JP7375838B2 - 測距補正装置、測距補正方法、測距補正プログラム、および測距装置 - Google Patents

測距補正装置、測距補正方法、測距補正プログラム、および測距装置 Download PDF

Info

Publication number
JP7375838B2
JP7375838B2 JP2022003820A JP2022003820A JP7375838B2 JP 7375838 B2 JP7375838 B2 JP 7375838B2 JP 2022003820 A JP2022003820 A JP 2022003820A JP 2022003820 A JP2022003820 A JP 2022003820A JP 7375838 B2 JP7375838 B2 JP 7375838B2
Authority
JP
Japan
Prior art keywords
distance
reflection point
distance measurement
reflection
feature amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022003820A
Other languages
English (en)
Other versions
JP2022125966A5 (ja
JP2022125966A (ja
Inventor
智成 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to PCT/JP2022/004730 priority Critical patent/WO2022176679A1/ja
Priority to CN202280014654.2A priority patent/CN116848430A/zh
Publication of JP2022125966A publication Critical patent/JP2022125966A/ja
Publication of JP2022125966A5 publication Critical patent/JP2022125966A5/ja
Priority to US18/450,299 priority patent/US20230384436A1/en
Application granted granted Critical
Publication of JP7375838B2 publication Critical patent/JP7375838B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

この明細書における開示は、光の照射に対する反射点からの反射光を検出することで、反射点までの距離を測定する技術に関する。
特許文献1には、測距装置の計測結果に対して補正を行う装置が開示されている。この装置は、受光部にて受光した光子数を計測し、当該光子数に基づいて、受光する光強度に起因するウォークエラーを補正する。
国際公開第2017/42993号公報
ところで、反射光を検出する測距装置において、反射面の傾きに応じた距離の検出誤差が生じ得る。特許文献1の技術では、反射面の傾きに応じた誤差を補正することはできない。
開示される目的は、測距精度を向上可能な測距補正装置、測距補正方法、測距補正プログラム、および測距装置を提供することである。
この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。
開示された測距補正装置のひとつは、プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の、測距結果を補正する測距補正装置であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得部(110)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正部(150)と、
を備え
特徴量算出部は、反射点の法線方向を傾き特徴量として算出し、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形についての形状の変化度合に基づいて、反射点の法線方向を算出する
開示された測距補正装置のひとつは、プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の、測距結果を補正する測距補正装置であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得部(110)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正部(150)と、
を備え、
特徴量算出部は、反射点の法線方向を傾き特徴量として算出し、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合に基づいて、反射点の法線方向を算出する。
開示された測距補正装置のひとつは、プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の、測距結果を補正する測距補正装置であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得部(110)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正部(150)と、
を備え、
特徴量算出部は、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形について、形状の変化度合を、傾き特徴量として算出する。
開示された測距補正装置のひとつは、プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の、測距結果を補正する測距補正装置であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得部(110)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正部(150)と、
を備え、
特徴量算出部は、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、傾き特徴量として算出する。
開示された測距補正方法のひとつは、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の測距結果を補正するために、プロセッサ(102)により実行される測距補正方法であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得プロセス(S100,S110;S210,S220)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正プロセス(S150,S160,S170;S250,S260,S270)と、
を含み、
特徴量算出プロセスでは、反射点の法線方向を傾き特徴量として算出し、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形についての形状の変化度合に基づいて、反射点の法線方向を算出する
開示された測距補正方法のひとつは、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の測距結果を補正するために、プロセッサ(102)により実行される測距補正方法であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得プロセス(S100,S110;S210,S220)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正プロセス(S150,S160,S170;S250,S260,S270)と、
を含み、
特徴量算出プロセスでは、反射点の法線方向を傾き特徴量として算出し、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合に基づいて、反射点の法線方向を算出する。
開示された測距補正方法のひとつは、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の測距結果を補正するために、プロセッサ(102)により実行される測距補正方法であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得プロセス(S100,S110;S210,S220)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正プロセス(S150,S160,S170;S250,S260,S270)と、
を含み、
特徴量算出プロセスでは、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形について、形状の変化度合を、傾き特徴量として算出する。
開示された測距補正方法のひとつは、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の測距結果を補正するために、プロセッサ(102)により実行される測距補正方法であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得プロセス(S100,S110;S210,S220)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正プロセス(S150,S160,S170;S250,S260,S270)と、
を含み、
特徴量算出プロセスでは、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、傾き特徴量として算出する。
開示された測距補正プログラムのひとつは、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の測距結果を補正するために、プロセッサ(102)に実行させる命令を含む測距補正プログラムであって、
命令は、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得させる取得プロセス(S100,S110;S210,S220)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出させる特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
各反射点までの距離を、傾き特徴量に基づいて補正させる補正プロセス(S150,S160,S170;S250,S260,S270)と、
を含み、
特徴量算出プロセスでは、反射点の法線方向を傾き特徴量として算出させ、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形についての形状の変化度合に基づいて、反射点の法線方向を算出させる
開示された測距補正プログラムのひとつは、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の測距結果を補正するために、プロセッサ(102)に実行させる命令を含む測距補正プログラムであって、
命令は、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得させる取得プロセス(S100,S110;S210,S220)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出させる特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
各反射点までの距離を、傾き特徴量に基づいて補正させる補正プロセス(S150,S160,S170;S250,S260,S270)と、
を含み、
特徴量算出プロセスでは、反射点の法線方向を傾き特徴量として算出させ、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合に基づいて、反射点の法線方向を算出させる。
開示された測距補正プログラムのひとつは、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の測距結果を補正するために、プロセッサ(102)に実行させる命令を含む測距補正プログラムであって、
命令は、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得させる取得プロセス(S100,S110;S210,S220)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出させる特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
各反射点までの距離を、傾き特徴量に基づいて補正させる補正プロセス(S150,S160,S170;S250,S260,S270)と、
を含み、
特徴量算出プロセスでは、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形について、形状の変化度合を、傾き特徴量として算出させる。
開示された測距補正プログラムのひとつは、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する測距装置(1)であって照射する光をスキャンするアクチュエータ(4)を備える測距装置の測距結果を補正するために、プロセッサ(102)に実行させる命令を含む測距補正プログラムであって、
命令は、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得させる取得プロセス(S100,S110;S210,S220)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出させる特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
各反射点までの距離を、傾き特徴量に基づいて補正させる補正プロセス(S150,S160,S170;S250,S260,S270)と、
を含み、
特徴量算出プロセスでは、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、傾き特徴量として算出させる。
開示された測距装置のひとつは、プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する、照射する光をスキャンするアクチュエータ(4)を備える測距装置であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得部(110)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正部(150)と、
を備え
特徴量算出部は、反射点の法線方向を傾き特徴量として算出し、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形についての形状の変化度合に基づいて、反射点の法線方向を算出する
開示された測距装置のひとつは、プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する、照射する光をスキャンするアクチュエータ(4)を備える測距装置であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得部(110)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正部(150)と、
を備え、
特徴量算出部は、反射点の法線方向を傾き特徴量として算出し、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合に基づいて、反射点の法線方向を算出する。
開示された測距装置のひとつは、プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する、照射する光をスキャンするアクチュエータ(4)を備える測距装置であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得部(110)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正部(150)と、
を備え、
特徴量算出部は、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形について、形状の変化度合を、傾き特徴量として算出する。
開示された測距装置のひとつは、プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで反射点までの距離を測定する、照射する光をスキャンするアクチュエータ(4)を備える測距装置であって、
複数の反射点について、対応する画素にて検出された距離に関連する情報である関連情報を取得する取得部(110)と、
反射点を構成する物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
各反射点までの距離を、傾き特徴量に基づいて補正する補正部(150)と、
を備え、
特徴量算出部は、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、傾き特徴量として算出する。
これらの開示によれば、各反射点までの距離が、各反射点の傾き特徴量に基づいて補正される。故に、反射点を構成する部分面の傾きに応じた誤差が補正され得る。以上により、測距精度を向上可能な測距補正装置、測距補正方法、および測距補正プログラムが提供され得る。
測距補正装置が有する機能の一例を示すブロック図である。 傾きに応じた検出波形の変化を概念的に示す図である。 法線ベクトルの算出方法を概念的に示す図である。 測距補正装置が実行する測距補正方法の一例を示すフローチャートである。 第2実施形態における法線ベクトルの算出方法を概念的に示す図である。 第2実施形態における測距補正装置が実行する測距補正方法の一例を示すフローチャートである。 第3実施形態における測距補正装置が有する機能の一例を示すブロック図である。 波形の特徴量について説明するための図である。 第3実施形態における測距補正装置が実行する測距補正方法の一例を示すフローチャートである。 第4実施形態における測距補正装置が有する機能の一例を示すブロック図である。 第4実施形態における測距補正装置が実行する測距補正方法の一例を示すフローチャートである。 第5実施形態における測距補正装置が有する機能の一例を示すブロック図である。 第5実施形態におけるスキャン速度の設定を概念的に示す図である。 第5実施形態における測距補正装置が実行する測距補正方法の一例を示すフローチャートである。 第6実施形態におけるスキャン速度の設定を概念的に示す図である。
(第1実施形態)
図1に示すように、本開示の一実施形態による測距補正装置としての画像処理装置100は、LiDAR(Light Detection and Ranging / Laser Imaging Detection and Ranging)装置1に搭載される。LiDAR装置1は、光の照射に対する反射点からの反射光を検出することで、反射点までの距離を測定する測距装置である。LiDAR装置1は、例えば高度運転支援機能および自動運転機能の少なくとも一方を備える車両に搭載されたセンサである。LiDAR装置1は、車載ECU10と通信可能に接続されている。車載ECU10は、LiDAR装置1の測定結果を処理に利用する電子制御装置である。
LiDAR装置1は、画像処理装置100の他に発光部2および撮像部3を備えている。
発光部2は、例えばレーザダイオード等の、指向性レーザ光を発する半導体素子である。発光部2は、車両の外界へ向かうレーザ光を、断続的なパルスビーム状に照射する。撮像部3は、例えばSPAD(Single Photon Avalanche Diode)等の、光に対して高感度な受光素子により構成されている。撮像部3の外界のうち、撮像部3の画角により決まるセンシング領域から入射する光により、撮像部3が露光される。撮像部3を構成する受光素子は、例えば二次元方向にアレイ状に複数配列されている。隣接する複数の受光素子の組により、反射光検出における画素が構成される。すなわち、後述の反射点までの距離と反射強度との関係を示す情報は、複数の受光素子の組により構成される画素ごとに、検出される。
アクチュエータ4は、発光部2から照射されたレーザ光をLiDAR装置1の出射面へと反射する反射鏡の反射角を制御する。アクチュエータ4が反射鏡の反射角を制御することで、レーザ光がスキャンされる。スキャン方向は、水平方向であってもよく、垂直方向であってもよい。尚、アクチュエータ4は、LiDAR装置1の筐体自体の姿勢角を制御することで、レーザ光をスキャンするものであってもよい。
画像処理装置100は、メモリ101およびプロセッサ102を、少なくとも1つずつ含んで構成されるコンピュータである。メモリ101は、コンピュータにより読み取り可能なプログラムおよびデータを非一時的に格納又は記憶する、例えば半導体メモリ、磁気媒体および光学媒体等のうち少なくとも一種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)である。メモリ101は、後述の距離補正プログラム等、プロセッサ102によって実行される種々のプログラムを格納している。
プロセッサ102は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)およびRISC(Reduced Instruction Set Computer)-CPU等のうち少なくとも一種類を、コアとして含む。プロセッサ102は、メモリ101に記憶された測距補正プログラムに含まれる複数の命令を、実行する。これにより画像処理装置100は、測距結果、すなわち撮像部3の検出情報から計測される物標Tまでの距離を、補正する補正処理を遂行するための複数の機能部を、構築する。このように画像処理装置100では、メモリ101に格納された測距補正プログラムが複数の命令をプロセッサ102に実行させることで、複数の機能部が構築される。具体的に、画像処理装置100には、図1に示すように、画素情報取得部110、点群生成部120、法線算出部130、信頼度算出部140および距離補正部150等の機能部が構築される。
画素情報取得部110は、撮像部3における複数画素の露光及び走査を制御すると共に、撮像部3からの信号を処理してデータ化する。画素情報取得部110が発光部2からの光照射により撮像部3を露光する反射光モードでは、センシング領域内の物点がレーザ光の反射点となる。その結果、反射点での反射されたレーザ光(以下、反射光という)が、入射面を通して撮像部3に入射する。このとき画素情報取得部110は、撮像部3の複数画素を走査することで、反射光をセンシングする。
画素情報取得部110は、各画素においてスキャンされた反射強度を受光周波数ごとに積算することで、図2等に示すように、反射点までの距離と反射強度の関係を、反射点までの距離に関連する情報として画素ごとに取得する。具体的には、画素情報取得部110は、反射強度を所定の距離ビンごとに積算したヒストグラム情報、又はヒストグラムにおける距離ビンごとの反射強度に基づく波形情報として、関係情報を取得可能である。本実施形態において、関係情報は、図2等に示すように波形情報であるとする。これにより、画素情報取得部110は、反射点までの距離に関連する情報を含む画素情報を取得する。物標Tにおける、反射光が同一画素に入射する部分面SAが、当該画素により検出される反射点を構成することになる。画素情報取得部110は、こうした画素情報を画素ごとに含む二次元データを、距離画像として取得することが可能である。
一方、画素情報取得部110が発光部2からの断続的な光照射の停止中に撮像部3を露光する外光モードでは、センシング領域内の物点が外光の反射点となる。その結果、反射点で反射された外光が、入射面を通して撮像部3に入射する。このとき画素情報取得部110は、撮像部3の複数画素を走査することで、反射された外光をセンシングする。ここで特に画素情報取得部110は、センシングした外光の強度に応じて画素毎に取得される輝度値を、各画素値として二次元データ化することで、外光画像を取得することが可能である。なお、外光画像は、背景光画像または外乱光画像と呼称することも可能である。
画素情報取得部110は、新しく取得した画素情報について、検出された反射波の波形情報(検出波形情報)が有効か否かを判定する。例えば、画素情報取得部110は、波形のS/N比の大きさ、波形の振幅等に基づいて、検出波形情報が有効か否かを判断すればよい。検出波形情報が有効ではないと判定した場合、画素情報取得部110は、取得した画素情報を棄却する。画素情報取得部110は、制御サイクルごとに全ての画素について、画素情報を取得する。画素情報取得部110は、取得した各画素情報を点群生成部120へと逐次提供する。
また、画素情報取得部110は、生成する距離画像についてノイズ除去を行う。例えば、画素情報取得部110は、過去の距離画像に基づいて、今回の距離画像についてノイズ除去フィルタを作用する領域を決定する。詳記すると、画素情報取得部110は、距離画像のフレームについて、過去(例えば1フレーム前)の距離画像における同位置にて点群の存在しない非存在領域と、点群の存在する存在領域とに区分する。点群生成部120は、非存在領域について、ノイズ除去フィルタの適用をスキップする。また、画素情報取得部110は、存在領域について、物体の種別に応じて異なるパラメータのノイズ除去フィルタを適用する。例えば、画素情報取得部110は、実質平坦な部分の比較的多い物体と、少ない物体とで、ノイズ除去フィルタのパラメータを変更する。平坦な部分の比較的多い物体は、例えば、道路、建物等である。また、平坦な部分の比較的少ない物体とは、人、動物等である。なお、画素情報取得部110は、物体の動きを考慮して、存在領域を実際に物体の存在する実領域よりも大きい領域に設定してよい。
点群生成部120は、取得した画素情報に含まれる反射点までの距離値を、三次元の座標情報に変換する。点群生成部120は、光学系の焦点距離、撮像素子の画素数、撮像素子の大きさ等に基づいて、距離値を、LiDAR装置1を中心としたLiDAR座標系における三次元座標値に変換すればよい。点群生成部120は、全ての距離値について三次元座標系に変換し、各画素が対応する反射点の座標情報を含む点群データを生成する。
法線算出部130は、傾き特徴量として反射点の法線方向を算出する。傾き特徴量は、反射点を構成する物標Tの部分面SAにおける、基準面Rに対する傾きの大きさに関連するパラメータである。ここで基準面Rは、後述のLiDAR装置1における画素ごとの視線方向DLに正対する仮想的な面である。法線算出部130は、点群データの三次元位置に基づいて、各反射点の法線方向を算出する。具体的には、法線算出部130は、法線方向の情報を含む法線ベクトルVnを算出する。例えば、法線算出部130は、複数画素に対応する複数反射点に基づく2つのベクトル(参照ベクトル)の外積を、法線ベクトルVnとする。
詳記すると、法線算出部130は、図3に示すように、法線ベクトルVnを算出する反射点(着目反射点)RPiを参照ベクトルの始点とする。そして、法線算出部130は、着目反射点RPiの近傍に位置する2つの反射点(参照反射点)RPrを選出する。参照反射点RPrは、例えば、着目反射点RPiに対応する画素に隣接する2画素にて検出された反射点であればよい。法線算出部130は、着目反射点RPiを始点、各参照反射点RPrをそれぞれ終点とする参照ベクトルVrを設定する。法線算出部130は、参照ベクトルVrの外積ベクトルを、着目反射点RPiの法線ベクトルVnとして算出する。法線算出部130は、1フレームにおける実質全ての反射点について法線ベクトルを算出する。法線算出部130は、算出した法線ベクトルの情報を、距離補正部150へと逐次提供する。法線算出部130は、「特徴量算出部」の一例である。
信頼度算出部140は、各反射点の法線ベクトルVnに関する信頼度を算出する。なお、以下の説明において、この信頼度を法線信頼度と表記する。法線信頼度は、算出される法線ベクトルの誤差の大きさに関連する推定値である。法線信頼度が高いほど、法線ベクトルVnの誤差は小さいとされる。信頼度算出部140は、例えば、対応する画素にて検出された検出波形情報に含まれる信号光強度および外光強度の少なくとも一方に基づいて法線信頼度を推定する。信号光強度が大きいほど、信頼度は高いとされる。また、外光強度が大きいほど、信頼度は低いとされる。法線信頼度は、「算出信頼度」の一例である。
距離補正部150は、法線ベクトルVnに基づいて各反射点までの距離値を補正する。例えば、距離補正部150は、法線ベクトルVn、LiDAR装置1の視線情報、補正前の距離値および法線信頼度に基づいて、補正距離値を算出する。
ここで、LiDAR装置1の視線情報とは、各反射点検出におけるLiDAR装置1の画素の視線方向DLに関する情報である。視線方向DLは、例えば、反射光の受光方向に正対する方向である。視線方向DLは、図2にて点線矢印にて示すように、画素中心または画素を点とみなした場合の画素位置から、画素による検出範囲PRの中心を指向する方向である。視線方向DLは、対応する画素による画角の中心を、画素中心または画素を点とみなした場合の画素位置から指向する方向である、ということもできる。
ここで、物標Tにおける、反射光が同一画素に入射する部分面SAが、当該画素により検出される反射点を構成することになる。図2において、部分面SAは、物標Tの表面における検出範囲PRに含まれる部分である。この部分面SAの基準面Rに対する傾きが大きくなるほど、部分面内における反射光の光路長差が、大きくなる。また、反射強度の波形のピークも、傾きが大きくなるほど、小さくなる。したがって、傾きが大きいほど、波形がブロードとなり得る。また、傾きが大きいほど、波形のピークの信号強度が小さく、且つ受光時刻が遅れ得る。したがって、受光時刻の遅れ、すなわち距離値の長大化を解消する方向(図2のグラフにおける点線矢印の方向)へ距離値を補正する補正量を算出することで、より真値に近い補正後距離値を算出可能となる。なお、本実施形態において、部分面SAは、実質平面とみなされて処理される。
距離補正部150は、視線方向に対する法線ベクトルVnの相対的な傾きが大きいほど、補正量を大きくする。また、距離補正部150は、補正前の距離値が大きいほど、補正量を大きくする。加えて、距離補正部150は、法線信頼度が低いほど、補正量を大きくする。距離補正部150は、以上のパラメータに基づいて総合的に補正量を決定する。距離補正部150は、決定した補正量にて距離値を補正する。距離補正部150は、法線ベクトルを算出した全ての反射点について距離値を補正し、補正後距離値に基づく距離画像を生成する。距離補正部150は、生成した距離画像を他の車載ECU10へと提供する。なお、距離補正部150は、距離画像を三次元点群に変換した点群データを生成し、車載ECU10へと提供してもよい。
次に、機能ブロックの共同により、画像処理装置100が実行する測距補正方法のフローを、図4に従って以下に説明する。なお、後述するフローにおいて「S」とは、プログラムに含まれた複数命令によって実行される、フローの複数ステップを意味する。
まずS100では、画素情報取得部110が、未取得の画素情報を撮像素子から取得する。次に、S110では、画素情報の波形データが有効か否かを判定する。有効ではないと判定されると、本フローがS100へと戻り、他の未取得の画素情報が取得される。波形データが有効であると判定されると、本フローがS120へと移行する。
S120では、点群生成部120が、有効であると判定された画素情報について、三次元の座標データに変換する。次に、S130では、着目反射点RPi近傍の参照反射点RPrの座標が取得される。そして、S131では、着目反射点RPiおよび参照反射点RPrに基づき、2つの参照ベクトルが算出される。続くS132では、参照ベクトル同士の外積として、法線ベクトルが算出される。
次に、S140では、法線算出部130が、法線信頼度を算出する。次に、S150では、距離補正部150が、法線ベクトルの視線方向に対する傾き、反射点までの距離、信頼度の大きさに基づいて、反射点までの距離が補正される。続くS160では、距離補正部150が、今回の制御サイクルにおいて全ての画素について補正が実行されたか否かを判定する。全画素について補正が実行されたと判定されると、S170にて、距離補正部150が、距離画像データを出力する。
なお、上述のS100,S110が「画素情報取得プロセス」、S120が「点群生成プロセス」の一例である。また、S130,S131,S132が「特徴量算出プロセス」、S140が「信頼度算出プロセス」、S150,S160,S170が「補正プロセス」の一例である。
以上の第1実施形態によれば、各反射点までの距離が、各反射点の法線ベクトルに基づいて補正される。故に、反射面の傾きに応じた誤差が補正され得る。以上により、測距精度が向上可能となり得る。
また、第1実施形態によれば、着目反射点RPiおよび複数の参照反射点RPrの位置情報に基づいて、外積により法線ベクトルが算出される。これによれば、ベクトル演算によって法線の傾きが算出される。したがって、法線の傾きが比較的高速に算出され得る。
さらに、第1実施形態によれば、着目反射点RPiの法線ベクトルVnの、対応画素における観測方向に対する傾きの大きさが大きいほど、補正量が大きくなる。故に、真値からのずれが大きくなりやすい、反射点の傾きの大きい場合において、より大きく距離を補正できる。故に、より正確に距離が補正され得る。
加えて、第1実施形態によれば、法線ベクトルの算出信頼度が大きいほど、補正量が大きくなる。これによれば、法線ベクトルの信頼度が高いほど、当該法線ベクトルの傾きに応じた補正量がより大きくなる。したがって、より正確に距離が補正され得る。
また、第1実施形態によれば、着目反射点RPiまでの補正前の距離が大きいほど、補正量が大きくなる。着目反射点RPiまでの距離が大きいほど、反射点までの1画素内での光路長差が大きくなり、それ故に距離の真値からのずれが大きくなりやすいため、補正前の距離が大きいほど、補正量を大きくすることで、より正確に距離が補正され得る。
(第2実施形態)
第2実施形態では、第1実施形態における画像処理装置100の変形例について説明する。図5,6において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
第2実施形態において、法線算出部130は、図5に示すように、着目反射点RPiとの点間距離が許容範囲内である複数の反射点を、参照反射点RPrとして選出する。許容範囲は、着目反射点RPiとの距離に関する閾値以下、又は当該閾値未満となる数値範囲である。すなわち、法線算出部130は、隣接画素の反射点であっても、三次元座標に基づく距離が許容範囲外である場合には、当該反射点を参照反射点RPrから除外する。
第2実施形態において、法線算出部130は、複数の参照反射点RPrと着目反射点RPiとに基づいて、主成分分析を実行する。法線算出部130は、主成分分析の結果に基づいて、法線ベクトルVnを算出する。
次に、第2実施形態において画像処理装置100が実行する測距補正方法のうち法線ベクトル算出の詳細処理について、図6のフローチャートに従って以下に説明する。
本フローは、S120の処理の後、S133に移行する。S133では、法線算出部130が、着目反射点RPiとの距離が許容範囲内となる複数の参照反射点RPrの座標を取得する。次に、S134では、法線算出部130が、着目反射点RPiおよび参照反射点RPrからなる点群の主成分分析に基づく法線ベクトルVnが算出される。S134の処理が完了すると、本フローはS140へと移行する。
以上の第2実施形態によれば、着目反射点RPiと、着目反射点RPiとの間の点間距離が許容範囲内である複数の参照反射点RPrとに基づいて着目反射点RPiの法線方向が算出される。故に、同一の反射物における複数反射点に基づいて法線方向が算出され易くなる。したがって、法線方向の算出精度が向上され得る。
(第3実施形態)
第3実施形態では、第1実施形態における画像処理装置100の変形例について説明する。図7~9において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
第3実施形態において、画像処理装置100は、画素ごとの検出波形情報と法線との対応関係を格納した対応テーブルCTを予め備えている(図7参照)。具体的には、対応テーブルCTは、反射物の反射特性および反射物までの距離ごとに、検出波形情報に対応した法線の傾きの大きさをメモリ101に格納している。加えて、対応テーブルCTは、ランバート反射特性および反射物までの距離ごとに、検出波形情報に対応した法線の傾きの大きさを格納している。なお、対応テーブルCTに格納された検出波形情報は、特徴点を抽出した検出波形情報であってもよく、完全な検出波形情報であってもよい。
例えば、対応テーブルCTは、波形のピーク値、パルス幅、裾幅の少なくとも1つを、検出波形情報として格納している。ピーク値は、波形の信号強度の最大値(図8のt3での信号強度p)である。パルス幅は、パルスの立ち上がり時および立ち下がり時における、信号強度がピーク値の半値となる半値点(図8のt2およびt4参照)の差分の絶対値として求められる時間幅である。裾幅は、パルス開始時間(図8のt1参照)およびパルス終了時間(図8のt5参照)の差分の絶対値として求められる時間幅である。パルス開始時間は、パルスの立ち上がり時において、取得信号からパルス信号を除いた背景信号とパルス信号との強度の差分が所定の閾値以上又は閾値を上回る時刻である。背景信号は、外乱光由来の信号を含むものであってもよいし、外乱光由来の信号を除去済みの取得信号からパルス信号を除いたものであってもよい。パルス終了時間は、パルスの立ち下がり時において、背景信号とパルス信号との強度の差分が所定の閾値以下又は閾値未満となる時刻である。
例えば、反射特性および距離が同じ場合、ピーク値が大きいほど、基準方向に対する法線方向の傾きが大きくなる。又、パルス幅が大きいほど、基準方向に対する法線方向の傾きが大きくなる。さらに、裾幅が大きいほど、基準方向に対する法線方向の傾きが大きくなる。対応テーブルCTは、こうした関係を、検出波形情報と法線との対応関係として格納している。ピーク値、パルス幅、裾幅等の、法線方向の傾きの大きさと相関するパラメータは、波形特徴量ということもできる。
法線算出部130は、各反射点における反射特性、距離および検出波形情報を対応テーブルCTに照合することで、法線の傾きを算出する。すなわち、法線算出部130は、1つの反射点の法線について、対応する単独の画素の情報に基づいて傾きの大きさを算出する。また、法線算出部130は、反射点の反射特性が不明である場合には、当該反射点についてランバート反射特性を有すると仮定して、距離および検出波形情報を対応テーブルCTに照合する。
次に、第3実施形態において画像処理装置100が実行する測距補正方法のうち法線ベクトル算出の詳細処理について、図9のフローチャートに従って以下に説明する。なお、詳細処理以外は、第1実施形態における説明を援用する。まず、S135では、着目反射点RPiの反射特性および距離が取得される。次に、S136では、着目反射点RPiの反射特性、距離および検出波形情報と対応テーブルCTとの照合により、法線の傾きが算出される。
以上の第3実施形態によれば、着目反射点RPiからの反射光の検出により取得された検出波形情報と、予め規定された距離と反射光の波形との関係情報とに基づいて、着目反射点RPiの法線方向が算出される。これによれば、対応関係に基づいて着目反射点RPiの法線方向が算出されるので、法線方向を特定する際の計算量が抑制可能となる。また、遠方の物体や小さい物体等、複数画素にまたがった反射データが検出されにくい反射物に対する距離がより正確に補正され得る。
(第4実施形態)
第4実施形態では、第1実施形態における画像処理装置100の変形例について説明する。図10および図11において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
第4実施形態において、画像処理装置100は、図10に示すように、反射物判定部115を機能部として備える。反射物判定部115は、特定の物標Tからの反射光情報が単一画素内に収まっているか否かを判定する。物標Tからの反射光情報が単一画素内に収まっているか否かは、着目反射点RPiの傾き特徴量の算出方法を切り替える条件である。したがって、反射物判定部115は、当該条件が成立するか否かを判定する条件判定部であるということもできる。
法線算出部130は、判定結果に基づき、画素ごとに法線の算出方法を変更する。具体的には、法線算出部130は、反射物の種別に応じて、複数画素情報に基づく法線ベクトルの算出と、単一画素情報に基づく法線ベクトルの算出とを、切り替える。
詳記すると、法線算出部130は、特定反射物からの反射光情報が単一画素内に収まっている場合、単一画素情報に基づく法線ベクトルVnの算出を行う。一方で、法線算出部130は、特定反射物からの反射光情報が、複数画素にわたって検出されている場合、複数画素情報に基づく法線ベクトルVnの算出を行う。
次に、機能ブロックの共同により、画像処理装置100が実行する測距方法のフローを、図11に従って以下に説明する。
S110にて肯定判定が下されると、本フローはS115へと移行する。S115では、反射物判定部115が、反射物が単一画素内に収まっているか否かを判定する。収まっていないと判定されると、法線算出部130が、S130~S132にて複数画素情報に基づく法線ベクトルの算出を実行する。一方で、収まっていると判定されると、法線算出部130が、S135~S136にて単一画素情報に基づく法線ベクトルの算出を実行する。
以上の第4実施形態によれば、反射光情報が単一画素内に収まる程度に遠い、または小さい反射物について、単一画素情報に基づき法線ベクトルが算出される。そして、反射光情報が複数画素にわたる程度に近い、または大きい反射物については、複数画素情報に基づき法線ベクトルが算出される。
(第5実施形態)
第5実施形態では、第3実施形態における画像処理装置100の変形例について説明する。図12~図14において第3実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
第5実施形態における画像処理装置100には、図12に示すようにスキャン設定部105、画素情報取得部110、変化度合算出部135、信頼度算出部140および距離補正部150等の機能部が構築される。
スキャン設定部105は、アクチュエータ4によるレーザ光のスキャン速度を設定する。具体的には、スキャン設定部105は、所定のスキャン速度にてスキャンを実行する第1スキャン周期と、第1スキャン周期よりも速い又は遅いスキャン速度にてスキャンを実行する第2スキャン周期とで、異なるスキャン速度を設定する。例えば、スキャン設定部105は、第1スキャン周期および第2スキャン周期を交互に繰り返すように設定することで、複数周期にわたるスキャンを実行させる。又は、スキャン設定部105は、第1スキャン周期でのスキャンを複数回連続して実行した後、第2スキャン周期でのスキャンを複数回実行するパターンを繰り返すように設定してもよい。
変化度合算出部135は、異なるスキャン速度にてスキャンされた同一の反射点からの反射光の検出により取得された、スキャン速度ごとの各検出波形についての形状の変化度合を、算出する。具体的には、変化度合算出部135は、第1スキャン周期と第2スキャン周期とで、検出された波形の変化度合を算出する。変化度合算出部135は、例えば、波形特徴量同士の差分を、変化度合として算出する。波形特徴量は、例えば、ピーク値、パルス幅及び裾幅の少なくとも1種類である。変化度合は、複数の特徴量を統合した変化の大きさの評価値であってもよい。変化度合は、「傾き特徴量」の一例である。
距離補正部150は、変化度合の大きさに応じて、距離を補正する。詳記すると、図13に示すように、部分面SAの基準面Rに対する傾きが大きい場合には、比較的小さい場合よりも、波形の形状変化が大きくなる。具体的には、傾きが大きいほど、ピーク値が小さく、パルス幅及び裾幅が大きくなるような形状変化が生じる。このため、変化度合が大きいほど、距離の真値に対する乖離が大きくなることになる。したがって、距離補正部150は、変化度合が大きいほど、補正値を大きくする。
次に、機能ブロックの共同により、画像処理装置100が実行する測距方法のフローを、図14に従って以下に説明する。
まず、S200では、スキャン設定部105が、第1スキャン周期と第2スキャン周期とでスキャン速度を異ならせるように、設定する。S210では、画素情報取得部110が、以上の設定に基づく着目反射点RPiの画素情報を、取得する。このとき、画素情報取得部110は、第1スキャン周期における画素情報及び第2スキャン周期における画素情報の両方を取得する。続くS220は、S110と同様の処理である。
S220にて肯定判定が下されると、本フローはS230へと移行する。S230では、変化度合算出部135が、周期ごとの波形の変化度合を算出する。続くS240では、信頼度算出部140が、検出波形の信頼度を算出する。検出波形の信頼度は、信号強度及び外乱光強度等に基づき算出されればよい。そしてS250では、距離補正部150が、波形の変化度合および信頼度に基づく距離補正を実行する。続くS260およびS270は、S160およびS170と同様の処理である。以上において、S210,S220が「取得プロセス」、S230が「特徴量算出プロセス」、S250,S260,S270が、「補正プロセス」の一例である。
(第6実施形態)
第6実施形態では、第5実施形態における画像処理装置100の変形例について説明する。第6実施形態において、スキャン設定部105は、1画素に対応する検出範囲PR内において、途中でスキャン速度を変化させる。具体的には、スキャン設定部105は、1画素に対応する検出範囲PR内において、図15に示すように、スキャン速度が速い高速範囲Aと、当該高速範囲Aよりもスキャン速度が遅い低速範囲Bと、のスキャン速度の異なる範囲を設定する。
画素情報取得部110は、1画素を高速範囲Aと低速範囲Bとにそれぞれ分割した小画素のそれぞれについて、画素情報を取得する。
変化度合算出部135は、途中でスキャン速度を変更された反射点からの反射光を、反射点に対応する画素をスキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、算出する。具体的には、変化度合算出部135は、高速範囲Aにおける検出波形と、低速範囲Bにおける検出波形と、の変化度合を、傾き特徴量として算出する。変化度合算出部135は、少なくとも1種類以上の波形特徴量の変化量を変化度合としてもよいし、検出波形の全点に基づく変化量を変化度合としてもよい。こうした変化度合は、「傾き特徴量」の一例である。
距離補正部150は、変化度合の大きさに応じて、対応画素にて検出された距離を補正する。反射面の基準面に対する傾きが大きい場合には、比較的小さい場合よりも、各範囲A,Bにて検出された波形の形状変化が大きくなる。具体的には、傾きが大きいほど、ピーク値が小さく、パルス幅及び裾幅が大きくなるような形状変化が生じる。このため、変化度合が大きいほど、距離の真値に対する乖離が大きくなることになる。したがって、距離補正部150は、変化度合が大きいほど、補正値を大きくする。
第6実施形態における測距方法では、S200において、スキャン設定部105が、スキャン速度が速い高速範囲Aと、当該高速範囲Aよりもスキャン速度が遅い低速範囲Bと、のスキャン速度の異なる範囲を設定する。S210では、画素情報取得部110が、以上の設定に基づく着目反射点RPiの画素情報を、取得する。このとき、画素情報取得部110は、1画素を高速範囲Aと低速範囲Bとにそれぞれ分割した小画素のそれぞれについて、画素情報を取得する。また、S230では、変化度合算出部135が、小画素ごとの波形の変化度合を算出する。
(他の実施形態)
この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
上述の実施形態において、画像処理装置100を構成する専用コンピュータは、LiDAR装置1を構成する電子制御装置であるとした。これに代えて、画像処理装置100を構成する専用コンピュータは、車両に搭載された運転制御ECUであってもよいし、アクチュエータECUであってもよい。又は、画像処理装置100を構成する専用コンピュータは、ロケータECUであってもよいし、ナビゲーションECUであってもよい。又は、画像処理装置100を構成する専用コンピュータは、HCUであってもよい。
上述の第2実施形態において、法線算出部130は、主成分分析に基づいて法線ベクトルVnを算出するとしたが、第1実施形態と同様に参照ベクトルVrの外積として法線ベクトルVnを算出してもよい。
上述の第3実施形態において、法線算出部130は、反射物の反射特性および反射物までの距離ごとに、検出波形情報に対応した法線の傾きの大きさを格納した対応テーブルCTに基づいて、法線方向を算出するとした。これに代えて、法線算出部130は、対応関係を表す関数に基づいて、法線方向を算出してもよい。
上述の第5実施形態及び第6実施形態の変形例において、変化度合算出部135は、波形の変化度合に基づいて、さらに法線方向を算出してもよい。この場合、距離補正部150は、法線方向に基づいて距離補正を実行すればよい。
画像処理装置100は、デジタル回路およびアナログ回路のうち少なくとも一方をプロセッサとして含んで構成される、専用のコンピュータであってもよい。ここで特にデジタル回路とは、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、SOC(System on a Chip)、PGA(Programmable Gate Array)、およびCPLD(Complex Programmable Logic Device)等のうち、少なくとも一種類である。またこうしたデジタル回路は、プログラムを格納したメモリを、備えていてもよい。
画像処理装置100は、1つのコンピュータ、またはデータ通信装置によってリンクされた一組のコンピュータ資源によって提供され得る。例えば、上述の実施形態における画像処理装置100の提供する機能の一部は、他のECUによって実現されてもよい。
1 LiDAR装置(測距装置)、 4 アクチュエータ、 100 画像処理装置(測距補正装置)、 102 プロセッサ、 110 画素情報取得部(取得部)、 130 法線算出部(特徴量算出部)、 135 変化度合算出部(特徴量算出部)、 150 距離補正部(補正部)、 DL 視線方向、 R 基準面。

Claims (28)

  1. プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の、測距結果を補正する測距補正装置であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得部(110)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正部(150)と、
    を備え
    前記特徴量算出部は、前記反射点の法線方向を前記傾き特徴量として算出し、異なるスキャン速度にてスキャンされた同一の前記反射点からの前記反射光の検出により取得された、前記スキャン速度ごとの各検出波形についての形状の変化度合に基づいて、前記反射点の前記法線方向を算出する測距補正装置。
  2. プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の、測距結果を補正する測距補正装置であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得部(110)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正部(150)と、
    を備え
    前記特徴量算出部は、前記反射点の法線方向を前記傾き特徴量として算出し、途中でスキャン速度を変更された前記反射点からの前記反射光を、前記反射点に対応する前記画素を前記スキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合に基づいて、前記反射点の前記法線方向を算出する測距補正装置。
  3. 前記特徴量算出部は、各前記反射点について、前記法線方向を算出する着目反射点と、前記着目反射点以外の複数の参照反射点との三次元位置情報に基づいて、前記法線方向を算出する請求項1又は請求項2に記載の測距補正装置。
  4. 前記特徴量算出部は、前記着目反射点との間の点間距離が許容範囲内である複数の前記参照反射点を抽出し、前記着目反射点および複数の前記参照反射点に基づいて前記着目反射点の前記法線方向を算出する請求項3に記載の測距補正装置。
  5. 前記特徴量算出部は、各前記反射点について、前記法線方向を算出する着目反射点からの前記反射光の検出により取得された検出波形情報と、予め規定された前記距離と前記反射光の波形との関係情報とに基づいて、前記着目反射点の前記法線方向を算出する請求項から請求項4のいずれか1項に記載の測距補正装置。
  6. 前記補正部は、対応画素の視線方向(DL)に対する、前記着目反射点における前記法線方向の傾きの大きさに基づいて、前記距離の補正量を決定する請求項3から請求項5のいずれか1項に記載の測距補正装置。
  7. 前記補正部は、前記法線方向の算出信頼度が大きいほど、前記距離の補正量を大きくする請求項から請求項のいずれか1項に記載の測距補正装置。
  8. 前記補正部は、前記反射点までの補正前の前記距離が大きいほど、前記距離の補正量を大きくする請求項から請求項のいずれか1項に記載の測距補正装置。
  9. プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の、測距結果を補正する測距補正装置であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得部(110)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正部(150)と、
    を備え
    前記特徴量算出部は、異なるスキャン速度にてスキャンされた同一の前記反射点からの前記反射光の検出により取得された、前記スキャン速度ごとの各検出波形について、形状の変化度合を、前記傾き特徴量として算出する測距補正装置。
  10. プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の、測距結果を補正する測距補正装置であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得部(110)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正部(150)と、
    を備え
    前記特徴量算出部は、途中でスキャン速度を変更された前記反射点からの前記反射光を、前記反射点に対応する前記画素を前記スキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、前記傾き特徴量として算出する測距補正装置。
  11. 光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の測距結果を補正するために、プロセッサ(102)により実行される測距補正方法であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得プロセス(S100,S110;S210,S220)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正プロセス(S150,S160,S170;S250,S260,S270)と、
    を含み、
    前記特徴量算出プロセスでは、前記反射点の法線方向を前記傾き特徴量として算出し、異なるスキャン速度にてスキャンされた同一の前記反射点からの前記反射光の検出により取得された、前記スキャン速度ごとの各検出波形についての形状の変化度合に基づいて、前記反射点の前記法線方向を算出する測距補正方法。
  12. 光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の測距結果を補正するために、プロセッサ(102)により実行される測距補正方法であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得プロセス(S100,S110;S210,S220)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正プロセス(S150,S160,S170;S250,S260,S270)と、
    を含み、
    前記特徴量算出プロセスでは、前記反射点の法線方向を前記傾き特徴量として算出し、途中でスキャン速度を変更された前記反射点からの前記反射光を、前記反射点に対応する前記画素を前記スキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合に基づいて、前記反射点の前記法線方向を算出する測距補正方法。
  13. 前記特徴量算出プロセスでは、各前記反射点について、前記法線方向を算出する着目反射点と、前記着目反射点以外の複数の参照反射点との三次元位置情報に基づいて、前記法線方向を算出する請求項11又は請求項12に記載の測距補正方法。
  14. 前記特徴量算出プロセスでは、前記着目反射点との間の点間距離が許容範囲内である複数の前記参照反射点を抽出し、前記着目反射点および複数の前記参照反射点に基づいて前記着目反射点の前記法線方向を算出する請求項13に記載の測距補正方法。
  15. 前記特徴量算出プロセスでは、各前記反射点について、前記法線方向を算出する着目反射点からの前記反射光の検出により取得された検出波形情報と、予め規定された前記距離と前記反射光の波形との関係情報とに基づいて、前記着目反射点の前記法線方向を算出する請求項11から請求項14のいずれか1項に記載の測距補正方法。
  16. 前記補正プロセスでは、対応画素の視線方向(DL)に対する、前記着目反射点における前記法線方向の傾きの大きさに基づいて、前記距離の補正量を決定する請求項13から請求項15のいずれか1項に記載の測距補正方法。
  17. 前記補正プロセスでは、前記法線方向の算出信頼度が大きいほど、前記距離の補正量を大きくする請求項11から請求項16のいずれか1項に記載の測距補正方法。
  18. 前記補正プロセスでは、前記反射点までの補正前の前記距離が大きいほど、前記距離の補正量を大きくする請求項11から請求項17のいずれか1項に記載の測距補正方法。
  19. 光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の測距結果を補正するために、プロセッサ(102)により実行される測距補正方法であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得プロセス(S100,S110;S210,S220)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正プロセス(S150,S160,S170;S250,S260,S270)と、
    を含み、
    前記特徴量算出プロセスでは、異なるスキャン速度にてスキャンされた同一の前記反射点からの前記反射光の検出により取得された、前記スキャン速度ごとの各検出波形について、形状の変化度合を、前記傾き特徴量として算出する測距補正方法。
  20. 光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の測距結果を補正するために、プロセッサ(102)により実行される測距補正方法であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得プロセス(S100,S110;S210,S220)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正プロセス(S150,S160,S170;S250,S260,S270)と、
    を含み、
    前記特徴量算出プロセスでは、途中でスキャン速度を変更された前記反射点からの前記反射光を、前記反射点に対応する前記画素を前記スキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、前記傾き特徴量として算出する測距補正方法。
  21. 光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の測距結果を補正するために、プロセッサ(102)に実行させる命令を含む測距補正プログラムであって、
    前記命令は、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得させる取得プロセス(S100,S110;S210,S220)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出させる特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正させる補正プロセス(S150,S160,S170;S250,S260,S270)と、
    を含み、
    前記特徴量算出プロセスでは、前記反射点の法線方向を前記傾き特徴量として算出させ、異なるスキャン速度にてスキャンされた同一の前記反射点からの前記反射光の検出により取得された、前記スキャン速度ごとの各検出波形についての形状の変化度合に基づいて、前記反射点の前記法線方向を算出させる測距補正プログラム。
  22. 光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の測距結果を補正するために、プロセッサ(102)に実行させる命令を含む測距補正プログラムであって、
    前記命令は、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得させる取得プロセス(S100,S110;S210,S220)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出させる特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正させる補正プロセス(S150,S160,S170;S250,S260,S270)と、
    を含み、
    前記特徴量算出プロセスでは、前記反射点の法線方向を前記傾き特徴量として算出させ、途中でスキャン速度を変更された前記反射点からの前記反射光を、前記反射点に対応する前記画素を前記スキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合に基づいて、前記反射点の前記法線方向を算出させる測距補正プログラム。
  23. 光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の測距結果を補正するために、プロセッサ(102)に実行させる命令を含む測距補正プログラムであって、
    前記命令は、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得させる取得プロセス(S100,S110;S210,S220)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出させる特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正させる補正プロセス(S150,S160,S170;S250,S260,S270)と、
    を含み、
    前記特徴量算出プロセスでは、異なるスキャン速度にてスキャンされた同一の前記反射点からの前記反射光の検出により取得された、前記スキャン速度ごとの各検出波形について、形状の変化度合を、前記傾き特徴量として算出させる測距補正プログラム。
  24. 光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する測距装置(1)であって照射する前記光をスキャンするアクチュエータ(4)を備える前記測距装置の測距結果を補正するために、プロセッサ(102)に実行させる命令を含む測距補正プログラムであって、
    前記命令は、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得させる取得プロセス(S100,S110;S210,S220)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出させる特徴量算出プロセス(S130,S131,S132;S133,S134;S135,S136;S230)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正させる補正プロセス(S150,S160,S170;S250,S260,S270)と、
    を含み、
    前記特徴量算出プロセスでは、途中でスキャン速度を変更された前記反射点からの前記反射光を、前記反射点に対応する前記画素を前記スキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、前記傾き特徴量として算出させる測距補正プログラム。
  25. プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する、照射する前記光をスキャンするアクチュエータ(4)を備える測距装置であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得部(110)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正部(150)と、
    を備え
    前記特徴量算出部は、前記反射点の法線方向を前記傾き特徴量として算出し、異なるスキャン速度にてスキャンされた同一の前記反射点からの前記反射光の検出により取得された、前記スキャン速度ごとの各検出波形についての形状の変化度合に基づいて、前記反射点の前記法線方向を算出する測距装置。
  26. プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する、照射する前記光をスキャンするアクチュエータ(4)を備える測距装置であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得部(110)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正部(150)と、
    を備え
    前記特徴量算出部は、前記反射点の法線方向を前記傾き特徴量として算出し、途中でスキャン速度を変更された前記反射点からの前記反射光を、前記反射点に対応する前記画素を前記スキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合に基づいて、前記反射点の前記法線方向を算出する測距装置。
  27. プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する、照射する前記光をスキャンするアクチュエータ(4)を備える測距装置であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得部(110)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正部(150)と、
    を備え
    前記特徴量算出部は、異なるスキャン速度にてスキャンされた同一の前記反射点からの前記反射光の検出により取得された、前記スキャン速度ごとの各検出波形について、形状の変化度合を、前記傾き特徴量として算出する測距装置。
  28. プロセッサ(102)を有し、光の照射に対する物標の反射点からの反射光を画素により検出することで前記反射点までの距離を測定する、照射する前記光をスキャンするアクチュエータ(4)を備える測距装置であって、
    複数の前記反射点について、対応する画素にて検出された前記距離に関連する情報である関連情報を取得する取得部(110)と、
    前記反射点を構成する前記物標の部分面について、基準面(R)に対する傾きの大きさに関連する傾き特徴量を算出する特徴量算出部(130,135)と、
    各前記反射点までの前記距離を、前記傾き特徴量に基づいて補正する補正部(150)と、
    を備え
    前記特徴量算出部は、途中でスキャン速度を変更された前記反射点からの前記反射光を、前記反射点に対応する前記画素を前記スキャン速度に対応するように分割した小画素ごとに検出した、各検出波形についての形状の変化度合を、前記傾き特徴量として算出する測距装置。
JP2022003820A 2021-02-17 2022-01-13 測距補正装置、測距補正方法、測距補正プログラム、および測距装置 Active JP7375838B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/004730 WO2022176679A1 (ja) 2021-02-17 2022-02-07 測距補正装置、測距補正方法、測距補正プログラム、および測距装置
CN202280014654.2A CN116848430A (zh) 2021-02-17 2022-02-07 测距修正装置、测距修正方法、测距修正程序以及测距装置
US18/450,299 US20230384436A1 (en) 2021-02-17 2023-08-15 Distance measurement correction device, distance measurement correction method, and distance measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021023679 2021-02-17
JP2021023679 2021-02-17

Publications (3)

Publication Number Publication Date
JP2022125966A JP2022125966A (ja) 2022-08-29
JP2022125966A5 JP2022125966A5 (ja) 2022-12-05
JP7375838B2 true JP7375838B2 (ja) 2023-11-08

Family

ID=83058419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022003820A Active JP7375838B2 (ja) 2021-02-17 2022-01-13 測距補正装置、測距補正方法、測距補正プログラム、および測距装置

Country Status (1)

Country Link
JP (1) JP7375838B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181947A1 (ja) * 2022-03-23 2023-09-28 株式会社デンソー 物体検出装置および物体検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163343A (ja) 2002-11-15 2004-06-10 Toshiba Corp 距離検出装置,厚さ測定装置及びその方法
WO2014061372A1 (ja) 2012-10-18 2014-04-24 コニカミノルタ株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP2016142672A (ja) 2015-02-04 2016-08-08 株式会社東芝 光学式距離検出器を用いた厚さ測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163343A (ja) 2002-11-15 2004-06-10 Toshiba Corp 距離検出装置,厚さ測定装置及びその方法
WO2014061372A1 (ja) 2012-10-18 2014-04-24 コニカミノルタ株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP2016142672A (ja) 2015-02-04 2016-08-08 株式会社東芝 光学式距離検出器を用いた厚さ測定装置

Also Published As

Publication number Publication date
JP2022125966A (ja) 2022-08-29

Similar Documents

Publication Publication Date Title
JP6863342B2 (ja) 光測距装置
US9989630B2 (en) Structured-light based multipath cancellation in ToF imaging
CN112513679B (zh) 一种目标识别的方法和装置
US20170278260A1 (en) Image processing apparatus, image processing method, and non-transitory recording medium storing program
CN108802746B (zh) 一种抗干扰的测距方法及装置
US20230115660A1 (en) Method and system for automatic extrinsic calibration of spad lidar and camera pairs
WO2020196513A1 (ja) 物体検出装置
JP7375838B2 (ja) 測距補正装置、測距補正方法、測距補正プログラム、および測距装置
CN114730004A (zh) 物体识别装置和物体识别方法
JP2014130086A (ja) 距離画像センサ、処理装置、プログラム
US20210003676A1 (en) System and method
CN113099120A (zh) 深度信息获取方法、装置、可读存储介质及深度相机
WO2022176679A1 (ja) 測距補正装置、測距補正方法、測距補正プログラム、および測距装置
US20220201164A1 (en) Image registration apparatus, image generation system, image registration method, and image registration program product
JP5802917B2 (ja) 距離画像カメラおよびこれを用いた距離測定方法
CN116848430A (zh) 测距修正装置、测距修正方法、测距修正程序以及测距装置
JP2019007744A (ja) 物体検知装置、プログラムおよび物体検知システム
CN114779211A (zh) 一种激光脉冲雷达设备及点云密度提升方法及设备
JP2017156177A (ja) 障害物検出装置および障害物検出方法
JP7310587B2 (ja) 測距装置、測距方法、および測距プログラム
WO2023181948A1 (ja) ノイズ除去装置、物体検出装置およびノイズ除去方法
US20240134045A1 (en) Distance measurement device and distance measurement method
JP2020013291A (ja) 物体検出システム及び物体検出プログラム
JP7140091B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、及び画像処理システム
WO2023181947A1 (ja) 物体検出装置および物体検出方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R151 Written notification of patent or utility model registration

Ref document number: 7375838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151