JP6817020B2 - Infrared transmissive film, optical film, antireflection film, optical components, optical system and imaging device - Google Patents

Infrared transmissive film, optical film, antireflection film, optical components, optical system and imaging device Download PDF

Info

Publication number
JP6817020B2
JP6817020B2 JP2016203526A JP2016203526A JP6817020B2 JP 6817020 B2 JP6817020 B2 JP 6817020B2 JP 2016203526 A JP2016203526 A JP 2016203526A JP 2016203526 A JP2016203526 A JP 2016203526A JP 6817020 B2 JP6817020 B2 JP 6817020B2
Authority
JP
Japan
Prior art keywords
film
oxide
bismuth oxide
infrared
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016203526A
Other languages
Japanese (ja)
Other versions
JP2017151409A (en
Inventor
國定 照房
照房 國定
涼 橋本
涼 橋本
穣 澁谷
穣 澁谷
亮輔 鎌田
亮輔 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Publication of JP2017151409A publication Critical patent/JP2017151409A/en
Application granted granted Critical
Publication of JP6817020B2 publication Critical patent/JP6817020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Description

本件発明は、赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置に関し、特に遠赤外線を利用する光学系に好適な赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置に関する。 The present invention relates to an infrared transmissive film, an optical film, an antireflection film, an optical component, an optical system, and an imaging device, and is particularly suitable for an optical system using far infrared rays, an infrared transmissive film, an optical film, an antireflection film, an optical component, Regarding optical systems and imaging devices.

現在、監視用撮像装置、車載用撮像装置、或いは熱分布解析等の種々の用途で赤外線を使用する光学系が用いられている。これらの光学系として、中赤外波長域(2.5μm〜4μm)の光線を使用する中赤外光学系と、遠赤外波長域(8μm〜14μm)の光線を使用する遠赤外線光学系とが一般に知られている。例えば、監視用撮像装置、車載用撮像装置などでは主に遠赤外線光学系が用いられている。これらの光学系を構成する赤外線透過レンズ等の光学部品は、可視光光学系を構成する光学部品と比較すると、入射光の透過率が低い。そのため、光学部品の入射面に反射防止膜を設け、入射光の透過光量を増加させ、表面反射による光量不足を防止することが特に重要になる。 Currently, optical systems that use infrared rays are used in various applications such as surveillance imaging devices, in-vehicle imaging devices, and heat distribution analysis. As these optical systems, a mid-infrared optical system that uses light rays in the mid-infrared wavelength region (2.5 μm to 4 μm) and a far-infrared optical system that uses light rays in the far-infrared wavelength region (8 μm to 14 μm). Is generally known. For example, far-infrared optical systems are mainly used in surveillance imaging devices, in-vehicle imaging devices, and the like. Optical components such as infrared transmissive lenses constituting these optical systems have a lower transmittance of incident light than the optical components constituting the visible light optical system. Therefore, it is particularly important to provide an antireflection film on the incident surface of the optical component to increase the amount of transmitted light of the incident light and prevent insufficient light amount due to surface reflection.

例えば、遠赤外線光学系に用いられる光学部品の反射防止膜として、例えば、特許文献1には、Si基板上に、基板側から順にGe膜、ZnS膜、Ge膜、ZnS膜、YF膜を積層した5層構造の反射防止膜が開示されている。また、特許文献2には、カルコゲナイドガラス基板上に、BiO膜、YF膜を基板側から順に積層した2層構造の反射防止膜が開示されている。これらの特許文献に開示されるように、反射防止膜を複数の赤外線透過膜を積層した多層構造とすることにより、広い波長域の光線に対して、波長域全域で低い反射率を達成することが容易になる。現在、遠赤外波長域で使用する反射防止膜の層構成材料として、特許文献1及び特許文献2に開示の材料を含む以下の材料が知られている。 For example, the far-infrared anti-reflection film of the optical components used in optical systems, for example, Patent Document 1, on a Si substrate, Ge film from the substrate side in this order, ZnS film, Ge film, ZnS film, a YF 3 film A laminated five-layer antireflection film is disclosed. Further, Patent Document 2 discloses an antireflection film having a two-layer structure in which a BiO 2 film and a YF 3 film are laminated in order from the substrate side on a chalcogenide glass substrate. As disclosed in these patent documents, by forming the antireflection film into a multilayer structure in which a plurality of infrared transmitting films are laminated, low reflectance is achieved in the entire wavelength range for light rays in a wide wavelength range. Becomes easier. Currently, the following materials including the materials disclosed in Patent Document 1 and Patent Document 2 are known as the layer constituent materials of the antireflection film used in the far infrared wavelength region.

高屈折率材料 :Ge、Si
低屈折率材料 :YF、YbF、NaF、NdF、LaF、CaF、SrF
中間屈折率材料:ZnS、ZnSe、PbTe、Y、CeO、HfO
High Refractive Index Material: Ge, Si
Low Refractive Index Materials: YF 3 , YbF 3 , NaF, NdF 3 , LaF 3 , CaF 2 , SrF 2
Intermediate refractive index materials: ZnS, ZnSe, PbTe, Y 2 O 3 , CeO 2 , HfO 2

ところで、光学部品の表面に反射防止膜を設ける際には、電子線加熱や抵抗加熱により原料を加熱蒸着させる真空蒸着法が一般に採用されている。しかしながら、今後の赤外線光学系の需要の拡大を考慮すると、大量生産に適した生産効率のよい方法により反射防止膜を成膜することが求められる。 By the way, when an antireflection film is provided on the surface of an optical component, a vacuum vapor deposition method in which a raw material is heated and vapor-deposited by electron beam heating or resistance heating is generally adopted. However, considering the expansion of demand for infrared optical systems in the future, it is required to form an antireflection film by a production-efficient method suitable for mass production.

例えば、真空蒸着法よりも生産効率のよい成膜法としてマグネトロンスパッタリング法が挙げられる。しかしながら、上記低屈折率材料、すなわちフッ化物を原料として用いた場合、スパッタリング工程においてターゲット材料中のフッ素元素が損失する。そのため、化学量論的な組成の膜を得ることが困難であり、使用波長域の光線に対して透明な赤外線透過膜を得ることができない。上記中間屈折材料であるZnS、ZnSe、PbTeについても同様であり、これらの材料を用いてマグネトロンスパッタリング法により化学量論的な組成の膜を得ることは困難である。 For example, a magnetron sputtering method can be mentioned as a film forming method having higher production efficiency than the vacuum vapor deposition method. However, when the low refractive index material, that is, fluoride is used as a raw material, the fluorine element in the target material is lost in the sputtering process. Therefore, it is difficult to obtain a film having a stoichiometric composition, and it is not possible to obtain an infrared transmissive film that is transparent to light rays in the wavelength range used. The same applies to the above-mentioned intermediate refracting materials ZnS, ZnSe, and PbTe, and it is difficult to obtain a film having a stoichiometric composition by a magnetron sputtering method using these materials.

一方、上記高屈折率材料であるGe、Siは、マグネトロンスパッタリング法により成膜することができる。上述したように広い波長域の光線に対して波長域全域で低い反射率を達成するには、多層構造の光学膜とすることが求められる。 On the other hand, Ge and Si, which are the high refractive index materials, can be formed into a film by a magnetron sputtering method. As described above, in order to achieve low reflectance in the entire wavelength range for light rays in a wide wavelength range, it is required to use an optical film having a multilayer structure.

ここで、Ge又はSiに対して、フッ化物は屈折率が低すぎるため、Ge膜又はSi膜に対してフッ化物膜を積層しても、良好な反射防止性能を得ることはできない。また、上述したとおり、マグネトロンスパッタリング法により所望の組成のフッ化物膜を成膜することは困難である。 Here, since the refractive index of fluoride is too low with respect to Ge or Si, even if the fluoride film is laminated on the Ge film or Si film, good antireflection performance cannot be obtained. Further, as described above, it is difficult to form a fluoride film having a desired composition by the magnetron sputtering method.

そこで、Ge膜又はSi膜と、中間屈折率材料からなる膜とを交互に積層させる構成とすることが考えられる。しかしながら、上述のとおり、ZnS、ZnSe、PbTeはマグネトロンスパッタリング法により成膜することは困難である。また、これらの材料は毒性を有するため、その取り扱いには注意が必要である。さらに、これらの材料の環境に対する影響も懸念されることから使用量の低減が望まれる。一方、Y、CeO、HfOについては、マグネトロンスパッタリング法により成膜することができ、且つ、毒性もない。しかしながら、他の材料と比較すると、遠赤外領域(8μm〜14μm)の光線に対する透明度が低く、遠赤外線に対して透明な膜を得ることができない。 Therefore, it is conceivable that the Ge film or Si film and the film made of the intermediate refractive index material are alternately laminated. However, as described above, it is difficult to form a film of ZnS, ZnSe, and PbTe by the magnetron sputtering method. In addition, since these materials are toxic, care must be taken when handling them. Furthermore, since there is concern about the environmental impact of these materials, it is desirable to reduce the amount used. On the other hand, Y 2 O 3 , CeO 2 , and HfO 2 can be formed by the magnetron sputtering method and are not toxic. However, as compared with other materials, the transparency to light rays in the far infrared region (8 μm to 14 μm) is low, and a film transparent to far infrared rays cannot be obtained.

さらに、監視用撮像装置、或いは車載用撮像装置等は屋外に設置されて使用されることが多い。光学膜はこれらの光学部品の表面に設けられるため、成膜面に対する密着性と共に、高い耐水性を有する必要がある。 Further, a monitoring image pickup device, an in-vehicle image pickup device, or the like is often installed and used outdoors. Since the optical film is provided on the surface of these optical components, it is necessary to have high water resistance as well as adhesion to the film-forming surface.

特開2007−298661号公報Japanese Unexamined Patent Publication No. 2007-298661 特開2011−221048号公報Japanese Unexamined Patent Publication No. 2011-221048

以上のことから、本件発明の課題は、成膜が容易であり、且つ、高い耐水性を有する新規な赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置を提供することにある。 From the above, the subject of the present invention is to provide a novel infrared transmissive film, optical film, antireflection film, optical component, optical system, and image pickup apparatus, which are easy to form and have high water resistance. It is in.

本件発明の課題を解決するために、本件発明に係る赤外線透過膜は、酸化ビスマスと、8μm以上14μm以下の波長域全域において消衰係数が0.4以下の金属酸化物とを含むことを特徴とする。 In order to solve the problem of the present invention, the infrared transmissive film according to the present invention is characterized by containing bismuth oxide and a metal oxide having an extinction coefficient of 0.4 or less in the entire wavelength range of 8 μm or more and 14 μm or less. And.

また、本件発明に係る光学膜、反射防止膜、光学部品、光学系はそれぞれ上記本件発明に係る赤外線透過膜を備えたことを特徴とする。 Further, the optical film, the antireflection film, the optical component, and the optical system according to the present invention are each provided with the infrared transmissive film according to the present invention.

さらに、本件発明に係る撮像装置は、上記本件発明に係る赤外線透過膜が設けられた光学面を含む光学系を備えたことを特徴とする。 Further, the imaging apparatus according to the present invention is characterized by including an optical system including an optical surface provided with the infrared transmissive film according to the present invention.

本件発明によれば、遠赤外線波長域で用いられる光学部品に設ける赤外線透過膜であって、成膜が容易であり、且つ、高い耐水性を有する新規な赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置を提供することができる。 According to the present invention, it is an infrared transmissive film provided in an optical component used in the far infrared wavelength range, and is a novel infrared transmissive film, an optical film, and an antireflection film which are easy to form and have high water resistance. , Optical components, optical systems and imaging devices can be provided.

本件発明に係る実施例9の試料の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface of the sample of Example 9 which concerns on this invention. 本件発明に係る実施例13の試料の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface of the sample of Example 13 which concerns on this invention.

以下、本件発明に係る赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置の実施の形態について説明する。 Hereinafter, embodiments of an infrared transmissive film, an optical film, an antireflection film, an optical component, an optical system, and an imaging device according to the present invention will be described.

1.赤外線透過膜
まず、本件発明に係る赤外線透過膜の実施の形態を説明する。本件発明に係る赤外線透過膜は、酸化ビスマスと、8μm以上14μm以下の波長域全域において消衰係数が0.4以下の金属酸化物とを含むことを特徴とする。
1. 1. Infrared Transmissive Film First, an embodiment of the infrared transmissive film according to the present invention will be described. The infrared transmissive film according to the present invention is characterized by containing bismuth oxide and a metal oxide having an extinction coefficient of 0.4 or less in the entire wavelength range of 8 μm or more and 14 μm or less.

1−1.酸化ビスマス
酸化ビスマスは、8μm以上14μm以下の波長域全域、すなわち遠赤外波長域全域における消衰係数が0.05未満であり、遠赤外線(8μm以上14μm以下の波長の光線)に対する透明度が高い材料である。
1-1. Bismuth oxide Bismuth oxide has an extinction coefficient of less than 0.05 in the entire wavelength range of 8 μm or more and 14 μm or less, that is, the entire far infrared wavelength range, and has high transparency to far infrared rays (light rays having a wavelength of 8 μm or more and 14 μm or less). It is a material.

また、酸化ビスマスの遠赤外線に対する屈折率は、1.5以上2.8以下の範囲にあり、酸化ビスマスは遠赤外波長域における中屈折率材料である。従って、当該赤外透過膜は、反射防止膜の構成材料としても好適である。例えば、当該赤外透過膜と、遠赤外波長域において高い屈折率を有するGe膜又はSi膜等を交互に積層すること等により、遠赤外波長域全域において良好な反射防止性能を有する反射防止膜を得ることができる。 Further, the refractive index of bismuth oxide with respect to far infrared rays is in the range of 1.5 or more and 2.8 or less, and bismuth oxide is a medium refractive index material in the far infrared wavelength region. Therefore, the infrared transmissive film is also suitable as a constituent material of the antireflection film. For example, by alternately laminating the infrared transmissive film and a Ge film or Si film having a high refractive index in the far infrared wavelength region, reflection having good antireflection performance in the entire far infrared wavelength region is obtained. A protective film can be obtained.

ところで、酸化ビスマスは結晶化しやすい材料である。真空蒸着法、スパッタリング法等の物理蒸着法により成膜した酸化ビスマスは多結晶構造を有する。そのため、結晶粒界には水等が含浸しやすく、酸化ビスマス膜は耐水性が低く、実用上必要な耐久性を満足することが困難である。そこで、本件発明者らは、酸化ビスマスと、所定の金属酸化物を添加物として含む膜とすることにより、耐水性を改善することができることを見出した。本件発明によれば、高い耐水性を実現することができる。以下、本件発明において酸化ビスマスと共に用いられる所定の金属酸化物について説明する。 By the way, bismuth oxide is a material that easily crystallizes. Bismuth oxide formed by a physical vapor deposition method such as a vacuum vapor deposition method or a sputtering method has a polycrystalline structure. Therefore, the crystal grain boundaries are easily impregnated with water or the like, and the bismuth oxide film has low water resistance, and it is difficult to satisfy the durability required for practical use. Therefore, the present inventors have found that the water resistance can be improved by forming a film containing bismuth oxide and a predetermined metal oxide as additives. According to the present invention, high water resistance can be realized. Hereinafter, a predetermined metal oxide used together with bismuth oxide in the present invention will be described.

1−2.金属酸化物
(1)消衰係数
当該金属酸化物は、遠赤外波長域全域における消衰係数が0.4以下であることが求められる。遠赤外波長域における消衰係数が0.4を超えると、遠赤外線に対する透明度が低下する。すなわち、当該赤外線透過膜における遠赤外線の透過率が低下するため、当該赤外線透過膜を光学膜として用いることが困難になる。
1-2. Metal oxide (1) Extinction coefficient The metal oxide is required to have an extinction coefficient of 0.4 or less in the entire far-infrared wavelength region. When the extinction coefficient in the far-infrared wavelength region exceeds 0.4, the transparency to far-infrared rays decreases. That is, since the transmittance of far infrared rays in the infrared transmitting film is lowered, it becomes difficult to use the infrared transmitting film as an optical film.

遠赤外波長域全域における消衰係数が0.4以下の金属酸化物として、例えば、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)、酸化クロム(Cr)、酸化ハフニウム(HfO)、酸化イットリウム(Y)、酸化銅(CuO)、酸化マグネシウム(MgO)等を挙げることができる。酸化ビスマスと、これらの金属酸化物とを含む膜とすることにより、酸化ビスマス膜の遠赤外線に対する透過率を維持しつつ、酸化ビスマス膜の耐水性を改善することができる。 Metal oxides having an extinction coefficient of 0.4 or less in the entire far-infrared wavelength region include, for example, zinc oxide (ZnO), zirconium oxide (ZrO 2 ), chromium oxide (Cr 2 O 3 ), and hafnium oxide (HfO 2 ). ), Yttrium oxide (Y 2 O 3 ), copper oxide (CuO), magnesium oxide (MgO) and the like. By forming a film containing bismuth oxide and these metal oxides, the water resistance of the bismuth oxide film can be improved while maintaining the transmittance of the bismuth oxide film with respect to far infrared rays.

ここで、使用波長域における当該赤外線透過膜の透明度をより高くするという観点から、添加物として用いる金属酸化物の消衰係数は、使用波長域全域において0.4未満であることが好ましく、0.2未満であることがより好ましく、0.1未満であることがさらに好ましい。当該赤外線透過膜の使用波長域に応じて、上記列挙した金属酸化物等の中から、適宜、適切な金属酸化物を選択することができる。なお、上記列挙した各金属酸化物の消衰係数を以下に示す。以下において、k(8μm)は、波長が8μmのときの消衰係数(k)を表し、k(14μm)は、波長が14μmのときの消衰係数を表す。また、以下には酸化ビスマスの消衰係数も示す。 Here, from the viewpoint of increasing the transparency of the infrared transmissive film in the wavelength range used, the extinction coefficient of the metal oxide used as an additive is preferably less than 0.4 in the entire wavelength range used, and is 0. It is more preferably less than .2 and even more preferably less than 0.1. An appropriate metal oxide can be appropriately selected from the above-listed metal oxides and the like according to the wavelength range of the infrared transmissive film. The extinction coefficients of each of the metal oxides listed above are shown below. In the following, k (8 μm) represents the extinction coefficient (k) when the wavelength is 8 μm, and k (14 μm) represents the extinction coefficient when the wavelength is 14 μm. The extinction coefficient of bismuth oxide is also shown below.

酸化亜鉛: k(8μm)=0.004 k(14μm)=0.03
酸化ジルコニウム:k(8μm)=0.06 k(14μm)=0.35
酸化クロム: k(8μm)=0.007 k(14μm)=0.37
酸化ハフニウム: k(8μm)=0.006 k(14μm)=0.4
酸化ビスマス: k(8μm)=0.002 k(14μm)=0.025
酸化イットリウム:k(8μm)=0.00027 k(14μm)=0.078
酸化銅: k(8μm)=0.0001 k(14μm)=0.04
酸化マグネシウム:k(8μm)=0.00025 k(14μm)=0.014
Zinc oxide: k (8 μm) = 0.004 k (14 μm) = 0.03
Zirconium oxide: k (8 μm) = 0.06 k (14 μm) = 0.35
Chromium oxide: k (8 μm) = 0.007 k (14 μm) = 0.37
Hafnium oxide: k (8 μm) = 0.006 k (14 μm) = 0.4
Bismuth oxide: k (8 μm) = 0.002 k (14 μm) = 0.025
Yttrium oxide: k (8 μm) = 0.00027 k (14 μm) = 0.078
Copper oxide: k (8 μm) = 0.0001 k (14 μm) = 0.04
Magnesium oxide: k (8 μm) = 0.00025 k (14 μm) = 0.014

上記に示すように、酸化亜鉛、酸化イットリウム、酸化銅及び酸化マグネシウムの消衰係数は、酸化ジルコニウム、酸化クロム及び酸化ハフニウムと比較すると小さく、遠赤外波長域全域において0.1未満である。従って、遠赤外波長域全域において高い透明度を維持することができるという観点から、酸化ビスマスと共に、酸化亜鉛、酸化イットリウム、酸化銅及び酸化マグネシウムから成る群から選択される一種以上を用いることがより好ましい。このとき、これらの金属酸化物一種を用いてもよいし、一種以上を混合して用いてもよいのは勿論である。 As shown above, the extinction coefficients of zinc oxide, yttrium oxide, copper oxide and magnesium oxide are smaller than those of zirconium oxide, chromium oxide and hafnium oxide, and are less than 0.1 over the entire far infrared wavelength region. Therefore, from the viewpoint that high transparency can be maintained in the entire far-infrared wavelength region, it is better to use one or more selected from the group consisting of zinc oxide, yttrium oxide, copper oxide and magnesium oxide together with bismuth oxide. preferable. At this time, it goes without saying that one kind of these metal oxides may be used, or one or more of these metal oxides may be mixed and used.

なお、酸化ビスマス膜の耐水性を改善するという観点のみからみれば、酸化タンタル(Ta)等の消衰係数が上記範囲外の金属酸化物を添加物として用いることもできる。酸化タンタルの消衰係数を以下に示す。しかしながら、酸化タンタルの消衰係数は下記のとおり大きく、当該酸化タンタルを酸化ビスマス膜に添加物として含有させると、遠赤外線に対する酸化ビスマス膜の透過率が低下し、光学膜として用いることが困難になる。
酸化タンタル: k(8μm)=0.028 k(14μm)=0.75
From the viewpoint of improving the water resistance of the bismuth oxide film, a metal oxide having an extinction coefficient outside the above range, such as tantalum oxide (Ta 2 O 5 ), can be used as an additive. The extinction coefficient of tantalum oxide is shown below. However, the extinction coefficient of tantalum pentoxide is large as shown below, and when the bismuth oxide film is contained as an additive, the transmittance of the bismuth oxide film with respect to far infrared rays decreases, making it difficult to use as an optical film. Become.
Tantalum oxide: k (8 μm) = 0.028 k (14 μm) = 0.75

(2)屈折率
また、当該金属酸化物の遠赤外線波長域内の光線に対する屈折率は0.8以上2.5以下であることが好ましい。酸化ビスマスの屈折率と同等の屈折率を有する金属酸化物を用いることにより、得られた赤外線透過膜の屈折率を酸化ビスマスと同様の屈折率とすることができる。なお、上記列挙した各金属酸化物の遠赤外線波長域における屈折率はいずれも0.8以上2.8以下の範囲内である。ここで、酸化ビスマスの屈折率を大きく変化させないという観点から、酸化ビスマスの屈折率とより同等屈折率の金属酸化物を用いることが好ましい。当該観点から、酸化ビスマスと、屈折率が1.0以上2.8以下の金属酸化物とを含む膜とすることがより好ましく、酸化ビスマスと、屈折率が1.5以上2.8以下の金属酸化物とを含む膜とすることがさらに好ましい。
(2) Refractive index The refractive index of the metal oxide with respect to light rays in the far-infrared wavelength region is preferably 0.8 or more and 2.5 or less. By using a metal oxide having a refractive index equivalent to that of bismuth oxide, the refractive index of the obtained infrared transmissive film can be set to the same refractive index as bismuth oxide. The refractive index of each of the metal oxides listed above in the far-infrared wavelength range is in the range of 0.8 or more and 2.8 or less. Here, from the viewpoint of not significantly changing the refractive index of bismuth oxide, it is preferable to use a metal oxide having a refractive index more equal to that of bismuth oxide. From this point of view, it is more preferable to form a film containing bismuth oxide and a metal oxide having a refractive index of 1.0 or more and 2.8 or less, and bismuth oxide and a refractive index of 1.5 or more and 2.8 or less. It is more preferable to use a film containing a metal oxide.

1−3.酸化亜鉛
ここで、上記列挙した各金属酸化物の中で、特に酸化亜鉛を用いることが好ましい。酸化亜鉛は、8μm以上14μm以下の波長域全域、すなわち遠赤外波長域全域における消衰係数が0.004と小さく、酸化イットリウム、酸化銅と比較すると、遠赤外線(8μm以上14μm以下の波長の光線)に対する透明度がより高い。
1-3. Zinc oxide Here, among the metal oxides listed above, it is particularly preferable to use zinc oxide. Zinc oxide has a small extinction coefficient of 0.004 over the entire wavelength range of 8 μm or more and 14 μm or less, that is, the entire far infrared wavelength range, and has a wavelength of far infrared rays (8 μm or more and 14 μm or less) as compared with yttrium oxide and copper oxide. Higher transparency to light rays).

また、酸化亜鉛の遠赤外線に対する屈折率は、1.5以上2.5以下の範囲にあり、酸化亜鉛は遠赤外波長域における中屈折率材料である。従って、酸化亜鉛膜は、それ自体、酸化ビスマス膜と同様に、反射防止膜の構成材料としても好適である。例えば、当該赤外透過膜と、遠赤外波長域において高い屈折率を有するGe膜又はSi膜等を交互に積層すること等により、遠赤外波長域全域において良好な反射防止性能を有する反射防止膜を得ることができる。 Further, the refractive index of zinc oxide with respect to far infrared rays is in the range of 1.5 or more and 2.5 or less, and zinc oxide is a medium refractive index material in the far infrared wavelength region. Therefore, the zinc oxide film itself is suitable as a constituent material of the antireflection film as well as the bismuth oxide film. For example, by alternately laminating the infrared transmissive film and a Ge film or Si film having a high refractive index in the far infrared wavelength region, reflection having good antireflection performance in the entire far infrared wavelength region is obtained. A protective film can be obtained.

ところで、酸化亜鉛も酸化ビスマスと同様に結晶化しやすい材料である。真空蒸着法、スパッタリング法等の物理蒸着法により成膜した酸化亜鉛膜は多結晶構造を有する。そのため、結晶粒界には水等が含浸しやすく、酸化亜鉛膜は耐水性が低く、実用上必要な耐久性を満足することが困難である。しかしながら、酸化ビスマスと酸化亜鉛とを含む膜、若しくは、酸化ビスマスと酸化亜鉛とからなる膜とすることにより、遠赤外波長全域において透明度が高く、且つ、高い耐水性を有する赤外線透過膜を実現することができる。
By the way, zinc oxide is also a material that easily crystallizes like bismuth oxide. The zinc oxide film formed by a physical vapor deposition method such as a vacuum vapor deposition method or a sputtering method has a polycrystalline structure. Therefore, the crystal grain boundaries are easily impregnated with water or the like, and the zinc oxide film has low water resistance, and it is difficult to satisfy the durability required for practical use. However, by using a film containing bismuth oxide and zinc oxide or a film composed of bismuth oxide and zinc oxide, an infrared transmissive film having high transparency and high water resistance in the entire far infrared wavelength range is realized. can do.

(3)含有量
次に、当該赤外線透過膜における酸化ビスマスの含有量と金属酸化物の含有量について説明する。当該赤外線透過膜は酸化ビスマスと上記金属酸化物とから構成されることが好ましく、不可避不純物を除いて、当該赤外線透過膜は酸化ビスマスと上記金属酸化物から実質なることが好ましい。このとき、酸化ビスマスは10質量%以上90質量%以下であることが好ましく、他の金属酸化物の含有量は90質量%以下10質量%以上であることが好ましい。但し、ここでいう他の金属酸化物の含有量とは、当該赤外線透過膜に含まれる酸化ビスマス以外の金属酸化物の総量をいう。すなわち、酸化ビスマス以外に複数の金属酸化物を用いる場合、その合計量をいうものとする。また、当該赤外線透過膜では、主成分を酸化ビスマス及び/又は酸化亜鉛とすることが好ましく、酸化ビスマス及び酸化亜鉛からなる遠赤外線透過膜とすることがより好ましい。酸化ビスマス及び酸化亜鉛は遠赤外波長域の光線に対して透明度の高い酸化ビスマス及び/又は酸化亜鉛を当該赤外線透過膜の主成分とすることにより、当該赤外線透過膜の遠赤外線に対する透明度を高く維持したまま、耐水性を改善することができる。上述したとおり、酸化ビスマス膜及び酸化亜鉛膜それ自体は耐水性が低いが、酸化ビスマスと酸化亜鉛の混合膜とすることにより、耐水性の高い遠赤外線透過膜を得ることができる。
(3) Content Next, the content of bismuth oxide and the content of metal oxide in the infrared transmissive film will be described. The infrared transmissive film is preferably composed of bismuth oxide and the metal oxide, and it is preferable that the infrared transmissive film is substantially composed of bismuth oxide and the metal oxide, except for unavoidable impurities. At this time, the bismuth oxide is preferably 10% by mass or more and 90% by mass or less, and the content of other metal oxides is preferably 90% by mass or less and 10% by mass or more. However, the content of other metal oxides referred to here means the total amount of metal oxides other than bismuth oxide contained in the infrared transmissive film. That is, when a plurality of metal oxides are used in addition to bismuth oxide, the total amount is used. Further, in the infrared transmissive film, the main component is preferably bismuth oxide and / or zinc oxide, and more preferably a far infrared transmissive film composed of bismuth oxide and zinc oxide. Bismuth oxide and zinc oxide have high transparency to light rays in the far infrared wavelength region. By using bismuth oxide and / or zinc oxide as the main component of the infrared transmitting film, the transparency of the infrared transmitting film to far infrared rays is increased. Water resistance can be improved while maintaining it. As described above, the bismuth oxide film and the zinc oxide film itself have low water resistance, but by using a mixed film of bismuth oxide and zinc oxide, a far infrared transmissive film having high water resistance can be obtained.

(4)結晶構造
本件発明に係る赤外線透過膜は、酸化ビスマスの結晶粒界に上記金属酸化物が偏析したもの、又は、酸化ビスマス以外の他の金属酸化物の結晶粒界に酸化ビスマスが偏析したものであることが好ましい。特に、酸化ビスマスの結晶粒界に酸化亜鉛が偏析したもの、又は、酸化亜鉛の結晶粒界に酸化ビスマスが偏析したものであることが好ましい。酸化ビスマス(又は、酸化ビスマス以外の金属酸化物)の結晶粒界に偏析した他の金属酸化物(又は酸化ビスマス)によって、結晶粒界に水が含水されにくくなるため、当該赤外線透過膜の耐水性が良好になる。また、酸化ビスマス(又は他の金属酸化物)の結晶粒界に酸化ビスマス以外の金属酸化物(又は酸化ビスマス)が偏析していると、結晶成長が抑制され、結晶粒の肥大化が阻止され、その結果、結晶粒が微細になる。そのため、膜内の残留応力が小さくなる。このことも耐水性を高める要因の一つであると考えられる。また、微細な結晶構造を有するため、当該膜の機械的強度も高くなる。さらに、耐水性等も向上する。
(4) Crystal Structure The infrared transmissive film according to the present invention has the above metal oxide segregated at the grain boundaries of bismuth oxide, or bismuth oxide segregated at the grain boundaries of metal oxides other than bismuth oxide. It is preferable that the product is made. In particular, it is preferable that zinc oxide is segregated at the grain boundaries of bismuth oxide, or bismuth oxide is segregated at the grain boundaries of zinc oxide. Other metal oxides (or bismuth oxide) segregated at the grain boundaries of bismuth oxide (or metal oxides other than bismuth oxide) make it difficult for water to be contained at the grain boundaries, so that the infrared transmissive film is water resistant. The sex becomes good. Further, if a metal oxide (or bismuth oxide) other than bismuth oxide is segregated at the grain boundaries of bismuth oxide (or other metal oxide), crystal growth is suppressed and enlargement of the crystal grains is prevented. As a result, the crystal grains become finer. Therefore, the residual stress in the film becomes small. This is also considered to be one of the factors for improving water resistance. Moreover, since it has a fine crystal structure, the mechanical strength of the film is also high. Further, water resistance and the like are also improved.

すなわち、酸化ビスマス膜の耐水性を改善する上で、酸化ビスマス及び酸化亜鉛以外の金属酸化物は、酸化ビスマス(及び酸化亜鉛)の結晶粒の肥大化を阻止できる程度の量であることが好ましい。一方、酸化ビスマス以外の金属酸化物として酸化亜鉛を用いる場合、酸化ビスマスの含有量と酸化亜鉛の含有量は同量(50質量%ずつ)であってもよい。 That is, in order to improve the water resistance of the bismuth oxide film, it is preferable that the amount of metal oxide other than bismuth oxide and zinc oxide is such that the enlargement of the crystal grains of bismuth oxide (and zinc oxide) can be prevented. .. On the other hand, when zinc oxide is used as the metal oxide other than bismuth oxide, the content of bismuth oxide and the content of zinc oxide may be the same amount (50% by mass each).

(5)膜密度
ここで、上述したとおり酸化ビスマスは他の金属酸化物と比較すると結晶化しやすい材料であるため、膜密度が低くなるという問題がある。一方、酸化ビスマス及び酸化ビスマス以外の上記金属酸化物を含む赤外線透過膜、特に、酸化ビスマスを10質量%以上90質量%以下含む赤外線透過膜は酸化ビスマス膜と比較すると膜密度を高くすることができ、基材と赤外線透過膜との密着性の向上することができ、且つ、高い耐久性を実現することができる。
(5) Film Density As described above, bismuth oxide is a material that is easier to crystallize than other metal oxides, so there is a problem that the film density is low. On the other hand, an infrared transmissive film containing the above metal oxides other than bismuth oxide and bismuth oxide, particularly an infrared transmissive film containing 10% by mass or more and 90% by mass or less of bismuth oxide, may have a higher film density than the bismuth oxide film. Therefore, the adhesion between the base material and the infrared transmissive film can be improved, and high durability can be realized.

ここで、下記式、すなわち、当該赤外線透過膜の膜密度を測定したときの実測値を、当該赤外線透過膜の理論膜密度で除することによって求めた値の百分率を相対膜密度と称する。 Here, the percentage of the value obtained by dividing the measured value when the film density of the infrared transmissive film is measured by the following formula, that is, the theoretical film density of the infrared transmissive film is referred to as a relative film density.

相対膜密度(%)=( 膜密度の実測値 / 理論膜密度 )×100 Relative film density (%) = (measured value of film density / theoretical film density) x 100

本件発明に係る赤外線透過膜の相対膜密度は、80%以上であることが好ましい。上記計算式に従って求めた相対膜密度が80%であると、基板と当該赤外線透過膜との密着性がよく、耐久性に優れた膜とすることができる。酸化ビスマスを10質量%以上90質量%以下含む赤外線透過膜であれば、相対膜密度80%以上とすることができる。 The relative film density of the infrared transmissive film according to the present invention is preferably 80% or more. When the relative film density obtained according to the above formula is 80%, the adhesion between the substrate and the infrared transmissive film is good, and a film having excellent durability can be obtained. An infrared transmissive film containing 10% by mass or more and 90% by mass or less of bismuth oxide can have a relative film density of 80% or more.

(6)成膜方法
本件発明に係る赤外線透過膜を成膜するには、例えば、酸化ビスマスと酸化ビスマス以外の上記金属酸化物とを所定の含有比で含む焼結セラミックス等を出発原料として、真空蒸着法、スパッタリング法等の各種乾式成膜法により成膜することができる。いずれの方法でも、混合酸化物の焼結体を出発原料として用いることができる。
(6) Film formation method In order to form the infrared transmissive film according to the present invention, for example, sintered ceramics containing bismuth oxide and the above metal oxide other than bismuth oxide in a predetermined content ratio is used as a starting material. The film can be formed by various dry film forming methods such as a vacuum vapor deposition method and a sputtering method. In either method, a sintered body of the mixed oxide can be used as a starting material.

各種乾式成膜法の中でも特に、マグネトロンスパッタリング法は簡便であり、真空蒸着法と比較したときの生産効率がよい。そのため、大量生産される光学部品に対して当該赤外線透過膜を成膜する際には、マグネトロンスパッタリング法を用いることが好ましい。この際、放電様式としては、直流電流、或いは高周波放電、或いは交流放電を採用することができる。 Among various dry film deposition methods, the magnetron sputtering method is particularly simple and has good production efficiency when compared with the vacuum vapor deposition method. Therefore, it is preferable to use the magnetron sputtering method when forming the infrared transmissive film on a mass-produced optical component. At this time, as the discharge mode, direct current, high frequency discharge, or alternating current discharge can be adopted.

赤外線透過膜をマグネトロンスパッタリング法により成膜する際には、金属ビスマスと、酸化ビスマス以外の金属酸化物を構成する金属とを所定の含有比で含む金属合金ターゲットを出発原料として用いることもできる。この金属合金ターゲットを用いて、酸素ガス雰囲気下で成膜することにより、酸化ビスマスと酸化ビスマス以外の他の金属酸化物とを所定の含有比で含む本件発明に係る赤外線透過膜を得ることができる。 When the infrared transmissive film is formed by the magnetron sputtering method, a metal alloy target containing metal bismuth and a metal constituting a metal oxide other than bismuth oxide in a predetermined content ratio can also be used as a starting material. By forming a film in an oxygen gas atmosphere using this metal alloy target, it is possible to obtain an infrared transmissive film according to the present invention containing bismuth oxide and a metal oxide other than bismuth oxide in a predetermined content ratio. it can.

これらの物理蒸着法により、上記金属酸化物を含む酸化ビスマス膜を成膜すれば、上記金属酸化物は、酸化ビスマスと複合酸化物を形成することなく、酸化ビスマスの結晶粒界に偏析する。すなわち、結晶粒界に上記金属酸化物が偏析した酸化ビスマスの多結晶構造を有する赤外線透過膜が得られる。 When a bismuth oxide film containing the metal oxide is formed by these physical vapor deposition methods, the metal oxide segregates at the grain boundaries of the bismuth oxide without forming a composite oxide with the bismuth oxide. That is, an infrared transmissive film having a polycrystalline structure of bismuth oxide in which the metal oxide is segregated at the crystal grain boundaries can be obtained.

なお、本件発明に係る赤外線透過膜は、乾式成膜法に限らず、化学的気相成長法、ゾルゲル法等の各種湿式成膜法により成膜することもできる。各成膜方法の中から、当該赤外線透過膜の用途や基材の材質等に応じて適宜、適切な成膜法を選択することができる。 The infrared transmissive film according to the present invention is not limited to the dry film forming method, but can also be formed by various wet film forming methods such as a chemical vapor phase growth method and a sol-gel method. From each film forming method, an appropriate film forming method can be appropriately selected according to the use of the infrared transmissive film, the material of the base material, and the like.

1−3.基材
本件発明に係る赤外線透過膜は、例えば、光学部品等の表面に設けられる。このとき、光学部品等の基材の材質は特に限定されるものではない。
1-3. Base material The infrared transmissive film according to the present invention is provided on the surface of, for example, an optical component. At this time, the material of the base material such as the optical component is not particularly limited.

本件発明に係る赤外線透過膜は、遠赤外波長域の光線に対して透明なゲルマニウム(Ge)、シリコン(Si)、セレン化亜鉛(ZnSe)、硫化亜鉛(ZnS)と良好な密着性を有する。また、本件発明に係る赤外線透過膜は、ゲルマニウム、砒素(As)、セレン(Se)、硫黄(S)、アンチモン(Sb)、Ga(ガリウム)等を成分とする各種のカルコゲナイドガラスと良好な密着性を有する。カルコゲナイドガラスの具体的な組成として、例えば、AsSe、CdTe、PbTe、SiSe、Ga、GeSe、GeS、GeAs、CdSe、Ge−As−Se、Ge−Sb−S、Ge−Se−Te、Ge−Se−Sb、Ge−Ga−S、Ga−La−S、As−S−Se、As−S−Te、As−Se−Cu、Ge−Sb−Te、Ga−Ge−As−S、Ge−As−Ga−Sb、As−Se−Sb−Sn、Ga−La−S−Ce、Ge−As−Ga−Se、Ge−As−Ga−Sb−Sを挙げることができる。これらの材料からなる赤外線用光学レンズ等の各種赤外線光学部品を基材としたとき、本件発明に係る赤外線透過膜を赤外線光学部品の表面に直接設けることができ、良好な密着性を得ることができる。 The infrared transmissive film according to the present invention has good adhesion to germanium (Ge), silicon (Si), zinc selenide (ZnSe), and zinc sulfide (ZnS), which are transparent to light in the far infrared wavelength region. .. Further, the infrared transmissive film according to the present invention has good adhesion to various chalcogenide glasses containing germanium, arsenic (As), selenium (Se), sulfur (S), antimony (Sb), Ga (gallium) and the like. Has sex. Specific compositions of chalcogenide glass include, for example, As 2 Se 3 , CdTe, PbTe, SiSe 2 , Ga 2 S 3 , GeSe 2 , GeS 2 , GeAs, CdSe, Ge-As-Se, Ge-Sb-S, Ge-Se-Te, Ge-Se-Sb, Ge-Ga-S, Ga-La-S, As-S-Se, As-S-Te, As-Se-Cu, Ge-Sb-Te, Ga- Ge-As-S, Ge-As-Ga-Sb, As-Se-Sb-Sn, Ga-La-S-Ce, Ge-As-Ga-Se, Ge-As-Ga-Sb-S. Can be done. When various infrared optical components such as an infrared optical lens made of these materials are used as a base material, the infrared transmissive film according to the present invention can be directly provided on the surface of the infrared optical component, and good adhesion can be obtained. it can.

2.光学膜
次に、本件発明に係る光学膜について説明する。本件発明において、光学膜とは反射防止膜や、エッジフィルター、バンドパスフィルターなどの光学フィルター等を意味する。本件発明に係る光学膜は一層の光学薄膜からなる単層膜であってもよいし、二層以上の光学薄膜が積層された多層膜であってもよい。いずれの場合であっても、本件発明に係る光学膜は、上述した本件発明に係る赤外線透過膜を備えるものとする。すなわち、当該光学膜は本件発明に係る赤外線透過膜からなる単層膜であってもよいし、少なくとも一層の赤外線透過膜を備える多層膜であってもよい。
2. 2. Optical film Next, the optical film according to the present invention will be described. In the present invention, the optical film means an antireflection film, an optical filter such as an edge filter and a bandpass filter, and the like. The optical film according to the present invention may be a single-layer film composed of one layer of optical thin films, or may be a multilayer film in which two or more layers of optical thin films are laminated. In any case, the optical film according to the present invention shall include the infrared transmissive film according to the present invention described above. That is, the optical film may be a single-layer film made of the infrared-transmitting film according to the present invention, or may be a multilayer film including at least one layer of infrared-transmitting film.

本件発明に係る赤外線透過膜は、中間屈折率材料である酸化ビスマスと、酸化ビスマスと同等の屈折率を有する酸化亜鉛等の他の金属酸化物とを含む。また、当該赤外線透過膜は下記の高屈折率材料、或いは低屈折率材料との密着性も良好である。 The infrared transmissive film according to the present invention contains bismuth oxide, which is an intermediate refractive index material, and other metal oxides such as zinc oxide having a refractive index equivalent to that of bismuth oxide. In addition, the infrared transmissive film has good adhesion to the following high-refractive index materials or low-refractive index materials.

高屈折率材料:Ge、Si
低屈折率材料:YF、YbF、NaF、NdF、LaF、CaF、SrF
High Refractive Index Material: Ge, Si
Low refractive index materials: YF 3 , YbF 3 , NaF, NdF 3 , LaF 3 , CaF 2 , SrF 2

従って、当該赤外線透過膜を中間屈折率層として用い、適宜、上記材料からなる高屈折率層及び/又は低屈折率層と積層した任意の層構成の光学膜を得ることができる。 Therefore, using the infrared transmissive film as an intermediate refractive index layer, an optical film having an arbitrary layer structure laminated with a high refractive index layer and / or a low refractive index layer made of the above materials can be appropriately obtained.

3.反射防止膜
次に、本件発明に係る反射防止膜の実施の形態を説明する。本件発明に係る反射防止膜は、上記光学膜の一種であり、本件発明に係る赤外線透過膜を備えることを特徴とする。本件発明に係る反射防止膜は、上記赤外線透過膜一層からなる単層膜であってもよいが、上記高屈折率層及び/又は低屈折率層と積層した多層膜とすることがより好ましい。多層構造の反射防止膜とすることにより、各界面で生じる界面反射光により、光の干渉作用を利用して広い波長域において低い反射率を実現することが容易になる。
3. 3. Antireflection film Next, an embodiment of the antireflection film according to the present invention will be described. The antireflection film according to the present invention is a kind of the above optical film, and is characterized by including the infrared transmissive film according to the present invention. The antireflection film according to the present invention may be a single-layer film composed of one layer of the infrared transmissive film, but it is more preferable to use a multilayer film laminated with the high-refractive index layer and / or the low-refractive index layer. By forming the antireflection film having a multi-layer structure, it becomes easy to realize low reflectance in a wide wavelength range by utilizing the interference action of light due to the interfacial reflected light generated at each interface.

4.光学部品
本件発明に係る光学部品は、本件発明に係る赤外線透過膜を備えることを特徴とする。光学部品としては、撮像装置又は投影装置の撮像光学系又は投影光学系などを構成する各種光学部品を挙げることができる。より具体的には、レンズ、プリズム(色分解プリズム、色合成プリズム等)、偏光ビームスプリッタ(PBS)、カットフィルタ(長波長用、短波長用等)などを挙げることができる。特に、遠赤外波長域の光線を使用する遠赤外撮像光学系を構成する赤外線用レンズであることが好ましい。
4. Optical component The optical component according to the present invention is characterized by including the infrared transmissive film according to the present invention. Examples of the optical component include various optical components constituting the image pickup optical system or the projection optical system of the image pickup device or the projection device. More specifically, lenses, prisms (color separation prisms, color synthesis prisms, etc.), polarization beam splitters (PBS), cut filters (for long wavelengths, short wavelengths, etc.) and the like can be mentioned. In particular, an infrared lens that constitutes a far-infrared imaging optical system that uses light rays in the far-infrared wavelength region is preferable.

5.光学系/撮像装置
本件発明に係る光学系は、本件発明に係る赤外線透過膜を備えることを特徴とする。当該光学系として、撮像光学系であることが好ましく、特に、遠赤外波長域の光線を使用する遠赤外撮像光学系であることが好ましい。例えば、監視用撮像装置、車載用撮像装置の光学系であることが好ましい。また、本件発明に係る撮像装置は、当該赤外線透過膜が設けられた光学面を含む光学系を備えることを特徴とし、これらの遠赤外線撮像光学系を備えた監視用撮像雄値、車載用撮像装置等であることが好ましい。
5. Optical System / Imaging Device The optical system according to the present invention is characterized by including the infrared transmissive film according to the present invention. The optical system is preferably an imaging optical system, and particularly preferably a far-infrared imaging optical system that uses light rays in the far-infrared wavelength region. For example, it is preferable that the optical system is an imaging device for monitoring or an imaging device for vehicles. Further, the imaging apparatus according to the present invention is characterized by including an optical system including an optical surface provided with the infrared transmissive film, and a monitoring imaging male value and an in-vehicle imaging equipped with these far-infrared imaging optical systems. It is preferably an apparatus or the like.

次に、実施例および比較例を示して本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではない。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.

実施例1では、マグネトロンスパッタリング法により基材の両面にそれぞれ酸化ビスマスと酸化亜鉛の混合膜を成膜した。以下、成膜の手順について具体的に説明する。 In Example 1, a mixed film of bismuth oxide and zinc oxide was formed on both sides of the base material by the magnetron sputtering method, respectively. Hereinafter, the procedure for film formation will be specifically described.

まず、マグネトロンスパッタリング装置に、成膜原料であるターゲットと、基材とを対向配置した。成膜原料としては、酸化亜鉛の焼結体ターゲットを用いた。このとき、当該ターゲット上に酸化ビスマスのタブレットの小片を均等に並べ、赤外線透過膜中の酸化ビスマスの含有量が4.0質量%になるようにした。基材として、カルコゲナイドガラス(湖北新華光信息材料有限公司製 IRG206)を用いた。 First, the target, which is a film-forming raw material, and the base material were placed facing each other in the magnetron sputtering apparatus. A zinc oxide sintered body target was used as the film forming raw material. At this time, small pieces of bismuth oxide tablets were evenly arranged on the target so that the content of bismuth oxide in the infrared transmissive film was 4.0% by mass. As a base material, chalcogenide glass (IRG206 manufactured by Hubei Xinhua Gwangbok Information Materials Co., Ltd.) was used.

次に、装置内全体を真空に排気した。そして、装置内の圧力が3×10−4Paに到達した時点で、Arガスを20SCCM(standard cc/min、1atm(25℃))流し、酸素ガスを5SCCM流した。この時の装置内の圧力が、0.3Paになるように排気速度を調整した。 Next, the entire inside of the device was evacuated to vacuum. Then, when the pressure in the apparatus reached 3 × 10 -4 Pa, 20 SCCM (standard cc / min, 1 atm (25 ° C.)) of Ar gas was flowed, and 5 SCCM of oxygen gas was flowed. The exhaust speed was adjusted so that the pressure inside the device at this time was 0.3 Pa.

その後、ターゲット表面に13.56MHzの高周波(約500W)を印加し、ターゲットの前方で基材を回転させながら、基材の表面に酸化ビスマスを4質量%と酸化亜鉛96質量%とを含む赤外線透過膜を成膜した。 After that, a high frequency of 13.56 MHz (about 500 W) is applied to the surface of the target, and while rotating the base material in front of the target, infrared rays containing 4% by mass of bismuth oxide and 96% by mass of zinc oxide on the surface of the base material. A permeable film was formed.

実施例2では、赤外線透過膜中の酸化ビスマスの含有量が0.7質量%になるように酸化亜鉛焼結ターゲット上の酸化ビスマスの小片量を調整したことを除いては、実施例1と同様にして、酸化ビスマスを0.7質量%と酸化亜鉛99.3質量%とを含む赤外線透過膜を成膜した。 In Example 2, the amount of small pieces of bismuth oxide on the zinc oxide sintered target was adjusted so that the content of bismuth oxide in the infrared transmissive film was 0.7% by mass. Similarly, an infrared transmissive film containing 0.7% by mass of bismuth oxide and 99.3% by mass of zinc oxide was formed.

実施例3では、酸化ビスマスの含有量が14.7質量%の酸化亜鉛焼結ターゲットを用いたことを除いては、実施例1と同様にして、酸化ビスマスを14.7質量%と酸化亜鉛85.3質量%とを含む赤外線透過膜を成膜した。 In Example 3, bismuth oxide was 14.7% by mass and zinc oxide was used in the same manner as in Example 1 except that a zinc oxide sintered target having a bismuth oxide content of 14.7% by mass was used. An infrared transmissive film containing 85.3% by mass was formed.

実施例4では、酸化ビスマスの含有量が44.7質量%の酸化亜鉛焼結ターゲットを用いたことを除いては、実施例1と同様にして、酸化ビスマスを44.7質量%と酸化亜鉛55.3質量%とを含む赤外線透過膜を成膜した。 In Example 4, bismuth oxide was 44.7% by mass and zinc oxide was used in the same manner as in Example 1 except that a zinc oxide sintered target having a bismuth oxide content of 44.7% by mass was used. An infrared transmissive film containing 55.3% by mass was formed.

実施例5では、酸化亜鉛の含有量が30.0質量%の酸化ビスマス焼結ターゲットを用いたことを除いては、実施例1と同様にして、酸化ビスマスを70.0質量%と酸化亜鉛30.0質量%とを含む赤外線透過膜を成膜した。 In Example 5, bismuth oxide was 70.0% by mass and zinc oxide was used in the same manner as in Example 1 except that the bismuth oxide sintered target having a zinc oxide content of 30.0% by mass was used. An infrared transmissive film containing 30.0% by mass was formed.

実施例6では、基板側から順にGe膜、酸化ビスマスと酸化亜鉛膜とを含む赤外線透過膜を積層した反射防止膜を成膜した。Ge膜を成膜する際には、ゲルマニウムをターゲットとして用い、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜を成膜する際には、酸化ビスマスの含有量が2質量%である酸化亜鉛の焼結体ターゲットを用いて、実施例1と同様にして各膜を成膜した。 In Example 6, an antireflection film was formed by laminating a Ge film and an infrared transmissive film containing bismuth oxide and a zinc oxide film in this order from the substrate side. When forming a Ge film, germanium is used as a target, and when forming an infrared transmissive film containing bismuth oxide and zinc oxide, zinc oxide having a bismuth oxide content of 2% by mass is baked. Each film was formed in the same manner as in Example 1 using the body-forming target.

実施例7では、基板側から順にGe膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜、Ge膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜を積層した。この際、赤外線透過膜を成膜する際に、酸化ビスマスの含有量が5質量%の酸化亜鉛焼結ターゲットを用い、酸化ビスマスの含有量が5質量%、酸化亜鉛の含有量が95質量%になるようにしたことを除いて、実施例6と同様にして各膜を成膜した。 In Example 7, a Ge film, an infrared transmissive film containing bismuth oxide and zinc oxide, a Ge film, and an infrared transmissive film containing bismuth oxide and zinc oxide were laminated in this order from the substrate side. At this time, when forming the infrared transmissive film, a zinc oxide sintered target having a bismuth oxide content of 5% by mass was used, and the bismuth oxide content was 5% by mass and the zinc oxide content was 95% by mass. Each film was formed in the same manner as in Example 6 except that.

実施例8では、実施例5と同様の方法で成膜した酸化ビスマスを30質量%と酸化亜鉛70質量%とを含む赤外線透過膜を用いた以外は、実施例6と同様にして、基板側から順にGe膜、当該赤外線透過膜とが積層された反射防止膜を得た。 In Example 8, the substrate side was the same as in Example 6 except that an infrared transmissive film containing 30% by mass and 70% by mass of zinc oxide was used as a film formed by the same method as in Example 5. To obtain an antireflection film in which a Ge film and the infrared transmissive film are laminated in this order.

実施例9では、成膜原料として、酸化ビスマスと酸化亜鉛とをそれぞれ50質量%ずつ含む焼結体ターゲットを用いたことを除いては、実施例1と同様にして、酸化ビスマスを50.0質量%と酸化亜鉛50.0質量%とを含む赤外線透過膜を成膜した。 In Example 9, bismuth oxide was 50.0 in the same manner as in Example 1 except that a sintered target containing 50% by mass each of bismuth oxide and zinc oxide was used as the film forming raw material. An infrared transmissive film containing 50.0% by mass of zinc oxide was formed.

実施例10では、酸化ビスマスの含有量が38.0質量%である酸化亜鉛の焼結ターゲットを用いたことを除いては、実施例1と同様にして、酸化ビスマスを38.0質量%と酸化亜鉛62.0質量%とを含む赤外線透過膜を成膜した。 In Example 10, bismuth oxide was set to 38.0% by mass in the same manner as in Example 1 except that a zinc oxide sintered target having a bismuth oxide content of 38.0% by mass was used. An infrared transmissive film containing 62.0% by mass of zinc oxide was formed.

実施例11では、酸化亜鉛の含有量が30.0質量%である酸化ビスマスの焼結ターゲットを用いたことを除いては、実施例1と同様にして、酸化ビスマスを70.0質量%と酸化亜鉛30.0質量%とを含む赤外線透過膜を成膜した。 In Example 11, the bismuth oxide was set to 70.0% by mass in the same manner as in Example 1 except that the sintered target of bismuth oxide having a zinc oxide content of 30.0% by mass was used. An infrared transmissive film containing 30.0% by mass of zinc oxide was formed.

実施例12では、酸化亜鉛の含有量が10質量%である酸化ビスマスの焼結ターゲットを用いたことを除いては、実施例1と同様にして、酸化ビスマスを90質量%と酸化亜鉛10質量%とを含む赤外線透過膜を成膜した。 In Example 12, 90% by mass of bismuth oxide and 10% by mass of zinc oxide were obtained in the same manner as in Example 1 except that a sintered target of bismuth oxide having a zinc oxide content of 10% by mass was used. An infrared transmissive film containing% was formed.

実施例13では、酸化ビスマスの含有量が8質量%である酸化亜鉛の焼結ターゲットを用いたことを除いては、実施例1と同様にして、酸化ビスマスを8質量%と酸化亜鉛を92質量%とを含む赤外線透過膜を成膜した。 In Example 13, bismuth oxide was 8% by mass and zinc oxide was 92 by mass, as in Example 1, except that a sintered target of zinc oxide having a bismuth oxide content of 8% by mass was used. An infrared transmissive film containing% by mass was formed.

実施例14では、実施例6と同様に、基板側から順にGe膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜を積層した反射防止膜を成膜した。Ge膜を成膜する際には、ゲルマニウムをターゲットとして用い、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜を成膜する際には、酸化ビスマスの含有量が38質量%である酸化亜鉛の焼結体ターゲットを用いた以外は実施例1と同様にして、酸化ビスマスを38質量%、酸化亜鉛を62質量%含む赤外線透過膜を成膜した。 In Example 14, as in Example 6, an antireflection film was formed by laminating a Ge film and an infrared transmissive film containing bismuth oxide and zinc oxide in this order from the substrate side. When forming a Ge film, germanium is used as a target, and when forming an infrared transmissive film containing bismuth oxide and zinc oxide, zinc oxide having a bismuth oxide content of 38% by mass is baked. An infrared transmissive film containing 38% by mass of bismuth oxide and 62% by mass of zinc oxide was formed in the same manner as in Example 1 except that the body target was used.

実施例15では、基板側から順にSi膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜を積層した反射防止膜を成膜した。Si膜を成膜する際には、シリコンをターゲットとして用い、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜を成膜する際には、酸化ビスマスの含有量が38質量%である酸化亜鉛の焼結体ターゲットを用いた以外は実施例1と同様にして、酸化ビスマスを38質量%、酸化亜鉛を62質量%含む赤外線透過膜を成膜した。 In Example 15, an antireflection film was formed by laminating a Si film and an infrared transmissive film containing bismuth oxide and zinc oxide in this order from the substrate side. When forming a Si film, silicon is used as a target, and when forming an infrared transmissive film containing bismuth oxide and zinc oxide, zinc oxide having a bismuth oxide content of 38% by mass is baked. An infrared transmissive film containing 38% by mass of bismuth oxide and 62% by mass of zinc oxide was formed in the same manner as in Example 1 except that the body target was used.

実施例16では、真空蒸着法により基材の両面にそれぞれ成膜原料である酸化ビスマスと酸化亜鉛を混合した真空蒸着材料を用いて、基材側から順に酸化ビスマスと酸化亜鉛とを含む赤外線透過膜、フッ化イッテルビウム膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜との3層構造の積層膜を成膜した。以下、成膜の手順について具体的に説明する。 In Example 16, a vacuum vapor deposition material in which bismuth oxide and zinc oxide, which are film-forming raw materials, are mixed on both sides of the substrate by the vacuum vapor deposition method is used, and infrared transmission containing bismuth oxide and zinc oxide in order from the substrate side A three-layer laminated film consisting of a film, an itterbium fluoride film, and an infrared transmissive film containing bismuth oxide and zinc oxide was formed. Hereinafter, the procedure for film formation will be specifically described.

まず、真空蒸着装置に、成膜原料である蒸着材料と、基材とを対向配置した。成膜原料としては、酸化ビスマスと酸化亜鉛を混合したタブレットとフッ化イッテルビウムの顆粒を用いた。基材として、カルコゲナイドガラス(湖北新華光信息材料有限公司製 IRG206)を用いた。 First, the vapor-deposited material, which is a film-forming raw material, and the base material were placed facing each other in the vacuum vapor deposition apparatus. As the film-forming raw material, tablets in which bismuth oxide and zinc oxide were mixed and granules of ytterbium fluoride were used. As a base material, chalcogenide glass (IRG206 manufactured by Hubei Xinhua Gwangbok Information Materials Co., Ltd.) was used.

次に、装置内全体を真空に排気した。蒸着装置内で蒸着材料を加熱し、蒸発させて蒸着させた。蒸着材料を加熱蒸着する際、酸化ビスマスと酸化亜鉛を混合したタブレットについては、電子ビーム加熱により蒸着し、フッ化イッテルビウムの顆粒については抵抗加熱により蒸着した。 Next, the entire inside of the device was evacuated to vacuum. The vaporized material was heated in the vapor deposition apparatus and evaporated to vaporize it. When the vapor deposition material was heated and vapor-deposited, tablets in which bismuth oxide and zinc oxide were mixed were vapor-deposited by electron beam heating, and ytterbium fluoride granules were vapor-deposited by resistance heating.

酸化ビスマスと酸化亜鉛を混合したタブレットは、酸化ビスマスの含有量が90質量%、酸化亜鉛の含有量が10質量%になるようにした。 The tablet in which bismuth oxide and zinc oxide were mixed had a bismuth oxide content of 90% by mass and a zinc oxide content of 10% by mass.

実施例17では、実施例16と同様の方法で、基材側から順に酸化ビスマスと酸化亜鉛とを含む赤外線透過膜、フッ化イッテルビウム膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜、フッ化イッテルビウム膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜との5層構造の積層膜を成膜した。酸化ビスマスと酸化亜鉛とを含む赤外線透過膜は、実施例11と同様にして、酸化ビスマスを90質量%と酸化亜鉛10質量%とを含む赤外線透過膜の各層を成膜した。 In Example 17, in the same manner as in Example 16, an infrared transmissive film containing bismuth oxide and zinc oxide, an itterbium fluoride film, an infrared transmissive film containing bismuth oxide and zinc oxide, and fluoride are used in this order from the substrate side. A five-layer laminated film consisting of an itterbium film and an infrared transmissive film containing bismuth oxide and zinc oxide was formed. As the infrared transmissive film containing bismuth oxide and zinc oxide, each layer of the infrared transmissive film containing 90% by mass of bismuth oxide and 10% by mass of zinc oxide was formed in the same manner as in Example 11.

実施例18では、実施例16と同様の方法で、基材側から順にGe膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜、Ge膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜、フッ化イッテルビウム膜、酸化ビスマスと酸化亜鉛とを含む赤外線透過膜との6層構造の積層膜を成膜した。ゲルマニウムは、ゲルマニウムの顆粒を用いて、電子ビーム加熱により蒸着した。酸化ビスマスと酸化亜鉛とを含む赤外線透過膜は、実施例11と同様にして、酸化ビスマスを90質量%と酸化亜鉛10質量%とを含む赤外線透過膜の各層を成膜した。 In Example 18, in the same manner as in Example 16, the Ge film, the infrared transmissive film containing bismuth oxide and zinc oxide, the Ge film, the infrared transmissive film containing bismuth oxide and zinc oxide, and the foot are in this order from the substrate side. A 6-layer laminated film consisting of a chemicalized itterbium film and an infrared transmissive film containing bismuth oxide and zinc oxide was formed. Germanium was deposited by electron beam heating using germanium granules. As the infrared transmissive film containing bismuth oxide and zinc oxide, each layer of the infrared transmissive film containing 90% by mass of bismuth oxide and 10% by mass of zinc oxide was formed in the same manner as in Example 11.

比較例Comparative example

[比較例1]
比較例1では、出発原料として酸化亜鉛の焼結体ターゲットのみを用いた以外は、実施例1と同様にして酸化亜鉛膜を成膜した。すなわち、比較例1では酸化ビスマスを含まない酸化亜鉛膜を成膜した。
[Comparative Example 1]
In Comparative Example 1, a zinc oxide film was formed in the same manner as in Example 1 except that only a zinc oxide sintered body target was used as a starting material. That is, in Comparative Example 1, a zinc oxide film containing no bismuth oxide was formed.

[比較例2]
比較例2では、出発原料として酸化ビスマスの焼結ターゲットを用いた以外は、実施例1と同様にして成膜し、酸化ビスマス膜を得た。すなわち、比較例2では他の金属酸化物を含まない酸化亜鉛膜を成膜した。
[Comparative Example 2]
In Comparative Example 2, a film was formed in the same manner as in Example 1 except that a sintered target of bismuth oxide was used as a starting material to obtain a bismuth oxide film. That is, in Comparative Example 2, a zinc oxide film containing no other metal oxide was formed.

[評価]
実施例1〜実施例18、比較例1及び比較例2で成膜した各膜の膜厚、組成、遠赤外線に対する平均透過率をそれぞれ測定すると共に、耐水試験を行った。また、一部の試料についてテープ試験を行うと共に、相対膜密度を求めた。
[Evaluation]
The film thickness, composition, and average transmittance for far infrared rays of the films formed in Examples 1 to 18, Comparative Example 1 and Comparative Example 2 were measured, and a water resistance test was performed. In addition, a tape test was performed on some of the samples, and the relative film density was determined.

(膜厚)
各膜の膜厚を触針式段差計で測定した。結果を表1〜表3に示す。なお、表1〜表3に示す膜厚は、各膜の実際の膜厚であって、いわゆる光学膜厚ではない。
(Film thickness)
The film thickness of each film was measured with a stylus type step meter. The results are shown in Tables 1 to 3. The film thicknesses shown in Tables 1 to 3 are the actual film thicknesses of each film, not the so-called optical film thickness.

(組成)
各膜の組成をICP(誘導結合プラズマ発光分光分析法)で分析した。結果を表1〜表3に示す。
(composition)
The composition of each film was analyzed by ICP (inductively coupled plasma emission spectroscopy). The results are shown in Tables 1 to 3.

(平均透過率)
各実施例及び比較例で得た試料の波長範囲8μm〜12μm及び波長範囲8μm〜14μmにおける平均透過率をパーキンエルマー社製のFT−IR Spectrum 100 Opticaを用いて測定した。なお、各試料とは、基板の両面にそれぞれの膜を備えたものをいう(以下、同じ)。結果を表1〜表3に示す。
(Average transmittance)
The average transmittance of the samples obtained in each Example and Comparative Example in the wavelength range of 8 μm to 12 μm and the wavelength range of 8 μm to 14 μm was measured using FT-IR Spectrom 100 Optics manufactured by PerkinElmer. In addition, each sample means a sample which provided each film on both sides of a substrate (hereinafter, the same). The results are shown in Tables 1 to 3.

(耐水試験)
各実施例及び比較例で得た試料を純水に浸漬した。そして、試料を純水に浸漬してから24時間が経過した時点で観察を終了した。結果を表1〜表3に示す。但し、表1〜表3には、耐水試験の結果を「○」、「×」で示している。ここで、「○」は、試料を純水に浸漬してから24時間が経過しても基材と膜との密着が良好であり、膜剥がれ等が一切生じなかったことを意味する。また、「×」は試料を純水に浸漬してから24時間が経過するまでの間に、基材から膜が浮いたり、膜が剥がれたりなど、基材と膜との密着性低下が観察されたことを意味する。
(Water resistance test)
The samples obtained in each Example and Comparative Example were immersed in pure water. Then, the observation was completed when 24 hours had passed since the sample was immersed in pure water. The results are shown in Tables 1 to 3. However, in Tables 1 to 3, the results of the water resistance test are indicated by "○" and "×". Here, "◯" means that the adhesion between the base material and the film was good even after 24 hours had passed since the sample was immersed in pure water, and no film peeling or the like occurred. In addition, "x" indicates a decrease in adhesion between the substrate and the film, such as the film floating from the substrate or peeling off from the substrate until 24 hours have passed after the sample was immersed in pure water. It means that it was done.

(テープ試験)MIL−C−48497A para4.5.3.1
実施例9〜実施例18と、比較例1及び比較例2で得た試料について、耐水試験後にテープ試験を行い、基材と被膜の密着性を評価した。結果を表1〜表3に示す。但し、表1〜表3には、テープ試験の結果を「○」、「×」で示している。ここで、「○」は、試料にテープを貼り付けて引き剥がしても基材と被膜との密着が良好であり、膜剥がれ等が一切生じなかったことを意味する。また、「×」は試料にテープを貼り付けて引き剥がした時に、基材から膜が浮いたり、膜が剥がれたりなど、基材と被膜との密着性低下が観察されたことを意味する。
(Tape test) MIL-C-48497A para 4.5.3.1
The samples obtained in Examples 9 to 18 and Comparative Examples 1 and 2 were subjected to a tape test after the water resistance test to evaluate the adhesion between the base material and the coating film. The results are shown in Tables 1 to 3. However, in Tables 1 to 3, the results of the tape test are indicated by "○" and "×". Here, "◯" means that the adhesion between the base material and the coating film was good even when the tape was attached to the sample and peeled off, and no film peeling or the like occurred. Further, "x" means that when the tape was attached to the sample and peeled off, a decrease in adhesion between the base material and the coating film was observed, such as the film floating from the base material or the film peeling off.

(膜密度)
実施例9〜実施例18と、比較例1及び比較例2で得た試料について、当該赤外線透過膜の膜密度をX線反射率法(XRR)により測定した。この際、XRR測定用サンプルとして、膜厚150nmに成膜したものを用いた。膜厚150nm程度のサンプルを用いることにより、Siウェーハ上の測定感度が良好になるためである。得られた実測値を各試料についての理論膜密度で除した値の百分率を求め、相対膜密度とした。その結果を表1〜表3に示す。また、実施例9と実施例13の試料について、その理論膜密度と平均膜密度を表4に示す。
(Membrane density)
With respect to the samples obtained in Examples 9 to 18 and Comparative Examples 1 and 2, the film density of the infrared transmissive film was measured by the X-ray reflectivity method (XRR). At this time, as a sample for XRR measurement, a sample having a film thickness of 150 nm was used. This is because the measurement sensitivity on the Si wafer is improved by using a sample having a film thickness of about 150 nm. The percentage of the obtained measured value divided by the theoretical film density for each sample was obtained and used as the relative film density. The results are shown in Tables 1 to 3. Table 4 shows the theoretical film density and the average film density of the samples of Example 9 and Example 13.

(外観観察)
実施例9、実施例13の試料について、当該赤外線透過膜の表面を走査型電子顕微鏡(JSM−6500F(日本電子株式会社製))を用いて倍率1万倍で観察した。各試料についてのSEM画像を図1及び図2に示す。
(Appearance observation)
With respect to the samples of Example 9 and Example 13, the surface of the infrared transmissive film was observed with a scanning electron microscope (JSM-6500F (manufactured by JEOL Ltd.)) at a magnification of 10,000 times. SEM images for each sample are shown in FIGS. 1 and 2.

表1及び表2に示すように、実施例1〜実施例18の試料はいずれも耐水試験の結果が良好であり、各試料を純水に浸漬してから24時間が経過しても、基板からの膜剥がれが一切生じなかった。一方、比較例1の試料は酸化亜鉛からなる赤外線透過膜を備える。表2に示すように純水に当該試料を水に浸漬して24時間経過後には基板から完全に膜が剥離した状態となった。従って、酸化ビスマスを一切含まない酸化亜鉛膜と比較すると、酸化ビスマスと酸化亜鉛の混合膜は耐水性が良好であることが確認された。 As shown in Tables 1 and 2, the samples of Examples 1 to 18 all have good water resistance test results, and even if 24 hours have passed since each sample was immersed in pure water, the substrate No film peeling occurred from the surface. On the other hand, the sample of Comparative Example 1 includes an infrared transmissive film made of zinc oxide. As shown in Table 2, the sample was immersed in pure water and 24 hours later, the film was completely peeled off from the substrate. Therefore, it was confirmed that the mixed film of bismuth oxide and zinc oxide had better water resistance than the zinc oxide film containing no bismuth oxide.

また、テープ試験を実施した実施例9〜実施例18の試料のうち、実施例9〜実施例12及び実施例14〜実施例18の試料は、膜の剥がれは観察されず、結果は良好であった。一方、実施例13の試料及び比較例2の試料は、耐水試験後のテープ試験では膜が剥離した状態となった。実施例13の試料は、酸化ビスマスの含有量が8質量%であり、他の試料と比較すると酸化ビスマスの含有量が低い。また、比較例2の試料は酸化亜鉛を含まない。 Further, among the samples of Examples 9 to 18 in which the tape test was performed, the samples of Examples 9 to 12 and 14 to 18 did not show any peeling of the film, and the results were good. there were. On the other hand, the sample of Example 13 and the sample of Comparative Example 2 were in a state where the film was peeled off in the tape test after the water resistance test. The sample of Example 13 has a bismuth oxide content of 8% by mass, and the content of bismuth oxide is lower than that of other samples. Moreover, the sample of Comparative Example 2 does not contain zinc oxide.

ここで、表1及、表2及び表4に示すように、実施例9〜実施例12及び実施例14〜実施例18の試料において、各赤外線透過膜の相対膜密度は80.0%以上、より具体的には85.0%以上であるのに対して、実施例13の試料の相対膜密度は80.0%未満である。同様に比較例1及び比較例2の試料の相対膜密度も80.0%未満である。また、図1及び図2から、実施例9の赤外線透過膜は、実施例13の赤外線透過膜よりも微細な結晶粒からなり、膜密度が向上していることがSEM画像からも確認された。酸化ビスマスと酸化亜鉛の混合比を変化させることにより、相対膜密度が変化することが確認され、酸化ビスマスと他の金属酸化物(酸化亜鉛)とからなる赤外線透過膜において、酸化ビスマスの含有量を10質量%以上90質量%以下とすることにより、酸化ビスマス膜(又は酸化亜鉛膜)の耐水性及び密着性を著しく向上することができることが確認された。 Here, as shown in Tables 1, 2 and 4, in the samples of Examples 9 to 12 and 14 to 18, the relative film density of each infrared transmissive film is 80.0% or more. More specifically, the relative film density of the sample of Example 13 is less than 80.0%, whereas it is 85.0% or more. Similarly, the relative film densities of the samples of Comparative Example 1 and Comparative Example 2 are less than 80.0%. Further, from FIGS. 1 and 2, it was confirmed from the SEM image that the infrared transmissive film of Example 9 was composed of finer crystal grains than the infrared transmissive film of Example 13 and the film density was improved. .. It was confirmed that the relative film density was changed by changing the mixing ratio of bismuth oxide and zinc oxide, and the content of bismuth oxide in the infrared transmissive film composed of bismuth oxide and other metal oxides (zinc oxide). It was confirmed that the water resistance and adhesion of the bismuth oxide film (or zinc oxide film) can be remarkably improved by setting the content to 10% by mass or more and 90% by mass or less.

さらに、表1及び表2に示すように、実施例1〜実施例18の試料は、波長範囲8μm〜12μmにおける平均透過率が83%以上を示し、これらの波長範囲の光線に対して高い透明度を示す。従って、実施例1〜実施例18で成膜した本件発明に係る赤外線透過膜は光学膜として好適に用いることができる。 Further, as shown in Tables 1 and 2, the samples of Examples 1 to 18 show an average transmittance of 83% or more in the wavelength range of 8 μm to 12 μm, and have high transparency with respect to light rays in these wavelength ranges. Is shown. Therefore, the infrared transmissive film according to the present invention formed in Examples 1 to 18 can be suitably used as an optical film.

一方、表3に示すように、比較例1の試料の波長範囲8μm〜12μmにおける平均透過率が90%以上を示し、光学膜として好適な光学特性を備える。しかしながら、上述したとおり、耐水性及び密着性が低いため、実用上必要とされる耐久性を満足することができない。また、比較例2の試料は波長範囲8μm〜12μmにおける平均透過率が81%となり、遠赤外線に対する透明度が低いため、光学膜として用いることが困難である。 On the other hand, as shown in Table 3, the sample of Comparative Example 1 has an average transmittance of 90% or more in a wavelength range of 8 μm to 12 μm, and has optical characteristics suitable for an optical film. However, as described above, since the water resistance and adhesion are low, the durability required for practical use cannot be satisfied. Further, the sample of Comparative Example 2 has an average transmittance of 81% in a wavelength range of 8 μm to 12 μm and has low transparency to far infrared rays, so that it is difficult to use it as an optical film.

本件発明によれば、成膜が容易であり、且つ、耐水性等の実用上十分な耐久性を有する新規な赤外線透過膜、及び当該赤外線透過膜を備えた光学膜、反射防止膜、光学部品、光学系及び撮像装置を提供することができる。 According to the present invention, a novel infrared transmissive film which is easy to form a film and has practically sufficient durability such as water resistance, and an optical film, an antireflection film, and an optical component provided with the infrared transmissive film. , Optical systems and imaging devices can be provided.

Claims (6)

ゲルマニウム、シリコン、セレン化亜鉛、硫化亜鉛、又はカルコゲナイドガラスからなる基材の表面に設けられる赤外線透過膜を備えた光学部品であって、
前記赤外線透過膜は、酸化ビスマスと、8μm以上14μm以下の波長域全域における消衰係数が0.4以下の酸化亜鉛とからなる層を一層以上含み、これら層の最も厚い厚さが225nm以上1700nm以下であることを特徴とする光学部品
An optical component provided with an infrared transmissive film provided on the surface of a substrate made of germanium, silicon, zinc selenide, zinc sulfide, or chalcogenide glass.
The infrared transmissive film contains one or more layers composed of bismuth oxide and zinc oxide having an extinction coefficient of 0.4 or less over the entire wavelength range of 8 μm or more and 14 μm or less, and the thickest layer of these layers is 225 nm or more. An optical component having a wavelength of 1700 nm or less .
前記赤外線透過膜における前記酸化ビスマスの含有量が10質量%以上90質量%以下である請求項1に記載の光学部品 Optical component according to claim 1 wherein the amount of bismuth oxide is not more than 10 wt% or more and 90 wt% in the infrared transmitting film. 前記赤外線透過膜の膜密度を測定したときの実測値を、前記赤外線透過膜の理論膜密度で除した値の百分率を相対膜密度としたとき、当該相対膜密度が80%以上である請求項1又は請求項2に記載の光学部品When the measured value when measuring the film density of the infrared transmitting film, and the percentage of divided by the theoretical film density of the infrared transmitting film and a relative film density, claim the relative film density is 80% or more 1 or the optical component according to claim 2 . 前記赤外線透過膜は、波長範囲8μm〜12μmにおける平均透過率が83%以上である請求項1から請求項3のいずれか一項に記載の光学部品 The optical component according to any one of claims 1 to 3, wherein the infrared transmissive film has an average transmittance of 83% or more in a wavelength range of 8 μm to 12 μm. 請求項1から請求項のいずれか一項に記載の光学部品を光学面に備えたことを特徴とする光学系。 An optical system comprising the optical component according to any one of claims 1 to 4 on an optical surface. 請求項1から請求項のいずれか一項に記載の光学部品を備えることを特徴とする撮像装置。 An image pickup apparatus comprising the optical component according to any one of claims 1 to 4 .
JP2016203526A 2016-02-22 2016-10-17 Infrared transmissive film, optical film, antireflection film, optical components, optical system and imaging device Active JP6817020B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016030980 2016-02-22
JP2016030980 2016-02-22

Publications (2)

Publication Number Publication Date
JP2017151409A JP2017151409A (en) 2017-08-31
JP6817020B2 true JP6817020B2 (en) 2021-01-20

Family

ID=59738972

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016203526A Active JP6817020B2 (en) 2016-02-22 2016-10-17 Infrared transmissive film, optical film, antireflection film, optical components, optical system and imaging device
JP2016203525A Pending JP2017151408A (en) 2016-02-22 2016-10-17 Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016203525A Pending JP2017151408A (en) 2016-02-22 2016-10-17 Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device

Country Status (1)

Country Link
JP (2) JP6817020B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022045011A1 (en) * 2020-08-27 2022-03-03
EP4220244A1 (en) * 2020-09-23 2023-08-02 Agc Inc. Far-infrared ray transmitting member and method for manufacturing far-infrared ray transmitting member
JP2023020448A (en) * 2021-07-30 2023-02-09 日本電気硝子株式会社 Substrate with film and method for manufacturing the same
CN113917573B (en) * 2021-09-27 2023-08-04 中国建筑材料科学研究总院有限公司 Amorphous infrared film structure and preparation method thereof
WO2023171309A1 (en) * 2022-03-07 2023-09-14 Agc株式会社 Far infrared transmitting member and method for manufacturing far infrared transmitting member

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261795A (en) * 1975-11-17 1977-05-21 Matsushita Electric Ind Co Ltd Production of dielectric thin film
JPH07135440A (en) * 1993-11-10 1995-05-23 Murata Mfg Co Ltd Method for forming zno thin film
JP3749276B2 (en) * 1994-11-01 2006-02-22 株式会社オハラ Infrared transmission glass
JPH107440A (en) * 1996-06-25 1998-01-13 Central Glass Co Ltd Heat ray shielding glass
JP2006072031A (en) * 2004-09-02 2006-03-16 Mitsubishi Electric Corp Antireflection film for infrared region, and infrared lens using the same
WO2006112344A1 (en) * 2005-04-15 2006-10-26 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for recording in optical information recording medium
JP5109418B2 (en) * 2006-04-26 2012-12-26 三菱マテリアル株式会社 ZnO vapor deposition material, method for producing the same, and method for forming ZnO film
US8334452B2 (en) * 2007-01-08 2012-12-18 Guardian Industries Corp. Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
JP4764858B2 (en) * 2007-01-30 2011-09-07 株式会社リコー Optical recording medium, sputtering target, and manufacturing method thereof
US9333728B2 (en) * 2007-11-06 2016-05-10 Guardian Industries Corp. Ruggedized switchable glazing, and/or method of making the same
JP2009116220A (en) * 2007-11-09 2009-05-28 Seiko Epson Corp Antireflective film, method of forming antireflective film and light-transmissive member
JP5583771B2 (en) * 2010-07-30 2014-09-03 Jx日鉱日石金属株式会社 Sintered body for ZnO-MgO sputtering target
JP5673158B2 (en) * 2011-02-02 2015-02-18 三菱マテリアル株式会社 Thin film production method and vapor deposition material for co-evaporation for thin film formation
WO2013172251A1 (en) * 2012-05-17 2013-11-21 株式会社村田製作所 Surface acoustic wave apparatus
JPWO2015093608A1 (en) * 2013-12-20 2017-03-23 日立化成株式会社 Semiconductor substrate manufacturing method, semiconductor substrate, solar cell element manufacturing method, and solar cell element
WO2015137197A1 (en) * 2014-03-13 2015-09-17 富士フイルム株式会社 Optical component, infrared camera, and optical component production method
JP2015195341A (en) * 2014-03-24 2015-11-05 三菱電機株式会社 Photoelectric conversion element and method of manufacturing photoelectric conversion element

Also Published As

Publication number Publication date
JP2017151409A (en) 2017-08-31
JP2017151408A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6817020B2 (en) Infrared transmissive film, optical film, antireflection film, optical components, optical system and imaging device
JP6882498B2 (en) Anti-reflective coating, optics and optical system
JP6622381B2 (en) Optical film, optical element and optical system
JP2008139693A (en) Infrared cut filter
JP2008070827A (en) Infrared ray shielding filter
US11747520B2 (en) Optical thin film having metal layer containing silver and high standard electrode potential metal
US10641927B2 (en) Optical thin film, optical element, optical system, and method for producing optical thin film
JP6656389B2 (en) Antireflection film, method of manufacturing antireflection film, optical element and optical system
JP7493918B2 (en) Optical member with anti-reflection film and method for producing same
US11029449B2 (en) Antireflection film, optical element, optical system, method of producing antireflection film
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
CN107102383B (en) Infrared-transmitting film, optical film, antireflection film, optical member, optical system, and imaging device
JP5066644B2 (en) Multilayer ND filter
JP2017032852A (en) Anti-reflection film and optical component
JP2000147205A (en) Infrared antireflection film
JP5549342B2 (en) Antireflection film and optical member having the same
JP2014032330A (en) Half mirror and digital single-lens reflex camera
JP2011141339A (en) Antireflection film and optical member having the same
WO2019208366A1 (en) Optical thin film, optical element, optical system, and optical thin film production method
JPH03218821A (en) Heat ray reflective glass
WO2024053125A1 (en) Multilayer film, optical member including multilayer film, and method for producing multilayer film
CN110869818B (en) Dustproof lens and method for manufacturing the same
JP2014032331A (en) Half mirror and single-lens reflex digital camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201112

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201224

R150 Certificate of patent or registration of utility model

Ref document number: 6817020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250