JP6813024B2 - 生体情報処理装置、生体情報処理方法、及び情報処理装置 - Google Patents

生体情報処理装置、生体情報処理方法、及び情報処理装置 Download PDF

Info

Publication number
JP6813024B2
JP6813024B2 JP2018518139A JP2018518139A JP6813024B2 JP 6813024 B2 JP6813024 B2 JP 6813024B2 JP 2018518139 A JP2018518139 A JP 2018518139A JP 2018518139 A JP2018518139 A JP 2018518139A JP 6813024 B2 JP6813024 B2 JP 6813024B2
Authority
JP
Japan
Prior art keywords
pulse wave
body motion
signal
information processing
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018518139A
Other languages
English (en)
Other versions
JPWO2017199597A1 (ja
Inventor
石川 貴規
貴規 石川
靖英 兵動
靖英 兵動
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2017199597A1 publication Critical patent/JPWO2017199597A1/ja
Application granted granted Critical
Publication of JP6813024B2 publication Critical patent/JP6813024B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Signal Processing (AREA)
  • Cardiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Pulmonology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本技術は、ユーザの心拍情報を出力する生体情報処理装置、生体情報処理方法、及び情報処理装置に関する。
近年、ヘルスケアやウェルネスのブームにともない、心拍トレーニング用として心拍センサを搭載した腕時計型やリストバンド型のデバイスが開発されている。これらの測定デバイスでは、光電容積脈波方式(Photoplethysmography:以後「PPG方式」と呼ぶ)が多く採用されている。
特許文献1には、脈波センサと、体動センサとを備える脈拍計について記載されている。この脈拍計では、脈波センサから出力される脈波信号を観測信号とし、体動センサから出力される体動信号を入力信号とする適応フィルタが設けられる。脈波信号から適応フィルタにより算出される体動成分の予測値が減算され、その残差信号に対して高速フーリエ変換(FFT)処理が行われる。その周波数成分の中から最大レベルを有する成分が脈波成分として抽出され、1分間あたりの脈拍数が算出される。これにより正確な脈拍数の測定が図られている(特許文献1の明細書段落[0007]〜[0012]図1等)。
特開平11−276448号公報
このように精度の高い心拍測定を可能とする技術が求められている。例えば心拍トレーニング等においては、心拍の変動をリアルタイムで精度よく測定することが重要となる。
以上のような事情に鑑み、本技術の目的は、精度の高い心拍測定を可能とする生体情報処理装置、生体情報処理方法、及び情報処理装置を提供することにある。
上記目的を達成するため、本技術の一形態に係る生体情報処理装置は、脈波センサ部と、複数の算出部と、出力部とを具備する。
前記脈波センサ部は、脈波信号を出力する。
前記複数の算出部は、各々が前記出力された脈波信号に基づいて心拍候補情報を信頼度とともに算出する。
前記出力部は、前記複数の算出部の各々により算出された前記心拍候補情報とその信頼度とに基づいて、心拍情報を出力する。
この生体情報処理装置では、複数の算出部の各々により、心拍候補情報が信頼度とともに算出される。従ってこれらの情報に基づいて、信頼度の高い心拍情報を出力することが可能となる。この結果、精度の高い心拍測定を実現することが可能となる。
前記生体情報処理装置は、さらに、体動信号を出力する体動センサと、前記体動信号に基づいて前記脈波センサ部から出力された脈波信号から体動ノイズを分離するノイズ低減処理部とを具備してもよい。この場合、前記複数の算出部の各々は、前記体動ノイズが分離された脈波信号に基づいて、前記心拍候補情報とその信頼度とを算出してもよい。
体動ノイズが分離された脈波信号に基づいて、精度の高い心拍候補情報を算出することが可能となる。この結果、精度の高い心拍測定が実現する。
前記複数の算出部は、前記体動ノイズが分離された脈波信号に基づいて、前記脈波信号のピーク位置を検出し、瞬時心拍数を算出する第1の算出部を有してもよい。
瞬時心拍数を算出可能であるので、心拍変動を精度よく測定することが可能となる。
前記第1の算出部は、前記脈波信号の極大値と極小値との差に基づいて、前記瞬時心拍数の信頼度を算出してもよい。
これにより精度よく信頼度を算出することが可能となる。
前記複数の算出部は、前記体動ノイズが分離された脈波信号に基づいて、自己相関解析により前記脈波信号の周期を検出し、心拍数を算出する第2の算出部を有してもよい。
自己相関解析により心拍傾向に基づいた心拍数を取得することが可能となる。
前記第2の算出部は、前記検出された周期における自己相関値に基づいて、前記心拍数の信頼度を算出してもよい。
これにより精度よく信頼度を算出することが可能となる。
前記脈波センサ部は、複数の脈波センサを有し、前記複数の脈波センサにより生成される複数の脈波候補信号のいずれか1つを前記脈波信号として出力してもよい。
これにより精度の高い心拍測定が可能となる。
前記ノイズ低減処理部は、体動の血流への影響をモデル化して算出された伝達関数によってフィルタ処理された前記体動信号が入力信号として入力される第1の適応フィルタを有し、前記脈波センサ部から出力された脈波信号から前記第1の適応フィルタの出力値を減算した第1の誤差信号を出力してもよい。
これにより体動ノイズを精度よく低減することができる。
前記生体情報処理装置は、さらに、前記複数の脈波センサにより生成される前記複数の脈波候補信号に基づいて、前記体動ノイズを分離するための参照信号を生成する生成部を具備してもよい。この場合、前記ノイズ低減処理部は、前記参照信号が入力信号として入力される第2の適応フィルタを有し、前記第1の誤差信号から前記第2の適応フィルタの出力値を減算した第2の誤差信号を出力してもよい。
第1の誤差信号からさらに体動ノイズが分離されるので、体動ノイズを十分に低減させることが可能となる。この結果、精度の高い心拍測定が実現する。
前記複数の脈波センサは、前記脈波信号を生成する第1の脈波センサと、前記参照信号の生成用の参照脈波信号を生成する第2の脈波センサとを有してもよい。
脈波信号を生成する第1の脈波信号に加えて、参照脈波信号を生成する第2の脈波センサを設けることで、体動ノイズの低減を高精度に実行することが可能となる。
前記第1の脈波センサは、第1の波長域の光を出射する第1の発光部と、前記第1の波長域の光の反射光を検出する第1の受光部とを有してもよい。この場合、前記第2の脈波センサは、前記第1の波長域よりも長い第2の波長域の光を出射する第2の発光部と、前記第2の波長域の光の反射光を検出する第2の受光部とを有してもよい。
互いに波長域の異なる光を出射する2つの脈波センサを用いることで、精度の高い心拍測定が可能となる。
前記生体情報処理装置は、さらに、前記体動信号を解析することによって体動変化を検出し第1の体動解析結果として出力する体動解析部を具備してもよい。この場合、前記ノイズ低減処理部は、前記出力された第1の体動解析結果に基づいて、前記第1の適応フィルタにおける適応フィルタ係数を更新してもよい。
第1の体動解析結果を利用することで、体動ノイズを精度よく低減させることができる。
前記体動解析部は、前記参照脈波信号を解析することによって体動変化を検出し第2の体動解析結果として出力してもよい。この場合、前記ノイズ低減処理部は、前記出力された第2の体動解析結果に基づいて、前記第2の適応フィルタにおける適応フィルタ係数を更新してもよい。
第2の体動解析結果を利用することで、体動ノイズを精度よく低減させることができる。
前記出力部は、最も信頼度が高い前記心拍候補情報を、前記心拍情報として出力してもよい。
これにより精度の高い心拍測定が実現する。
前記出力部は、前記複数の算出部の各々が算出する信頼度に基づいて、フォールバックを実行するか否かを判定してもよい。
これにより信頼度が低い心拍情報が生成されることを防止しつつ、心拍測定を継続することが可能となる。
前記出力部は、体動ノイズが分離された脈波信号とともに算出される信頼度に基づいて、前記フォールバックを実行するか否かを判定してもよい。
これにより信頼度が低い心拍情報が生成されることを防止しつつ、心拍測定を継続することが可能となる。
本技術の一形態に係る生体情報処理方法は、脈波センサにより脈波信号を生成することを含む。
複数の算出部の各々により前記生成された脈波信号に基づいて心拍候補情報が信頼度とともに算出される。
前記複数の算出部の各々により算出された前記心拍候補情報とその信頼度とに基づいて、心拍情報が出力される。
本技術の一形態に係る情報処理装置は、取得部と、複数の算出部と、出力部とを具備する。
前記取得部は、脈波信号を取得する。
前記複数の算出部は、各々が前記取得された脈波信号に基づいて心拍候補情報を信頼度とともに算出する。
前記出力部は、前記複数の算出部の各々により算出された前記心拍候補情報とその信頼度とに基づいて、心拍情報を出力する。
以上のように、本技術によれば、精度の高い心拍測定が可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の一実施形態に係る心拍測定装置の構成例を示す概略図である。 コントローラの機能的な構成例を示すブロック図である。 心拍情報の出力例を示すフローチャートである。 体動解析部による体動解析の概念を説明するための図である。 体動解析部による体動解析の概念を説明するための図である。 第1のノイズ低減処理部の構成例を示すブロック図である。 伝達関数の算出例を示すフローチャートである。 加速度センサが3軸加速度センサの場合の、第1のノイズ低減処理部の構成例を示すブロック図である。 第2のノイズ低減処理部の構成例を示すブロック図である。 心拍変動検出部の構成例を示すブロック図である。 心拍トレンド検出部の構成例を示すブロック図である。
以下、本技術に係る実施形態を、図面を参照しながら説明する。
[心拍測定装置の構成]
図1は、本技術の一実施形態に係る心拍測定装置の構成例を示す概略図である。心拍測定装置100は、リストバンド型のPPG方式の心拍センサであり、ユーザの手首に装着されて使用される。心拍測定装置100は、本実施形態において、生体情報処理装置に相当する。
PPG方式は、脈波を血流の容積変動によって測定する方式である。PPG方式では、例えばLED(Light Emitting Diode)等の発光部から皮膚に向けて光線を照射する。照射された光線は数mm程度の皮膚下に存在する血液および皮下組織で吸収、散乱、又は反射する。この際、皮膚下から戻ってきた光の量を例えばフォトディテクタ等の受光部で計測することで、皮膚下に分布する毛細血管の血流変化を計測する。
図1に示すように心拍測定装置100は、装着バンド5と、センサ本体部10とを有する。装着バンド5は、センサ本体部10に接続され、ユーザの手首に接触してこれを保持する。装着バンド5の具体的な構成は限定されない。
センサ本体部10は、測定された心拍数が表示される表示部11を有する。表示部11は、例えば液晶やEL(Electro-Luminescence)等を用いた表示デバイスである。表示部11としてタッチパネルが構成され、ユーザの操作が入力可能であってもよい。
図1Bに模式的に示すように、センサ本体部10は、第1のPPGセンサ12、第2のPPGセンサ13、加速度センサ14、及びコントローラ15を有する。第1及び第2のPPGセンサ12及び13は、ユーザの手首に接触する面側に設けられる。加速度センサ14及びコントローラ15は、典型的には、センサ本体部10の内部に設けられる。
第1のPPGセンサ12は、第1の波長域の光として、緑色波長域(例えば約500nm〜約570nm)の緑色光を測定部位に向けて出射する第1の発光部と、測定部位の皮膚下から戻ってきた緑色光の反射光の光量を検出する第1の受光部とを有する(ともに図示省略)。第1のPPGセンサ12は、主に血流変化を計測するために設けられる。
第2のPPGセンサ13は、第2の波長域の光として、赤色波長域(例えば約620nm〜約750nm)の赤色光を測定部位に向けて出射する第2の発光部と、測定部位の皮膚下から戻ってきた赤色光の反射光の光量を検出する第2の受光部とを有する(ともに図示省略)。
第2のPPGセンサ13から出射される長波長の赤色光は、皮膚下到達が深く体組織まで到達する。従って第2のPPGセンサから出射された赤色光は、例えば指・手首の動き(骨の動き)に伴う体組織の変形により戻り光が変調する。この点に着目して本実施形態では、第2のPPGセンサ13は、主に指・手首の動きによるノイズと相関が高い参照信号を生成するために設けられる。
本実施形態では、第1及び第2のPPGセンサ12及び13により、脈波センサ部が構成される。第1のPPGセンサ12は、第1の脈波センサとして機能し、脈波信号を生成する。第2のPPGセンサ13は、第2の脈波センサとして機能し、上記した参照信号の生成用の参照脈波信号を生成する。また脈波信号及び参照脈波信号は、脈波候補信号にも相当する。第1及び第2のPPGセンサ12及び13の具体的な構成は限定されず、適宜設計されてよい。
加速度センサ14は、心拍測定装置100が装着される測定部位のXYZの3軸における加速度を測定する。加速度センサ14は、主にウォーキング・ジョギング・ランニング等が行われる際の、腕の周期的な動きを計測するために設けられる。加速度センサ14は体動センサとして機能し、測定される各軸の加速度は体動信号として出力される。加速度センサ14の具体的な構成は限定されない。また体動センサとして、加速度センサ14に代えて、あるいは加えて3軸ジャイロセンサ等が用いられてもよい。
図1Bに示すように、本実施形態では、センサ本体部10の左右方向がX軸方向として設定され、上下方向がY軸方向として設定される。またX軸方向及びY軸方向の各々に直交する方向(センサ本体部10の表面の垂線方向)がZ軸方向として設定される。またX軸方向が測定部位の動脈血流方向としてみなされ、Y軸方向が動脈半径方向としてみなされる。もちろんこれに限定される訳ではない。
コントローラ15は、心拍測定装置100が有する各ブロックの動作を制御する。コントローラ15は、例えばCPUやメモリ(RAM、ROM)等のコンピュータに必要なハードウェア構成を有する。CPUがROM等に記憶されているプログラムをRAMにロードして実行することにより、種々の処理が実行される。コントローラ15として、例えばFPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、その他ASIC(Application Specific IntegratedCircuit)等のデバイスが用いられてもよい。
本実施形態では、コントローラ15のCPUが本実施形態に係るプログラムを実行することで、図2等を参照して以下に説明する機能的なブロックが実現される。これら機能的なブロックと、第1のPPGセンサ12等のハードウェアとが協働することで、本実施形態に係る生体情報処理方法が実行される。すなわち第1のPPGセンサ12から出力される脈波信号に基づいて、ユーザの心拍情報が生成される。もちろん図2等に示す機能的なブロックを実現するために、IC(集積回路)等の専用のハードウェアが用いられてもよい。
図2は、コントローラ15の機能的な構成例を示すブロック図である。図2に示す「PPG(緑)」「加速度」及び「PPG(緑)」は、第1のPPGセンサ12からの脈波信号、加速度センサ14からの体動信号、及び第2のPPGセンサ13からの参照脈波信号である。
コントローラ15は、バンドパスフィルタ16a〜16c、体動解析部20、第1のノイズ低減処理部30、第2のノイズ低減処理部40、参照信号生成部50、心拍変動検出部60、心拍トレンド検出部70、統合処理部80、及び安定化処理部90を有する。以下に説明するように、各ブロックが動作することで、心拍情報として心拍数が出力される。
[心拍測定装置の動作]
図3は、心拍情報の出力例を示すフローチャートである。まずバンドパスフィルタ16a〜16cにより、バンドパスフィルタ処理が実行される(ステップ101)。バンドパスフィルタ16a及び16bにより、各PPGセンサの出力信号から脈動や体組織の変形に伴う変動成分が抽出される。またバンドパスフィルタ16bにより、重力加速度によるオフセット及び電気的ノイズの除去が実行される。
体動解析部20により、測定部位の体動強度が解析される(ステップ102)。図4及び図5は、体動解析部20による体動解析の概念を説明するための図である。
体動解析部20は、ノルム値算出部21と、バッファ22a及び22bと、最大値フィルタ23a及び23bと、平滑化フィルタ24a及び24bとを有する。加速度センサ14が3軸加速度センサである場合、ノルム値算出部21により、体動信号である3軸加速度信号から加速度ノルムが算出される。加速度ノルムは、バッファ22aを介して最大値フィルタ23aに出力され、最大値フィルタ処理が実行される。最大値フィルタ処理された体動信号(ノルム値)は、平滑化フィルタ24aに出力され、平滑化フィルタ処理が実行される。最大値フィルタ処理された体動信号と平滑化フィルタ処理された体動信号との差分が閾値処理されることで、測定部位の体動強度及び体動周波数が変化したときの体動変化を検出することが可能である。
図5の上段において縦軸は信号値、横軸は時間である。図5の下段において縦軸は体動変化の状態(体動変化の有無)、横軸は時間である。図5の上段には、フィルタ処理前の体動信号と、平滑化フィルタ処理後の体動信号と、最大値フィルタ処理後の体動信号とが示されている。例えば図5の上段に示したような平滑化フィルタ処理後の体動信号と最大値フィルタ処理後の体動信号とから、図5の下段に示したように体動変化(主に腕の動き)の有無を検出することができる。
第2のPPGセンサ13から出力される参照脈波信号についても同様に、最大値フィルタ23b及び平滑化フィルタ24bの各々の出力に基づいて、体動変化(主に指・手首の動き)の有無を検出することが可能である。以下「主に」という文言を省略する場合がある。
このように体動解析部20により、腕の周期的な動きについての第1の体動解析結果と、指・手首の非周期の動きについての第2の体動解析結果が出力される。なお平滑化フィルタとしては、例えばFIR(Finite Impulse Response)フィルタやIIR(Infinite Impulse Response)フィルタ等が用いられる。
また図2に示すように、第1及び第2のPPGセンサ12及び13における光量の設置値が体動解析部20に出力される。当該設定値に基づいて、脈波信号及び参照脈波信号の信頼度が算出される。例えば各発光部の光量が所定の閾値よりも低い場合や、光量の設定値が変化している場合には、脈波信号及び参照脈波信号の信頼度は低くなる。信頼度の算出方法は限定されず、その他の方法が採用されてもよい。
第1のノイズ低減処理部30により、腕の動きに起因する体動ノイズ(以下、腕の動きノイズと記載する)の低減処理が実行される(ステップ103)。なお図中では、第1のノイズ低減処理部30のことを、腕の動きノイズ低減処理部30と記載している。
図6は、第1のノイズ低減処理部30の構成例を示すブロック図である。第1のノイズ低減処理部30は、適応フィルタ31(第1の適応フィルタ)と、IIRフィルタ32と、減算器33とを有する。適応フィルタ31の入力信号は体動信号であり、観測信号は第1のPPGセンサ12から出力される脈波信号である。減算器33により、脈波信号から適応フィルタ31の出力値が減算され、第1の誤差信号が出力される。第1の誤差信号は、体動ノイズ(腕の動きノイズ)が分離された脈波信号に相当する。
適応フィルタ31の適応フィルタ係数は、適応アルゴリズム34及びIIRフィルタ32により、第1の体動解析結果に基づいて更新される。例えば適応アルゴリズム34がNLMSアルゴリズムである場合、例えばステップサイズと呼ばれる適応フィルタ係数の更新量を決定するパラメータ等が、第1の体動解析結果に基づいて制御される。これにより最適な係数が求まる収束時間が向上され体動周波数の変化に追従可能となる。
また適応フィルタ31において、観測信号に含まれる体動ノイズ(疑似信号)を分離するには、入力信号と体動ノイズとの相関が高い方が好ましい。本実施形態では図6に示すように、体動の血流への影響をモデル化してノイズモデル35とし、体動の血流への伝達関数(FIRフィルタ係数)があらかじめ算出されて記録されている。適応フィルタ31には、体動信号をFIRフィルタ処理した結果が入力される。すなわち体動信号をそのまま入力信号として利用するのではなく、FIRフィルタ処理結果が入力信号として利用される。この結果、体動強度及び体動周波数が変化したときの最適な係数が求まる収束時間が改善される。
ノイズモデル35の伝達関数は血管や血流の状態などに依存するため、ユーザごとに最適な係数が存在する。従って本実施形態では、ユーザにより心拍測定装置100が使用される際に、ノイズモデル35として体動の血流への伝達関数を求める処理が実行される。
図7は、伝達関数の算出例を示すフローチャートである。まず第1のPPGセンサ12が測定部位に装着される(ステップ201)。測定部位の皮膚の色等で戻り光量に個人差があるため、安静状態で脈波信号が飽和しないように、第1のPPGセンサ12の第1の発光部の光量が制御される(ステップS202)。
ユーザに対して測定部位を動かすように促す。具体的には、測定部位に動脈血流方向(図1B参照)に対してインパルス的な体動を付与させ、脈波信号と体動信号とを計測する(ステップ203)。第1のノイズ低減処理部30により、入力信号をインパルス的な体動による体動信号とし、出力信号を脈波信号として、適応フィルタ31によるシステム同定が実行される(ステップS204)。
伝達関数(FIRフィルタ係数)が収束したか否かが判定される(ステップ205)。伝達関数が収束していないと場合には(ステップ205のNo)、ステップS203に戻る。伝達関数が収束した場合(ステップ205のYes)、処理が終了される。
なおノイズモデル35として体動の血流への伝達関数(FIRフィルタ係数)を例に説明したが、その他の実施形態としてN次多項式による近似も考えられる。例えば、最小2乗法などを用いてN次多項式の係数を算出すればよい。
また求めた適応フィルタ係数は、IIRフィルタ32によりIIRフィルタ処理される。例えば1サンプル前の過去の値を0(ゼロ)値として、安静状態と判断された場合はIIRフィルタ処理がONされることで適応フィルタ処理がOFFにされる。運動時は帰還率を0.0に設定してIIRフィルタ処理がOFFにされることで適応フィルタ処理がONにされる。この構成により第1の体動解析結果に応じてIIRフィルタ32の帰還率を制御するだけで、適応フィルタ処理の有無を円滑に切り替えることが可能となる。
以上の工夫により急激な体動強度および体動周波数の変化があっても適応フィルタ処理の収束時間が改善されるので、ノイズ低減効果が十分に得られる。
図8は、加速度センサ14が3軸加速度センサの場合の、第1のノイズ低減処理部30の構成例を示すブロック図である。3軸加速度の各成分の血流に対する伝達関数をあらかじめ算出しておき、XYZの各加速度成分に対するノイズ低減処理部30X、30Y、30Zをカスケード接続した構成にすればよい。
例えばノイズ低減処理部30Xには、モデル係数と、体動信号のX成分と、第1の体動解析結果と、ノイズ低減処理前の脈派信号とが入力される。ノイズ低減処理部30Yには、モデル係数と、体動信号のY成分と、第1の体動解析結果と、ノイズ低減処理部30Xの出力(誤差信号)とが入力される。ノイズ低減処理部30Zには、モデル係数と、体動信号のZ成分と、第1の体動解析結果と、ノイズ低減処理部30Yの出力(誤差信号)とが入力される。ノイズ低減処理部30Zの出力(誤差信号)が、第1の誤差信号となる。
図2に示すように本実施形態では、第1の誤差信号とともにその信頼度が算出される。例えば適応フィルタ係数の時間変化を解析することで、腕の動きノイズ低減処理が適切に機能しているか解析され、出力される第1の誤差信号の信頼度がパラメータとして出力される。例えば各フィルタ係数の時間差分絶対値の総和を算出し、急激に係数変化が発生した場合や閾値以上の場合は信頼度が低いもしくは信頼度がないと判断される。信頼度の算出方法は限定されず、他の方法が用いられてもよい。また体動解析部20から出力される第1のPPGセンサ12の光量に基づく信頼度が適宜利用されてもよい。
図2に示す参照信号生成部50により、指・手首の動きに起因する体動ノイズ(以下、指・手首の動きノイズと記載する)を分離するための参照信号が生成される(ステップ104)。参照信号は、指・手首の動きノイズと相関が高い方が好ましい。本実施形態では、第1のPPGセンサ12からの脈波信号、第2のPPGセンサ13からの参照脈波信号、及び加速度センサ14からの体動信号をもとに参照信号が生成される。
例えば脈波信号及び参照脈波信号の各々に対して主成分分析が実行され、生成された2つの信号からノイズ信号が選択される。PPG方式では信号成分より体動ノイズ成分の方が強いので、分離された信号のパワーが強い方が、指・手首の動きノイズと相関の高い信号となる。当該信号が、参照信号として用いられる。その他、参照信号の生成方法は限定されず、脈波信号及び参照脈波信号を合成した信号や、脈波参照信号のみに基づく信号等が参照信号として用いられてもよい。また脈波参照信号自体が参照信号として用いられてもよい。
第2のノイズ低減処理部40により、指・手首の動きノイズの低減処理が実行される(ステップ105)。なお図中では、第2のノイズ低減処理部40のことを、指・手首の動きノイズ低減処理部40と記載している。
図9は、第2のノイズ低減処理部40の構成例を示すブロック図である。第2のノイズ低減処理部40は、適応フィルタ41(第2の適応フィルタ)と、IIRフィルタ42と、減算器43とを有する。適応フィルタ41の入力信号は参照信号であり、観測信号は第1のノイズ低減処理部30から出力される第1の誤差信号(脈波信号)である。減算器43により、第1の誤差信号から適応フィルタ41の出力値が減算され、第2の誤差信号が出力される。第2の誤差信号は、体動ノイズ(指・手首の動きノイズ)が分離された脈波信号に相当する。
適応フィルタ41の適応フィルタ係数は、適応アルゴリズム44及びIIRフィルタ42により、第2の体動解析結果に基づいて更新される。これにより最適な係数が求まる収束時間が向上され体動周波数の変化に追従可能となる。
また第1のノイズ低減処理部30と同様に、求めた適応フィルタ係数は、IIRフィルタ42によりIIRフィルタ処理される。従って第2の体動解析結果に応じてIIRフィルタ42の帰還率を制御するだけで、適応フィルタ処理の有無を円滑に切り替えることが可能となる。
第2の誤差信号とともにその信頼度が算出される。例えば適応フィルタ係数の時間変化を解析することで、腕の動きノイズ低減処理が適切に機能しているか解析され、出力される第2の誤差信号の信頼度がパラメータとして出力される。例えば各フィルタ係数の時間差分絶対値の総和を算出し、急激に係数変化が発生した場合や閾値以上の場合は信頼度が低いもしくは信頼度がないと判断される。信頼度の算出方法は限定されず、他の方法が設けられてもよい。また体動解析部20から出力される第2のPPGセンサ13の光量に基づく信頼度が適宜利用されてもよい。
第2のノイズ低減処理部40から出力された脈波信号(第2の誤差信号)に基づいて、心拍変動、及び心拍トレンドが検出される(ステップ106)。心拍変動は、図2に示す心拍変動検出部60により検出される。また心拍トレンドは、図2に示す心拍トレンド検出部70により検出される。
図10は、心拍変動検出部60の構成例を示すブロック図である。心拍変動検出部60は、バッファ61と、ピーク検出部62と、瞬時心拍数/信頼度算出部63と、リサンプリング部64と、後処理フィルタ部65とを有する。
本実施形態ではピーク検出部62により、体動ノイズが低減された脈波信号から脈動によるピーク位置が検出される。図10に示すようにピーク検出部62には、バッファ61を介して、脈波信号の最大値、最小値、極大値、及び極小値が入力される。以下、極大値検出によるピーク位置検出の実施例について説明する。
体動により第1のPPGセンサ12の接触状態が変化し脈波信号強度が変調する場合がある。このときあらかじめ設定した固定閾値でピーク検出すると、脈動によるピーク位置が検出できない場合があり得る。また体動ノイズによる疑似ピークを脈動によるピークとして誤検出するおそれもある。
本実施形態では、上記のような検出誤差が生じないように、以下の式に示すように、ある解析窓内の脈波信号の最大値vmaxと最小値vminとからピーク強度の閾値thを決定する。
th=vmin+α・(vmax−vmin)
0<α<1
これにより、脈波信号の強度に応じてピーク強度の閾値thが適応的に制御されるので、脈波信号強度が変調してもピーク位置の検出が可能となる。
なお上記のような閾値処理を実行した場合でも、周波数が低い体動ノイズの残留により、ピーク強度が強くても凸度が小さい極大値(ブロードな極大値)を、脈動によるピークとして誤検出してしまう可能性がある。
そこで本実施形態では、下記の処理例のいずれかが単独で、あるいは複数の処理が組み合わされて実行される。
直前の極小値と極大値から現在の極大値の凸度、具体的にはレベル差を算出し閾値判定する。
体動で脈波強度が変調することを考慮し、第1及び/又は第2の体動解析結果に応じて上記閾値を適応的に制御する。
心拍トレンド検出部70により求められた心拍数を探索範囲中心として、極大値を検出する範囲を限定する。この場合、心拍変動検出部60と心拍トレンド検出部70とが、カスケード接続されてもよい。
例えば上記の処理を実行することで、第1及び第2のノイズ低減処理部30及び40でノイズ除去しきれなかった体動ノイズによる疑似ピークの誤検出を軽減することが可能となる。この結果、心拍変動検出部60による瞬時心拍数の精度が向上する。
瞬時心拍数/信頼度算出部63により、瞬時心拍数及び信頼度が算出される。瞬時心拍数とは瞬間的な心拍数を意味し、例えばピーク位置(極大値の位置)の時間間隔の逆数に60(秒)を乗算した値が算出される。瞬時心拍数を算出することで、例えば心拍トレーニング等において、心拍変動をリアルタイムで精度よく測定することが可能となる。
なお一般的には「心拍数」は全身に血液を送り出す際の心臓の拍動の回数であり、「脈拍数」は動脈に生じる脈動(脈拍)の回数である。不整脈や脈欠損等がない限り「心拍数」と「脈拍数」はほぼ同じといわれている。本開示では、心拍測定装置100による測定結果を心拍変動、心拍トレンド、瞬時心拍数等と記載している。これに代えて、脈拍変動、脈拍トレンド、瞬時脈拍数等と記載することも可能である。もちろん測定部位の動脈の脈動である「脈拍数」を「心拍数」とは異なるパラメータとして扱う場合等においても、本技術は適用可能である。
信頼度は、例えば極大値と極小値のレベル差に基づいて算出される。ピークとして検出された極大値と、直前(又は直後)の極小値とのレベル差、すなわち極大値の凸度が大きいほど、高い信頼度が付される。他の方法により、信頼度が算出されてもよい。
リサンプリング部64により1Hzにリサンプリングされた後、後処理フィルタ部65により、後処理が実行される。例えば後処理フィルタ部65として、IIRフィルタと帰還率算出部とが構成され、IIRフィルタの帰還率が適宜制御される。
例えば第1及び第2のノイズ低減処理部30及び40とピーク検出部62とでノイズを除去しきれず、瞬時心拍数の時間変化に異常値が発生する場合がある。一般的に瞬時心拍数の時間相関は非常に高い。そこで瞬時心拍数の時間変化があらかじめ設定した閾値より大きい場合は、後処理フィルタ部65のIIRフィルタの帰還率が大きくなるように制御される(例えば1.0に近い値)。これにより過去の瞬時心拍数をそのまま外挿処理し誤検出を修正(軽減)することができる。また体動解析部20からの解析結果に基づいて、ユーザの運動中はIIRフィルタの帰還率が1.0より小さい値、例えば0.5程度となるように制御される。これにより瞬時心拍数を安定化させることが可能となる。
図11は、心拍トレンド検出部70の構成例を示すブロック図である。心拍トレンド検出部70は、バッファ71a及び71bと、自己相関解析部72と、安定化処理部73と、フィルタ係数制御部74と、トレンド検出部75と、リサンプリング部76とを有する。
自己相関解析部72は、体動ノイズが低減された脈波信号に対して、1サンプリング時刻毎に自己相関解析を実行する。自己相関関数の算出方法は様々あるが、本実施形態では、正規化自己関数を用いた解析が実行される。
安定化処理部73は、現在時刻の自己相関関数に対して、バッファ71bに保持された過去の自己相関関数を重み付け加算することで、自己相関関数を安定化させる。重み付けパラメータは、フィルタ係数制御部74により、加速度信号(体動信号)から決定される。
トレンド検出部75は、安定化した自己相関関数から連続的に自己相関値が高くなるラグτを検出し、脈波信号の周期を心拍トレンドとして算出する。当該心拍トレンドに基づいて、心拍数とその信頼度が算出される。なおこの心拍数は、心拍トレンド(脈波信号の周期)に基づいて算出されたものであり、瞬時心拍数とは異なる。
信頼度は、例えば特定したラグτの位置における正規化自己相関値、すなわち検出された周期における自己相関値に基づいて算出される。自己相関値が高いほど、高い信頼度が付される。他の方法により信頼度が算出されてもよい。リサンプリング部76により1Hzにリサンプリングされた後、心拍数とその信頼度が出力される。
心拍変動検出部60及び心拍トレンド検出部70は、本実施形態において、脈波信号に基づいて心拍候補情報を信頼度とともに算出する複数の算出部に相当する。またこれらの検出部は、心拍推定器と呼ぶこともできる。またピーク検出により求められる瞬時心拍数と、自己相関解析により求められる心拍数とは、それぞれ心拍候補情報に相当する。
脈波信号に基づいて心拍候補情報を算出する算出部の数、算出のためのアルゴリズム等は限定されず適宜設定されてよい。また心拍候補情報としては、典型的には心拍数が算出されるが、他の情報が算出されてもよい。
図2に示す統合処理部80により、統合処理が実行される(ステップ107)。具体的には、心拍変動検出部60及び心拍トレンド検出部70の各々から心拍候補情報として出力された瞬時心拍数及び心拍数と、その各々の信頼度とに基づいて心拍情報を出力する。すなわち統合処理部80により、複数の心拍推定器の出力結果とその信頼度から最終的な心拍数の情報が出力される。統合処理部80は、本実施形態において出力部として機能する。
最終的な心拍情報の出力方法として、例えば最も信頼度が高い心拍候補情報が出力される。すなわち瞬時心拍数の信頼度と、心拍トレンドに基づく心拍数の信頼度とが比較される。そして信頼度が高い方の心拍数が、最終的な心拍情報として出力される。
あるいは、複数の心拍推定器により算出された信頼度を多次元ベクトル化して、ニューラルネットワークで構成した判別器等により、最終的な心拍情報(心拍数)が算出されてもよい。ニューラルネットワークが構成される場合には、例えば心電計等で計測した心拍数が正解データとされる。そして同時に計測した複数の脈波信号(脈波信号及び参照脈波信号)と加速度信号(体動信号)から、複数の心拍推定器で算出した多次元ベクトルを入力データとして、ニューラルネットワークの係数を機械学習により求めればよい。
また本実施形態では、統合処理部80により、フォールバックを実行するか否かが判定される。例えば瞬時心拍数の信頼度と、心拍トレンドに基づく心拍数の信頼度とが、いずれも所定の閾値よりも低い場合には、フォールバックが実行される。フォールバックとしては、例えば直前の心拍数が前置ホールドされ最終的な心拍情報として出力される。これにより信頼度が低い心拍情報が出力されることを防止しつつ、心拍測定を継続することが可能となる。なおフォールバックの具体的な動作は限定されない。
また第1及び第2のノイズ低減処理部30及び40にて算出された信頼度に基づいて、フォールバック動作の要否が判定されてもよい。例えば第1及び第2のノイズ低減処理部30及び40にて算出された信頼度、及び、心拍変動検出部60及び心拍トレンド検出部70により算出された信頼度のいずれもが信頼度が低い場合には、フォールバックが実行される。あるいは第1及び第2のノイズ低減処理部30及び40にて算出された信頼度が低い場合には、2つの心拍推定器により算出された信頼度の値にかかわらずフォールバックが実行される。また第1及び第2のノイズ低減処理部30及び40にて算出された信頼度が高い場合には、2つの心拍推定器により算出された信頼度がともに低い場合であってもフォールバックは実行されず、信頼度が高い方の心拍候補情報が出力される。このような処理も可能である。
体動により第1及び第2のPPGセンサ12及び13と人肌の密着性が低下して、外光・迷光が混入し脈波信号が飽和する場合がある。また体動による腕の形状変化で戻り光量が変化して、脈波信号が飽和する場合もある。このような場合を回避するために適切な戻り光量になるように発光素子(発光部)の光量が動的に制御されてもよい。光量が制御された結果、脈波信号の信頼性が低い又はない場合には、フォールバックが実行されてもよい。その他、体動解析部20により算出される信頼度や、心拍トレンド検出部70により算出される自己相関解析の値に基づいて、フォールバック動作の要否が判定されてもよい。
安定化処理部90は、最終的な心拍情報として出力される心拍数を安定化させる。例えば、第1及び第2のノイズ低減処理部30及び40、及びピーク検出で除去できなかった体動ノイズによる瞬時心拍数の誤検出を低減する。安定化処理部90の具体的な構成等は限定されない。
以上、本実施形態に係る心拍測定装置100では、複数の算出部として機能する心拍変動検出部60及び心拍トレンド検出部70の各々により、心拍候補情報が信頼度とともに算出される。従ってこれらの情報に基づいて、信頼度の高い心拍情報を最終的に出力することが可能となる。この結果、精度の高い心拍測定を実現することが可能となる。
心拍変動検出部60によるピーク検出では脈動によるピーク位置を検出できるため高い精度で心拍変動を検出することができる。一方、心拍トレンド検出部70による自己相関解析では脈波の周期性を利用するため、心拍変動を精度よく検出することは難しい。しかしながら自己相関解析では、残留ノイズによるピークを脈動によるピーク位置として誤検出する可能性を十分に抑えることが可能であり、ノイズ耐性が非常に高い。このように特性の異なる複数の心拍推定器を準備し、各々の信頼度にもとづいて最終的な心拍情報を算出する。この結果、互いの弱点を補った心拍検出が可能となり、単一の心拍推定器を用いる場合と比較して、非常に精度の高い心拍測定が実現する。
またPPG方式の心拍センサは、安静状態では比較的精度よく脈波信号を計測できるが、測定部位が動くと観測信号に体動ノイズが発生する。リストバンド型の心拍センサにおける体動ノイズの要因としては、PPGセンサと測定部位との接触状態の変化により、不要な皮膚表面反射が混入することや、皮膚下を伝わって外光が混入すること等が挙げられる。またPPGセンサと測定部位の接触状態が良好な場合でも、測定部位の動きによる血流変化で疑似信号が発生することや、指・手首の動き(骨の動き)に伴う皮膚下組織の変形による光吸収量の変動等が挙げられる。例えば上記の主要因の複合要因により脈波信号に疑似ピーク信号が混入すると、どのピークが脈動によるピーク信号なのか判別が困難となる。その結果、ピーク位置の時間差から瞬時心拍数を算出した場合に、誤った脈拍数を算出するといったことも懸念される。
上記のような体動ノイズを低減する手法としては、上記でも説明した適応フィルタが有効である。改めて適応フィルタについて説明すると、適応フィルタとは観測信号(d)と入力信号(X)が与えられた時に誤差信号(e)パワーを最小化するフィルタ係数(W)を自動的に計算する手法である。観測信号を脈波信号とした場合、入力信号としてノイズと相関が高い信号を参照する事で観測信号に混入したノイズを分離することができる。
本実施形態に係る心拍測定装置100では、第1のノイズ低減処理部30により腕の動きノイズが低減され、第2のノイズ低減処理部40により指・手首動きノイズが低減される。従って、歩行・走行に代表される腕の周期的動きによるノイズと、指・手首の動きといった非周期の動きによるノイズとの両方を十分に低減することが可能である。その結果、日常生活の心拍変動を高い精度で常時計測する事が可能である。
脈拍数を安定的に算出する手法として周波数解析法も知られている。例えばノイズ低減処理後の脈波信号を周波数解析してスペクトル強度が最大となる周波数を脈波数として決定する。しかしながら周波数解析法では原理的に低心拍領域での心拍変動の推定精度に課題が残る。本実施形態に係る心拍測定装置100では、低心拍領域での心拍変動も高い精度で算出することが可能である。
本実施形態では、本技術に係る生体情報処理装置の一実施形態として、心拍測定装置100について説明した。本技術に係る生体情報処理装置の実施形態としては、これに限定されず、脈波センサを備える任意の機器が含まれる。例えばヘッドバンド型、ネックバンド型、ベルト型等の種々のウェアラブル装置、スマートフォンやタブレット端末等の任意の携帯情報端末(PDA:Personal Digital Assistant)、医療機器、ゲーム機器、家電機器等の任意の電子機器等を、本技術に係る生体情報処理装置として構成することが可能である。
また図1Bに示すコントローラ15の機能のみを有するウェアラブル装置やモバイル装置等が、本技術に係る情報処理装置として構成されてもよい。この場合、脈波センサと接続されるI/F(インタフェース)等が、脈波信号を取得する取得部として機能する。
<その他の実施形態>
本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
上記では、脈波信号を生成するために第1のPPGセンサ12が設けられ、参照信号の生成用の参照脈波信号を生成するために第2のPPGセンサ13が設けられた。これに代えて第1及び第2のPPGセンサ12及び13から出力される脈波候補信号のいずれか1つが適宜選択され、心拍数の算出対象となる脈波信号として出力されてもよい。
例えば第1及び第2のPPGセンサ12及び13から出力される2つの脈波候補信号の戻り光量を揃えた時に、脈波成分の強い方が主信号として選択され、これ以降のノイズ低減処理はこの脈波候補信号を対象として実行される。すなわち複数の脈波センサとして、ノイズ低減処理の対象となる脈波信号を生成する第1の脈波センサが予め決定されていてもよいし、複数の脈波センサの中から第1の脈波センサが適宜選択されてもよい。第1の脈波センサをその都度選択することで、最も脈波成分が強い信号を選択することが可能となるので、精度の高い心拍測定が実現する。
以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。
なお、本技術は以下のような構成も採ることができる。
(1)脈波信号を出力する脈波センサ部と、
各々が前記出力された脈波信号に基づいて心拍候補情報を信頼度とともに算出する複数の算出部と、
前記複数の算出部の各々により算出された前記心拍候補情報とその信頼度とに基づいて、心拍情報を出力する出力部と
を具備する生体情報処理装置。
(2)(1)に記載の生体情報処理装置であって、さらに、
体動信号を出力する体動センサと、
前記体動信号に基づいて前記脈波センサ部から出力された脈波信号から体動ノイズを分離するノイズ低減処理部と
を具備し、
前記複数の算出部の各々は、前記体動ノイズが分離された脈波信号に基づいて、前記心拍候補情報とその信頼度とを算出する
生体情報処理装置。
(3)(2)に記載の生体情報処理装置であって、
前記複数の算出部は、前記体動ノイズが分離された脈波信号に基づいて、前記脈波信号のピーク位置を検出し、瞬時心拍数を算出する第1の算出部を有する
生体情報処理装置。
(4)(3)に記載の生体情報処理装置であって、
前記第1の算出部は、前記脈波信号の極大値と極小値との差に基づいて、前記瞬時心拍数の信頼度を算出する
生体情報処理装置。
(5)(3)又は(4)に記載の生体情報処理装置であって、
前記複数の算出部は、前記体動ノイズが分離された脈波信号に基づいて、自己相関解析により前記脈波信号の周期を検出し、心拍数を算出する第2の算出部を有する
生体情報処理装置。
(6)(5)に記載の生体情報処理装置であって、
前記第2の算出部は、前記検出された周期における自己相関値に基づいて、前記心拍数の信頼度を算出する
生体情報処理装置。
(7)(2)から(6)のうちいずれか1つに記載の生体情報処理装置であって、
前記脈波センサ部は、複数の脈波センサを有し、前記複数の脈波センサにより生成される複数の脈波候補信号のいずれか1つを前記脈波信号として出力する
生体情報処理装置。
(8)(7)に記載の生体情報処理装置であって、
前記ノイズ低減処理部は、体動の血流への影響をモデル化して算出された伝達関数によってフィルタ処理された前記体動信号が入力信号として入力される第1の適応フィルタを有し、前記脈波センサ部から出力された脈波信号から前記第1の適応フィルタの出力値を減算した第1の誤差信号を出力する
生体情報処理装置。
(9)(7)から(9)のうちいずれか1つに記載の生体情報処理装置であって、さらに、
前記複数の脈波センサにより生成される前記複数の脈波候補信号に基づいて、前記体動ノイズを分離するための参照信号を生成する生成部を具備し、
前記ノイズ低減処理部は、前記参照信号が入力信号として入力される第2の適応フィルタを有し、前記第1の誤差信号から前記第2の適応フィルタの出力値を減算した第2の誤差信号を出力する
生体情報処理装置。
(10)(9)に記載の生体情報処理装置であって、
前記複数の脈波センサは、前記脈波信号を生成する第1の脈波センサと、前記参照信号の生成用の参照脈波信号を生成する第2の脈波センサとを有する
生体情報処理装置。
(11)(10)に記載の生体情報処理装置であって、
前記第1の脈波センサは、第1の波長域の光を出射する第1の発光部と、前記第1の波長域の光の反射光を検出する第1の受光部とを有し、
前記第2の脈波センサは、前記第1の波長域よりも長い第2の波長域の光を出射する第2の発光部と、前記第2の波長域の光の反射光を検出する第2の受光部とを有する
生体情報処理装置。
(12)(10)又は(11)に記載の生体情報処理装置であって、さらに、
前記体動信号を解析することによって体動変化を検出し第1の体動解析結果として出力する体動解析部を具備し、
前記ノイズ低減処理部は、前記出力された第1の体動解析結果に基づいて、前記第1の適応フィルタにおける適応フィルタ係数を更新する
生体情報処理装置。
(13)(12)に記載の生体情報処理装置であって、
前記体動解析部は、前記参照脈波信号を解析することによって体動変化を検出し第2の体動解析結果として出力し、
前記ノイズ低減処理部は、前記出力された第2の体動解析結果に基づいて、前記第2の適応フィルタにおける適応フィルタ係数を更新する
生体情報処理装置。
(14)(1)から(13)のうちいずれか1つに記載の生体情報処理装置であって、
前記出力部は、最も信頼度が高い前記心拍候補情報を、前記心拍情報として出力する
生体情報処理装置。
(15)(1)から(14)のうちいずれか1つに記載の生体情報処理装置であって、
前記出力部は、前記複数の算出部の各々が算出する信頼度に基づいて、フォールバックを実行するか否かを判定する
生体情報処理装置。
(16)(15)に記載の生体情報処理装置であって、
前記出力部は、体動ノイズが分離された脈波信号とともに算出される信頼度に基づいて、前記フォールバックを実行するか否かを判定する
生体情報処理装置。
10…センサ本体部
12…第1のPPGセンサ
13…第2のPPGセンサ
14…加速度センサ
15…コントローラ
20…体動解析部
30…第1のノイズ低減処理部
31、41…適応フィルタ
35…ノイズモデル
40…第2のノイズ低減処理部
50…参照信号生成部
60…心拍変動検出部
62…ピーク検出部
63…信頼度算出部
70…心拍トレンド検出部
72…自己相関解析部
75…トレンド検出部
80…統合処理部
100…心拍測定装置

Claims (15)

  1. 脈波信号を出力する脈波センサ部と、
    各々が前記出力された脈波信号に基づいて心拍候補情報を信頼度とともに算出する複数の算出部と、
    前記複数の算出部の各々により算出された前記心拍候補情報とその信頼度とに基づいて、心拍情報を出力する出力部と
    体動信号を出力する体動センサと、
    前記体動信号に基づいて前記脈波センサ部から出力された脈波信号から体動ノイズを分離するノイズ低減処理部と
    を具備し、
    前記複数の算出部の各々は、前記体動ノイズが分離された脈波信号に基づいて、前記心拍候補情報とその信頼度とを算出し、
    前記複数の算出部は、前記体動ノイズが分離された脈波信号に基づいて、前記脈波信号のピーク位置を検出し、瞬時心拍数を算出する第1の算出部を有し、
    前記第1の算出部は、前記脈波信号の極大値と極小値との差に基づいて、前記瞬時心拍数の信頼度を算出する
    生体情報処理装置。
  2. 請求項に記載の生体情報処理装置であって、
    前記複数の算出部は、前記体動ノイズが分離された脈波信号に基づいて、自己相関解析により前記脈波信号の周期を検出し、心拍数を算出する第2の算出部を有する
    生体情報処理装置。
  3. 請求項に記載の生体情報処理装置であって、
    前記第2の算出部は、前記検出された周期における自己相関値に基づいて、前記心拍数の信頼度を算出する
    生体情報処理装置。
  4. 請求項1から3のうちいずれか1項に記載の生体情報処理装置であって、
    前記脈波センサ部は、複数の脈波センサを有し、前記複数の脈波センサにより生成される複数の脈波候補信号のいずれか1つを前記脈波信号として出力する
    生体情報処理装置。
  5. 請求項に記載の生体情報処理装置であって、
    前記ノイズ低減処理部は、体動の血流への影響をモデル化して算出された伝達関数によってフィルタ処理された前記体動信号が入力信号として入力される第1の適応フィルタを有し、前記脈波センサ部から出力された脈波信号から前記第1の適応フィルタの出力値を減算した第1の誤差信号を出力する
    生体情報処理装置。
  6. 請求項に記載の生体情報処理装置であって、さらに、
    前記複数の脈波センサにより生成される前記複数の脈波候補信号に基づいて、前記体動ノイズを分離するための参照信号を生成する生成部を具備し、
    前記ノイズ低減処理部は、前記参照信号が入力信号として入力される第2の適応フィルタを有し、前記第1の誤差信号から前記第2の適応フィルタの出力値を減算した第2の誤差信号を出力する
    生体情報処理装置。
  7. 請求項に記載の生体情報処理装置であって、
    前記複数の脈波センサは、前記脈波信号を生成する第1の脈波センサと、前記参照信号の生成用の参照脈波信号を生成する第2の脈波センサとを有する
    生体情報処理装置。
  8. 請求項に記載の生体情報処理装置であって、
    前記第1の脈波センサは、第1の波長域の光を出射する第1の発光部と、前記第1の波長域の光の反射光を検出する第1の受光部とを有し、
    前記第2の脈波センサは、前記第1の波長域よりも長い第2の波長域の光を出射する第2の発光部と、前記第2の波長域の光の反射光を検出する第2の受光部とを有する
    生体情報処理装置。
  9. 請求項7又は8に記載の生体情報処理装置であって、さらに、
    前記体動信号を解析することによって体動変化を検出し第1の体動解析結果として出力する体動解析部を具備し、
    前記ノイズ低減処理部は、前記出力された第1の体動解析結果に基づいて、前記第1の適応フィルタにおける適応フィルタ係数を更新する
    生体情報処理装置。
  10. 請求項に記載の生体情報処理装置であって、
    前記体動解析部は、前記参照脈波信号を解析することによって体動変化を検出し第2の体動解析結果として出力し、
    前記ノイズ低減処理部は、前記出力された第2の体動解析結果に基づいて、前記第2の適応フィルタにおける適応フィルタ係数を更新する
    生体情報処理装置。
  11. 請求項1から10のうちいずれか1項に記載の生体情報処理装置であって、
    前記出力部は、最も信頼度が高い前記心拍候補情報を、前記心拍情報として出力する
    生体情報処理装置。
  12. 請求項1から11のうちいずれか1項に記載の生体情報処理装置であって、
    前記出力部は、前記複数の算出部の各々が算出する信頼度に基づいて、フォールバックを実行するか否かを判定する
    生体情報処理装置。
  13. 請求項12に記載の生体情報処理装置であって、
    前記出力部は、前記体動ノイズが分離された脈波信号とともに算出される信頼度に基づいて、前記フォールバックを実行するか否かを判定する
    生体情報処理装置。
  14. 脈波センサにより脈波信号を生成する生成ステップと、
    コンピュータにより構成される複数の算出部の各々により前記生成された脈波信号に基づいて心拍候補情報を信頼度とともに算出する算出ステップと、
    コンピュータにより前記複数の算出部の各々により算出された前記心拍候補情報とその信頼度とに基づいて、心拍情報を出力する心拍情報出力ステップと、
    体動センサにより体動信号を出力する体動信号出力ステップと、
    コンピュータにより前記出力された体動信号に基づいて、前記生成された脈波信号から体動ノイズを分離する分離ステップと
    を含み、
    前記算出ステップは、
    前記複数の算出部の各々により前記体動ノイズが分離された脈波信号に基づいて、前記心拍候補情報とその信頼度とを算出するステップと、
    前記複数の算出部に含まれる第1の算出部により前記体動ノイズが分離された脈波信号に基づいて、前記脈波信号のピーク位置を検出し、瞬時心拍数を算出するステップと、
    前記第1の算出部により前記脈波信号の極大値と極小値との差に基づいて、前記瞬時心拍数の信頼度を算出するステップと
    を含む
    生体情報処理方法。
  15. 脈波信号及び体動信号を取得する取得部と、
    各々が前記取得された脈波信号に基づいて心拍候補情報を信頼度とともに算出する複数の算出部と、
    前記複数の算出部の各々により算出された前記心拍候補情報とその信頼度とに基づいて、心拍情報を出力する出力部と
    前記取得された体動信号に基づいて前記取得された脈波信号から体動ノイズを分離するノイズ低減処理部と
    を具備し、
    前記複数の算出部の各々は、前記体動ノイズが分離された脈波信号に基づいて、前記心拍候補情報とその信頼度とを算出し、
    前記複数の算出部は、前記体動ノイズが分離された脈波信号に基づいて、前記脈波信号のピーク位置を検出し、瞬時心拍数を算出する第1の算出部を有し、
    前記第1の算出部は、前記脈波信号の極大値と極小値との差に基づいて、前記瞬時心拍数の信頼度を算出する
    情報処理装置。
JP2018518139A 2016-05-20 2017-03-31 生体情報処理装置、生体情報処理方法、及び情報処理装置 Active JP6813024B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016101094 2016-05-20
JP2016101094 2016-05-20
PCT/JP2017/013590 WO2017199597A1 (ja) 2016-05-20 2017-03-31 生体情報処理装置、生体情報処理方法、及び情報処理装置

Publications (2)

Publication Number Publication Date
JPWO2017199597A1 JPWO2017199597A1 (ja) 2019-03-22
JP6813024B2 true JP6813024B2 (ja) 2021-01-13

Family

ID=60325851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518139A Active JP6813024B2 (ja) 2016-05-20 2017-03-31 生体情報処理装置、生体情報処理方法、及び情報処理装置

Country Status (3)

Country Link
US (1) US11311242B2 (ja)
JP (1) JP6813024B2 (ja)
WO (1) WO2017199597A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10874305B2 (en) * 2018-01-15 2020-12-29 Microsoft Technology Licensing, Llc Sensor device
AU2019231059B2 (en) * 2018-03-06 2021-05-27 Nippon Telegraph And Telephone Corporation Heartbeat rate calculation device and method
JPWO2020003910A1 (ja) * 2018-06-28 2021-08-05 株式会社村上開明堂 心拍検出装置、心拍検出方法及びプログラム
JP2020006014A (ja) * 2018-07-11 2020-01-16 ソニー株式会社 生体情報処理装置及び生体情報処理方法
JP2020010803A (ja) * 2018-07-17 2020-01-23 ソニー株式会社 生体情報処理装置、及び情報処理方法
CN111481190A (zh) * 2020-04-02 2020-08-04 南京润楠医疗电子研究院有限公司 基于双路ppg信号的稳健心率测量方法和装置
JP7439924B2 (ja) * 2020-06-23 2024-02-28 日本電信電話株式会社 心拍数検知方法、装置およびプログラム
WO2022075036A1 (ja) * 2020-10-05 2022-04-14 ソニーグループ株式会社 生体情報取得装置、生体情報取得システム、及び生体情報取得方法
JP2022072436A (ja) * 2020-10-29 2022-05-17 ミネベアミツミ株式会社 心拍情報取得システム、及びベッドシステム
CN113397497A (zh) * 2021-06-10 2021-09-17 维沃移动通信有限公司 信号处理方法、装置和电子设备
EP4371483A1 (en) 2021-07-15 2024-05-22 Sony Group Corporation Signal processing device and method
US20230038906A1 (en) * 2021-08-06 2023-02-09 Rockley Photonics Limited System and method for positioning a sensor on a subject
WO2024062919A1 (en) * 2022-09-21 2024-03-28 Sony Group Corporation Signal processing device, signal processing method, program, and learning device
CN116584911A (zh) * 2022-12-23 2023-08-15 北京津发科技股份有限公司 一种脉搏信号运动干扰的过滤方法、装置和系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526073A (ja) * 1997-12-22 2001-12-18 ビー・ティー・ジー・インターナショナル・リミテッド 光体積変動記録法におけるアーティファクト削減
JPH11276448A (ja) 1998-03-31 1999-10-12 Seiko Epson Corp 信号抽出装置および信号抽出方法
KR100462182B1 (ko) * 2002-04-15 2004-12-16 삼성전자주식회사 Ppg 기반의 심박 검출 장치 및 방법
US7993276B2 (en) * 2004-10-15 2011-08-09 Pulse Tracer, Inc. Motion cancellation of optical input signals for physiological pulse measurement
JP4393571B2 (ja) * 2008-11-21 2010-01-06 日本電信電話株式会社 生体情報計測装置
US20100145171A1 (en) * 2008-12-05 2010-06-10 Electronics And Telecommunications Research Institute Apparatus for measuring motion noise robust pulse wave and method thereof
BR112014005666A2 (pt) * 2011-09-16 2017-03-28 Koninklijke Philips Nv dispositivo portátil, método e sistema para determinar uma frequência cardíaca de uma pessoa; e produto de programa de computador
JP2013183845A (ja) * 2012-03-07 2013-09-19 Seiko Epson Corp 拍動検出装置、電子機器及びプログラム
EP2823759A4 (en) 2012-03-07 2015-11-11 Seiko Epson Corp PULSE MONITOR AND PROGRAM THEREOF
JP2014057622A (ja) * 2012-09-14 2014-04-03 Casio Comput Co Ltd 波形データ処理装置、波形データ処理方法及びプログラム
US9717423B2 (en) * 2013-01-28 2017-08-01 Texas Instruments Incorporated Low-complexity sensor displacement tolerant pulse oximetry based heart rate measurement
JP6115329B2 (ja) * 2013-06-06 2017-04-19 セイコーエプソン株式会社 生体情報処理装置および生体情報処理方法
WO2014196119A1 (ja) 2013-06-06 2014-12-11 セイコーエプソン株式会社 生体情報処理装置および生体情報処理方法
US9918666B2 (en) * 2014-01-13 2018-03-20 The Board Of Regents, The University Of Texas System Systems and methods for physiological signal enhancement and biometric extraction using non-invasive optical sensors
US20150313549A1 (en) * 2014-04-30 2015-11-05 Digio2 International Co., Ltd. Heart rate monitoring method and devcie with motion noise signal reduction
CN106413530B (zh) * 2014-05-28 2020-11-06 皇家飞利浦有限公司 使用多通道ppg信号的运动伪影降低
KR101915374B1 (ko) * 2014-07-23 2018-11-05 선전 구딕스 테크놀로지 컴퍼니, 리미티드 광학 맥박수 센서
EP3087916B1 (en) * 2015-04-28 2023-09-20 Nokia Technologies Oy Physiological measurement sensor
RU2680190C1 (ru) * 2015-09-28 2019-02-18 Конинклейке Филипс Н.В. Датчик показателей жизненно важных функций и способ измерения показателей жизненно важных функций пользователя
US20170164847A1 (en) * 2015-12-15 2017-06-15 Texas Instruments Incorporated Reducing Motion Induced Artifacts in Photoplethysmography (PPG) Signals
US10973422B2 (en) * 2016-01-22 2021-04-13 Fitbit, Inc. Photoplethysmography-based pulse wave analysis using a wearable device

Also Published As

Publication number Publication date
US11311242B2 (en) 2022-04-26
WO2017199597A1 (ja) 2017-11-23
US20200305798A1 (en) 2020-10-01
JPWO2017199597A1 (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6813024B2 (ja) 生体情報処理装置、生体情報処理方法、及び情報処理装置
JP6933220B2 (ja) 生体情報処理装置、生体情報処理方法及び情報処理装置
US10849562B2 (en) Noise reduction processing circuit and method, and biological information processing device and method
Chowdhury et al. Real-time robust heart rate estimation from wrist-type PPG signals using multiple reference adaptive noise cancellation
JP6854612B2 (ja) 生体情報測定装置及び生体情報測定方法並びにコンピュータ読み取り可能な記録媒体
JP6201469B2 (ja) 生体情報処理装置、生体情報処理方法
US10750982B2 (en) Oxygen saturation measuring apparatus and oxygen saturation measuring method thereof
US10251571B1 (en) Method for improving accuracy of pulse rate estimation
US20210153756A1 (en) Reliable acquisition of photoplethysmographic data
JP2005160640A (ja) 生体状態検出装置
CN107205640B (zh) 用于去除生理测量结果中的伪像的设备和方法
US9826940B1 (en) Optical tracking of heart rate using PLL optimization
KR102542395B1 (ko) 생체 정보 측정 장치 및 방법
US20210100463A1 (en) Motion detection and cancellation using ambient light
Ghamari et al. Design and prototyping of a wristband-type wireless photoplethysmographic device for heart rate variability signal analysis
JP2019508123A (ja) 心拍数情報を抽出するデバイス及び方法
CN106371816A (zh) 左右手确定方法和设备
FI20185441A1 (en) Procedure, apparatus and computer program product for estimating signal quality
JP2013094222A (ja) うっ血判定装置、脈波測定装置及びうっ血判定方法
JP2012157423A (ja) 脈波信号計測装置、およびプログラム
Hurnanen et al. Heartbeat detection using multidimensional cardiac motion signals and dynamic balancing
WO2020012807A1 (ja) 生体情報処理装置及び生体情報処理方法
JP6970645B2 (ja) 脈拍検出方法、および、脈拍検出システム
JP2011212383A (ja) 生体情報処理装置
TWI795219B (zh) 基於血流動力學分析且與氣血循環及深層睡眠相關的特定生理綜合症偵測方法及系統

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6813024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151