2.
A battery characterized in that the positive electrode composition layer and the negative electrode composition layer further contain conductive fibers.
請求項3記載の電池において、
前記導電性繊維は炭素繊維であることを特徴とする電池。
In the battery according to claim 3,
A battery characterized in that the conductive fiber is a carbon fiber.
JP2016153088A 2015-08-05 2016-08-03 battery Active JP6823398B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015154769 2015-08-05
JP2015154769 2015-08-05

Publications (2)

Publication Number Publication Date
JP2017033937A JP2017033937A (en) 2017-02-09
JP6823398B2 true JP6823398B2 (en) 2021-02-03

Family

ID=57989395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153088A Active JP6823398B2 (en) 2015-08-05 2016-08-03 battery

Country Status (1)

Country Link
JP (1) JP6823398B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6611321B2 (en) * 2015-10-30 2019-11-27 三洋化成工業株式会社 Battery module and manufacturing method thereof
JP7181752B2 (en) * 2018-10-10 2022-12-01 三洋化成工業株式会社 Lithium ion battery and manufacturing method thereof
JP7553243B2 (en) 2020-01-28 2024-09-18 三洋化成工業株式会社 Battery pack

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100255358B1 (en) * 1997-12-27 2000-05-01 배문한 Bipolar battery
CN100336245C (en) * 1998-01-14 2007-09-05 杨泰和 Low internal resistance collecting structure for electricity storage and discharge device
JP2002373643A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP4926393B2 (en) * 2004-11-25 2012-05-09 富士重工業株式会社 Storage cell package structure
JP4992244B2 (en) * 2005-04-07 2012-08-08 日産自動車株式会社 Battery module and battery pack
CN105637685B (en) * 2013-10-07 2017-12-12 日产自动车株式会社 Electrode for nonaqueous electrolyte secondary battery material and the electrode for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery for having used it
JP6264055B2 (en) * 2014-01-22 2018-01-24 トヨタ自動車株式会社 Method for producing electrode for lithium secondary battery and granulated product

Also Published As

Publication number Publication date
JP2017033937A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
KR101312859B1 (en) Bipolar secondary battery, method for manufacturing the bipolar secondary battery, bipolar electrode, method for manufacturing the bipolar electrode and assembled battery
JP6585964B2 (en) Method for manufacturing lithium ion battery
JP6008232B2 (en) Electricity storage element
US20160260978A1 (en) Electrode and Battery Including Electrode
JP7136592B2 (en) lithium ion battery
JP2010010381A (en) Electricity accumulation unit and its manufacturing method
JP7181752B2 (en) Lithium ion battery and manufacturing method thereof
JP6823398B2 (en) battery
JP6731716B2 (en) Lithium-ion battery and manufacturing method thereof
JP6861016B2 (en) Lithium ion battery
JP6571406B2 (en) Lithium ion battery and manufacturing method thereof
JP6611321B2 (en) Battery module and manufacturing method thereof
JP6850621B2 (en) Lithium ion battery
JP2018060754A (en) Manufacturing method of battery
JP2020177751A (en) Secondary cell
JP6549944B2 (en) Lithium ion battery
JP6585932B2 (en) Lithium-ion battery and structure system
JP6738706B2 (en) Lithium ion battery
JP2017117713A (en) Collector for lithium ion battery and lithium ion battery
JP6738701B2 (en) Method for manufacturing lithium-ion battery
JP6700030B2 (en) Battery separator and lithium-ion battery
JP7016234B2 (en) Lithium ion battery
JP2021182478A (en) Non-aqueous electrolyte secondary battery
JP6641113B2 (en) Lithium ion battery
JP6675854B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210108

R150 Certificate of patent or registration of utility model

Ref document number: 6823398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150