JP6641113B2 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP6641113B2
JP6641113B2 JP2015147420A JP2015147420A JP6641113B2 JP 6641113 B2 JP6641113 B2 JP 6641113B2 JP 2015147420 A JP2015147420 A JP 2015147420A JP 2015147420 A JP2015147420 A JP 2015147420A JP 6641113 B2 JP6641113 B2 JP 6641113B2
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
positive electrode
electrode current
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147420A
Other languages
Japanese (ja)
Other versions
JP2017027874A (en
Inventor
水野 雄介
雄介 水野
健一 川北
健一 川北
都藤 靖泰
靖泰 都藤
康裕 進藤
康裕 進藤
大澤 康彦
康彦 大澤
雄樹 草地
雄樹 草地
佐藤 一
一 佐藤
赤間 弘
弘 赤間
堀江 英明
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2015147420A priority Critical patent/JP6641113B2/en
Publication of JP2017027874A publication Critical patent/JP2017027874A/en
Application granted granted Critical
Publication of JP6641113B2 publication Critical patent/JP6641113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、少なくとも2つのリチウム二次単電池を直列に積層してなる単電池積層構造を有する積層型のリチウムイオン電池に関する。   The present invention relates to a stacked lithium ion battery having a unit cell stack structure in which at least two lithium secondary cells are stacked in series.

リチウムイオン(二次)電池は、高容量で小型軽量な二次電池として、近年様々な用途に多用されている。一般的なリチウムイオン電池は、正極及び負極を構成する略平板状の集電体の一面に正極活物質及び負極活物質をそれぞれ設けた後で熱処理してこれら正極活物質及び負極活物質を乾燥させ、正極活物質と負極活物質との間に必要であればセパレータを挾んでこれら正極活物質と負極活物質を積層することで略平板状のリチウム二次単電池を製造し、この単電池を複数層積層して構成していた(例えば特許文献1参照)。   2. Description of the Related Art Lithium ion (secondary) batteries have been widely used in various applications in recent years as small, lightweight secondary batteries with high capacity. In a general lithium ion battery, a positive electrode active material and a negative electrode active material are provided on one surface of a substantially flat current collector constituting a positive electrode and a negative electrode, and then heat treatment is performed to dry the positive electrode active material and the negative electrode active material. If necessary, a substantially flat lithium secondary cell is manufactured by laminating the positive electrode active material and the negative electrode active material with a separator interposed between the positive electrode active material and the negative electrode active material, if necessary. (See, for example, Patent Document 1).

特開2003−17127号公報JP 2003-17127 A

単電池を複数層積層してなるリチウムイオン電池においては、各々の単電池同士が密着した状態で積層されるが、経年変化等により単電池内にガスが発生した場合、発生したガスは単電池の集電体等を介して単電池の外に導出され、隣接する単電池の間に止まる可能性がある。このガスが隣接する単電池間に止まった場合、隣接する単電池同士の密着を妨げ、電池性能の低下の原因となることが考えられる。   In a lithium ion battery in which a plurality of unit cells are stacked, each unit cell is stacked in a state of being in close contact with each other, but when gas is generated in the unit cell due to aging or the like, the generated gas is a unit cell. May be led out of the unit cell through the current collector or the like, and may stop between adjacent unit cells. When this gas stops between adjacent unit cells, it is conceivable that the adhesion of the adjacent unit cells is hindered and battery performance is reduced.

本発明は上述した課題に鑑みてなされたものであり、単電池内で発生したガスを単電池の外方に導出し、隣接する単電池の密着が妨げられることによる電池性能の低下がない積層型リチウムイオン電池の提供を、その目的の一つとしている。   The present invention has been made in view of the above-described problems, and has a stacked structure in which gas generated in a single cell is led out of the single cell, and the performance of the cell is not deteriorated due to hindrance of adhesion between adjacent single cells. The purpose is to provide a lithium-ion battery.

本発明は、少なくとも2つのリチウム二次単電池を直列に積層してなる単電池積層構造を有する積層型リチウムイオン電池に適用される。そして、前記単電池積層構造が導電性を有する多孔質材料からなる多孔質構造備えることで全体に導電性を有する中間材を介して電気的に接続された少なくとも2つのリチウム二次単電池を積層した構造を含み、中間材は略平板状に形成され、その端面が単電池積層構造の外方に露出されており、この中間材が、リチウム二次単電池が有する正極集電体及び負極集電体の少なくとも一方との積層面を有し、正極集電体及び負極集電体が樹脂集電体であり、この多孔質材料の空隙部分が積層面から単電池積層構造の外方に貫通する連続細孔構造を有していることにより、上述の課題の少なくとも一つを解決している。 INDUSTRIAL APPLICABILITY The present invention is applied to a stacked lithium ion battery having a unit cell stacked structure in which at least two lithium secondary cells are stacked in series. Then, at least two lithium secondary cells electrically connected to each other through an intermediate material having conductivity by providing a porous structure made of a porous material having conductivity in the unit cell stacked structure. Including the laminated structure, the intermediate material is formed in a substantially flat plate shape, and its end surface is exposed to the outside of the unit cell laminated structure, and the intermediate material is a positive electrode current collector and a negative electrode of the lithium secondary unit cell. It has a laminated surface with at least one of the current collectors , the positive electrode current collector and the negative electrode current collector are resin current collectors, and the void portion of this porous material is outward from the laminated surface to the unit cell laminated structure. By having a continuous pore structure that penetrates, at least one of the above-mentioned problems is solved.

従って、電池セル内で発生したガスは、正極または負極集電体を通って中間材に至り、この中間材が連続細孔構造を有することから、単電池積層構造の外方に導出される。   Accordingly, the gas generated in the battery cell reaches the intermediate material through the positive electrode or the negative electrode current collector, and is led out of the unit cell stacked structure because the intermediate material has a continuous pore structure.

ここで、本発明においてリチウム二次単電池とは、正極電極活物質と電解液とを含む正極電極組成物層を正極集電体の表面に形成した正極と、負極電極活物質と電解液とを含む負極電極組成物層を負極集電体の表面に形成した負極とを有し、正極電極組成物と負極電極組成物とがセパレータを介して積層された構造を有し、電池容器、端子配置及び電子制御装置等を備えていない電池である(参考:日本工業規格JIS C8715-2「産業用リチウム二次電池の単電池及び電池システム」)。なお、リチウム二次単電池は単電池と略する場合がある。   Here, in the present invention, a lithium secondary cell is a positive electrode in which a positive electrode composition layer containing a positive electrode active material and an electrolytic solution is formed on the surface of a positive electrode current collector, and a negative electrode active material and an electrolytic solution. A negative electrode having a negative electrode composition layer formed on the surface of a negative electrode current collector, the positive electrode composition and the negative electrode composition having a structure in which the negative electrode composition is laminated via a separator, a battery container, a terminal It is a battery that does not have an arrangement and an electronic control device (Reference: Japanese Industrial Standard JIS C8715-2 “Industrial lithium secondary battery cells and battery system”). Note that a lithium secondary battery may be abbreviated as a battery.

また、単電池を略平板状に形成することが好ましい。なお、単電池を略平板状に形成するとは、略平板状に形成された単電池において、その上面及び下面をそれぞれ正極集電体又は負極集電体とすることを意味する   Further, it is preferable that the unit cell is formed in a substantially flat plate shape. Note that forming a unit cell in a substantially flat plate shape means that, in a unit cell formed in a substantially flat plate shape, the upper surface and the lower surface thereof are a positive electrode current collector or a negative electrode current collector, respectively.

本発明によれば、単電池内で発生したガスを単電池の外方に導出することができ、隣接する単電池の密着が妨げられることによる電池性能の低下がない積層型のリチウムイオン電池を提供することができる。   Advantageous Effects of Invention According to the present invention, a gas generated in a single cell can be led out of the single cell, and a stacked lithium ion battery in which battery performance does not decrease due to hindrance of adhesion of an adjacent single cell is prevented. Can be provided.

本発明の一実施形態であるリチウムイオン電池を示す断面図である。1 is a cross-sectional view illustrating a lithium-ion battery according to one embodiment of the present invention. 一実施形態のリチウムイオン電池の要部のみを拡大して示した断面図である。It is sectional drawing which expanded and showed only the principal part of the lithium ion battery of one Embodiment. 一実施形態のリチウムイオン電池を示す斜視図である。It is a perspective view showing the lithium ion battery of one embodiment.

(一実施形態)
図1〜図3を参照して、本発明の一実施形態であるリチウムイオン電池について説明する。図1は、本発明の一実施形態であるリチウムイオン電池を示す断面図、図2は一実施形態のリチウムイオン電池の要部のみを拡大して示した断面図、図3は一実施形態のリチウムイオン電池を示す斜視図である。
(One embodiment)
With reference to FIGS. 1 to 3, a lithium ion battery according to an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a lithium-ion battery according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view showing only a main part of the lithium-ion battery according to one embodiment, and FIG. It is a perspective view which shows a lithium ion battery.

これら図において、本実施形態のリチウムイオン電池Lは、リチウムイオン電池Lの外殻をなす中空の容器20内に外形略平板状の単電池1が直列に複数積層された単電池積層構造が収納されて構成されている。   In these figures, the lithium ion battery L of the present embodiment has a unit cell stacked structure in which a plurality of unit cells 1 each having a substantially flat outer shape are stacked in series in a hollow container 20 forming an outer shell of the lithium ion battery L. It is configured.

単電池1は、図1及び図2に詳細を示すように、略平板状の正極集電体7の表面に正極電極活物質と電解液とを含む略平板状の正極電極組成物層5が形成された正極2と、同様に略平板状の負極集電体8の表面に負極電極活物質と電解液とを含む略平板状の負極電極組成物層6が形成された負極3とが、同様に略平板状のセパレータ4を介して積層されて構成され、全体として略平板状に形成されている。これにより、対向する正極集電体7及び負極集電体8を最外層に有する単電池1が構成される。   As shown in detail in FIGS. 1 and 2, the unit cell 1 has a substantially plate-shaped positive electrode current collector 7 having a substantially plate-shaped positive electrode composition layer 5 containing a positive electrode active material and an electrolytic solution on the surface thereof. The formed positive electrode 2 and the negative electrode 3 in which a substantially flat negative electrode composition layer 6 including a negative electrode active material and an electrolytic solution is formed on the surface of a substantially flat negative electrode current collector 8, Similarly, they are laminated with a substantially flat separator 4 interposed therebetween, and are formed in a substantially flat plate shape as a whole. Thereby, the cell 1 having the opposed positive electrode current collector 7 and negative electrode current collector 8 in the outermost layer is configured.

図2に最もよく示されるように、正極集電体7及び負極集電体8は、単電池1の端部に形成されたシール部材9により所定間隔をもって対向するように位置決めされている。また、セパレータ4の端部がこのシール部材9内に埋め込まれることで、このセパレータ4が支持されるとともに、セパレータ4と正極集電体7及び負極集電体8との位置関係が定められている。   As best shown in FIG. 2, the positive electrode current collector 7 and the negative electrode current collector 8 are positioned so as to face each other at a predetermined interval by a sealing member 9 formed at an end of the unit cell 1. The end of the separator 4 is embedded in the sealing member 9 so that the separator 4 is supported and the positional relationship between the separator 4 and the positive electrode current collector 7 and the negative electrode current collector 8 is determined. I have.

正極集電体7とセパレータ4との間の間隔、及び、負極集電体8とセパレータ4との間の間隔はリチウムイオン電池の容量に応じて調整され、これら正極集電体7、負極集電体8及びセパレータ4の位置関係は必要な間隔が得られるように定められている。   The distance between the positive electrode current collector 7 and the separator 4 and the distance between the negative electrode current collector 8 and the separator 4 are adjusted according to the capacity of the lithium ion battery. The positional relationship between the electric body 8 and the separator 4 is determined so that a necessary interval can be obtained.

そして、図2に最もよく示されるように、各々の単電池1の間、より詳細には、隣接する単電池1の正極集電体7と負極集電体8との間には、これら正極集電体7及び負極集電体8に接するように、略平板状の中間材10が介在されている。そして、これら単電池1及び中間材10が交互に積層されて本実施形態のリチウムイオン電池Lが形成されている。但し、図1に示すように、積層された単電池1のうち、図1において最上層に位置する単電池1の上方、及び、最下層に位置する単電池1の下方には中間材10が配置されていない。   As shown best in FIG. 2, between each unit cell 1, more specifically, between the positive electrode current collector 7 and the negative electrode current collector 8 of the adjacent unit cell 1, A substantially flat intermediate member 10 is interposed so as to be in contact with the current collector 7 and the negative electrode current collector 8. The unit cells 1 and the intermediate members 10 are alternately stacked to form the lithium ion battery L of the present embodiment. However, as shown in FIG. 1, among the stacked unit cells 1, an intermediate material 10 is provided above the unit cell 1 located at the uppermost layer and below the unit cell 1 located at the lowermost layer in FIG. 1. Not placed.

中間材10は、導電性を有する多孔質材料を含むことで、少なくともその一部が多孔質構造に形成されている。また、この中間材10は、単電池1との積層面、より詳細には、隣接する単電池1の正極集電体7及び負極集電体8の表面から、積層された状態の単電池1(単電池積層構造)の外方に貫通する連続細孔構造を有している。   The intermediate material 10 includes a porous material having conductivity, so that at least a part thereof is formed in a porous structure. In addition, the intermediate material 10 is stacked from the surface of the positive electrode current collector 7 and the surface of the negative electrode current collector 8 of the adjacent single cell 1, It has a continuous pore structure that penetrates outward (single cell laminated structure).

加えて、中間材10は、図2に最もよく示されるように、その端面10aが、積層された単電池1の外方に露出されている。   In addition, the end face 10a of the intermediate member 10 is exposed to the outside of the stacked unit cells 1 as best shown in FIG.

また、図1において最上層に位置する単電池1の上面、より詳細には、図示例においては負極集電体8の上面、及び、最下層に位置する単電池1の下面、より詳細には、図示例においては正極集電体7の下面には、それぞれ、これら正極集電体7及び負極集電体8に接するように電極端子11、12が配置され、その一端11a、12aは、図3に最もよく示されるように、容器20の外方に露出されている。   Also, in FIG. 1, the upper surface of the unit cell 1 located at the uppermost layer, more specifically, in the illustrated example, the upper surface of the negative electrode current collector 8 and the lower surface of the unit cell 1 located at the lowermost layer, more specifically In the illustrated example, electrode terminals 11 and 12 are arranged on the lower surface of the positive electrode current collector 7 so as to be in contact with the positive electrode current collector 7 and the negative electrode current collector 8, respectively. 3, it is exposed outside the container 20.

正極電極活物質は正極活物質粒子を含んでなり、正極活物質粒子としては、リチウムと遷移金属との複合酸化物(例えばLiCoO2、LiNiO2、LiMnO2及びLiMn24)、遷移金属酸化物(例えばMnO2及びV25)、遷移金属硫化物(例えばMoS2及びTiS2)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ−p−フェニレン及びポリカルバゾール)等が挙げられる。 The positive electrode active material includes positive electrode active material particles. Examples of the positive electrode active material particles include a composite oxide of lithium and a transition metal (eg, LiCoO 2 , LiNiO 2 , LiMnO 2, and LiMn 2 O 4 ), and a transition metal oxide. (Eg, MnO 2 and V 2 O 5 ), transition metal sulfides (eg, MoS 2 and TiS 2 ) and conductive polymers (eg, polyaniline, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole). No.

また、負極電極活物質は負極活物質粒子からなり、負極活物質粒子としては、黒鉛、難黒鉛化性炭素、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリキノリン等)、スズ、シリコン、及び金属合金(例えばリチウム−スズ合金、リチウム−シリコン合金、リチウム−アルミニウム合金及びリチウム−アルミニウム−マンガン合金等)、リチウムと遷移金属との複合酸化物(例えばLi4Ti512等)等が挙げられる。 Further, the negative electrode active material is composed of negative electrode active material particles, and examples of the negative electrode active material particles include graphite, non-graphitizable carbon, amorphous carbon, and a fired polymer compound (for example, carbonized by firing a phenol resin, a furan resin, or the like). ), Coke (eg, pitch coke, needle coke, petroleum coke, etc.), carbon fiber, conductive polymer (eg, polyacetylene and polyquinoline, etc.), tin, silicon, and metal alloys (eg, lithium-tin alloy, lithium) - silicon alloy, a lithium - aluminum alloy and lithium - aluminum - manganese alloy), and a composite oxide of lithium and transition metals (e.g., Li 4 Ti 5 O 12, etc.) and the like.

単電池1においては、正極、負極活物質粒子は、表面の少なくとも一部が被覆用樹脂及び導電助剤を含む被覆剤で被覆されてなる被覆活物質粒子であることが好ましい。   In the cell 1, the positive electrode and the negative electrode active material particles are preferably coated active material particles having at least a part of the surface coated with a coating agent containing a coating resin and a conductive additive.

被覆剤は被覆用樹脂を含んでおり、正極活物質粒子の周囲が被覆剤で被覆されていると、電極の体積変化が緩和され、電極の膨脹を抑制することができる。被覆用樹脂の例としては、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート等が挙げられる。これらの中ではビニル樹脂、ウレタン樹脂、ポリエステル樹脂又はポリアミド樹脂が好ましい。   The coating agent contains a coating resin, and when the periphery of the positive electrode active material particles is coated with the coating agent, a change in volume of the electrode is reduced, and expansion of the electrode can be suppressed. Examples of the coating resin include vinyl resin, urethane resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, silicone resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, and polycarbonate. Among them, vinyl resin, urethane resin, polyester resin and polyamide resin are preferable.

導電助剤としては、導電性を有する材料から選択される。   The conductive assistant is selected from materials having conductivity.

具体的には、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック、単層カーボンナノチューブ及び多層カーボンナノチューブ等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。   Specifically, metal [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, single layer) Carbon nanotubes, multi-walled carbon nanotubes, etc.), and mixtures thereof, but are not limited thereto.

これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、金、銅、チタン及びこれらの混合物であり、より好ましくは銀、金、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電助剤とは、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をメッキ等でコーティングしたものでもよい。   These conductive assistants may be used alone or in combination of two or more. Further, these alloys or metal oxides may be used. From the viewpoint of electrical stability, preferably aluminum, stainless steel, carbon, silver, gold, copper, titanium and a mixture thereof, more preferably silver, gold, aluminum, stainless steel and carbon, more preferably carbon. is there. In addition, these conductive assistants may be those obtained by coating a conductive material (metal among the above-mentioned conductive assistant materials) around a particle-based ceramic material or a resin material by plating or the like.

導電助剤として導電性繊維を用いることも可能である。導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。   It is also possible to use conductive fibers as the conductive assistant. Examples of the conductive fiber include carbon fibers such as PAN-based carbon fiber and pitch-based carbon fiber, conductive fibers obtained by uniformly dispersing a highly conductive metal or graphite in synthetic fibers, and metals such as stainless steel. Examples include fibrous metal fibers, conductive fibers in which the surfaces of organic fibers are coated with a metal, and conductive fibers in which the surfaces of organic fibers are coated with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferred.

被覆活物質粒子は、例えば、活物質粒子を万能混合機に入れて30〜500rpmで撹拌した状態で、被覆用樹脂を含む樹脂溶液を1〜90分かけて滴下混合し、さらに導電助剤を混合し、撹拌したまま50〜200℃に昇温し、0.007〜0.04MPaまで減圧した後に10〜150分保持することにより得ることができる。   The coated active material particles are, for example, in a state where the active material particles are put in a universal mixer and stirred at 30 to 500 rpm, a resin solution containing the coating resin is dropped and mixed over 1 to 90 minutes, and the conductive auxiliary agent is further added. It can be obtained by mixing, heating to 50 to 200 ° C. with stirring, reducing the pressure to 0.007 to 0.04 MPa, and holding for 10 to 150 minutes.

電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する電解液を使用することができる。   As the electrolyte, an electrolyte containing an electrolyte and a non-aqueous solvent, which is used for manufacturing a lithium ion battery, can be used.

電解質としては、通常の電解液に用いられているもの等が使用でき、例えば、LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO22、LiN(C25SO22及びLiC(CF3SO23等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPF6である。 As the electrolyte, those used in ordinary electrolytes and the like can be used. For example, lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , and LiN (CF 3 SO 2 ) 2 , lithium salts of organic acids such as LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Among these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

非水溶媒としては、通常の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。   As the non-aqueous solvent, those used in ordinary electrolytic solutions and the like can be used. For example, lactone compounds, cyclic or chain carbonates, chain carboxylic esters, cyclic or chain ethers, phosphates, nitriles Compounds, amide compounds, sulfones, sulfolanes and the like and mixtures thereof can be used.

非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。   One type of non-aqueous solvent may be used alone, or two or more types may be used in combination.

非水溶媒の内、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、より好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、さらに好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。特に好ましいのはプロピレンカーボネート(PC)、またはエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。   Among the non-aqueous solvents, preferred from the viewpoint of battery output and charge / discharge cycle characteristics are lactone compounds, cyclic carbonates, chain carbonates and phosphates, and more preferred are lactone compounds, cyclic carbonates and chains. Carbonic acid ester is more preferable, and a mixed solution of cyclic carbonate and chain carbonate is more preferable. Particularly preferred is propylene carbonate (PC) or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC).

セパレータ4としては、ポリエチレン、ポリプロピレン等、ポリオレフィン製の微多孔膜フィルム、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。   As the separator 4, polyethylene, polypropylene or the like, a polyolefin microporous membrane film, a multilayer film of a porous polyethylene film and polypropylene, a polyester fiber, an aramid fiber, a nonwoven fabric made of glass fiber, and the like, and silica on their surface, What adhere | attached the ceramic fine particles, such as alumina and titania, etc. are mentioned.

正極、負極集電体7、8としては、金属集電体や樹脂集電体を用いることができる。金属集電体としては、公知の金属集電体を用いることができる。たとえば、金属集電体は、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、およびこれらの一種以上を含む合金、ならびにステンレス合金からなる群から選択される一種以上からなると好ましい。金属集電体は薄板または金属箔から形成されてもよいし、基材の表面にスパッタリング、電着、塗布等の手法により金属層を形成してもよい。   As the positive and negative electrode current collectors 7 and 8, a metal current collector or a resin current collector can be used. As the metal current collector, a known metal current collector can be used. For example, the metal current collector is selected from the group consisting of copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and alloys containing one or more of these, as well as stainless steel alloys. It is preferred that it be composed of at least one of The metal current collector may be formed from a thin plate or a metal foil, or a metal layer may be formed on the surface of the base material by a technique such as sputtering, electrodeposition, or coating.

樹脂集電体を構成する高分子材料は、導電性高分子であってもよいし、導電性を有さない高分子であってもよい。   The polymer material constituting the resin current collector may be a conductive polymer or a polymer having no conductivity.

高分子材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。   Polymer materials include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetrafluoroethylene (PTFE). Styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin, or a mixture thereof.

電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。   From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferred, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferred. (PMP).

また、樹脂集電体は、導電性の高分子材料を含む樹脂集電体の導電性を向上させる目的、あるいは、導電性を有さない高分子材料を含む樹脂集電体に導電性を付与する目的から、導電性フィラーを含んでいると好ましい。導電性フィラーは、導電性を有する材料から選択される。好ましくは、集電体内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料を用いるのが好ましい。具体的には、カーボン材料、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、ニッケルなどが挙げられるが、これらに限定されるものではない。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。また、ステンレス(SUS)等のこれらの合金材が用いられてもよい。耐食性の観点から、好ましくはアルミニウム、ステンレス、カーボン材料、ニッケル、より好ましくはカーボン材料である。また、これらの導電性フィラーは、粒子系セラミック材料や樹脂材料の周りに、上記で示される金属をメッキ等でコーティングしたものであってもよい。   In addition, the resin current collector is used for improving the conductivity of the resin current collector containing a conductive polymer material, or imparting conductivity to a resin current collector containing a polymer material having no conductivity. It is preferable to include a conductive filler for the purpose of doing so. The conductive filler is selected from materials having conductivity. Preferably, from the viewpoint of suppressing ion permeation in the current collector, it is preferable to use a material having no conductivity with respect to ions used as the charge transfer medium. Specific examples include, but are not limited to, carbon materials, aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, titanium, nickel, and the like. These conductive fillers may be used alone or in combination of two or more. Further, these alloy materials such as stainless steel (SUS) may be used. From the viewpoint of corrosion resistance, aluminum, stainless steel, carbon material, nickel, and more preferably carbon material are preferable. In addition, these conductive fillers may be obtained by coating the above-mentioned metal with plating or the like around a particle-based ceramic material or a resin material.

樹脂集電体の具体例としては、ポリプロピレンに導電性フィラーとしてアセチレンブラックを5〜20部分散させた後、熱プレス機で圧延したものが挙げられる。また、その厚みも特に制限されず、公知のものと同様、あるいは適宜変更して適用することができる。   As a specific example of the resin current collector, a material obtained by dispersing 5 to 20 parts of acetylene black as a conductive filler in polypropylene and then rolling the same with a hot press machine is exemplified. In addition, the thickness is not particularly limited, and can be applied in the same manner as that of a known one or appropriately changed.

シール部材9を構成する材料としては、正極、負極集電体7、8との接着性を有し、電解液に対して耐久性のある材料であれば特に限定されないが、高分子材料、特に熱硬化性樹脂が好ましい。具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリフッ化ビニデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。   The material constituting the sealing member 9 is not particularly limited as long as it has adhesiveness to the positive electrode and the negative electrode current collectors 7 and 8 and is durable to the electrolytic solution. Thermosetting resins are preferred. Specific examples include an epoxy resin, a polyolefin resin, a polyurethane resin, and a polyvinylidene fluoride resin. An epoxy resin is preferable because of its high durability and easy handling.

中間材10を構成する材料としては、上述のように、中間材10が導電性を有する多孔質材料を含み、さらに電池セル1の正極又は負極集電体7、8との積層面からリチウムイオン電池Lの外方に貫通する連続細孔構造を有することから、金属製多孔質体、上述のセパレータ4と同様のポリエチレン、ポリプロピレン等、ポリオレフィン製の微多孔膜フィルム、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルムおよびポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布等が挙げられる。   As described above, as a material constituting the intermediate member 10, the intermediate member 10 includes a porous material having conductivity, and further includes lithium ion from the surface of the battery cell 1 on which the positive electrode or the negative electrode current collectors 7 and 8 are laminated. Since it has a continuous pore structure that penetrates outside the battery L, a porous metal film, a microporous film made of polyolefin such as polyethylene and polypropylene similar to the separator 4 described above, a porous polyethylene film and polypropylene And a nonwoven fabric made of polyester fiber, aramid fiber, glass fiber and the like.

加えて、これらフィルム、シートに導電性を付与するために、中間材10は前記微多孔膜フィルム、多層フィルム及び不織布等に導電性材料(上記した導電助剤の材料のうち金属のもの)をメッキ等でコーティングしたもの、および上述の樹脂集電体と同様に、導電性フィラーを含んでいるものが好ましい。導電性フィラーは、導電性を有する材料から選択される。また、これらの導電性フィラーは、粒子系セラミック材料や樹脂材料の周りに、上記で示される金属をメッキ等でコーティングしたものであってもよい。   In addition, in order to impart conductivity to these films and sheets, the intermediate material 10 is made of a conductive material (metal among the materials of the above-mentioned conductive assistants) for the microporous film, the multilayer film, the nonwoven fabric and the like. Those coated with plating or the like, and those containing a conductive filler like the above-mentioned resin current collector are preferable. The conductive filler is selected from materials having conductivity. In addition, these conductive fillers may be obtained by coating the above-mentioned metal with plating or the like around a particle-based ceramic material or a resin material.

さらに、中間材10を構成する材料は、単電池1の正極又は負極集電体7、8との積層面から単電池積層構造の外方に貫通する連続細孔構造を有する。上述した材料のフィルム、シートに細孔を形成する手法は周知であり、種々の手法を任意に選択可能である。   Further, the material constituting the intermediate member 10 has a continuous pore structure penetrating from the stacked surface of the unit cell 1 with the positive electrode or the negative electrode current collectors 7 and 8 to the outside of the unit cell stacked structure. Techniques for forming pores in films and sheets of the above-described materials are well known, and various techniques can be arbitrarily selected.

容器20を構成する材料は、容器20内に単電池積層構造を収納しうる材料であれば、任意の材料が好適に適用可能である。但し、単電池1と容器20とが接触する可能性があることを考慮して、容器20を構成する材料は絶縁性を有する材料であることが好ましい。加えて、リチウムイオン電池Lの特性を維持する観点から、容器20内を減圧脱気した後で封止することが好ましく、この場合、容器20を構成する材料は気密性を有する材料であることが好ましい。このような材料としては、ラミネートフィルムと呼ばれる、一例として、金属箔の両面を高分子フィルムで覆ったフィルムが挙げられる。   Any material can be suitably applied to the container 20 as long as the container 20 can accommodate the unit cell stacked structure. However, in consideration of the possibility that the cell 1 and the container 20 may come into contact with each other, the material forming the container 20 is preferably a material having an insulating property. In addition, from the viewpoint of maintaining the characteristics of the lithium ion battery L, it is preferable that the inside of the container 20 is sealed after degassing under reduced pressure. In this case, the material forming the container 20 is a material having airtightness. Is preferred. One example of such a material is a film called a laminate film, in which a metal foil is covered on both sides with a polymer film.

以上の構成の単電池1は、正極集電体7及び負極集電体8のそれぞれの表面に、正極電極活物質と電解液とを含む正極電極組成物5、及び負極電極活物質と電解液とを含む負極電極組成物6を形成して正極2及び負極3を形成する。正極2及び負極3を形成する手法は任意であり、正極集電体7及び負極集電体8のそれぞれの表面に正極電極組成物5及び負極電極組成物6を塗布する、正極集電体7及び負極集電体8のそれぞれの表面に、ノズル等を介して正極電極組成物5及び負極電極組成物6を載置した後に所定厚になるようにヘラ等で均す、など、種々の手法が挙げられる。その後、セパレータ4を介して正極2及び負極3を積層し、正極集電体7及び負極集電体8の端部、さらにセパレータ4の端部をシール部材9により封止することで電池セル1を製造することができる。   The unit cell 1 having the above-described configuration includes a positive electrode composition 5 containing a positive electrode active material and an electrolytic solution, and a negative electrode active material and an electrolytic solution on the surfaces of the positive electrode current collector 7 and the negative electrode current collector 8, respectively. To form the positive electrode 2 and the negative electrode 3. The method for forming the positive electrode 2 and the negative electrode 3 is arbitrary, and the positive electrode current collector 7 and the negative electrode electrode composition 6 are applied to the surfaces of the positive electrode current collector 7 and the negative electrode current collector 8, respectively. And various methods such as placing the positive electrode composition 5 and the negative electrode composition 6 on the respective surfaces of the negative electrode current collector 8 via a nozzle or the like and then leveling them to a predetermined thickness with a spatula or the like. Is mentioned. Thereafter, the positive electrode 2 and the negative electrode 3 are stacked with the separator 4 interposed therebetween, and the ends of the positive electrode current collector 7 and the negative electrode current collector 8 and the end of the separator 4 are further sealed with a sealing member 9 to thereby form the battery cell 1. Can be manufactured.

次いで、上述の工程により製造された単電池1と中間材10とを、これら単電池1と中間材10とが積層された状態で中間材10の端面10aが外方に露出するように交互に積層し、さらに、積層された単電池1の上面及び下面に電極端子11、12を配置した後で、これら単電池積層構造及び電極端子11、12を容器20内に収納し、必要であれば容器20内を減圧脱気した後で封止することで、本実施形態のリチウムイオン電池Lを製造することができる。   Next, the unit cells 1 and the intermediate members 10 manufactured by the above-described steps are alternately arranged such that the end surfaces 10a of the intermediate members 10 are exposed outward in a state where the unit cells 1 and the intermediate members 10 are stacked. After stacking and further arranging the electrode terminals 11 and 12 on the upper and lower surfaces of the stacked unit cells 1, these unit cell stacked structure and the electrode terminals 11 and 12 are housed in a container 20, and if necessary, By sealing the inside of the container 20 after degassing under reduced pressure, the lithium ion battery L of the present embodiment can be manufactured.

従って、本実施形態のリチウムイオン電池Lにおいては、単電池1と中間材10とが、中間材10の端面が積層された状態で単電池積層構造の外方に露出するように交互に積層されているので、単電池1内で発生したガスは、正極または負極集電体7、8を通って中間材10に至り、この中間材10が細孔構造を有することから、単電池積層構造の外方に導出される。これにより、単電池1内で発生したガスを単電池積層構造の外方に導出することの可能なリチウムイオン電池を実現することができる。   Therefore, in the lithium ion battery L of the present embodiment, the unit cells 1 and the intermediate member 10 are alternately stacked so as to be exposed to the outside of the unit cell stacked structure with the end surfaces of the intermediate member 10 stacked. Therefore, the gas generated in the single cell 1 passes through the positive electrode or negative electrode current collectors 7 and 8 to reach the intermediate material 10, and since the intermediate material 10 has a pore structure, the It is derived outward. Thereby, it is possible to realize a lithium ion battery capable of guiding the gas generated in the unit cell 1 to the outside of the unit cell stacked structure.

なお、上述の一実施形態では、単電池1と中間材10とを交互に積層していたが、単電池1内でどの程度の確率でガスが発生するかを考慮し、中間材10の枚数等を適宜設定すればよく、例えば単電池1を複数枚積層したものに対して1枚の中間材10を積層する等、適宜調整は可能である。   In the above-described embodiment, the unit cells 1 and the intermediate members 10 are alternately stacked. However, the number of the intermediate members 10 is determined in consideration of the probability of gas generation in the unit cells 1. And the like may be appropriately set, and an appropriate adjustment is possible, for example, by laminating one intermediate member 10 on a plurality of unit cells 1 laminated.

L リチウムイオン電池
1 単電池
2 正極
3 負極
4 セパレータ
5 正極電極組成物
6 負極電極組成物
7 正極集電体
8 負極集電体
9 シール部材
10 中間材
10a 端面
11、12 電極端子
20 容器
L Lithium ion battery 1 Single cell 2 Positive electrode 3 Negative electrode 4 Separator 5 Positive electrode composition 6 Negative electrode composition 7 Positive current collector 8 Negative current collector 9 Sealing member 10 Intermediate material 10a End faces 11, 12 Electrode terminal 20 Container

Claims (2)

少なくとも2つのリチウム二次単電池を直列に積層してなる単電池積層構造を有する積層型リチウムイオン電池において、
導電性を有する多孔質材料からなる多孔質構造備えることで全体に導電性を有する中間材を介して電気的に接続された少なくとも2つの前記リチウム二次単電池が積層された構造を含み、
前記中間材は略平板状に形成され、その端面が前記単電池積層構造の外方に露出されており、
前記中間材は前記リチウム二次単電池が有する正極集電体及び負極集電体の少なくとも一方との積層面を有し、
前記正極集電体及び前記負極集電体が樹脂集電体であり、
前記多孔質材料の空隙部分は前記積層面から前記単電池積層構造の外方に貫通する連続細孔構造を有していることを特徴とするリチウムイオン電池。
A stacked lithium-ion battery having a unit cell stack structure in which at least two lithium secondary cells are stacked in series,
Including a structure in which at least two of the lithium secondary cells electrically connected to each other via an intermediate material having conductivity by being provided with a porous structure made of a porous material having conductivity are stacked,
The intermediate member is formed in a substantially flat plate shape, and an end surface thereof is exposed to the outside of the unit cell stacked structure,
The intermediate material has a laminated surface with at least one of a positive electrode current collector and a negative electrode current collector of the lithium secondary battery,
The positive electrode current collector and the negative electrode current collector are a resin current collector,
A lithium ion battery, wherein the void portion of the porous material has a continuous pore structure penetrating from the lamination surface to the outside of the unit cell laminated structure.
請求項1に記載のリチウムイオン電池において、
前記単電池は略平板状に形成されていることを特徴とするリチウムイオン電池。
The lithium ion battery according to claim 1,
The cell is formed in a substantially flat plate shape.
JP2015147420A 2015-07-27 2015-07-27 Lithium ion battery Active JP6641113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147420A JP6641113B2 (en) 2015-07-27 2015-07-27 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147420A JP6641113B2 (en) 2015-07-27 2015-07-27 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2017027874A JP2017027874A (en) 2017-02-02
JP6641113B2 true JP6641113B2 (en) 2020-02-05

Family

ID=57950585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147420A Active JP6641113B2 (en) 2015-07-27 2015-07-27 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP6641113B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622294B2 (en) * 2004-04-23 2011-02-02 日産自動車株式会社 Bipolar battery, bipolar battery manufacturing method, assembled battery, and vehicle equipped with the same
JP4591923B2 (en) * 2005-01-07 2010-12-01 財団法人電力中央研究所 Multilayer secondary battery
EP2381511B1 (en) * 2007-02-14 2017-01-18 Kawasaki Jukogyo Kabushiki Kaisha Battery and its heat transfer structure
WO2011112042A2 (en) * 2010-03-11 2011-09-15 주식회사 엘지화학 Organic polymer-silicon composite particle, preparation method for same, and cathode and lithium secondary battery including same
JP6211880B2 (en) * 2013-10-07 2017-10-11 古河機械金属株式会社 ELECTRIC ELEMENT AND METHOD FOR PRODUCING ELECTRIC ELEMENT

Also Published As

Publication number Publication date
JP2017027874A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US8481197B2 (en) Bipolar secondary battery, method for manufacturing the bipolar secondary battery, bipolar electrode, method for manufacturing the bipolar electrode and assembled battery
JP6585964B2 (en) Method for manufacturing lithium ion battery
JP5292676B2 (en) Bipolar battery electrode
EP3065205A1 (en) Electrode and cell having electrode
JP2017050215A (en) Method for manufacturing lithium ion secondary battery
JP2008140552A (en) Electrode for bipolar battery
JP6618352B2 (en) Multilayer battery manufacturing equipment
US20210296695A1 (en) Battery
JP2010056067A (en) Coin-type lithium secondary battery
JP6785110B2 (en) Current collectors for lithium-ion batteries and lithium-ion batteries
JP6731716B2 (en) Lithium-ion battery and manufacturing method thereof
JP2021034141A (en) Lithium ion battery module and battery pack
JP7181752B2 (en) Lithium ion battery and manufacturing method thereof
JP2017041310A (en) Manufacturing method of battery
JP6843580B2 (en) Lithium-ion battery manufacturing method
JP2019207750A (en) Lithium ion battery
JP6861016B2 (en) Lithium ion battery
JP6611321B2 (en) Battery module and manufacturing method thereof
JP6652813B2 (en) Stacked battery module
JP6823398B2 (en) battery
JP6850621B2 (en) Lithium ion battery
WO2018207643A1 (en) Bipolar secondary battery
JP6549944B2 (en) Lithium ion battery
JP6641113B2 (en) Lithium ion battery
CN111213277B (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191227

R150 Certificate of patent or registration of utility model

Ref document number: 6641113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150