JP6812997B2 - 検出装置及び検出方法 - Google Patents

検出装置及び検出方法 Download PDF

Info

Publication number
JP6812997B2
JP6812997B2 JP2018047291A JP2018047291A JP6812997B2 JP 6812997 B2 JP6812997 B2 JP 6812997B2 JP 2018047291 A JP2018047291 A JP 2018047291A JP 2018047291 A JP2018047291 A JP 2018047291A JP 6812997 B2 JP6812997 B2 JP 6812997B2
Authority
JP
Japan
Prior art keywords
light
pixel
waveform
control unit
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047291A
Other languages
English (en)
Other versions
JP2019158686A (ja
Inventor
由紀子 柳川
由紀子 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2018047291A priority Critical patent/JP6812997B2/ja
Priority to PCT/JP2019/008745 priority patent/WO2019176667A1/ja
Publication of JP2019158686A publication Critical patent/JP2019158686A/ja
Application granted granted Critical
Publication of JP6812997B2 publication Critical patent/JP6812997B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本開示は、路面上に存在する高低差を検出する検出装置及び検出方法に関する。
特許文献1は、路面上に存在する段差を検出する段差検出装置を開示している。段差検出装置は、レーザレーダと、レーザレーダから段差検出位置までの距離が異なる2つの位置関係で取得した測距データに基づいて段差検出位置の高さを測定するマイクロコンピュータと、を備える。段差検出装置は、測定した高さの差分が閾値より大きい場合は、反射体が存在すると判断して、反射体による虚像の高さを除外して、段差を検出している。これにより、反射体が路面上に存在する場合に、段差が誤検出されることを防止している。
特許文献2は、障害物を検知する障害物検知装置を開示している。障害物検知装置は、パルス波を送信して障害物からの反射波を受信する送受信部と、反射波に応じた受信信号の振幅の極大点の個数を検出するマイコンとを備える。障害物検知装置は、極大点の個数に基づいて、障害物の高さが送受信部より高いか否かを判定している。このとき、障害物検知装置は、送波の開始時と受信信号の検出時との時間差に基づいて障害物までの距離を計測し、計測した距離に基づいて、検出した極大点が正しいか否かを判別している。
特開2018−21788号公報 特開2015−166705号公報
特許文献1では、測距データに基づいて高さを算出しているため、測距データが正しくない場合は精度良く高さを算出することができない。特許文献2では、計測した距離に基づいて極大点の検出が正しいか否かを判定しているため、計測した距離が正しくない場合は障害物の高さ判定を精度良く行うことができない。このように、特許文献1及び特許文献2のような従来技術では、距離を正確に計測できない場合は高さ判定に誤りが生じるという問題があった。よって、従来技術では、例えば、距離を正確に計測できないほどの小さな高低差の有無を精度良く検出することができなかった。
本開示の目的は、高低差の有無を精度良く検出する検出装置及び検出方法を提供することにある。
本開示に係る検出装置は、光を投光する投光部と、所定角度領域から入射する光を受光する受光部と、所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出する制御部と、を備え、制御部は、受光波形の歪みに基づいて所定角度領域内の高低差の有無を検出する。
本開示に係る検出方法は、投光部により光を投光するステップと、所定角度領域から入射する光を受光部で受光するステップと、制御部により、所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出するステップと、制御部により、受光波形の歪みに基づいて所定角度領域内の高低差の有無を検出するステップと、を含む。
本開示に係る検出装置及び検出方法によると、高低差の有無を精度良く検出することができる。例えば、1画素の垂直画角に収まるサイズの小さな障害物の有無を検出することができる。
本開示に係る検出装置の適用例を説明するための図 実施形態1,2に係る検出装置の構成を例示するブロック図 センサによる走査を説明するための図 車両から近い道路上に障害物があるときの距離画像の一例を示す図 車両から遠い道路上に障害物があるときの距離画像の一例を示す図 1画素分の垂直画角の範囲内に障害物がない場合のセンサから路面への投光の一例を模式的に示す図 図5Aにおける1画素分の受光波形の一例を示す図 1画素分の垂直画角の範囲内に障害物がある場合のセンサから障害物及び路面への投光の一例を模式的に示す図 図6Aにおける1画素分の受光波形の一例を示す図 比較する隣接画素を説明するための図 水平方向に隣接する画素の受光波形の比較を説明するための図 受光波形の差分と閾値の比較を説明するための図 検出装置による距離画像生成処理の一例を示すフローチャート 検出装置による波形解析処理の一例を示すフローチャート 検出装置による障害物判定処理の一例を示すフローチャート 隣の画素に対して閾値以上の差分が生じた画素の一例を模式的に示す図 境界部の画素から特定された障害物が存在する画素の一例を模式的に示す図 実施形態2に係るニューラルネットワークを模式的に示す図 実施形態2に係る波形解析処理の一例を示すフローチャート 実施形態3に係る検出装置の構成を例示するブロック図
以下、添付の図面を参照して本開示に係る検出装置及び検出方法の実施の形態を説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
(適用例)
本開示に係る検出装置が適用可能な一例について、図1を用いて説明する。図1は、本開示に係る検出装置100の適用例を説明するための図である。
本開示に係る検出装置100は、例えば車載用途に適用可能である。図1に示す一例において、検出装置100は車両200に搭載される。本実施形態の検出装置100は、LIDAR(Light Detection and Ranging、あるいは、Laser Imaging Detection and Ranging)装置である。検出装置100は、例えば、車両200の進行方向にある検出対象までの距離及び方位を検出する。検出対象は、例えば、道路の路面、及び道路上の段差を形成する障害物300である。障害物300は、例えば、縁石、落下物である。具体的には、検出装置100は、車両200の進行方向に向けて光を投光し、検出対象によって反射された反射光を受光する。検出装置100は、投光から受光までの時間差に基づいて、車両の進行方向にある検出対象までの距離を計測し、計測した距離に基づく距離画像(フレーム画像とも称する)を生成する。検出装置100は、例えば、道路上の障害物300までの距離及び方位などを示す情報(例えば、距離画像)を車両駆動装置210に出力する。
車両200は、例えば、自動運転車であり、自動運転を行うための車両駆動装置210を備える。車両駆動装置210は、例えば、道路上の障害物300を回避して進行方向を設定して車両200を駆動する操舵機構を含む。検出装置100によって障害物300を検出することによって、車両駆動装置210は、障害物300を回避しながら自動運転を行うことができる。
本開示の検出装置100は、車両200から遠く離れた位置にある障害物を精度良く検出することを目的とする。具体的には、本開示の検出装置100は、距離画像の1画素に収まる程度の小さな高低差の有無を検出する。
(構成例)
以下、検出装置100の構成例としての実施形態を説明する。
(実施形態1)
実施形態1に係る検出装置100の構成と動作を以下に説明する。
1.構成
本実施形態に係る検出装置100の構成について、図2及び図3を用いて説明する。図2は、検出装置100の構成を例示するブロック図である。図3は、センサ10による走査を説明するための図である。
検出装置100は、センサ10、制御部20、及び記憶部30を備える。
センサ10は、光を外部に投光する投光部11と、外部から光を受光する受光部12と、走査部13と、を含む。
投光部11は、制御部20の制御に従って、光の光束を外部に出射する。投光部11は、例えば、1つ以上の光源素子で構成された光源と、光源をパルス駆動する光源駆動回路とを含む。光源素子は、例えば、レーザ光を発光するLD(半導体レーザ)である。光源素子は、LED等であってもよい。光源素子は、例えば、図3に示す垂直方向Yにおいて一列のアレイ状に配置され、投光部11は投光領域R11に向けて光を投光する。
受光部12は、複数の受光素子を備える。受光素子は、光を受光すると、受光した光量すなわち受光量に応じた受光信号を生成する。複数の受光素子は、例えば、垂直方向Yに沿って一列のアレイ状に配置される。各受光素子は、例えば距離画像の1画素に対応し、1画素の垂直画角に応じた範囲(所定角度領域の一例)から入射する光を別々に受光する。すなわち、受光部12は、距離画像の垂直方向Yに並んだ複数の画素に対応する受光領域を有し、画素毎に受光信号を生成する。受光素子は、例えばSPAD(単一光子アバランシェフォトダイオード)で構成される。受光素子は、PD(フォトダイオード)又はAPD(アバランシェフォトダイオード)で構成されてもよい。
走査部13は、例えば、ミラーと、垂直方向Yに沿った回転軸の周りにミラーを回転させる回転機構と、回転機構を駆動する走査駆動回路と、を含む。走査駆動回路は、制御部20の制御により、ミラーを回転駆動する。これにより、走査部13は、投光する方向を一定時間ごとに少しずつ変化させて、光が進行する光路を少しずつ移動させる。本実施形態では、図3に示すように、走査方向は水平方向Xである。走査部13は、投光領域R11を水平方向Xにおいてシフトさせる。
制御部20は、半導体素子などで実現可能である。制御部20は、例えば、マイコン、CPU、MPU、GPU、DSP、FPGA、ASICで構成することができる。制御部20の機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。制御部20は、記憶部30に格納されたデータやプログラムを読み出して種々の演算処理を行うことで、所定の機能を実現する。
制御部20は、機能的構成として、距離画像生成部21と障害物検出部22とを含む。
距離画像生成部21は、距離画像の画角に対応した投影面R1を、水平方向Xに走査しながら測距を行い、距離画像を生成する。距離画像の分解能すなわち画素毎の画角は、例えば、水平方向Xにおいて1.0度〜1.6度であり、垂直方向Yにおいて0.3度〜1.2度である。距離画像は、水平方向X及び垂直方向Yに並んだ画素毎に、奥行き方向Zの距離を示す。投影面R1の走査を繰り返すことにより、所望のフレームレートで距離画像を順次、生成することができる。距離画像生成部21は、例えば、生成した距離画像を車両駆動装置210に出力する。
距離画像生成部21は、投光部11による投光のタイミングを制御する。距離画像生成部21は、受光波形生成部21aと距離算出部21bとを含む。受光波形生成部21aは、投光のタイミングと受光部12から得られる受光信号とに基づいて、投光してからの経過時間に応じた受光量を示す受光波形のデータを画素毎に生成する。
距離算出部21bは、受光波形に基づいて画素毎に距離を算出する。例えば、距離算出部21bは、投光部11から投光された光が反射されて受光部12によって受光されるまでの光の飛行時間を受光波形に基づいて計測する。距離算出部21bは、計測した飛行時間から、光を反射した検出対象(例えば、路面及び障害物)までの距離を算出する。距離算出部21bは、画素毎に測定した距離に基づいて、距離画像を生成する。
障害物検出部22は、受光波形の歪みに基づいて、各画素内における高低差の有無、例えば障害物の有無を検出する。障害物検出部22は、波形解析部22aと障害物判定部22bとを含む。
波形解析部22aは、受光波形生成部21aが生成した受光波形を画素毎に解析する。具体的には、本実施形態では、波形解析部22aは、水平方向Xに隣接する画素の受光波形の差分(受光波形の歪みの一例)を閾値と比較して、差分が障害物と路面との境界部であることを示しているか否かを判定する。「受光波形の差分」とは、時間に応じた受光量の差分のことをいう。
障害物判定部22bは、波形解析部22aの解析結果に基づいて、距離画像を構成する各画素が障害物を含むか否かの判定を行う。例えば、波形解析部22aの解析結果において、境界部に相当する画素があれば、障害物があると判定して、その境界部に基づいて障害物を含む画素を特定する。障害物判定部22bは、障害物があると判定したときは、判定結果に基づく情報を車両駆動装置210に出力する。例えば、障害物があると判定したときは、障害物判定部22bは、障害物を含む画素に基づいて障害物の位置又は方位を特定し、障害物の位置又は方位を示す情報を車両駆動装置210に出力する。
記憶部30は、検出装置100の機能を実現するために必要なプログラム及びデータを記憶する記憶媒体である。記憶部30は、例えば、ハードディスク(HDD)、SSD、RAM、DRAM、強誘電体メモリ、フラッシュメモリ、磁気ディスク、又はこれらの組み合わせによって実現できる。記憶部30は、各種情報を一時的に記憶してもよい。記憶部30は、例えば、制御部20の作業エリアとして機能するように構成されてもよい。
検出装置100は、さらに、所定の通信規格に準拠して外部機器との通信を行う回路を含む通信部を備えてもよい。所定の通信規格は、例えば、LAN、Wi−Fi(登録商標)、Bluetooth(登録商標)、USB、及びHDMI(登録商標)を含む。
2.動作
以上のように構成される検出装置100の動作について、以下説明する。
2−1.距離計測と受光波形の比較の概要
図4Aは、センサ10から近い位置の道路1上に障害物2があるときの距離画像V1の一例を示している。図4Aに示す障害物2の垂直方向Yの大きさは、1画素の垂直画角に対応する長さdyを越える。画素P1に対応する範囲において、障害物2はその高さ分だけ、道路1よりもセンサ10の近くに位置する。障害物2の材質や向きにもよるが、例えば、障害物2が有る画素P1について測定される光の飛行時間は、障害物2が無い画素P2について測定される光の飛行時間よりも短い。この場合、画素P1における光の飛行時間を計測することで、障害物2までの距離を算出することができる。これにより、距離画像V1において障害物2が表れる。
図4Bは、センサ10から遠い位置の道路1上に障害物3があるときの距離画像V2の一例を示している。図4Bに示す障害物3の垂直方向Yの大きさは、1画素の垂直画角に対応する長さdyよりも小さい。この場合、距離画像V2に障害物3が表れない(図4Bにおいて破線で示す障害物3は距離画像V2に表れないことを意味している)場合がある。具体的には、例えば、障害物3が有る画素P4について測定される光の飛行時間が、障害物3が無い画素P3について測定される光の飛行時間と同じになる場合がある。この場合、画素P4における光の飛行時間に基づいて、道路1の路面までの距離が計測され、障害物3があることが検出されない。図5A及び図5Bを参照して、垂直方向Yの大きさが1画素の垂直画角に対応する長さdyよりも小さい障害物3が距離画像V2に表れない理由についてより詳細に説明する。
図5Aは、1画素分の垂直画角θの範囲(所定角度領域の一例)内に障害物がない場合(図4Bの画素P3に対応する領域)のセンサ10から路面への投光の一例を模式的に示している。図5Bは、図5Aに対応する画素P3における受光波形の一例を示している。図5Bの横軸は、時間であり、縦軸は受光量である。図5Bは、画素P3に対応する領域に光を投光してからの経過時間に応じた受光量を示している。図5Aにおいては障害物が路面上に存在しないため、画素P3に対応する領域における、センサ10から路面までの最短の距離dz1において受光量は最大となる(時間t1)。
図6Aは、1画素分の垂直画角θの範囲(所定角度領域の一例)内に障害物3がある場合(図4Bの画素P4に対応する領域)のセンサ10から障害物及び路面への投光の一例を模式的に示している。図6Bは、図6Aに対応する画素P4における受光波形の一例を示している。図6Bの横軸は、時間であり、縦軸は受光量である。図6Bは、画素P4に対応する領域に光を投光してからの経過時間に応じた受光量を示している。図6Aに示す画素P4は、図5Aに示す画素P3と同一の水平ラインにある。図6Aにおいては、障害物3が路面上に存在する。しかし、障害物3の大きさは、1画素分の垂直画角θの範囲よりも小さい。この場合、図6Bに示す例において、受光量は、障害物3がない場合(図5B)と同一の時間t1において最大となる。すなわち、障害物3から反射された光の受光量よりも、画素P4に対応する領域内において、センサ10から最短の距離dz1にある路面から反射された受光量が大きくなる。距離の算出方法には各種の方法があるが、例えば、受光量が最大となる時間t1に基づいて距離を算出すると、障害物3がない場合と同一の距離値が得られることになる。すなわち、画素P4に対応する距離値は、センサ10から路面までの距離値となる。よって、画素P4の範囲内にある障害物3が検出されず、障害物3が距離画像に表れない。1画素分の垂直画角θに対応する領域は、センサ10に近いほど狭く、センサ10から遠いほど広くなる。よって、センサ10から遠くにある障害物ほど、1画素分の垂直画角θの範囲内に収まりやすい。そのため、センサ10の遠方にある障害物は検出されにくい。
本開示の検出装置100は、このような1画素分の垂直画角θの範囲内に収まるような小さな障害物を検出することを目的とする。図5B及び図6Bに示すように、障害物3がある場合とない場合とでは受光波形の形状が異なる。よって、本実施形態の検出装置100は、水平方向Xにおいて隣接する2つの画素の受光波形を比較する。図7は、比較する隣接画素を説明するための図である。検出装置100は、例えば、画素P11と画素P12、画素P12と画素P13、画素P13と画素P14・・・などのように、水平方向Xにおいて隣り合う画素の受光波形を比較する。より具体的には、例えば、画素P11,P12の受光波形の比較において、画素P12の受光波形が画素P11の受光波形に対して差があるか否かを判定し、差がある場合に、画素P11と画素P12が、それぞれ、路面と障害物との境界部(障害物が無い画素と有る画素)に相当すると判断する。
図8Aは、画素P11に対応する受光波形W11と、画素P11に隣接する画素P12に対応する受光波形W12とを比較した例を示している。図8Bは、受光波形W11,W12の差分の絶対値を示す波形を例示している。
図5B,図6B,及び図8Aに示すように、1画素分の垂直画角θの範囲内に収まる小さな障害物3であっても、障害物3が有る場合と無い場合とで波形の形状が異なる。よって、本実施形態では、この波形の形状の違いに基づいて、障害物3が画素に含まれるか否かを判定する。具体的には、図8Bに示すように、受光波形の差分の絶対値が所定の閾値以上のときは、隣接する画素が境界部を示していると判断する。例えば、投光してからの同一の経過時間毎に受光量の差を算出し、閾値以上となる差があるか否かを判断する。
ここで、差分値の正負は、光の反射率に応じて変わる。光の反射率は材質によって変わるため、例えば、障害物3が白色であれば反射率は道路1の反射率よりも高く、障害物3が黒色であれば反射率は道路1の反射率よりも低くなる。障害物3が道路1よりも反射率の高い材料を含む場合は、障害物3から反射される受光量は水平方向Xにおいて同じ位置にある道路1から反射される受光量よりも多くなる。この場合に、障害物3を含む画素P12の受光量から道路1のみの画素P11の受光量を引いた場合の差分値は正となり、道路1のみの画素P16の受光量から障害物3を含む画素P15の受光量を引いた場合の差分値は負となる。図5B,図6B,及び図8Aでは、障害物3が道路1よりも反射率の高い材料を含む場合を例示している。一方、障害物3が道路1よりも反射率の低い材料を含む場合は、障害物3から反射される受光量は水平方向Xにおいて同じ位置にある道路1から反射される受光量よりも少なくなる。この場合は、障害物3を含む画素P12の受光量から道路1のみの画素P11の受光量を引いた場合の差分値は負となり、道路1のみの画素P16の受光量から障害物3を含む画素P15の受光量を引いた場合の差分値は正となる。図8Bに示すように、受光波形の差分の絶対値を所定の閾値と比較することで、障害物3と道路1の境界部を特定することができる。
2−2.距離画像生成部の動作
距離画像生成部21の受光波形生成部21aと距離算出部21bの動作について説明する。図9は、距離画像生成部21の動作を例示するフローチャートである。距離画像生成部21は、投光部11に所定の投光タイミングで光を投光させる(S101)。受光波形生成部21aは、受光部12から受光量に応じた受光信号を取得する(S102)。受光波形生成部21aは、投光タイミングと受光信号とに基づいて、光を投光してからの経過時間に基づく受光量を示す受光波形のデータを生成する(S103)。距離算出部21bは、受光波形に基づいて、光の飛行時間に対応する距離を算出する(S104)。例えば、距離算出部21bは、受光量が最も多い時間に基づいて距離を算出する。ステップS103の受光波形の生成と、ステップS104の距離の算出は画素毎に行う。距離画像生成部21は、1列分の画素の距離の算出が完了したか否かを判断し(S105)、未だであれば受光波形の生成と距離の算出を繰り返す。1列分の画素の距離の算出が完了すると、距離画像生成部21は、走査部13を制御して、投光領域R11を走査方向である水平方向Xにシフトさせて(S106)、ステップS101に戻る。1フレーム分の距離が算出されると、距離画像生成部21は算出した画素毎の距離に基づいて、1フレーム分の距離画像(フレーム画像)を生成する。
2−3.障害物検出部の動作
図10〜図12Bを参照して、障害物検出部22の波形解析部22aと障害物判定部22bの動作について説明する。図10は、波形解析部22aの動作を例示するフローチャートである。図11は、障害物判定部22bの動作を例示するフローチャートである。図12Aは、隣の画素に対して閾値以上の差分が生じた画素の一例をハッチングにより模式的に示している。図12Bは、差分が生じた画素P12,P16に基づいて特定された障害物3の領域をハッチングにより模式的に示している。
図10は、1フレーム分の動作について示している。波形解析部22aは、受光波形生成部21aから受光波形のデータを取得する(S201)。波形解析部22aは、水平方向Xにおいて隣接する画素の受光波形の差分を算出する(S202)。波形解析部22aは、差分の絶対値が閾値以上か否かを判断する(S203)。差分の絶対値が閾値以上であれば、波形解析部22aは隣接する画素がそれぞれ路面と障害物の境界部であると判定する(S204)。差分の絶対値が閾値未満であれば、波形解析部22aは、隣接する画素が境界部ではないと判定する(S205)。波形解析部22aは、フレーム内の全画素の解析が完了したか否かを判断する(S206)。波形解析部22aは、フレーム内の全画素の解析が完了していなければ、ステップS201に戻る。
図11に示す動作は、図10に示す波形解析部22aの動作の後に行われる。障害物判定部22bは、波形解析部22aによる解析結果において、フレーム内に境界部として判定された画素があるか否かを判断する(S301)。境界部として判定された画素があれば、その境界部に基づいて、障害物の領域を特定する(S302)。境界部として判定された画素が一つもなければ、フレーム内に障害物がないと判定する(S303)。障害物判定部22bは、判定結果を出力する。例えば、障害物がある場合は、障害物であると特定した画素の座標に基づいて、その位置又は方位を示す情報を車両駆動装置210に出力する。
図12Aに示す画素P12のハッチングは、画素P12の受光波形が画素P11の受光波形に対して差が生じたことを示している。図7及び図12Aの例では、隣接する画素P11,P12の受光波形の差分が閾値以上であるため、ステップS204において、画素P11と画素P12が、それぞれ路面と障害物の境界部、すなわち、障害物が無い画素と有る画素に相当すると判定される。図12Aに示す画素P16のハッチングは、画素P16の受光波形が画素P15の受光波形に対して差が生じたことを示している。隣接する画素P15,P16の受光波形の差分が閾値以上であるため、ステップS204において、画素P15と画素P16が、それぞれ障害物と路面の境界部、すなわち、障害物が有る画素と無い画素に相当すると判定される。ステップS302においては、例えば、隣の画素との差分が生じた画素P12,P16に基づいて、図12Bに示すように、画素P12から画素P15までが障害物3が存在する領域であると特定される。
3.まとめ
本実施形態に係る検出装置100は、投光部11と、受光部12と、走査部13とを備える。投光部11は、光を投光する。受光部12は、所定角度領域から入射する光を受光する。制御部20は、所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出する。また、制御部20は、受光波形の歪みに基づいて所定角度領域内の高低差の有無を検出する。受光部12は、複数の画素に対応した複数の所定角度領域から入射する光を別々に受光する。所定角度領域は1画素分の垂直画角θに対応する範囲である。制御部20は、画素毎の受光波形に基づいて、画素毎に距離を算出する。制御部20は、受光波形の歪みに基づいて、画素毎に高低差の有無を検出する。本実施形態において、受光波形の歪みは、水平方向に隣接する画素の受光波形の差分である。
上述したように、高低差のある障害物が1画素の垂直画角の範囲内に収まるほど小さい場合は、障害物の距離が正しく計測されないことがある。すなわち、垂直方向Yにおいて1画素よりも小さな障害物は、距離画像に表れないことがある。しかし、本実施形態の検出装置100は、画素毎の受光波形の差分に基づいて、高低差のある画素、例えば、路面と障害物との境界部を検出している。よって、1画素の垂直画角θの範囲内に収まるほど小さな障害物であっても検出することができる。
本実施形態では、検出装置100は車両200に搭載され、高低差の有無として、道路上の段差を形成する障害物の有無を検出する。これにより、例えば、車両200から遠く離れた障害物であっても精度良く検出することができる。
(実施形態1の変形例)
隣接画素の受光波形の差分を算出することに代えて、異なる2つのフレーム画像内において同一位置にある画素の受光波形の差分を算出してもよい。例えば、1つ前のフレーム画像と現フレーム画像とにおいて同一位置(座標)にある画素の受光波形の差分を算出してもよい。例えば、道路であれば、異なるフレーム画像内であっても同じ位置の画素であれば同じような形状の受光波形となる。よって、異なるフレーム画像内の画素の受光波形を比較することで、受光波形の差分から障害物の有無を検出することができる。
(実施形態2)
実施形態1では、受光波形の差分を閾値と比較することによって、境界部か否かを判定した。実施形態2では、機械学習を利用して、受光波形の差分が境界部を示しているか否かを判定する。本実施形態では、例えば、深層学習を利用する。
図13は、ニューラルネットワークの一例を模式的に示している。本実施形態では、受光波形の差分が境界部を示しているか否かを検出する境界部検出ネットワークを、深層学習に用いられる多層構造のニューラルネットワークによって構築する。境界部検出ネットワーク(ニューラルネットワーク)は、入力から順に、入力層である第1全結合層L1、中間層である第2全結合層L2、及び出力層L3を含む。なお、図13の例では、中間層としての第2全結合層L2は1層であるが、2層以上の中間層を含んでもよい。
各層L1〜L3は、複数のノードを備えている。例えば、入力層である第1全結合層L1のノードIN1,IN2,IN3・・・・には、1画素分の投光してからの経過時間に応じた受光量が入力される。第2全結合層L2のノードの数は実施形態に応じて適宜設定することができる。出力層L3のノードOUT1,OUT2からは、障害物と路面との境界部であるか否かの結果が出力される。
境界部判定ネットワークは、境界部を示す受光波形の差分データと、境界部を示さない受光波形の差分データとによって、学習される。学習済みの境界部判定ネットワークは、例えば、記憶部30に格納される。波形解析部22aは、この境界部判定ネットワークを使用して、受光波形の差分が境界部を示しているか否かを判定する。
図14は、実施形態2における波形解析部22aの動作を示すフローチャートである。図14において、ステップS401,S402,S404は、実施形態1のステップS201,S202,S206と同一である。本実施形態では、波形解析部22aは、隣接画素の受光波形の差分を学習済みの境界部判定ネットワーク(ニューラルネットワーク)に入力して境界部か否かの判定結果を取得する(S403)。
本実施形態においても、実施形態1と同様に、1画素の垂直画角に収まる小さな障害物の有無を検出することができる。
(実施形態2の変形例)
なお、受光波形の差分をニューラルネットワークに学習させることに代えて、例えば、障害物を含む画素の受光波形と路面の画素の受光波形とを使用した学習によって、図13に示すようなニューラルネットワークで構成される障害物判定ネットワークを構築してもよい。この場合、例えば、ステップS201で取得した画素毎の受光波形を1画素分ずつ障害物判定ネットワーク(ニューラルネットワーク)に入力することによって、画素毎に障害物か否かの判定結果を取得できる。障害物検出部22は、例えば、障害物であると判定された画素の座標に基づいて、障害物の位置又は方位を示す情報を車両駆動装置210に出力してもよい。このように、制御部20は、障害物と路面などのような高低差の有無を学習したニューラルネットワークを使用して、画素毎に高低差の有無を検出してもよい。
(実施形態3)
実施形態1及び実施形態2では、障害物検出部22が受光波形の歪みに基づいて、画素内に障害物が含まれるか否かを判定した。実施形態3では、受光波形の歪みに加えて、距離値を利用して、障害物か否かを判定する。
図15は、実施形態3に係る検出装置100の構成を例示するブロック図である。本実施形態では、障害物判定部22bは、波形解析部22aによる境界部の判定結果と、距離算出部21bによって算出された距離値とに基づいて、画素に障害物が含まれているか否かを判定する。例えば、境界部として判定された画素とその周辺の画素の距離値を参照して、境界部の判定が正しいか否かを検証してもよい。これにより、1画素の垂直画角に収まる小さな障害物の有無をより精度良く検出することができる。
(他の実施形態)
上記実施形態では、水平方向Xに走査する例について説明したが、走査部13は垂直方向Yにおいて投光する方向を変化させる機構等を備え、垂直方向Yに走査してもよい。また、上記実施形態では、走査部13を備える例について説明したが、走査部13は、適宜、省略されてもよい。例えば、投光部11の光源素子と受光部12の受光素子とが2次元アレイ状に配置される場合、走査部13を用いずに、実施形態1と同様の測距を実行することができる。
上記実施形態では、検出装置100が、複数の画素に対応する投影面R1を走査して、各画素の距離を算出して距離画像を生成する例について説明したが、検出装置100は、1画素分のみに対応する領域において投光と受光を行うものであってもよい。検出装置100は、例えば、1つの光源素子と1つの受光素子を備え、上述の障害物判定ネットワークによって、1画素のみに対応する領域の受光波形からその画素内における障害物の有無を判定してもよい。
上記実施形態では、検出装置100によって、道路上の段差を形成する縁石などの障害物を検出する例について説明したが、検出する対象は道路上にある障害物に限らない。本開示の検出装置100によれば、高低差があるものを検出できる。例えば、道路の凹みによる段差を検出することもできる。また、上記実施形態では、検出装置100が車両200に搭載される例について説明したが、本開示に係る検出装置100は、特に車載用途に限らず、種々の用途に適用可能である。例えば、検出装置100は、工場内に設置されて、部品までの距離を測定するのに利用されてもよい。この場合、検出装置100によって、画素内における高低差の有無を検出することによって、例えば、部品に傷があるか否かを判定することができる。
上記実施形態では、距離算出部21bが距離画像を生成する例を説明した。しかし、距離算出部21bは、距離画像に限らず、種々の形式で距離を示す情報を生成してもよく、例えば3次元の点群データを生成してもよい。
上記実施形態では、距離画像生成部21が受光波形生成部21aを含む例について説明したが、障害物検出部22が受光波形生成部21aを含んでもよい。距離画像生成部21と障害物検出部22がそれぞれ受光波形生成部21aを含んでもよい。
上記実施形態では、検出装置100は距離算出部21bを備えたが、距離算出部21bはなくてもよい。例えば、検出装置100は、センサ10、受光波形生成部21a、及び障害物検出部22を備え、受光波形の歪みから画素内における高低差の有無を検出してもよい。
(付記)
以上のように、本開示の各種実施形態について説明したが、本開示は上記の内容に限定されるものではなく、技術的思想が実質的に同一の範囲内で種々の変更を行うことができる。以下、本開示に係る各種態様を付記する。
本開示に係る第1の態様の検出装置は、光を投光する投光部(11)と、所定角度領域から入射する光を受光する受光部(12)と、前記所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出する制御部(20)と、を備え、前記制御部(20)は、前記受光波形の歪みに基づいて前記所定角度領域内の高低差の有無を検出する。
第2の態様では、第1の態様の検出装置において、前記受光部(12)は、複数の画素に対応した複数の所定角度領域から入射する光を別々に受光し、前記制御部(20)は、画素毎の受光波形に基づいて、画素毎に前記距離を算出し、前記制御部(20)は、前記受光波形の歪みに基づいて、画素毎に高低差の有無を検出する。
第3の態様では、第2の態様の検出装置において、前記受光波形の歪みは、水平方向に隣接する画素の前記受光波形の差分である。
第4の態様では、第2の態様の検出装置において、前記制御部は、高低差の有無を学習したニューラルネットワークを使用して、前記画素毎に高低差の有無を検出する。
第5の態様では、第2の態様の検出装置において、前記制御部は、前記受光波形の歪みと前記距離とに基づいて、前記画素毎に高低差の有無を検出する。
第6の態様では、第2の態様の検出装置において、前記制御部は、前記複数の画素を含むフレーム画像を前記画素毎の前記距離に応じて生成し、前記受光波形の歪みは、異なる2つのフレーム画像において同一位置にある画素の前記受光波形の差分である。
第7の態様では、第1の態様の検出装置において、前記検出装置は車両に搭載され、前記高低差の有無は道路上の段差又は障害物の有無である。
第8の態様の検出方法は、投光部(11)により光を投光するステップ(S101)と、所定角度領域から入射する光を受光部(12)で受光するステップ(S102)と、制御部(20)により、前記所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出するステップ(S103,S104)と、前記制御部(20)により、前記受光波形の歪みに基づいて前記所定角度領域内の高低差の有無を検出するステップ(S201〜S205,S301〜S303)と、を含む。
本開示の検出装置は、例えば、自動運転車、自走ロボット、及びAGV(Automated Guided Vehicle)などに適用可能である。
10 センサ
11 投光部
12 受光部
13 走査部
20 制御部
21 距離画像生成部
21a 受光波形生成部
21b 距離算出部
22 障害物検出部
22a 波形解析部
22b 障害物判定部
30 記憶部
100 検出装置
200 車両
210 車両駆動装置

Claims (7)

  1. 光を投光する投光部と、
    所定角度領域から入射する光を受光する受光部と、
    前記所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出する制御部と、
    を備え、
    前記制御部は、前記受光波形の歪みに基づいて前記所定角度領域内の高低差の有無を検出し、
    前記受光部は、複数の画素に対応した複数の所定角度領域から入射する光を別々に受光し、
    前記制御部は、画素毎の受光波形に基づいて、画素毎に前記距離を算出し、
    前記制御部は、前記受光波形の歪みに基づいて、画素毎に高低差の有無を検出し、
    前記受光波形の歪みは、水平方向に隣接する画素の前記受光波形の差分である、
    検出装置。
  2. 前記制御部は、高低差の有無を学習したニューラルネットワークを使用して、前記画素毎に高低差の有無を検出する、請求項に記載の検出装置。
  3. 前記制御部は、前記受光波形の歪みと前記距離とに基づいて、前記画素毎に高低差の有無を検出する、
    請求項に記載の検出装置。
  4. 光を投光する投光部と、
    所定角度領域から入射する光を受光する受光部と、
    前記所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出する制御部と、
    を備え、
    前記制御部は、前記受光波形の歪みに基づいて前記所定角度領域内の高低差の有無を検出し、
    前記受光部は、複数の画素に対応した複数の所定角度領域から入射する光を別々に受光し、
    前記制御部は、画素毎の受光波形に基づいて、画素毎に前記距離を算出し、
    前記制御部は、前記受光波形の歪みに基づいて、画素毎に高低差の有無を検出し、
    前記制御部は、前記複数の画素を含むフレーム画像を前記画素毎の前記距離に応じて生成し、
    前記受光波形の歪みは、異なる2つのフレーム画像において同一位置にある画素の前記受光波形の差分である
    出装置。
  5. 前記検出装置は車両に搭載され、
    前記高低差の有無は道路上の段差又は障害物の有無である、
    請求項1に記載の検出装置。
  6. 投光部により光を投光するステップと、
    所定角度領域から入射する光を受光部で受光するステップと、
    制御部により、前記所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出するステップと、
    前記制御部により、前記受光波形の歪みに基づいて前記所定角度領域内の高低差の有無を検出するステップと、を含み、
    前記受光するステップにおいて、前記受光部は、複数の画素に対応した複数の所定角度領域から入射する光を別々に受光し、
    前記算出するステップにおいて、前記制御部は、画素毎の受光波形に基づいて、画素毎に前記距離を算出し、
    前記検出するステップにおいて、前記制御部は、前記受光波形の歪みとして、水平方向に隣接する画素の前記受光波形の差分に基づいて、画素毎に高低差の有無を検出する、
    検出方法。
  7. 投光部により光を投光するステップと、
    所定角度領域から入射する光を受光部で受光するステップと、
    制御部により、前記所定角度領域における投光してからの経過時間に応じた受光量を示す受光波形に基づいて、光の飛行時間に対応する距離を算出するステップと、
    前記制御部により、前記受光波形の歪みに基づいて前記所定角度領域内の高低差の有無を検出するステップと、を含み、
    前記受光するステップにおいて、前記受光部は、複数の画素に対応した複数の所定角度領域から入射する光を別々に受光し、
    前記算出するステップにおいて、前記制御部は、画素毎の受光波形に基づいて、画素毎に前記距離を算出して、前記複数の画素を含むフレーム画像を前記画素毎の前記距離に応じて生成し、
    前記検出するステップにおいて、前記制御部は、前記受光波形の歪みとして、異なる2つのフレーム画像において同一位置にある画素の前記受光波形の差分に基づいて、画素毎に高低差の有無を検出する、
    検出方法。
JP2018047291A 2018-03-14 2018-03-14 検出装置及び検出方法 Active JP6812997B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018047291A JP6812997B2 (ja) 2018-03-14 2018-03-14 検出装置及び検出方法
PCT/JP2019/008745 WO2019176667A1 (ja) 2018-03-14 2019-03-06 検出装置及び検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047291A JP6812997B2 (ja) 2018-03-14 2018-03-14 検出装置及び検出方法

Publications (2)

Publication Number Publication Date
JP2019158686A JP2019158686A (ja) 2019-09-19
JP6812997B2 true JP6812997B2 (ja) 2021-01-13

Family

ID=67908174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047291A Active JP6812997B2 (ja) 2018-03-14 2018-03-14 検出装置及び検出方法

Country Status (2)

Country Link
JP (1) JP6812997B2 (ja)
WO (1) WO2019176667A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3947905B2 (ja) * 2001-07-31 2007-07-25 オムロン株式会社 車両用測距装置
DE10141294B4 (de) * 2001-08-23 2016-12-08 Sick Ag Verfahren zur Bodenerkennung
JP6413470B2 (ja) * 2014-08-19 2018-10-31 株式会社デンソー 車載レーダ装置
JP2017032329A (ja) * 2015-07-30 2017-02-09 シャープ株式会社 障害物判定装置、移動体、及び障害物判定方法

Also Published As

Publication number Publication date
JP2019158686A (ja) 2019-09-19
WO2019176667A1 (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
EP3187895B1 (en) Variable resolution light radar system
CN111742241B (zh) 光测距装置
KR101891907B1 (ko) 거리 측정 장치 및 시차 연산 시스템
US11579254B2 (en) Multi-channel lidar sensor module
US8217327B2 (en) Apparatus and method of obtaining depth image
JP2019144186A (ja) 光学的測距装置およびその方法
US9134117B2 (en) Distance measuring system and distance measuring method
US20190302247A1 (en) Angle calibration in light detection and ranging system
JP4691701B2 (ja) 人数検出装置及び方法
JP6464410B2 (ja) 障害物判定装置および障害物判定方法
KR20170134944A (ko) 광학 모듈을 이용하여 특정 영역을 스캔하는 방법 및 장치
US20120162370A1 (en) Apparatus and method for generating depth image
JP2018155709A (ja) 位置姿勢推定装置および位置姿勢推定方法、運転支援装置
CN115047471B (zh) 确定激光雷达点云分层的方法、装置、设备及存储介质
WO2016051861A1 (ja) 障害物判定装置および障害物判定方法
JP2017026535A (ja) 障害物判定装置及び障害物判定方法
CN111496845B (zh) 一种用于机器人的tof模组的安装方法
JP2020160044A (ja) 測距装置および測距方法
KR102343020B1 (ko) 노면 영상정보를 이용한 자율주행 차량의 위치신호 보정장치
JP6812997B2 (ja) 検出装置及び検出方法
CN113099120A (zh) 深度信息获取方法、装置、可读存储介质及深度相机
JP7375838B2 (ja) 測距補正装置、測距補正方法、測距補正プログラム、および測距装置
CN115201841A (zh) 地面状态检测装置以及测距装置、地面状态检测方法、地面状态检测程序
JP2020148633A (ja) 対象物検出装置
JP2019138666A (ja) 測距装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6812997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250