JP6819838B1 - Steel sheet for cans and its manufacturing method - Google Patents

Steel sheet for cans and its manufacturing method Download PDF

Info

Publication number
JP6819838B1
JP6819838B1 JP2020544692A JP2020544692A JP6819838B1 JP 6819838 B1 JP6819838 B1 JP 6819838B1 JP 2020544692 A JP2020544692 A JP 2020544692A JP 2020544692 A JP2020544692 A JP 2020544692A JP 6819838 B1 JP6819838 B1 JP 6819838B1
Authority
JP
Japan
Prior art keywords
less
cans
rolling
tensile strength
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020544692A
Other languages
Japanese (ja)
Other versions
JPWO2020203470A1 (en
Inventor
勇人 齋藤
勇人 齋藤
房亮 假屋
房亮 假屋
克己 小島
克己 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6819838B1 publication Critical patent/JP6819838B1/en
Publication of JPWO2020203470A1 publication Critical patent/JPWO2020203470A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Abstract

成分組成として、質量%で、C:0.100%以上0.130%未満、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.020%以下、S:0.020%以下、Al:0.01%以上0.10%以下、N:0.0005%以上0.0040%以下、Nb:0.005%以上0.030%以下、B:0.0005%超え0.0050%以下を含有し、残部はFe及び不可避的不純物からなり、パーライトを面積分率で1.0%以上含むフェライト組織を有し、210℃で20分の熱処理を施した後の引張強さが630MPa以上、750MPa以下、降伏伸びが3.0%以下であり、伸びが3.0%以上、10.0%未満である缶用鋼板。In terms of component composition, in mass%, C: 0.100% or more and less than 0.130%, Si: 0.04% or less, Mn: 0.10% or more and 0.60% or less, P: 0.020% or less, S: 0.020% or less, Al: 0.01% or more and 0.10% or less, N: 0.0005% or more and 0.0040% or less, Nb: 0.005% or more and 0.030% or less, B: 0 It contains more than 0005% and 0.0050% or less, the balance is composed of Fe and unavoidable impurities, has a ferrite structure containing pearlite in an area fraction of 1.0% or more, and is heat-treated at 210 ° C. for 20 minutes. A steel plate for cans having a tensile strength of 630 MPa or more and 750 MPa or less, a yield elongation of 3.0% or less, and an elongation of 3.0% or more and less than 10.0%.

Description

本発明は、食品缶、飲料缶等に用いられる缶容器用材料に適用して好適な缶用鋼板及びその製造方法に関し、特に、易開封蓋(イージーオープンエンド、EOE)の製造に好ましく適用できる缶用鋼板及びその製造方法に関する。 The present invention relates to a can steel plate suitable for application to a material for a can container used for food cans, beverage cans, etc. and a method for producing the same, and can be particularly preferably applied to the production of an easy open end (EOE). The present invention relates to a steel plate for cans and a method for manufacturing the same.

近年における環境負荷低減およびコスト削減の観点から食缶や飲料缶に用いられる鋼板の使用量削減が求められており、2ピース缶、3ピース缶に関わらず鋼板の薄肉化が進行している。また、缶胴部のみならずEOEのような缶蓋部での薄肉化の要求が強くなっている。 In recent years, from the viewpoint of reducing the environmental load and cost, it has been required to reduce the amount of steel sheets used for food cans and beverage cans, and the thickness of steel sheets is being reduced regardless of whether they are 2-piece cans or 3-piece cans. In addition, there is an increasing demand for thinning not only in the can body but also in the can lid such as EOE.

缶蓋用の鋼板を薄肉化すると耐圧強度が低下するため、高強度の鋼板を使用する必要がある。高強度の缶用鋼板として、従来から加工性が良好なSR(Single Reduced)材での高強度化や、一般的には加工性が低いDR(Double Reduced)材での加工性の向上が検討されている。ここでSR材とは、焼鈍後に調質圧延を行って製造された材料で、DR材とは焼鈍の後に、再度、冷間圧延(二次冷間圧延)を行って製造された鋼板である。 If the steel plate for the can lid is thinned, the pressure resistance will decrease, so it is necessary to use a high-strength steel plate. As a high-strength steel sheet for cans, consideration is being given to increasing the strength of SR (Single Redduced) materials, which have traditionally been good in workability, and improving workability with DR (Double Redduced) materials, which generally have low workability. Has been done. Here, the SR material is a material manufactured by temper rolling after annealing, and the DR material is a steel sheet manufactured by cold rolling (secondary cold rolling) again after annealing. ..

特許文献1には高強度なSR鋼板として、質量%で、C:0.03〜0.13%、Si:0.03%以下、Mn:0.3〜0.6%、P:0.02%以下、Al:0.1%以下、N: 0.012%以下であり、さらにNb:0.005〜0.05%、Ti:0.005〜0.05%、b:0.0005〜0.005%の1種以上を含有し、残部が鉄および不可避的不純物からなる組成と、セメンタイト率:0.5%以上であるフェライト組織を有し、フェライト平均結晶粒径が7μm以下であり、塗装焼付け処理後の引張強度が450〜550MPa、全伸びが20%以上、降伏伸びが5%以下を特徴とする缶用鋼板が提案されている。 Patent Document 1 states that as a high-strength SR steel plate, C: 0.03 to 0.13%, Si: 0.03% or less, Mn: 0.3 to 0.6%, P: 0. 02% or less, Al: 0.1% or less, N: 0.012% or less, and further, Nb: 0.005-0.05%, Ti: 0.005-0.05%, b: 0.0005 It contains 1 or more of ~ 0.005%, has a composition of iron and unavoidable impurities as the balance, and has a ferrite structure with a cementite ratio of 0.5% or more, and has a ferrite average grain size of 7 μm or less. There have been proposed steel plates for cans having a tensile strength of 450 to 550 MPa after a coating baking process, a total elongation of 20% or more, and a yield elongation of 5% or less.

特許文献2には加工性が良好なDR鋼板として、質量%で、C:0.010〜0.080%、Si:0.05%以下、Mn:0.10%以上0.70%以下、P:0.03%以下、S:0.020%以下、N:0.0120%以上0.0180%以下、Al:0.005%以上0.070%以下を含有し、残部が不可避的不純物と鉄からなり、含有する前記Nの内、固溶NとしてのN含有量が0.0100%以上であり、フェライト粒径が7.0μm以下であり、表層から板厚の1/4深さ位置の転位密度が4.0×1014−2以上2.0×1015−2以下であり、時効処理後の圧延直角方向の引張強さが530MPa以上、伸びが7%以上であることを特徴とする高強度鋼板が提案されている。Patent Document 2 states that as a DR steel plate having good workability, C: 0.010 to 0.080%, Si: 0.05% or less, Mn: 0.10% or more and 0.70% or less in mass%. P: 0.03% or less, S: 0.020% or less, N: 0.0120% or more and 0.0180% or less, Al: 0.005% or more and 0.070% or less, and the balance is an unavoidable impurity The content of N as a solid solution N is 0.0100% or more, the ferrite particle size is 7.0 μm or less, and the depth is 1/4 of the plate thickness from the surface layer. The displacement density at the position is 4.0 × 10 14 m- 2 or more and 2.0 × 10 15 m- 2 or less, the tensile strength in the direction perpendicular to rolling after aging treatment is 530 MPa or more, and the elongation is 7% or more. A high-strength steel plate characterized by this has been proposed.

特開2008−274332号公報Japanese Unexamined Patent Publication No. 2008-274332 国際公開第2015/166646号公報International Publication No. 2015/1664646

しかし、上記従来技術には下記に示す問題が挙げられる。
特許文献1に記載された技術は、引張強さが550MPaまでの鋼板にしか適用できず、更なる薄肉化に対応できない。特許文献2に記載された技術では、N含有量が多いために、降伏伸びが大きく、蓋加工時にストレッチャーストレインが発生して外観が劣るという課題があった。さらに、単に高強度化しただけでは、EOEを開けるのに必要な開缶力が増大してしまうという課題があった。
However, the above-mentioned prior art has the following problems.
The technique described in Patent Document 1 can be applied only to steel sheets having a tensile strength of up to 550 MPa, and cannot cope with further thinning. In the technique described in Patent Document 2, since the N content is high, there is a problem that the yield elongation is large and a stretcher strain is generated at the time of lid processing and the appearance is deteriorated. Further, there is a problem that the can-opening force required to open the EOE increases simply by increasing the strength.

本発明はかかる事情に鑑みなされたもので、優れた加工性と開缶性を有する缶用鋼板及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel sheet for cans having excellent processability and openability, and a method for producing the same.

上記の目的を達成するために、本発明は、下記を要旨とする。
(1) 成分組成として、質量%で、C:0.100%以上0.130%未満、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.020%以下、S:0.020%以下、Al:0.01%以上0.10%以下、N:0.0005%以上0.0040%以下、Nb:0.005%以上0.030%以下、B:0.0005%超え0.0050%以下を含有し、残部はFe及び不可避的不純物からなり、パーライトを面積分率で1.0%以上含むフェライト組織を有し、210℃で20分の熱処理を施した後の引張強さが630MPa以上、750MPa以下、降伏伸びが3.0%以下であり、伸びが3.0%以上、10.0%未満である、缶用鋼板。
(2) 成分組成として、さらに質量%で、Ti:0.005%以上0.030%以下、Mo:0.01%以上0.05%以下、Cr:0.05%以上0.20%以下の内、一種以上を含有する、(1)に記載の缶用鋼板。
(3) (1)または(2)に記載の缶用鋼板の製造方法であって、鋼スラブを加熱する工程と、加熱された鋼スラブを熱間圧延する工程と、得られた熱延板を巻き取る工程と、巻き取られた熱延板を酸洗する工程と、酸洗された熱延板を一次冷間圧延する工程と、一次冷間圧延された冷延板を焼鈍する焼鈍工程と、焼鈍された焼鈍板を二次冷間圧延する工程とを有し、前記焼鈍工程では、前記一次冷間圧延工程で得られた冷延板を720℃以上780℃以下の焼鈍温度で焼鈍し、前記二次冷間圧延では、前記焼鈍工程で得られた焼鈍板を圧延率6.0%以上30.0%以下で冷間圧延する、缶用鋼板の製造方法。
In order to achieve the above object, the present invention has the following gist.
(1) As the component composition, in terms of mass%, C: 0.100% or more and less than 0.130%, Si: 0.04% or less, Mn: 0.10% or more and 0.60% or less, P: 0.020 % Or less, S: 0.020% or less, Al: 0.01% or more and 0.10% or less, N: 0.0005% or more and 0.0040% or less, Nb: 0.005% or more and 0.030% or less, B: Containing more than 0.0005% and 0.0050% or less, the balance is composed of Fe and unavoidable impurities, has a ferrite structure containing pearlite in an area fraction of 1.0% or more, and has a ferrite structure at 210 ° C. for 20 minutes. A steel plate for cans having a tensile strength of 630 MPa or more and 750 MPa or less, a yield elongation of 3.0% or less, and an elongation of 3.0% or more and less than 10.0% after being heat-treated.
(2) As the component composition, in terms of mass%, Ti: 0.005% or more and 0.030% or less, Mo: 0.01% or more and 0.05% or less, Cr: 0.05% or more and 0.20% or less. The steel sheet for cans according to (1), which contains one or more of them.
(3) The method for producing a steel plate for a can according to (1) or (2), wherein a step of heating a steel slab, a step of hot rolling the heated steel slab, and a hot-rolled sheet obtained. A step of pickling the wound hot-rolled sheet, a step of primary cold-rolling the pickled hot-rolled sheet, and a step of quenching the primary cold-rolled cold-rolled sheet. In the annealing step, the cold-rolled sheet obtained in the primary cold rolling step is annealed at an annealing temperature of 720 ° C. or higher and 780 ° C. or lower. Then, in the secondary cold rolling, a method for producing a steel plate for cans, in which the annealed plate obtained in the annealing step is cold rolled at a rolling ratio of 6.0% or more and 30.0% or less.

本発明の缶用鋼板は、優れた加工性と開缶性を有する。本発明によれば、食缶や飲料缶等に使用される鋼板の更なる薄肉化が可能になり、省資源化および低コスト化を達成することができる。なお、本発明において、加工性とは製蓋性を意味し、優れた製蓋性とは、ストレッチャーストレインが無く、かつ、リベット割れが無いことを意味する。 The steel sheet for cans of the present invention has excellent workability and openability. According to the present invention, the steel plate used for food cans, beverage cans and the like can be further thinned, and resource saving and cost reduction can be achieved. In the present invention, the processability means the lid-making property, and the excellent lid-making property means that there is no stretcher strain and there is no rivet cracking.

以下、本発明の缶用鋼板の成分組成、鋼板組織、鋼板特性、製造方法について順に説明する。なお、本発明は以下の実施形態に限定されない。また、以下の「開缶」とは本発明の缶用鋼板を適用したEOEを開けることを意味する。
まず、本発明の缶用鋼板の成分組成について説明する。成分組成の説明において、各成分の含有量を示す%は質量%を意味する。
Hereinafter, the component composition, the steel sheet structure, the steel sheet characteristics, and the manufacturing method of the steel sheet for cans of the present invention will be described in order. The present invention is not limited to the following embodiments. Further, the following "opening of a can" means opening an EOE to which the steel plate for a can of the present invention is applied.
First, the component composition of the steel sheet for cans of the present invention will be described. In the description of the component composition,% indicating the content of each component means mass%.

C:0.100%以上0.130%未満
Cは引張強さの向上に加え、パーライトの形成により降伏伸びの低減と開缶力の低下に寄与する重要な元素である。C含有量を0.100%以上とすることで、パーライトを1.0%以上とし、引張強さを630MPa以上とすることが出来る。好ましくは0.105%以上である。より好ましくは、0.110%以上である。一方、C含有量が0.130%以上となると、固溶Cが増加することによって、降伏伸びが増大する。このため、C含有量は0.130%未満とする必要がある。好ましくは0.125%以下である。
C: 0.100% or more and less than 0.130% C is an important element that contributes to the reduction of yield elongation and the reduction of can opening force by forming pearlite in addition to the improvement of tensile strength. By setting the C content to 0.100% or more, the pearlite can be set to 1.0% or more and the tensile strength can be set to 630 MPa or more. It is preferably 0.105% or more. More preferably, it is 0.110% or more. On the other hand, when the C content is 0.130% or more, the yield elongation increases due to the increase in the solid solution C. Therefore, the C content needs to be less than 0.130%. It is preferably 0.125% or less.

Si:0.04%以下
Siは多量に添加すると、表面濃化により表面処理性が劣化し、耐食性が低下するため、含有量を0.04%以下とする必要がある。Si含有量は好ましくは0.03%以下である。一方、Siは引張強さの向上に寄与するので0.01%以上添加することが好ましい。
Si: 0.04% or less When a large amount of Si is added, the surface treatment property is deteriorated due to surface thickening and the corrosion resistance is lowered. Therefore, the content needs to be 0.04% or less. The Si content is preferably 0.03% or less. On the other hand, Si contributes to the improvement of tensile strength, so it is preferable to add 0.01% or more.

Mn:0.10%以上0.60%以下
Mnは、固溶強化により引張強さの向上に寄与するだけではなく、パーライトの生成を促進する。これにより加工硬化が促進され、630MPa以上の引張強さに加えて、3.0%以下の降伏伸びと、開缶力の低下に寄与することができる。このような効果を得るためにはMn含有量を0.10%以上とする必要がある。好ましくは0.20%以上である。より好ましくは、0.40%以上である。一方、Mnの含有量が0.60%を超えるとパーライト生成への寄与が飽和するだけでは無く、過剰な固溶強化により開缶力が増大する。このため、Mn含有量は0.60%以下とする必要がある。好ましくは、0.50%以下である。
Mn: 0.10% or more and 0.60% or less Mn not only contributes to the improvement of tensile strength by solid solution strengthening, but also promotes the formation of pearlite. As a result, work hardening is promoted, and in addition to a tensile strength of 630 MPa or more, a yield elongation of 3.0% or less and a decrease in can opening force can be contributed. In order to obtain such an effect, the Mn content needs to be 0.10% or more. It is preferably 0.20% or more. More preferably, it is 0.40% or more. On the other hand, when the Mn content exceeds 0.60%, not only the contribution to pearlite formation is saturated, but also the can opening force is increased due to excessive solid solution strengthening. Therefore, the Mn content needs to be 0.60% or less. Preferably, it is 0.50% or less.

P:0.020%以下
Pは多量に添加すると、過剰な硬質化や中央偏析により加工性が低下し、また、耐食性が低下する。このため、P含有量は0.020%以下とする。好ましくは、0.018%以下である。一方、Pは引張強さの向上に寄与するので0.005%以上添加することが好ましい。より好ましくは、0.008%以上である。
P: 0.020% or less When a large amount of P is added, workability is lowered due to excessive hardening and central segregation, and corrosion resistance is also lowered. Therefore, the P content is set to 0.020% or less. Preferably, it is 0.018% or less. On the other hand, since P contributes to the improvement of tensile strength, it is preferable to add 0.005% or more. More preferably, it is 0.008% or more.

S:0.020%以下
Sは、鋼中で硫化物を形成して熱間圧延性を低下させる。よって、S含有量は0.020%以下とする。好ましくは0.015%以下である。より好ましくは、0.012%以下である。S含有量が0.005%以上であれば、缶の内容物によらず孔食を防ぐことができるため、Sは0.005%以上添加することが好ましい。より好ましくは、0.008%以上である。
S: 0.020% or less S forms sulfide in steel and lowers hot rollability. Therefore, the S content is set to 0.020% or less. It is preferably 0.015% or less. More preferably, it is 0.012% or less. When the S content is 0.005% or more, pitting corrosion can be prevented regardless of the contents of the can, so it is preferable to add 0.005% or more of S. More preferably, it is 0.008% or more.

Al:0.01%以上0.10%以下
Alは脱酸元素として有用であり、また、窒化物を形成することにより降伏伸びの低減に寄与する。このため、0.01%以上含有する必要がある。好ましくは0.03%以上である。過剰に含有するとアルミナが多量に発生して鋼板内に残存して加工性を低下させるため、Al含有量は0.10%以下とする必要がある。好ましくは0.09%以下である。より好ましくは、0.08%以下である。
Al: 0.01% or more and 0.10% or less Al is useful as a deoxidizing element and contributes to reduction of yield elongation by forming a nitride. Therefore, it is necessary to contain 0.01% or more. It is preferably 0.03% or more. If it is excessively contained, a large amount of alumina is generated and remains in the steel sheet to reduce workability. Therefore, the Al content needs to be 0.10% or less. It is preferably 0.09% or less. More preferably, it is 0.08% or less.

N:0.0005%以上、0.0040%以下
Nは固溶Nとして存在すると、降伏伸びが増加し加工性が低下するため、N含有量は0.0040%以下とする必要がある。好ましくは0.0030%以下である。より好ましくは、0.0025%以下である。一方、Nを安定して0.0005%未満とするのは難しく、製造コストも上昇するため、N含有量は0.0005%以上とする。
N: 0.0005% or more and 0.0040% or less When N exists as a solid solution N, the yield elongation increases and the workability decreases. Therefore, the N content needs to be 0.0040% or less. It is preferably 0.0030% or less. More preferably, it is 0.0025% or less. On the other hand, it is difficult to stably set N to less than 0.0005%, and the manufacturing cost also increases. Therefore, the N content is set to 0.0005% or more.

Nb:0.005%以上0.030%以下
Nbは、フェライト結晶粒の微細化や炭化物の形成により、引張強さを向上させる重要な元素であり、このような効果を得るためにはNb含有量は0.005%以上とする必要がある。好ましくは0.010%以上である。より好ましくは、0.012%以上である。一方、0.030%を超えて含有した場合、再結晶温度が過剰に高くなり、未再結晶粒が残存して、引張強さが過剰となり、開缶力が増大する。このため、Nb含有量は0.030%以下とする必要がある。好ましくは0.023%以下である。
Nb: 0.005% or more and 0.030% or less Nb is an important element for improving tensile strength by refining ferrite crystal grains and forming carbides, and Nb is contained in order to obtain such an effect. The amount should be 0.005% or more. It is preferably 0.010% or more. More preferably, it is 0.012% or more. On the other hand, when it is contained in excess of 0.030%, the recrystallization temperature becomes excessively high, unrecrystallized grains remain, the tensile strength becomes excessive, and the can opening force increases. Therefore, the Nb content needs to be 0.030% or less. It is preferably 0.023% or less.

B:0.0005%超え0.0050%以下
Bは、NとBNを形成して固溶Nを減少させて、降伏伸びを低下させる効果がある。加えて、固溶Bとして存在することで、フェライト結晶粒を微細化し引張強さの向上に寄与するため、B含有量は0.0005%超えとする必要がある。好ましくは0.0020%超えである。より好ましくは、0.0025%以上である。Bを過剰に含有しても、上記の効果が飽和するだけではなく、粒状のセメンタイトとして析出するCが増えてパーライトが減少して、開缶性が劣化するため、B含有量は0.0050%以下とする必要がある。好ましくは0.0035%以下である。より好ましくは、0.0030%以下である。
B: More than 0.0005% and 0.0050% or less B has the effect of forming N and BN to reduce the solid solution N and lower the yield elongation. In addition, since it exists as a solid solution B, the ferrite crystal grains are refined and contributes to the improvement of the tensile strength, so that the B content needs to exceed 0.0005%. It is preferably over 0.0020%. More preferably, it is 0.0025% or more. Even if B is excessively contained, not only the above effect is saturated, but also C precipitated as granular cementite increases, pearlite decreases, and the can openability deteriorates. Therefore, the B content is 0.0050. Must be less than or equal to%. It is preferably 0.0035% or less. More preferably, it is 0.0030% or less.

本発明の缶用鋼板は、以上に加え、Ti:0.005%以上0.030%以下、Mo:0.01%以上0.05%以下、Cr:0.05%以上0.20%以下の内、一種以上を含有することが好ましい。 In addition to the above, the steel sheet for cans of the present invention has Ti: 0.005% or more and 0.030% or less, Mo: 0.01% or more and 0.05% or less, Cr: 0.05% or more and 0.20% or less. Of these, it is preferable to contain one or more of them.

Ti:0.005%以上0.030%以下
Tiは、NをTiNとして固定して、降伏伸びを低下させる効果がある。また、優先的にTiNを生成することでBNの生成を抑制し、固溶Bを確保することによりフェライト結晶粒を微細化して降伏応力、引張強さの向上に寄与する。さらに、微細な炭化物を形成することによっても、引張強さの向上に寄与する。そのため、Tiを0.005%以上含有させることが好適である。Ti含有量は、さらに好ましくは0.010%以上である。Tiを0.030%超えで含有すると、再結晶温度が過剰に高くなり、未再結晶粒が残存して引張強さが過剰になる。このため、Ti含有量は0.030%以下とすることが好ましい。より好ましくは、0.025%以下である。
Ti: 0.005% or more and 0.030% or less Ti has the effect of fixing N as TiN and reducing the yield elongation. Further, by preferentially generating TiN, the formation of BN is suppressed, and by securing the solid solution B, the ferrite crystal grains are refined, which contributes to the improvement of yield stress and tensile strength. Furthermore, it also contributes to the improvement of tensile strength by forming fine carbides. Therefore, it is preferable to contain Ti at 0.005% or more. The Ti content is more preferably 0.010% or more. If Ti is contained in an amount of more than 0.030%, the recrystallization temperature becomes excessively high, unrecrystallized grains remain, and the tensile strength becomes excessive. Therefore, the Ti content is preferably 0.030% or less. More preferably, it is 0.025% or less.

Mo:0.01%以上0.05%以下
Moはフェライト結晶粒の微細化や炭化物の形成により引張強さの向上やパーライト量の増加に寄与するため、0.01%以上含有することが好ましい。より好ましくは、0.02%以上である。Moを0.05%超えで含有すると、このような効果が飽和するため、Mo含有量は0.05%以下とすることが好ましい。
Cr:0.05%以上0.20%以下
Crはパーライト量の増加に寄与するため、0.05%以上含有することが好ましい。より好ましくは、0.08%以上である。Crを0.20%超えで含有すると、このような効果が飽和するため、Cr含有量は0.20%以下とすることが好ましい。より好ましくは、0.16%以下である。
Mo: 0.01% or more and 0.05% or less Mo is preferably contained in an amount of 0.01% or more because it contributes to the improvement of tensile strength and the increase in the amount of pearlite by refining ferrite crystal grains and forming carbides. .. More preferably, it is 0.02% or more. If Mo is contained in an amount of more than 0.05%, such an effect is saturated. Therefore, the Mo content is preferably 0.05% or less.
Cr: 0.05% or more and 0.20% or less Cr is preferably contained in an amount of 0.05% or more because it contributes to an increase in the amount of pearlite. More preferably, it is 0.08% or more. If Cr is contained in an amount of more than 0.20%, such an effect is saturated. Therefore, the Cr content is preferably 0.20% or less. More preferably, it is 0.16% or less.

本発明に係る缶用鋼板における上記成分組成の残部はFeおよび不可避的不純物である。 The rest of the above component composition in the steel sheet for cans according to the present invention is Fe and unavoidable impurities.

次に、本発明の缶用鋼板の鋼板組織について説明する。
パーライトの面積分率:1.0%以上
パーライトを鋼板組織内に分散させて含ませることにより、開缶時にスコアでの破断が促進され、開缶力を低減することが出来る。このような効果を得るため、パーライトの面積分率を1.0%以上とする必要がある。パーライトの面積分率は好ましくは1.5%以上である。更に好ましくは、1.8%以上である。パーライトが10%以下であればより良好な開缶性が得られるため、パーライトの面積分率は、好ましくは10%以下である。更に好ましくは、5.0%以下である。
Next, the steel plate structure of the steel plate for cans of the present invention will be described.
Area fraction of pearlite: 1.0% or more By dispersing pearlite in the steel sheet structure and containing it, fracture at the score is promoted at the time of opening the can, and the opening force can be reduced. In order to obtain such an effect, it is necessary to set the surface integral of pearlite to 1.0% or more. The surface integral of pearlite is preferably 1.5% or more. More preferably, it is 1.8% or more. The area fraction of pearlite is preferably 10% or less because better can openability can be obtained when pearlite is 10% or less. More preferably, it is 5.0% or less.

残部は、フェライト相であり、粒状のセメンタイトが含まれても良い。マルテンサイト、ベイナイト、残留オーステナイトなどの硬質相を含ませる必要は無いが、鋼板組織に面積分率の合計で1%以下含まれても良い。 The balance is a ferrite phase and may contain granular cementite. It is not necessary to include a hard phase such as martensite, bainite, and retained austenite, but the steel sheet structure may contain 1% or less of the total surface integral.

本発明では、鋼板の圧延方向に平行な垂直断面を観察できるように、サンプルを切り出して樹脂に埋め込み、研磨後、ナイタールにて腐食して組織を現出したのち、走査型電子顕微鏡(SEM)にて鋼板組織を撮影する。撮影した画像を用いて、画像処理にてパーライトの面積分率を測定する。 In the present invention, a sample is cut out, embedded in a resin, polished, corroded with nital to reveal a structure, and then a scanning electron microscope (SEM) is used so that a vertical cross section parallel to the rolling direction of the steel sheet can be observed. The steel plate structure is photographed at. The surface integral of pearlite is measured by image processing using the captured image.

次に、本発明の缶用鋼板の強度特性について説明する。 Next, the strength characteristics of the steel sheet for cans of the present invention will be described.

引張強さ:630MPa以上、750MPa以下、降伏伸び:3.0%以下、伸び:3.0%以上10.0%未満
薄肉化した缶蓋部で十分な耐圧強度を確保するためには、缶蓋部に使用される鋼板の引張強さを630MPa以上とする必要がある。好ましくは、650MPa以上である。引張強さが過剰になると、開缶力が増大するため、引張強さは750MPa以下とする必要がある。好ましくは、710MPa以下である。リベット加工時の割れの発生を抑制するため、伸びは3.0%以上とする必要がある。好ましくは4.0%以上である。伸びが大きすぎると、開缶時にEOEの切欠き(スコア)が破断しにくくなり、開缶力が過剰となるため、伸びを10.0%未満とする必要がある。好ましくは7.0%未満である。蓋加工時のストレッチャーストレインを防止するため、降伏伸びを3.0%以下とする必要がある。好ましくは、2.0%以下である。より好ましくは、1.2%以下である。
Tensile strength: 630 MPa or more, 750 MPa or less, yield elongation: 3.0% or less, elongation: 3.0% or more and less than 10.0% In order to secure sufficient pressure resistance in a thinned can lid, a can The tensile strength of the steel plate used for the lid needs to be 630 MPa or more. Preferably, it is 650 MPa or more. If the tensile strength becomes excessive, the can opening force increases, so the tensile strength needs to be 750 MPa or less. It is preferably 710 MPa or less. In order to suppress the occurrence of cracks during rivet processing, the elongation needs to be 3.0% or more. It is preferably 4.0% or more. If the elongation is too large, the notch (score) of the EOE is less likely to break when the can is opened, and the can opening force becomes excessive. Therefore, the elongation needs to be less than 10.0%. It is preferably less than 7.0%. In order to prevent stretcher strain during lid processing, the yield elongation needs to be 3.0% or less. Preferably, it is 2.0% or less. More preferably, it is 1.2% or less.

本発明において、引張強さ、降伏伸び及び伸びは、圧延方向からJIS5号引張試験片を採取し210℃で20分の時効熱処理を加えた後、JIS Z 2241に従い評価する。 In the present invention, the tensile strength, yield elongation and elongation are evaluated according to JIS Z 2241 after collecting a JIS No. 5 tensile test piece from the rolling direction and subjecting it to aging heat treatment at 210 ° C. for 20 minutes.

本発明の缶用鋼板の板厚は特に限定されないが、0.30mm以下が好ましい。本発明の缶用鋼板は極薄のゲージダウンが可能であるので、省資源化および低コスト化の観点から、板厚を0.10〜0.25mmとすることがより好ましい。 The thickness of the steel sheet for cans of the present invention is not particularly limited, but is preferably 0.30 mm or less. Since the steel sheet for cans of the present invention can be subjected to ultra-thin gauge reduction, it is more preferable to set the plate thickness to 0.10 to 0.25 mm from the viewpoint of resource saving and cost reduction.

次に本発明の缶用鋼板の製造方法について説明する。以下に記載の条件で缶用鋼板を製造することができる。なお、Snめっき、Niめっき、Crめっき等を施すめっき工程、化成処理工程、ラミネート等の樹脂膜被覆工程等の工程を適宜行ってもよい。 Next, the method for manufacturing the steel sheet for cans of the present invention will be described. A steel sheet for cans can be manufactured under the conditions described below. It should be noted that steps such as a plating step of applying Sn plating, Ni plating, Cr plating and the like, a chemical conversion treatment step, a resin film coating step of laminating and the like may be appropriately performed.

加熱温度:1100℃以上 (好適範囲)
熱間圧延前のスラブ加熱温度を1100℃以上とすると、生成する窒化物が微細になり、より良好な引張強さが得られるため、スラブ加熱温度は、1100℃以上とすることが好ましい。より好ましくは1150℃以上である。Tiを含有する場合は1200℃以上がさらにより好ましい。スラブ加熱温度は、1280℃以下であればスケール起因の表面欠陥を避けることが容易になるため、1280℃以下とすることが好ましい。スラブ加熱温度は、より好ましくは1250℃以下である。
Heating temperature: 1100 ° C or higher (suitable range)
When the slab heating temperature before hot rolling is 1100 ° C. or higher, the generated nitride becomes finer and better tensile strength can be obtained. Therefore, the slab heating temperature is preferably 1100 ° C. or higher. More preferably, it is 1150 ° C. or higher. When Ti is contained, 1200 ° C. or higher is even more preferable. If the slab heating temperature is 1280 ° C. or lower, surface defects due to scale can be easily avoided, and therefore it is preferably 1280 ° C. or lower. The slab heating temperature is more preferably 1250 ° C. or lower.

仕上げ温度:830℃以上960℃以下 (好適範囲)
熱間圧延の仕上げ温度が960℃以下であれば、より微細なフェライト結晶粒が得られ、冷間圧延・焼鈍・二次冷間圧延後の引張強さが良好になるため、仕上げ温度を960℃以下とすることが好ましい。熱間圧延の仕上げ温度が830℃以上であれば、熱間圧延中に形成するNb炭化物が微細になり、より良好な引張強さが得られるため、仕上げ温度を830℃以上とすることが好ましい。仕上げ温度は、さらに好ましくは850℃以上である。
Finishing temperature: 830 ° C or higher and 960 ° C or lower (suitable range)
When the finishing temperature of hot rolling is 960 ° C or lower, finer ferrite crystal grains can be obtained and the tensile strength after cold rolling, annealing, and secondary cold rolling becomes good, so the finishing temperature is set to 960. The temperature is preferably below ° C. When the finishing temperature of hot rolling is 830 ° C. or higher, the Nb carbides formed during hot rolling become finer and better tensile strength can be obtained. Therefore, it is preferable to set the finishing temperature to 830 ° C. or higher. .. The finishing temperature is more preferably 850 ° C. or higher.

巻取り温度:450℃以上670℃未満 (好適範囲)
巻取り温度が670℃未満であれば、熱延板中のセメンタイトが微細になり、焼鈍時に十分に溶解してパーライト生成を促進する。加えて、Nb炭化物等の合金炭化物も微細になり、より良好な引張強さが得られる。このため、巻取り温度は670℃未満とすることが好ましい。より好ましくは620℃以下である。巻取り温度が450℃以上であれば、Nb等の合金炭化物の析出の効果が確実に得られ、引張強さが良好になるため、巻取り温度は450℃以上とすることが好ましい。巻取り温度は、より好ましくは550℃以上である。
Winding temperature: 450 ° C or more and less than 670 ° C (suitable range)
If the winding temperature is less than 670 ° C., the cementite in the hot-rolled plate becomes fine and sufficiently melts during annealing to promote the formation of pearlite. In addition, alloy carbides such as Nb carbides are also made finer, and better tensile strength can be obtained. Therefore, the winding temperature is preferably less than 670 ° C. More preferably, it is 620 ° C. or lower. When the winding temperature is 450 ° C. or higher, the effect of precipitating alloy carbides such as Nb can be surely obtained and the tensile strength becomes good. Therefore, the winding temperature is preferably 450 ° C. or higher. The winding temperature is more preferably 550 ° C. or higher.

巻取り後の熱延板を酸洗し、表層スケールを除去する。酸洗条件は表層スケールを除去できればよく、特に条件は規定しない。常法により酸洗することができる。 The hot-rolled plate after winding is pickled to remove the surface scale. The pickling conditions are not specified as long as the surface scale can be removed. It can be pickled by a conventional method.

一次冷間圧延工程での圧延率:85.0%以上 (好適範囲)
一次冷間圧延により、焼鈍後のフェライト結晶粒が微細化し、引張強さが向上する。この効果を得るために一次冷間圧延の圧延率を85.0%以上とすることが好ましい。一次冷間圧延の圧延率は、さらに好ましくは87%以上である。一次冷間圧延の圧延率が93%以下であれば、引張特性の異方性が小さく、より良好な加工性が得られる。このため、一次冷間圧延の圧延率は93%以下とすることが好ましい。一次冷間圧延の圧延率は、さらに好ましくは90.4%以下である。
Rolling rate in the primary cold rolling process: 85.0% or more (suitable range)
By the primary cold rolling, the ferrite crystal grains after annealing become finer and the tensile strength is improved. In order to obtain this effect, it is preferable that the rolling ratio of the primary cold rolling is 85.0% or more. The rolling ratio of the primary cold rolling is more preferably 87% or more. When the rolling ratio of the primary cold rolling is 93% or less, the anisotropy of the tensile properties is small and better workability can be obtained. Therefore, the rolling ratio of the primary cold rolling is preferably 93% or less. The rolling ratio of the primary cold rolling is more preferably 90.4% or less.

焼鈍温度:720℃以上780℃以下
高い引張強さと小さい降伏伸びを得るため、焼鈍工程においてパーライトを生成させることが重要である。そのため焼鈍温度を720℃以上とすることが必要である。焼鈍温度は、好ましくは730℃以上である。一方、焼鈍温度が780℃を超えるとNb炭化物等の合金炭化物が粗大化するのに加え、フェライト結晶粒も粗大化して引張強さが低下するため、焼鈍温度は780℃以下とする必要がある。焼鈍温度は、より好ましくは770℃以下である。焼鈍方法は材質の均一性の観点から連続焼鈍が好ましい。
Annealing temperature: 720 ° C. or higher and 780 ° C. or lower It is important to generate pearlite in the annealing step in order to obtain high tensile strength and small yield elongation. Therefore, it is necessary to set the annealing temperature to 720 ° C. or higher. The annealing temperature is preferably 730 ° C. or higher. On the other hand, when the annealing temperature exceeds 780 ° C., alloy carbides such as Nb carbides become coarse, and ferrite crystal grains also become coarse and the tensile strength decreases. Therefore, the annealing temperature must be 780 ° C. or lower. .. The annealing temperature is more preferably 770 ° C. or lower. As the annealing method, continuous annealing is preferable from the viewpoint of material uniformity.

焼鈍時間は特に限定されないが15s以上とすることが好ましい。焼鈍時間は、フェライト結晶粒の細粒化の観点から、好ましくは60s以下である。より好ましくは40s以下である。 The annealing time is not particularly limited, but is preferably 15 s or more. The annealing time is preferably 60 s or less from the viewpoint of fine graining of ferrite crystal grains. More preferably, it is 40 s or less.

二次冷間圧延工程での圧延率:6.0%以上30.0%以下
焼鈍工程後の二次冷間圧延工程により、缶蓋の耐圧強度に必要な引張強さを向上させる。このような効果を得るため、二次冷間圧延工程の圧延率(二次圧延率)は6.0%以上とする。好ましくは10.0%以上である。二次圧延率が30.0%を超えると歪みが過剰に導入され、引張強さが過剰になり、開缶性が劣化するため、二次圧延率は30.0%以下とする。二次圧延率は、好ましくは20.0%以下である。二次圧延率は、より好ましくは15.0%以下である。
Rolling rate in the secondary cold rolling step: 6.0% or more and 30.0% or less The secondary cold rolling step after the annealing step improves the tensile strength required for the pressure resistance of the can lid. In order to obtain such an effect, the rolling ratio (secondary rolling ratio) in the secondary cold rolling step is set to 6.0% or more. It is preferably 10.0% or more. If the secondary rolling ratio exceeds 30.0%, strain is excessively introduced, the tensile strength becomes excessive, and the can openability deteriorates. Therefore, the secondary rolling ratio is set to 30.0% or less. The secondary rolling ratio is preferably 20.0% or less. The secondary rolling ratio is more preferably 15.0% or less.

以下、本発明の実施例を説明する。本発明の技術的範囲は以下の実施例に限定されない。 Hereinafter, examples of the present invention will be described. The technical scope of the present invention is not limited to the following examples.

表1に示す鋼No.1〜30の成分を含有し、残部がFe及び不可避的不純物からなる鋼を溶製し、鋼スラブを得た。得られた鋼スラブを表2に示す条件にて、加熱後、熱間圧延し、巻き取り、酸洗にてスケールを除去した後、冷間圧延し、連続焼鈍炉にて焼鈍し、調質圧延を行い、缶用鋼板(鋼板No.1〜34)を得た。 Steel No. shown in Table 1. A steel slab containing 1 to 30 components and having the balance of Fe and unavoidable impurities was melted to obtain a steel slab. The obtained steel slab is heated, hot-rolled, wound, pickled to remove scale, then cold-rolled, annealed in a continuous annealing furnace, and tempered under the conditions shown in Table 2. Rolling was carried out to obtain steel sheets for cans (steel sheets Nos. 1 to 34).

(引張強さ、降伏伸び、伸びの評価)
前述の缶用鋼板から、圧延方向に沿ってJIS5号引張試験片を採取し、210℃で20分の時効熱処理後にJIS Z 2241に従い、引張強さ、降伏伸び、および、伸びを評価した。評価結果は表3に記載した。
(Evaluation of tensile strength, yield elongation, elongation)
From the above-mentioned steel sheet for cans, JIS No. 5 tensile test pieces were collected along the rolling direction, and after aging heat treatment at 210 ° C. for 20 minutes, tensile strength, yield elongation, and elongation were evaluated according to JIS Z 2241. The evaluation results are shown in Table 3.

(パーライトの面積分率の測定)
鋼板の圧延方向に平行な垂直断面を観察できるように、サンプルを切り出して樹脂に埋め込み、研磨を行った。ナイタールで腐食して組織を現出したのち、SEMにて倍率3000倍で無作為に選んだ3視野の鋼板組織を撮影した。撮影した各SEM像から画像処理にてパーライトの面積分率を測定し、平均値を求めた。測定結果は表3に記載した。
(Measurement of surface integral of pearlite)
A sample was cut out, embedded in resin, and polished so that a vertical cross section parallel to the rolling direction of the steel sheet could be observed. After corroding with nital to reveal the structure, a three-field steel sheet structure randomly selected at a magnification of 3000 was photographed by SEM. The surface integral of pearlite was measured from each SEM image taken by image processing, and the average value was obtained. The measurement results are shown in Table 3.

(加工性・開缶性の評価)
前述の缶用鋼板を210℃で20分の時効熱処理した後、63mm径のフルオープン型のEOEを作成した。リベット加工での割れが無く、かつ、ストレッチャーストレインによるしわが無いものを加工性が良好として○、いずれかが発生したものを加工性が劣位として×とした。EOEにスコア残厚50μmにてスコア加工を行い、タブを引張り、スコアが切れ始める力(ポップ荷重)を測定し、25N以下であれば開缶性が良好として○、25N超えであれば開缶性が劣位として×とした。
(Evaluation of workability and can openability)
After aging heat treatment of the above-mentioned steel sheet for cans at 210 ° C. for 20 minutes, a fully open type EOE having a diameter of 63 mm was prepared. Those with no cracks in the rivet processing and no wrinkles due to the stretcher strain were evaluated as good in workability, and those in which either of them occurred were evaluated as inferior in workability. Score processing is performed on the EOE with a score remaining thickness of 50 μm, the tab is pulled, the force (pop load) at which the score starts to break is measured, and if it is 25 N or less, the can openability is considered to be good, and if it exceeds 25 N, the can open The sex was inferior and was marked as x.

Figure 0006819838
Figure 0006819838

Figure 0006819838
Figure 0006819838

Figure 0006819838
発明例は、いずれも引張強さが630MPa以上750MPa以下で、降伏伸びが3.0%以下で、パーライトの面積分率が1.0%以上、伸びが3.0%以上10.0%未満で、加工性および開缶性が良好であった。
Figure 0006819838
In each of the examples of the invention, the tensile strength is 630 MPa or more and 750 MPa or less, the yield elongation is 3.0% or less, the area fraction of pearlite is 1.0% or more, and the elongation is 3.0% or more and less than 10.0%. The workability and can openability were good.

一方、比較例では、引張強さ、降伏伸び、パーライトの面積分率、加工性、開缶性のいずれか一つ以上が劣っていた。 On the other hand, in the comparative example, any one or more of tensile strength, yield elongation, surface integral of pearlite, workability, and can openability were inferior.

Claims (3)

成分組成として、質量%で、
C:0.100%以上0.130%未満、
Si:0.04%以下、
Mn:0.10%以上0.60%以下、
P:0.020%以下、
S:0.020%以下、
Al:0.01%以上0.10%以下、
N:0.0005%以上0.0040%以下、
Nb:0.005%以上0.030%以下、
B:0.0005%超え0.0050%以下を含有し、
残部はFe及び不可避的不純物からなり、
パーライトを面積分率で1.0%以上含むフェライト組織を有し、
210℃で20分の熱処理を施した後の引張強さが630MPa以上、750MPa以下、
降伏伸びが3.0%以下であり、
伸びが3.0%以上、10.0%未満である、缶用鋼板。
As a component composition, by mass%,
C: 0.100% or more and less than 0.130%,
Si: 0.04% or less,
Mn: 0.10% or more and 0.60% or less,
P: 0.020% or less,
S: 0.020% or less,
Al: 0.01% or more and 0.10% or less,
N: 0.0005% or more and 0.0040% or less,
Nb: 0.005% or more and 0.030% or less,
B: Contains more than 0.0005% and less than 0.0050%,
The rest consists of Fe and unavoidable impurities
It has a ferrite structure containing pearlite in an area fraction of 1.0% or more.
Tensile strength after heat treatment at 210 ° C. for 20 minutes is 630 MPa or more, 750 MPa or less,
Yield growth is less than 3.0%
A steel sheet for cans having an elongation of 3.0% or more and less than 10.0%.
成分組成として、さらに質量%で、
Ti:0.005%以上0.030%以下、
Mo:0.01%以上0.05%以下、
Cr:0.05%以上0.20%以下
の内、一種以上を含有する、
請求項1に記載の缶用鋼板。
As a component composition, in mass%,
Ti: 0.005% or more and 0.030% or less,
Mo: 0.01% or more and 0.05% or less,
Cr: Contains one or more of 0.05% or more and 0.20% or less.
The steel plate for cans according to claim 1.
請求項1または2に記載の缶用鋼板の製造方法であって、
鋼スラブを加熱する工程と、加熱された鋼スラブを熱間圧延する工程と、得られた熱延板を巻き取る工程と、巻き取られた熱延板を酸洗する工程と、酸洗された熱延板を一次冷間圧延する工程と、一次冷間圧延された冷延板を焼鈍する焼鈍工程と、焼鈍された焼鈍板を二次冷間圧延する工程とを有し、
前記焼鈍工程では、前記一次冷間圧延工程で得られた冷延板を720℃以上780℃以下の焼鈍温度で焼鈍し、
前記二次冷間圧延工程では、前記焼鈍工程で得られた焼鈍板を圧延率6.0%以上30.0%以下で冷間圧延する、
缶用鋼板の製造方法。
The method for manufacturing a steel sheet for cans according to claim 1 or 2.
A step of heating the steel slab, a step of hot rolling the heated steel slab, a step of winding the obtained hot-rolled plate, a step of pickling the wound hot-rolled plate, and a pickling process. It has a step of primary cold rolling of a hot-rolled sheet, a step of annealing a cold-rolled primary cold-rolled sheet, and a process of secondary cold-rolling an annealed annealed sheet.
In the annealing step, the cold rolled sheet obtained in the primary cold rolling step is annealed at an annealing temperature of 720 ° C. or higher and 780 ° C. or lower.
In the secondary cold rolling step, the annealed sheet obtained in the annealing step is cold rolled at a rolling ratio of 6.0% or more and 30.0% or less.
Manufacturing method of steel plate for cans.
JP2020544692A 2019-03-29 2020-03-24 Steel sheet for cans and its manufacturing method Active JP6819838B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019065169 2019-03-29
JP2019065169 2019-03-29
PCT/JP2020/013035 WO2020203470A1 (en) 2019-03-29 2020-03-24 Steel plate for can and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP6819838B1 true JP6819838B1 (en) 2021-01-27
JPWO2020203470A1 JPWO2020203470A1 (en) 2021-04-30

Family

ID=72669125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020544692A Active JP6819838B1 (en) 2019-03-29 2020-03-24 Steel sheet for cans and its manufacturing method

Country Status (6)

Country Link
JP (1) JP6819838B1 (en)
KR (1) KR102549938B1 (en)
CN (1) CN113748220B (en)
MY (1) MY196420A (en)
TW (1) TWI730689B (en)
WO (1) WO2020203470A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089829A (en) * 1998-04-08 2001-04-03 Kawasaki Steel Corp Steel sheet for can and method for manufacting the same
JP2008274332A (en) * 2007-04-26 2008-11-13 Jfe Steel Kk Steel sheet for can, and its manufacturing method
WO2016080344A1 (en) * 2014-11-17 2016-05-26 新日鐵住金株式会社 Drawn-can steel sheet and manufacturing method therefor
CN106086643A (en) * 2016-06-23 2016-11-09 宝山钢铁股份有限公司 The uncoated tinplate base of a kind of high-strength high-elongation and secondary cold-rolling method thereof
JP2018168395A (en) * 2017-03-29 2018-11-01 Jfeスチール株式会社 Method for manufacturing steel sheet for easy-open can lid
CN109423577A (en) * 2017-08-30 2019-03-05 宝山钢铁股份有限公司 A kind of high-strength multi-phase Steels uncoated tinplate base and its manufacturing method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037084B2 (en) * 1978-09-09 1985-08-24 カネボウ株式会社 Instant drying pack agent
US4596608A (en) * 1985-04-15 1986-06-24 Toyo Kohan Co., Ltd. Method of manufacturing of steel sheet for easy open end can with superior openability
JPH08325670A (en) * 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
KR100615380B1 (en) * 1998-04-08 2006-08-25 제이에프이 스틸 가부시키가이샤 Steel sheet for can and manufacturing method thereof
JP4810766B2 (en) * 2001-07-05 2011-11-09 Jfeスチール株式会社 Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JP2003342682A (en) * 2002-03-12 2003-12-03 Jfe Steel Kk Thin steel sheet for can excellent in workability after heat treatment, its production method, and production method for its hot rolled material
CN1946866A (en) * 2004-04-27 2007-04-11 杰富意钢铁株式会社 Steel sheet for can and method for production thereof
JP5076544B2 (en) * 2007-02-21 2012-11-21 Jfeスチール株式会社 Manufacturing method of steel sheet for cans
JP5252128B2 (en) * 2010-05-27 2013-07-31 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
WO2012077628A1 (en) * 2010-12-06 2012-06-14 新日本製鐵株式会社 Steel sheet for bottom covers of aerosol cans and method for producing same
JP5810714B2 (en) * 2011-07-29 2015-11-11 Jfeスチール株式会社 High-strength, high-formability steel plate for cans and method for producing the same
JP5825082B2 (en) * 2011-12-12 2015-12-02 Jfeスチール株式会社 High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
JP2015151620A (en) * 2014-02-19 2015-08-24 Jfeスチール株式会社 Steel sheet for can and production method of steel sheet for can
MX2016014062A (en) * 2014-04-30 2017-02-14 Jfe Steel Corp High strength steel sheet for container, and method for producing same.
JP5907315B1 (en) 2014-04-30 2016-04-26 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
KR101989712B1 (en) * 2014-10-28 2019-06-14 제이에프이 스틸 가부시키가이샤 Steel sheet for two-piece can and manufacturing method therefor
EP3187612B1 (en) * 2014-11-12 2019-06-19 JFE Steel Corporation Steel sheet for cans and method for manufacturing steel sheet for cans
WO2016157878A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing steel sheet for cans
US11618932B2 (en) * 2017-03-27 2023-04-04 Jfe Steel Corporation Steel sheet for two-piece can and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089829A (en) * 1998-04-08 2001-04-03 Kawasaki Steel Corp Steel sheet for can and method for manufacting the same
JP2008274332A (en) * 2007-04-26 2008-11-13 Jfe Steel Kk Steel sheet for can, and its manufacturing method
WO2016080344A1 (en) * 2014-11-17 2016-05-26 新日鐵住金株式会社 Drawn-can steel sheet and manufacturing method therefor
CN106086643A (en) * 2016-06-23 2016-11-09 宝山钢铁股份有限公司 The uncoated tinplate base of a kind of high-strength high-elongation and secondary cold-rolling method thereof
JP2018168395A (en) * 2017-03-29 2018-11-01 Jfeスチール株式会社 Method for manufacturing steel sheet for easy-open can lid
CN109423577A (en) * 2017-08-30 2019-03-05 宝山钢铁股份有限公司 A kind of high-strength multi-phase Steels uncoated tinplate base and its manufacturing method

Also Published As

Publication number Publication date
KR20210131407A (en) 2021-11-02
WO2020203470A1 (en) 2020-10-08
TW202104616A (en) 2021-02-01
TWI730689B (en) 2021-06-11
MY196420A (en) 2023-03-30
CN113748220A (en) 2021-12-03
JPWO2020203470A1 (en) 2021-04-30
CN113748220B (en) 2023-03-31
KR102549938B1 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
TWI473887B (en) High strength cold rolled steel sheet having excellent deep drawing property and bake hardening property and a method for manufacturing the same
WO2008136290A1 (en) Steel sheet for use in can, and method for production thereof
WO2009084792A1 (en) High manganese steel having high strength and excellent delayed fracture resistance and manufacturing method thereof
TWI617677B (en) Steel plate for can and method for producing steel plate for can
JP6044741B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2009116680A1 (en) High-strength metal sheet for use in cans, and manufacturing method therefor
TWI428453B (en) Steel plate for can and manufacturing method thereof
JP2007254766A (en) Steel sheet for deep drawing excellent in low-temperature baking hardenability and room-temperature non-aging property and method for producing the same
JP5272714B2 (en) Manufacturing method of steel plate for can manufacturing
JP6806284B2 (en) Steel sheet for cans and its manufacturing method
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP6123958B1 (en) High strength steel plate and manufacturing method thereof
JP6819838B1 (en) Steel sheet for cans and its manufacturing method
JP5540580B2 (en) Steel sheet for high strength and high workability can and method for producing
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JP6569840B1 (en) High strength steel plate and manufacturing method thereof
JP5919812B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JP2021155849A (en) Steel plate for can and method for manufacturing the same
JP4283574B2 (en) Steel plate for high age-hardening containers with excellent canability and method for producing the same
TWI464279B (en) High strength steel sheet and method for manufacturing the same
JP2013119655A (en) High-strength high-workability steel sheet for can and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200925

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6819838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250