JP6811113B2 - Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method - Google Patents

Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method Download PDF

Info

Publication number
JP6811113B2
JP6811113B2 JP2017024869A JP2017024869A JP6811113B2 JP 6811113 B2 JP6811113 B2 JP 6811113B2 JP 2017024869 A JP2017024869 A JP 2017024869A JP 2017024869 A JP2017024869 A JP 2017024869A JP 6811113 B2 JP6811113 B2 JP 6811113B2
Authority
JP
Japan
Prior art keywords
large number
droplets
impact force
force measuring
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017024869A
Other languages
Japanese (ja)
Other versions
JP2018130654A (en
Inventor
孝佳 田中
孝佳 田中
明日香 脇田
明日香 脇田
啓之 屋敷
啓之 屋敷
佐藤 雅伸
雅伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2017024869A priority Critical patent/JP6811113B2/en
Priority to PCT/JP2017/041800 priority patent/WO2018150669A1/en
Priority to TW106140968A priority patent/TWI665018B/en
Publication of JP2018130654A publication Critical patent/JP2018130654A/en
Application granted granted Critical
Publication of JP6811113B2 publication Critical patent/JP6811113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/08Spreading liquid or other fluent material by manipulating the work, e.g. tilting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coating Apparatus (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Weting (AREA)

Description

本発明は、基板等の対象物に液滴が当たる際に対象物が受ける衝撃力を測定する衝撃力測定技術に関する。測定対象の基板には、半導体ウエハ、液晶表示装置用ガラス基板、FED(Field Emission Display)用基板、プラズマディスプレイパネル用ガラス基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板およびフォトマスク用基板などの各種の基板が含まれる。 The present invention relates to an impact force measuring technique for measuring an impact force received by an object when a droplet hits an object such as a substrate. The substrates to be measured include semiconductor wafers, glass substrates for liquid crystal display devices, substrates for FED (Field Emission Display), glass substrates for plasma display panels, substrates for optical disks, substrates for magnetic disks, substrates for optical magnetic disks, and photomasks. Various substrates such as substrates for use are included.

特許文献1には、基板を処理する処理液の液滴を吐出するノズルが開示されている。当該ノズルは、本体と圧電素子とを含む。本体は、処理液が供給される供給口と、処理液を吐出する複数の吐出口と、供給口と複数の吐出口とを接続する処理液流通路とを含む。処理液流通路は、複数の分岐流路を含む。複数の吐出口は、複数の分岐流路にそれぞれ対応する複数の列を構成している。複数の吐出口は、対応する分岐流路に沿って配列されていると共に、対応する分岐流路に接続されている。圧電素子は、複数の分岐流路を流れる処理液に振動を付与する。供給口に処理液が供給されると、処理液は、処理液流通路に導入されて複数の分岐流路を流れ、複数の吐出口から吐出される。各吐出口から吐出される処理液は、圧電素子によって与えられる振動によって分断される。これにより、複数の処理液の液滴がノズルから吐出される。 Patent Document 1 discloses a nozzle for ejecting droplets of a processing liquid for processing a substrate. The nozzle includes a main body and a piezoelectric element. The main body includes a supply port to which the treatment liquid is supplied, a plurality of discharge ports for discharging the treatment liquid, and a treatment liquid flow passage connecting the supply port and the plurality of discharge ports. The treatment liquid flow path includes a plurality of branch flow paths. The plurality of discharge ports form a plurality of rows corresponding to the plurality of branch flow paths. The plurality of discharge ports are arranged along the corresponding branch flow paths and are connected to the corresponding branch flow paths. The piezoelectric element applies vibration to the processing liquid flowing through the plurality of branch flow paths. When the treatment liquid is supplied to the supply port, the treatment liquid is introduced into the treatment liquid flow passage, flows through the plurality of branch flow paths, and is discharged from the plurality of discharge ports. The processing liquid discharged from each discharge port is divided by the vibration given by the piezoelectric element. As a result, a plurality of droplets of the treatment liquid are ejected from the nozzle.

特開2012−182320号公報Japanese Unexamined Patent Publication No. 2012-182320

特許文献1のノズルは、多数の吐出口を有し、多数の液滴を吐出する。各吐出口は、数μm〜数十μmの直径を有する微細孔である。各分岐流路に対応する多数の吐出口のうち互いに隣り合う吐出口の中心間の距離は、数百umである。このため、各吐出口から吐出される液滴の径は、数十μmであり、その吐出速度は、10m/s〜60m/sの高速となる。液滴同士の最短距離は、数百μmとなり、多数の液滴が吐出された空間における液滴の密度は高くなる。ノズルの故障等の不具合によって、多数の液滴の分布等が変化すると、多数の液滴が基板に与える衝撃力(洗浄力)が所望の状態からずれて、基板に形成された微細構造物がダメージを受けることがある。 The nozzle of Patent Document 1 has a large number of ejection ports and ejects a large number of droplets. Each discharge port is a micropore having a diameter of several μm to several tens of μm. Of the large number of discharge ports corresponding to each branch flow path, the distance between the centers of the discharge ports adjacent to each other is several hundreds. Therefore, the diameter of the droplets discharged from each discharge port is several tens of μm, and the discharge speed is as high as 10 m / s to 60 m / s. The shortest distance between the droplets is several hundred μm, and the density of the droplets in the space where a large number of droplets are ejected becomes high. When the distribution of a large number of droplets changes due to a malfunction such as a nozzle failure, the impact force (cleaning force) given to the substrate by the large number of droplets deviates from the desired state, and the fine structure formed on the substrate becomes May be damaged.

しかしながら、多数の液滴が吐出され、吐出される各液滴は、微細で、高速であるため、当該ノズルを備える基板処理装置が、使用現場にインストールされた後は、基板が多数の液滴から受ける衝撃力を計測することが困難であるといった問題がある。 However, a large number of droplets are ejected, and each of the ejected droplets is fine and high-speed. Therefore, after the substrate processing device provided with the nozzle is installed at the site of use, the substrate has a large number of droplets. There is a problem that it is difficult to measure the impact force received from.

本発明は、こうした問題を解決するためになされたもので、基板の主面へ吐出された多数の液滴が基板に与える衝撃力を容易に測定できる技術を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a technique capable of easily measuring the impact force applied to a substrate by a large number of droplets ejected onto the main surface of the substrate.

上記の課題を解決するために、第1の態様に係る衝撃力測定装置は、多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定装置であって、前記ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定部と、を備える。前記液受部は、前記多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面を含み、前記傾斜面によって前記多数の液滴を受ける。 In order to solve the above problems, in the impact force measuring device according to the first aspect, a nozzle capable of ejecting a large number of droplets is used, and the droplets ejected onto the main surface of the substrate held horizontally are the substrates. An impact force measuring device that measures the impact force applied to a liquid receiving unit, which receives a large number of droplets ejected from a large number of droplets by the nozzle and an impact that the liquid receiving unit receives from the large number of droplets. It is provided with a measuring unit for measuring the total force. The liquid receiving portion includes a flat inclined surface that is inclined obliquely with respect to the ejection direction of the large number of droplets, and receives the large number of droplets by the inclined surface.

第2の態様に係る衝撃力測定装置は、多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定装置であって、前記ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定部と、を備える。第2の態様に係る衝撃力測定装置は、前記衝撃力の総和と前記多数の液滴の平均速度との対応関係を示す対応情報に基づいて、前記測定部により測定された前記衝撃力の総和から前記多数の液滴の平均速度を演算する演算部、を更に備える。 The impact force measuring device according to the second aspect is an impact force for measuring the impact force applied to the substrate by the nozzle capable of ejecting a large number of droplets to the main surface of the substrate held horizontally. A measuring device, a liquid receiving unit that receives a large number of droplets ejected by the nozzle toward a large number of locations, and a measuring unit that measures the total impact force that the liquid receiving unit receives from the large number of droplets. , Equipped with. The impact force measuring device according to the second aspect is the sum of the impact forces measured by the measuring unit based on the correspondence information indicating the correspondence relationship between the sum of the impact forces and the average velocity of the large number of droplets. Further includes a calculation unit for calculating the average velocity of the large number of droplets.

第3の態様に係る衝撃力測定装置は、第2の態様に係る衝撃力測定装置であって、前記演算部は、前記多数の液滴の平均速度の時間的変化を演算する。 The impact force measuring device according to the third aspect is the impact force measuring device according to the second aspect, and the calculation unit calculates a time change of the average velocity of the large number of droplets.

第4の態様に係る衝撃力測定装置は、第2または第3の態様に係る衝撃力測定装置であって、前記対応情報が、前記ノズルの吐出穴径ごと、または前記多数の液滴の液の種類ごとに異なる。 The impact force measuring device according to the fourth aspect is the impact force measuring device according to the second or third aspect, and the corresponding information is based on the discharge hole diameter of the nozzle or the liquid of a large number of droplets. It depends on the type of.

第5の態様に係る衝撃力測定装置は、第から第4の何れか1つの態様に係る衝撃力測定装置であって、前記測定部が、平面視において複数配置されており、当該複数の測定部のそれぞれが、前記衝撃力の総和を測定し、当該衝撃力測定装置は、前記複数の測定部のそれぞれが受ける前記衝撃力の総和の水平分布を求める演算部をさらに備える。 The impact force measuring device according to the fifth aspect is an impact force measuring device according to any one of the second to fourth aspects, wherein a plurality of the measuring units are arranged in a plan view, and the plurality of the measuring units are arranged. Each of the measuring units measures the total of the impact forces, and the impact force measuring device further includes a calculation unit for obtaining the horizontal distribution of the total of the impact forces received by each of the plurality of measuring units.

第6の態様に係る衝撃力測定装置は、第から第5の何れか1つの態様に係る衝撃力測定装置であって、前記測定部は、前記液受部の下部に隣接する圧電素子である。 The impact force measuring device according to the sixth aspect is an impact force measuring device according to any one of the second to fifth aspects, and the measuring unit is a piezoelectric element adjacent to the lower part of the liquid receiving unit. is there.

第7の態様に係る衝撃力測定装置は、第から第6の何れか1つの態様に係る衝撃力測定装置であって、前記液受部は、前記多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面を含み、前記傾斜面によって前記多数の液滴を受ける。 The impact force measuring device according to the seventh aspect is the impact force measuring device according to any one of the second to sixth aspects, and the liquid receiving unit relates to the ejection direction of a large number of droplets. It includes a flat inclined surface that is inclined at an angle, and receives the large number of droplets by the inclined surface.

第8の態様に係る衝撃力測定装置は、第1の態様または第7の態様に係る衝撃力測定装置であって、前記傾斜面の傾斜角度は、水平面に対して5度〜45度である。 The impact force measuring device according to the eighth aspect is the impact force measuring device according to the first aspect or the seventh aspect, and the inclination angle of the inclined surface is 5 degrees to 45 degrees with respect to the horizontal plane. ..

第9の態様に係る衝撃力測定装置は、第から第6の何れか1つの態様に係る衝撃力測定装置であって、前記液受部は、前記多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、前記入口開口から前記周壁部に囲まれた空間に入った前記多数の液滴を受けるとともに、受けた多数の液滴からなる液体を前記空間に貯留可能なように前記周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備え、前記周壁部には、前記空間内の液体のうち前記底壁部から所定の高さを超える液体を前記容器から排出可能な排出口が設けられている。 The impact force measuring device according to the ninth aspect is an impact force measuring device according to any one of the second to sixth aspects, and the liquid receiving portion has an inlet opening at which a large number of droplets enter. It is possible to receive the large number of droplets that have entered the space surrounded by the peripheral wall portion from the entrance opening and the tubular peripheral wall portion formed in the above, and to store the liquid composed of the received large number of droplets in the space. A container including a bottom wall portion that closes the opening at the other end of the peripheral wall portion is provided, and the peripheral wall portion is filled with a liquid that exceeds a predetermined height from the bottom wall portion among the liquids in the space. A discharge port that can be discharged from the container is provided.

第10の態様に係る衝撃力測定装置は、第1から第8の何れか1つの態様に係る衝撃力測定装置であって、所定の基板が薄肉化された基部と、一主面が、前記基部の一主面に対向して取り付けられているとともに、貫通孔が設けられている薄板状のスペーサーと、をさらに備え、前記測定部は、前記基部の前記一主面の一部と、前記スペーサーの前記貫通孔の内周壁とによって囲まれる凹み部に設けられた歪みゲージと、前記凹み部に設けられ、前記歪みゲージの出力を記憶可能なメモリと、を含み、当該衝撃力測定装置は、前記基部の周縁部に設けられ、前記メモリに記憶された前記歪みゲージの出力を外部に出力可能な端子をさらに備え、前記液受部は、前記基板が薄肉化された薄板であるとともに、前記歪みゲージと接触して前記凹み部を塞ぎ、前記基部と重なり合うように前記スペーサーの他主面に接合されている。
第11の態様に係る衝撃力測定装置は、多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定装置であって、前記ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定部と、を備える。前記液受部は、前記多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、前記入口開口から前記周壁部に囲まれた空間に入った前記多数の液滴を受けるとともに、受けた多数の液滴からなる液体を前記空間に貯留可能なように前記周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備え、前記周壁部には、前記空間内の液体のうち前記底壁部から所定の高さを超える液体を前記容器から排出可能な排出口が設けられている。
第12の態様に係る衝撃力測定装置は、多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定装置であって、前記ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定部と、を備える。第12の態様に係る衝撃力測定装置は、所定の基板が薄肉化された基部と、一主面が、前記基部の一主面に対向して取り付けられているとともに、貫通孔が設けられている薄板状のスペーサーと、をさらに備え、前記測定部は、前記基部の前記一主面の一部と、前記スペーサーの前記貫通孔の内周壁とによって囲まれる凹み部に設けられた歪みゲージと、前記凹み部に設けられ、前記歪みゲージの出力を記憶可能なメモリと、を含み、当該衝撃力測定装置は、前記基部の周縁部に設けられ、前記メモリに記憶された前記歪みゲージの出力を外部に出力可能な端子をさらに備え、前記液受部は、前記基板が薄肉化された薄板であるとともに、前記歪みゲージと接触して前記凹み部を塞ぎ、前記基部と重なり合うように前記スペーサーの他主面に接合されている。
The impact force measuring device according to the tenth aspect is the impact force measuring device according to any one of the first to eighth aspects, wherein the base portion in which a predetermined substrate is thinned and one main surface are described above. A thin plate-shaped spacer which is attached to one main surface of the base portion and is provided with a through hole is further provided, and the measuring unit includes a part of the one main surface of the base portion and the said one. The impact force measuring device includes a strain gauge provided in a recess portion surrounded by the inner peripheral wall of the through hole of the spacer and a memory provided in the recess portion and capable of storing the output of the strain gauge. A terminal provided on the peripheral edge of the base portion and capable of outputting the output of the strain gauge stored in the memory to the outside is further provided, and the liquid receiving portion is a thin plate in which the substrate is thinned. It comes into contact with the strain gauge to close the recessed portion, and is joined to the other main surface of the spacer so as to overlap the base portion.
The impact force measuring device according to the eleventh aspect is an impact force for measuring the impact force applied to the substrate by the nozzle capable of ejecting a large number of droplets to the main surface of the substrate held horizontally. A measuring device, a liquid receiving unit that receives a large number of droplets ejected by the nozzle toward a large number of locations, and a measuring unit that measures the total impact force that the liquid receiving unit receives from the large number of droplets. , Equipped with. The liquid receiving portion receives the tubular peripheral wall portion having an inlet opening for entering the large number of droplets at one end and the large number of droplets entering the space surrounded by the peripheral wall portion from the inlet opening. In addition, a container including a bottom wall portion that closes the opening at the other end of the peripheral wall portion so that a liquid composed of a large number of received droplets can be stored in the space is provided, and the peripheral wall portion is provided in the space. A discharge port is provided so that a liquid having a height exceeding a predetermined height from the bottom wall portion can be discharged from the container.
The impact force measuring device according to the twelfth aspect is an impact force for measuring the impact force applied to the substrate by a nozzle capable of ejecting a large number of droplets and ejected onto the main surface of the substrate held horizontally. A measuring device, a liquid receiving unit that receives a large number of droplets ejected by the nozzle toward a large number of locations, and a measuring unit that measures the total impact force that the liquid receiving unit receives from the large number of droplets. , Equipped with. In the impact force measuring device according to the twelfth aspect, a base portion in which a predetermined substrate is thinned and one main surface are attached so as to face one main surface of the base portion, and a through hole is provided. A thin plate-shaped spacer is further provided, and the measuring portion includes a strain gauge provided in a recessed portion surrounded by a part of the one main surface of the base portion and an inner peripheral wall of the through hole of the spacer. The impact force measuring device includes a memory provided in the recessed portion and capable of storing the output of the strain gauge, and the impact force measuring device is provided in the peripheral portion of the base portion and stored in the memory. The liquid receiving portion is a thin plate in which the substrate is thinned, and the spacer is provided so as to contact the strain gauge to close the recessed portion and overlap the base portion. It is joined to the other main surface.

第1の態様に係る基板処理装置は、第1から第1の何れか1つの態様に係る衝撃力測定装置と、基板を略水平姿勢で保持しつつ回転可能な回転保持機構と、対象物の多数の箇所に当たるように処理液の多数の液滴を吐出可能なノズルと、前記基板の主面における多数の箇所に当たるように前記ノズルが多数の液滴を吐出可能な第1位置と、前記衝撃力測定装置の前記液受部における多数の箇所に当たるように前記ノズルが多数の液滴を吐出可能な第2位置との間で前記ノズルを移動させるノズル移動機構と、を備える。 The substrate processing apparatus according to the embodiment of the first 3, an impact force measuring apparatus according to the first to 1 2 in any one embodiment, a rotatable rotation holding mechanism while holding a substantially horizontal position of the substrate, the subject A nozzle capable of ejecting a large number of droplets of the treatment liquid so as to hit a large number of parts of an object, and a first position capable of ejecting a large number of droplets so as to hit a large number of parts on the main surface of the substrate. A nozzle moving mechanism for moving the nozzle to and from a second position where the nozzle can eject a large number of droplets is provided so as to hit a large number of locations in the liquid receiving portion of the impact force measuring device.

第1の態様に係る衝撃力測定方法は、多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定方法であって、前記ノズルが多数の箇所に向けて吐出した多数の液滴を受けることができる液受部によって多数の液滴を受ける液受ステップと、前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定ステップと、を備える。前記液受ステップは、前記多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面によって前記多数の液滴を受けるステップである。 Impact Impact force measuring method according to the aspect of the first 4, the nozzles capable of discharging a plurality of droplets, the droplets ejected into the main surface of the substrate which is held horizontally to measure the impact force applied to the substrate In a force measuring method, a liquid receiving step in which a large number of droplets are received by a liquid receiving portion capable of receiving a large number of droplets ejected by the nozzle toward a large number of locations, and a liquid receiving portion in which the liquid receiving portion receives a large number of droplets. It includes a measurement step for measuring the total impact force received from the droplet. The liquid receiving step is a step of receiving the large number of droplets by a flat inclined surface that is inclined obliquely with respect to the ejection direction of the large number of droplets.

第1の態様に係る衝撃力測定方法は、多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定方法であって、前記ノズルが多数の箇所に向けて吐出した多数の液滴を受けることができる液受部によって多数の液滴を受ける液受ステップと、前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定ステップと、を備える。第15の態様に係る衝撃力測定方法は、前記衝撃力の総和と前記多数の液滴の平均速度との対応関係を示す対応情報に基づき、前記測定ステップにおいて測定された前記衝撃力の総和から前記多数の液滴の平均速度を演算する演算ステップ、を更に備える。 Impact Impact force measuring method according to the aspect of the first 5, in which the nozzles capable of discharging a plurality of droplets, the droplets ejected into the main surface of the substrate which is held horizontally to measure the impact force applied to the substrate In a force measuring method, a liquid receiving step in which a large number of droplets are received by a liquid receiving portion capable of receiving a large number of droplets ejected by the nozzle toward a large number of locations, and a liquid receiving portion in which the liquid receiving portion receives a large number of droplets. It includes a measurement step for measuring the total impact force received from the droplet. The impact force measuring method according to the fifteenth aspect is based on the correspondence information indicating the correspondence relationship between the sum of the impact forces and the average velocity of the large number of droplets, and is based on the sum of the impact forces measured in the measurement step. A calculation step for calculating the average velocity of the large number of droplets is further provided.

第1の態様に係る衝撃力測定方法は、第1の態様に係る衝撃力測定方法であって、前記演算ステップは、前記多数の液滴の平均速度の時間的変化を演算するステップである。 Impact force measuring method according to the aspect of the first 6 is an impact force measuring method according to the aspect of the first 5, wherein the calculating step is a step of calculating a temporal change in the average speed of the plurality of droplets is there.

第1の態様に係る衝撃力測定方法は、第1または第1の態様に係る衝撃力測定方法であって、前記対応情報が、前記ノズルの吐出穴径ごと、または前記多数の液滴の液の種類ごとに異なる。 Impact force measuring method according to the aspect of the first 7, a shock measuring method according to the first 5 or aspects of the first 6, wherein the correspondence information, each discharge hole diameter of the nozzle, or the large number of liquid It depends on the type of liquid in the drop.

第1の態様に係る衝撃力測定方法は、第1から第1の何れか1つの態様に係る衝撃力測定方法であって、前記液受ステップが、平面視において前記液受部に定められる複数の領域の各領域における多数の箇所に向けて吐出される多数の液滴を各領域によって受けるステップであり、前記測定ステップが、当該液受部の前記各領域が受ける衝撃力の総和を測定するステップであり、当該衝撃力測定方法は、前記各領域が受ける前記衝撃力の総和の水平分布を求める演算ステップをさらに備える。 Impact force measuring method according to the aspect of the first 8 is an impact force measuring method from the first 5 according to any one aspect of the first 7, wherein the liquid受Su step is, the liquid receiving portion in a plan view It is a step of receiving a large number of droplets ejected toward a large number of points in each region of the plurality of regions defined in the above by each region, and the measurement step is a step of receiving an impact force received by each region of the liquid receiving portion. It is a step of measuring the total, and the impact force measuring method further includes a calculation step of obtaining a horizontal distribution of the total of the impact forces received by each region.

第1の態様に係る衝撃力測定方法は、第1から第1の何れか1つの態様に係る衝撃力測定方法であって、前記測定ステップは前記液受部の下部に隣接する圧電素子によって、前記衝撃力の総和を測定するステップである。 Impact force measuring method according to the aspect of the first 9, piezoelectric an impact force measuring method from the first 5 according to any one aspect of the first 8, wherein the measuring step adjacent the bottom of the liquid receiving part This is a step of measuring the total impact force by the element.

20の態様に係る衝撃力測定方法は、第1から第1の何れか1つの態様に係る衝撃力測定方法であって、前記液受ステップは、前記多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面によって前記多数の液滴を受けるステップである。 Impact force measuring method according to a twentieth aspect is the impact force measurement method from the first 5 according to any one aspect of the first 9, wherein the liquid receiving step, the discharge direction of the plurality of droplets This is a step of receiving the large number of droplets by a flat inclined surface that is inclined obliquely.

21の態様に係る衝撃力測定方法は、第14の態様または20の態様に係る衝撃力測定方法であって、前記傾斜面の傾斜角度は、水平面に対して5度〜45度である。 The impact force measuring method according to the 21st aspect is the impact force measuring method according to the 14th aspect or the 20th aspect, and the inclination angle of the inclined surface is 5 degrees to 45 degrees with respect to the horizontal plane. ..

第2の態様に係る衝撃力測定方法は、第1から第1の何れか1つの態様に係る衝撃力測定方法であって、前記液受部は、前記多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、前記入口開口から前記周壁部に囲まれた空間に入った前記多数の液滴を受けるとともに、受けた前記多数の液滴からなる液体を前記空間に貯留可能なように前記周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備え、前記周壁部には、前記空間内の液体のうち前記底壁部から所定の高さを超える液体を前記容器から排出可能な排出口が設けられており、前記液受ステップは、前記入口開口から前記周壁部に囲まれた前記空間に入った前記多数の液滴からなる液体のうち前記底壁部から所定の高さを超える液体を前記排出口から前記容器外に排出しつつ、残りの液体を前記容器に貯留するステップである。
第23の態様に係る衝撃力測定方法は、多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定方法であって、前記ノズルが多数の箇所に向けて吐出した多数の液滴を受けることができる液受部によって多数の液滴を受ける液受ステップと、前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定ステップと、を備える。前記液受部は、前記多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、前記入口開口から前記周壁部に囲まれた空間に入った前記多数の液滴を受けるとともに、受けた前記多数の液滴からなる液体を前記空間に貯留可能なように前記周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備え、前記周壁部には、前記空間内の液体のうち前記底壁部から所定の高さを超える液体を前記容器から排出可能な排出口が設けられており、前記液受ステップは、前記入口開口から前記周壁部に囲まれた前記空間に入った前記多数の液滴からなる液体のうち前記底壁部から所定の高さを超える液体を前記排出口から前記容器外に排出しつつ、残りの液体を前記容器に貯留するステップである。
Impact force measuring method according to a second second aspect, there is provided a shock measuring method from the first 5 according to any one aspect of the first 9, wherein the liquid receiving portion, an inlet in which the number of droplets enter A tubular peripheral wall portion having an opening formed at one end and a large number of droplets that have entered the space surrounded by the peripheral wall portion from the entrance opening are received, and a liquid composed of the large number of the received droplets is applied. A container including a bottom wall portion that closes the opening at the other end of the peripheral wall portion so that the liquid can be stored in the space is provided, and the peripheral wall portion has a predetermined height from the bottom wall portion of the liquid in the space. A discharge port capable of discharging a liquid exceeding the above amount from the container is provided, and the liquid receiving step is a liquid composed of a large number of droplets entering the space surrounded by the peripheral wall portion from the inlet opening. This is a step of storing the remaining liquid in the container while discharging the liquid exceeding a predetermined height from the bottom wall portion to the outside of the container from the discharge port.
In the impact force measuring method according to the 23rd aspect, the impact force for measuring the impact force applied to the substrate by the nozzle capable of ejecting a large number of droplets onto the main surface of the substrate held horizontally. In the measuring method, a liquid receiving step in which a large number of droplets are received by a liquid receiving portion capable of receiving a large number of droplets ejected by the nozzle toward a large number of locations, and a liquid receiving portion in which the liquid receiving portion receives the large number of liquids. It includes a measurement step for measuring the total impact force received from the drop. The liquid receiving portion receives the tubular peripheral wall portion having an inlet opening for entering the large number of droplets at one end and the large number of droplets entering the space surrounded by the peripheral wall portion from the inlet opening. Along with this, a container including a bottom wall portion that closes the opening at the other end of the peripheral wall portion so that the received liquid composed of a large number of droplets can be stored in the space is provided, and the peripheral wall portion is provided with the space. A discharge port capable of discharging a liquid exceeding a predetermined height from the bottom wall portion among the liquids in the container is provided, and the liquid receiving step is surrounded by the peripheral wall portion from the inlet opening. In the step of storing the remaining liquid in the container while discharging the liquid exceeding a predetermined height from the bottom wall portion of the liquid composed of the large number of droplets that has entered the space to the outside of the container from the discharge port. is there.

第2の態様に係る衝撃力測定方法は、第1から第2の何れか1つの態様に係る衝撃力測定方法であって、前記測定ステップは、前記多数の液滴から前記液受部が受ける前記衝撃力の総和を測定部によって測定するステップであり、前記液受部は、所定の基板が薄肉化された薄板であり、前記液受ステップは、前記薄板の一主面によって前記多数の液滴を受けるステップであり、前記測定ステップは、前記薄板の他主面に取り付けられた歪みゲージによって前記薄板が前記多数の液滴から受ける衝撃力の総和を測定するステップである。 Impact force measuring method according to a second fourth aspect is a impact force measuring method of the first 4 according to the second third or one embodiment, the measuring step, the water receiver from the plurality of droplets It is a step of measuring the total impact force received by the unit by the measuring unit, the liquid receiving unit is a thin plate in which a predetermined substrate is thinned, and the liquid receiving step is the step of measuring the liquid receiving step by one main surface of the thin plate. It is a step of receiving a large number of droplets, and the measurement step is a step of measuring the total impact force that the thin plate receives from the large number of droplets by a strain gauge attached to the other main surface of the thin plate.

第2の態様に係る基板処理方法は、第1から第2の何れか1つの態様に係る衝撃力測定方法を備える基板処理方法であって、基板を略水平姿勢で保持しつつ回転させる回転ステップと、対象物の多数の箇所に当たるように処理液の多数の液滴を吐出可能なノズルによって、前記基板の主面における多数の箇所に前記多数の液滴を吐出する吐出ステップと、を備え、前記液受ステップは、前記ノズルから吐出される前記多数の液滴を前記液受部によって受けるステップである。 The substrate processing method according to the aspect of the second 5, the first 4 to a substrate processing method comprising an impact force measuring method according to any one aspect of the second 4, while holding the substrate substantially in a horizontal attitude rotation A rotary step for discharging a large number of droplets to a large number of locations on the main surface of the substrate by a nozzle capable of ejecting a large number of droplets of the treatment liquid so as to hit a large number of locations on the object. The liquid receiving step is a step of receiving the large number of droplets discharged from the nozzle by the liquid receiving unit.

第1の態様に係る発明、第2の態様に係る発明、第11の態様に係る発明、第12の態様に係る発明によれば、衝撃力測定装置は、ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、液受部が多数の液滴から受ける衝撃力の総和を測定する測定部と、を備える。従って、各液滴が液受部に当たる際の各衝撃力をまとめて測定できるので、多数の液滴が基板に与える衝撃力を容易に測定できる。 According to the invention according to the first aspect, the invention according to the second aspect, the invention according to the eleventh aspect, and the invention according to the twelfth aspect , the impact force measuring device ejects nozzles toward a large number of places. It is provided with a liquid receiving unit that receives a large number of droplets and a measuring unit that measures the total impact force that the liquid receiving unit receives from a large number of droplets. Therefore, since each impact force when each droplet hits the liquid receiving portion can be measured collectively, the impact force applied to the substrate by a large number of droplets can be easily measured.

第2の態様に係る発明によれば、演算部は、衝撃力の総和と多数の液滴の平均速度との対応関係を示す対応情報に基づいて、測定部により測定された衝撃力の総和から多数の液滴の平均速度を演算することができる。 According to the invention according to the second aspect, the calculation unit is based on the total impact force measured by the measurement unit based on the correspondence information indicating the correspondence relationship between the total impact force and the average velocity of a large number of droplets. The average velocity of a large number of droplets can be calculated.

第3の態様に係る発明によれば、演算部は、多数の液滴の平均速度の時間的変化を演算することができる。 According to the invention according to the third aspect, the calculation unit can calculate the time change of the average velocity of a large number of droplets.

第4の態様に係る発明によれば、対応情報が、ノズルの吐出穴径ごと、または多数の液滴の液の種類ごとに異なるので、多数の液滴の平均速度を、ノズルの吐出穴径、または多数の液滴の液の種類に応じて、より正確に演算することができる。 According to the invention according to the fourth aspect, since the corresponding information differs depending on the discharge hole diameter of the nozzle or the liquid type of a large number of droplets, the average velocity of a large number of droplets is set to the discharge hole diameter of the nozzle. , Or depending on the type of liquid in a large number of droplets, it can be calculated more accurately.

第5の態様に係る発明によれば、演算部が、複数の測定部のそれぞれが受ける衝撃力の総和の水平分布を求めることができる。 According to the invention according to the fifth aspect, the calculation unit can obtain the horizontal distribution of the total sum of the impact forces received by each of the plurality of measurement units.

第1の態様に係る発明、第7の態様に係る発明によれば、液受部は、多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面を含み、傾斜面によって多数の液滴を受ける。これにより、吐出された多数の液滴が傾斜面の上に形成する液膜の厚みの変動を抑制できる。従って、液膜の厚みの変動によって衝撃力の総和の測定結果が変動することを抑制できる。 The invention according to the first aspect, according to the invention of the seventh aspect, the liquid receiving part comprises a flat inclined surface which is inclined obliquely relative to the direction of ejection of the plurality of droplets, a number of the inclined surfaces Receive droplets. As a result, it is possible to suppress fluctuations in the thickness of the liquid film formed on the inclined surface by a large number of ejected droplets. Therefore, it is possible to suppress fluctuations in the measurement result of the total impact force due to fluctuations in the thickness of the liquid film.

11の態様に係る発明によれば、液受部は、多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備える。周壁部には、周壁部に囲まれた空間内の液体のうち底壁部から所定の高さを超える液体を容器から排出可能な排出口が設けられている。これにより、容器に溜まる液体の量を一定に保ちつつ、容器に溜まった当該液体を介して容器が多数の液滴から受ける衝撃力の総和を測定することができる。従って、容器に溜まる処理液の量の変動によって、衝撃力の総和の測定結果が変動することを抑制できる。 According to the invention according to the eleventh aspect, the liquid receiving portion includes a tubular peripheral wall portion having an inlet opening for a large number of droplets formed at one end and a bottom wall portion that closes the opening at the other end of the peripheral wall portion. A container containing, is provided. The peripheral wall portion is provided with a discharge port capable of discharging the liquid in the space surrounded by the peripheral wall portion, which exceeds a predetermined height from the bottom wall portion, from the container. This makes it possible to measure the total impact force received by the container from a large number of droplets through the liquid collected in the container while keeping the amount of the liquid accumulated in the container constant. Therefore, it is possible to suppress fluctuations in the measurement result of the total impact force due to fluctuations in the amount of the treatment liquid accumulated in the container.

第1の態様に係る発明によれば、衝撃力測定装置の液受部と測定部とを含む部分の形状および大きさを、所定の基板の形状および大きさと同じにすることができる。従って、衝撃力測定装置の液受部が多数の液滴から衝撃力を受けている状態を、所定の基板が多数の液滴から衝撃力を受けている状態に近づけて、液受部が多数の液滴から受ける衝撃力の総和を測定できる。 According to the invention according to the first and second aspects, the shape and size of the portion including the liquid receiving portion and the measuring portion of the impact force measuring device can be made the same as the shape and size of a predetermined substrate. Therefore, the state in which the liquid receiving portion of the impact force measuring device receives the impact force from a large number of droplets is brought closer to the state in which the predetermined substrate receives the impact force from a large number of droplets, and the liquid receiving portion has a large number. The total impact force received from the droplets can be measured.

第1の態様に係る発明によれば、基板処理装置は、基板の主面における多数の箇所に当たるようにノズルが多数の液滴を吐出可能な第1位置と、衝撃力測定装置の液受部における多数の箇所に当たるようにノズルが多数の液滴を吐出可能な第2位置との間でノズルを移動させることができる。従って、ノズルを基板処理装置から取り外すことなく、基板が多数の液滴から受ける衝撃力の総和を測定できる。 According to the present invention in accordance with aspects of the first 3, the substrate processing apparatus, Eki受of nozzles to strike the plurality of locations a first position capable of ejecting multiple droplets impact force measuring device in the main surface of the substrate The nozzle can be moved to and from a second position where the nozzle can eject a large number of droplets so as to hit a large number of locations in the section. Therefore, the total impact force received by the substrate from a large number of droplets can be measured without removing the nozzle from the substrate processing apparatus.

第1の態様に係る発明、第15の態様に係る発明、第23の態様に係る発明によれば、衝撃力測定方法は、ノズルが多数の箇所に向けて吐出した多数の液滴を受けることができる液受部によって多数の液滴を受ける液受ステップと、液受部が多数の液滴から受ける衝撃力の総和を測定する測定ステップと、を備える。従って、各液滴が液受部に当たる際の各衝撃力をまとめて測定できるので、多数の液滴が基板に与える衝撃力を容易に測定できる。 The invention according to an aspect of the first 4, the invention according to a fifteenth aspect of the invention according to the 23rd aspect of the impact force measuring method, the nozzle is subjected to a large number of droplets ejected toward the multiple locations It includes a liquid receiving step for receiving a large number of droplets by a liquid receiving unit capable of receiving the liquid, and a measuring step for measuring the total impact force received by the liquid receiving unit from the large number of droplets. Therefore, since each impact force when each droplet hits the liquid receiving portion can be measured collectively, the impact force applied to the substrate by a large number of droplets can be easily measured.

第2の態様に係る発明によれば、基板処理方法は、基板の主面における多数の箇所にノズルから多数の液滴を吐出する吐出ステップと、ノズルから吐出される多数の液滴を液受部によって受ける液受ステップとを備える。従って、ノズルを基板処理装置から取り外すことなく、基板が多数の液滴から受ける衝撃力の総和を測定できる。 According to the invention according to the fifth aspect, the substrate processing method includes a discharge step of ejecting a large number of droplets from a nozzle to a large number of locations on the main surface of the substrate, and a liquid discharge of a large number of droplets discharged from the nozzle. It is provided with a liquid receiving step that is received by the receiving unit. Therefore, the total impact force received by the substrate from a large number of droplets can be measured without removing the nozzle from the substrate processing apparatus.

実施形態に係る衝撃力測定装置を備える基板処理装置の構成例を説明するための側面模式図である。It is a side schematic diagram for demonstrating the structural example of the substrate processing apparatus which includes the impact force measuring apparatus which concerns on embodiment. 図1の基板処理装置の構成例を説明するための平面模式図である。It is a plane schematic diagram for demonstrating the structural example of the substrate processing apparatus of FIG. 液滴の吐出速度と、図1の衝撃力測定装置による衝撃力の測定結果との関係の一例をグラフ形式で示す図である。It is a figure which shows an example of the relationship between the ejection speed of a droplet and the measurement result of the impact force by the impact force measuring apparatus of FIG. 図3に示されるグラフの一部の拡大図である。It is an enlarged view of a part of the graph shown in FIG. 多数の液滴の欠落の有無と、図1の衝撃力測定装置による衝撃力の測定結果との関係の一例をグラフ形式で示す図である。It is a figure which shows an example of the relationship between the presence or absence of lack of a large number of droplets, and the measurement result of the impact force by the impact force measuring apparatus of FIG. 図1の衝撃力測定装置の液受部を水平姿勢にしたときの、液滴の吐出速度と、衝撃力測定装置による衝撃力の測定結果との関係の一例をグラフ形式で示す図である。FIG. 3 is a graph showing an example of the relationship between the ejection speed of droplets and the measurement result of the impact force by the impact force measuring device when the liquid receiving portion of the impact force measuring device of FIG. 1 is in the horizontal posture. 実施形態に係る衝撃力測定装置の他の構成例を説明するための側面模式図である。It is a side schematic diagram for demonstrating another configuration example of the impact force measuring apparatus which concerns on embodiment. 実施形態に係る衝撃力測定装置の他の構成例を説明するための平面模式図である。It is a plane schematic diagram for demonstrating another configuration example of the impact force measuring apparatus which concerns on embodiment. 図8の衝撃力測定装置の側面断面図の一部を拡大して示す図である。It is an enlarged view which shows a part of the side sectional view of the impact force measuring apparatus of FIG. 実施形態に係る基板処理装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the substrate processing apparatus which concerns on embodiment. 実施形態に係る衝撃力測定装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the impact force measuring apparatus which concerns on embodiment. 実施形態に係る衝撃力測定装置の動作の他の例を示すフローチャートである。It is a flowchart which shows other example of the operation of the impact force measuring apparatus which concerns on embodiment.

以下、図面を参照しながら、実施の形態について説明する。以下の実施の形態は、本発明を具体化した一例であり、本発明の技術的範囲を限定する事例ではない。また、以下に参照する各図では、理解容易のため、各部の寸法や数が誇張または簡略化して図示されている場合がある。上下方向は鉛直方向であり、スピンチャックに対して基板側が上である。 Hereinafter, embodiments will be described with reference to the drawings. The following embodiments are examples that embody the present invention, and are not examples that limit the technical scope of the present invention. Further, in each figure referred to below, the dimensions and numbers of each part may be exaggerated or simplified for easy understanding. The vertical direction is the vertical direction, and the substrate side is above the spin chuck.

<1.基板処理装置1の全体構成>
基板処理装置1の構成について、図1、図2を参照しながら説明する。図1、図2は、実施形態に係る基板処理装置1の構成を説明するための図である。基板処理装置1は、実施形態に係る衝撃力測定装置100を備えている。図1、図2は、基板処理装置1の側面模式図、平面模式図である。図2では、基板処理装置1の構成要素のうち制御部130、飛散防止部4等の一部の構成要素の記載は省略されている。
<1. Overall configuration of substrate processing device 1>
The configuration of the substrate processing apparatus 1 will be described with reference to FIGS. 1 and 2. 1 and 2 are diagrams for explaining the configuration of the substrate processing apparatus 1 according to the embodiment. The substrate processing device 1 includes the impact force measuring device 100 according to the embodiment. 1 and 2 are a schematic side view and a schematic plan view of the substrate processing device 1. In FIG. 2, among the components of the substrate processing device 1, the description of some components such as the control unit 130 and the shatterproof unit 4 is omitted.

図1、図2では、ノズル51が退避位置(「第2位置」)に配置された状態で、衝撃力測定装置100の本体部70の上方からノズル51が本体部70に多数の液滴L2を吐出している状態が示されている。また、図1、図2では、ノズル51が基板9の上面中央部の上方の位置に配置された状態で、スピンチャック21によって回転軸a1周りに所定の回転方向(矢印AR1の方向)に回転している基板9の主面に多数の液滴L2を吐出している状態が仮想線で示されている。当該ノズル51は、処理液L1の多数の液滴L2を基板9の主面である上面に吐出している。ノズル51が基板9に対して液滴L2を吐出する際には、通常、ノズル移動機構3が、基板9の上面中央部の上方の位置と、基板9の周縁部の上方の位置との間で、経路T1に沿ってノズル51を走査する。基板9の主面は、回転保持機構2に保持された基板9の上面である場合に限られず、下面であってもよい。基板9の主面が下面である場合には、ノズル移動機構3が、基板9の下面中央部の下方の位置と、基板9の周縁部の下方の位置との間で、所定の経路に沿ってノズル51を走査し、ノズル51は、上向きに液滴L2を吐出する。 In FIGS. 1 and 2, in a state where the nozzle 51 is arranged at the retracted position (“second position”), a large number of droplets L2 are placed on the main body 70 from above the main body 70 of the impact force measuring device 100. The state of discharging is shown. Further, in FIGS. 1 and 2, in a state where the nozzle 51 is arranged at a position above the center of the upper surface of the substrate 9, the spin chuck 21 rotates around the rotation axis a1 in a predetermined rotation direction (direction of arrow AR1). A state in which a large number of droplets L2 are ejected onto the main surface of the substrate 9 is shown by a virtual line. The nozzle 51 discharges a large number of droplets L2 of the treatment liquid L1 onto the upper surface which is the main surface of the substrate 9. When the nozzle 51 ejects the droplet L2 to the substrate 9, the nozzle moving mechanism 3 is usually between a position above the center of the upper surface of the substrate 9 and a position above the peripheral edge of the substrate 9. The nozzle 51 is scanned along the path T1. The main surface of the substrate 9 is not limited to the case where it is the upper surface of the substrate 9 held by the rotation holding mechanism 2, and may be the lower surface. When the main surface of the substrate 9 is the lower surface, the nozzle moving mechanism 3 follows a predetermined path between the position below the center of the lower surface of the substrate 9 and the position below the peripheral edge of the substrate 9. The nozzle 51 is scanned, and the nozzle 51 discharges the droplet L2 upward.

基板9の表面形状は略円形である。基板9の基板処理装置1への搬入搬出は、ノズル51がノズル移動機構3によって待避位置に配置された状態で、ロボット等により行われる。基板処理装置1に搬入された基板9は、スピンチャック21により着脱自在に保持される。 The surface shape of the substrate 9 is substantially circular. The loading / unloading of the substrate 9 into the substrate processing device 1 is performed by a robot or the like with the nozzle 51 arranged at the shelter position by the nozzle moving mechanism 3. The substrate 9 carried into the substrate processing device 1 is detachably held by the spin chuck 21.

基板処理装置1は、回転保持機構2、ノズル移動機構3、飛散防止部4、処理部5、衝撃力測定装置100および制御部130を備える。これら各部2〜5は、制御部130と電気的に接続されており、制御部130からの指示に応じて動作する。衝撃力測定装置100は、本体部70を含む。本体部70は、処理部5のノズル51が本体部70に向けて多数の液滴L2を吐出する際に、多数の液滴L2から受ける衝撃力の総和を測定する。本体部70は、制御部130と電気的に接続されており、本体部70が測定した衝撃力は、制御部130に供給されて、制御部130によって処理される。制御部130は、衝撃力測定装置100の演算部としても動作する。 The substrate processing device 1 includes a rotation holding mechanism 2, a nozzle moving mechanism 3, a scattering prevention unit 4, a processing unit 5, an impact force measuring device 100, and a control unit 130. Each of these units 2 to 5 is electrically connected to the control unit 130 and operates in response to an instruction from the control unit 130. The impact force measuring device 100 includes a main body 70. The main body 70 measures the total impact force received from the large number of droplets L2 when the nozzle 51 of the processing unit 5 ejects a large number of droplets L2 toward the main body 70. The main body 70 is electrically connected to the control 130, and the impact force measured by the main body 70 is supplied to the control 130 and processed by the control 130. The control unit 130 also operates as a calculation unit of the impact force measuring device 100.

<2.基板処理装置1の各部の構成>
<回転保持機構2>
回転保持機構2は、基板9を、その一方の主面を上方に向けた状態で、略水平姿勢に保持しつつ回転可能な機構である。回転保持機構2は、基板9を、主面の中心c1を通る鉛直な回転軸a1を中心に回転させる。回転保持機構2は、ノズル51が処理液L1を吐出しているときは、例えば、200rpm〜400rpmの回転速度で基板9を回転させる。
<2. Configuration of each part of the substrate processing device 1>
<Rotation holding mechanism 2>
The rotation holding mechanism 2 is a mechanism capable of rotating the substrate 9 while holding the substrate 9 in a substantially horizontal posture with one main surface facing upward. The rotation holding mechanism 2 rotates the substrate 9 around the vertical rotation axis a1 passing through the center c1 of the main surface. When the nozzle 51 discharges the processing liquid L1, the rotation holding mechanism 2 rotates the substrate 9 at a rotation speed of, for example, 200 rpm to 400 rpm.

回転保持機構2は、スピンチャック(「保持部材」、「基板保持部」)21を備える。スピンチャック21は、基板9より若干大きい円板状の部材であるスピンベース21aと、スピンベース21aの周縁部付記に設けられた複数のチャックピン21bとを備える。チャックピン21bは、円形の基板9を確実に保持するために3個以上設けてあればよく、スピンベース21aの周縁部に沿って等角度間隔で配置されている。各チャックピン21bは、基板9の周縁部を下方から支持する基板支持部と、基板支持部に支持された周縁部をその側方から基板9の中心側に押圧して基板9を保持する周縁保持部とを備えている。各チャックピン21bは、周縁保持部が基板9の周縁部を押圧する押圧状態と、周縁保持部が周縁部から離れる解放状態との間を切り替え可能に構成されている。 The rotation holding mechanism 2 includes a spin chuck (“holding member”, “board holding portion”) 21. The spin chuck 21 includes a spin base 21a, which is a disk-shaped member slightly larger than the substrate 9, and a plurality of chuck pins 21b provided in the peripheral portion of the spin base 21a. Three or more chuck pins 21b may be provided in order to securely hold the circular substrate 9, and the chuck pins 21b are arranged at equal angular intervals along the peripheral edge of the spin base 21a. Each chuck pin 21b has a substrate support portion that supports the peripheral edge portion of the substrate 9 from below, and a peripheral edge that presses the peripheral edge portion supported by the substrate support portion from the side toward the center side of the substrate 9 to hold the substrate 9. It has a holding part. Each chuck pin 21b is configured to be switchable between a pressing state in which the peripheral edge holding portion presses the peripheral edge portion of the substrate 9 and an open state in which the peripheral edge holding portion is separated from the peripheral edge portion.

スピンベース21aに対して基板9が受渡しされる際には、基板処理装置1は、複数個のチャックピン21bを解放状態とし、基板9に対して処理液による処理を行う際には、複数個のチャックピン21bを押圧状態とする。押圧状態とすることによって、複数個のチャックピン21bは、基板9の周縁部を把持して基板9をスピンベース21aから所定間隔を隔てて略水平姿勢に保持することができる。これにより、基板9はその表面(パターン形成面)を上方に向け、下面を下方に向けた状態で上面、下面の中心を回転軸a1が通るように支持される。チャックピン21bの動作は、制御部130によって制御される。 When the substrate 9 is delivered to the spin base 21a, the substrate processing apparatus 1 releases a plurality of chuck pins 21b, and when the substrate 9 is treated with the processing liquid, a plurality of chuck pins 21b are released. The chuck pin 21b of is pressed. By setting the pressing state, the plurality of chuck pins 21b can grip the peripheral edge portion of the substrate 9 and hold the substrate 9 in a substantially horizontal posture at a predetermined distance from the spin base 21a. As a result, the substrate 9 is supported so that the rotation axis a1 passes through the center of the upper surface and the lower surface with its surface (pattern forming surface) facing upward and the lower surface facing downward. The operation of the chuck pin 21b is controlled by the control unit 130.

スピンベース21aは、その上面が略水平となり、その中心軸が回転軸a1に一致するように設けられている。スピンベース21aの下面には、円筒状の回転軸部22が連結されている。回転軸部22は、その軸線を鉛直方向に沿わすような姿勢で配置される。回転軸部22の軸線は、回転軸a1と一致する。また、回転軸部22には、回転駆動部(例えば、サーボモータ)23が接続される。回転駆動部23は、回転軸部22をその軸線まわりに回転駆動する。従って、スピンチャック21は、回転軸部22とともに回転軸a1を中心に回転可能である。回転駆動部23と回転軸部22とは、スピンチャック21を、回転軸a1を中心に回転させる回転機構231である。回転保持機構2は、回転機構231も備えている。回転軸部22および回転駆動部23は、筒状のケーシング24内に収容されている。 The spin base 21a is provided so that its upper surface is substantially horizontal and its central axis coincides with the rotation axis a1. A cylindrical rotating shaft portion 22 is connected to the lower surface of the spin base 21a. The rotating shaft portion 22 is arranged in a posture such that its axis is along the vertical direction. The axis of the rotating shaft portion 22 coincides with the rotating shaft a1. Further, a rotation drive unit (for example, a servomotor) 23 is connected to the rotation shaft unit 22. The rotation drive unit 23 rotationally drives the rotation shaft unit 22 around its axis. Therefore, the spin chuck 21 can rotate about the rotation shaft a1 together with the rotation shaft portion 22. The rotation drive unit 23 and the rotation shaft unit 22 are rotation mechanisms 231 that rotate the spin chuck 21 around the rotation shaft a1. The rotation holding mechanism 2 also includes a rotation mechanism 231. The rotary shaft portion 22 and the rotary drive portion 23 are housed in a tubular casing 24.

この構成において、スピンチャック21が基板9を吸着保持した状態で、回転駆動部23が回転軸部22を回転すると、スピンチャック21が鉛直方向に沿った軸線周りで回転される。これによって、スピンチャック21上に保持された基板9が、その面内の中心c1を通る鉛直な回転軸a1を中心に矢印AR1方向に回転される。スピンチャック21として、基板9の下面を吸着保持する真空チャック式のスピンチャックが採用されてもよい。 In this configuration, when the rotation drive unit 23 rotates the rotation shaft portion 22 while the spin chuck 21 sucks and holds the substrate 9, the spin chuck 21 is rotated around the axis along the vertical direction. As a result, the substrate 9 held on the spin chuck 21 is rotated in the direction of arrow AR1 about the vertical rotation axis a1 passing through the center c1 in the plane thereof. As the spin chuck 21, a vacuum chuck type spin chuck that attracts and holds the lower surface of the substrate 9 may be adopted.

<ノズル移動機構3>
ノズル移動機構3は、回転保持機構2による基板9の保持位置よりも上方で略水平に延在するアーム35と、アーム35を移動させるアーム移動機構30とを備える。ノズル移動機構3は、基板9の主面における多数の箇所に当たるようにノズル51が多数の液滴L2を吐出可能な基板9の上面中央部の上方の位置(「第1位置」)と、衝撃力測定装置100の液受部71における多数の箇所に当たるようにノズル51が多数の液滴L2を吐出可能な退避位置(「第2位置」)との間でノズル51を移動させる。基板9の主面が基板9の下面である場合には、第1位置は、基板9の下面中央部の下方の位置となる。
<Nozzle movement mechanism 3>
The nozzle moving mechanism 3 includes an arm 35 extending substantially horizontally above the holding position of the substrate 9 by the rotation holding mechanism 2 and an arm moving mechanism 30 for moving the arm 35. The nozzle moving mechanism 3 has an impact (“first position”) above the center of the upper surface of the substrate 9 on which the nozzle 51 can eject a large number of droplets L2 so as to hit a large number of locations on the main surface of the substrate 9. The nozzle 51 moves the nozzle 51 to and from a retracted position (“second position”) where the nozzle 51 can eject a large number of droplets L2 so as to hit a large number of locations in the liquid receiving portion 71 of the force measuring device 100. When the main surface of the substrate 9 is the lower surface of the substrate 9, the first position is a position below the central portion of the lower surface of the substrate 9.

アーム移動機構30は、アーム35の一端を支持して鉛直方向に延設されているアーム支持軸33と、アーム支持軸33に結合された昇降駆動機構31および回転駆動機構32とを備えている。アーム35の他端(先端)からロッド36が下方に向けて延設されている。ロッド36の先端には、ノズル51が取り付けられている。アーム移動機構30は、アーム35を移動することによって、アーム35と一体的にノズル51を移動させる。 The arm moving mechanism 30 includes an arm support shaft 33 that supports one end of the arm 35 and extends in the vertical direction, and an elevating drive mechanism 31 and a rotation drive mechanism 32 coupled to the arm support shaft 33. .. A rod 36 extends downward from the other end (tip) of the arm 35. A nozzle 51 is attached to the tip of the rod 36. The arm moving mechanism 30 moves the nozzle 51 integrally with the arm 35 by moving the arm 35.

昇降駆動機構31は、アーム35を昇降可能に構成されている。昇降駆動機構31の駆動力をアーム支持軸33に伝達してアーム支持軸33を昇降させることにより、アーム35とノズル51とを一体的に昇降させる。昇降駆動機構31は、例えば、サーボモーターと、その回転を直線運動に変換してアーム支持軸33に伝達するボールネジなどを備えて構成される。 The elevating drive mechanism 31 is configured to be able to elevate the arm 35. By transmitting the driving force of the elevating drive mechanism 31 to the arm support shaft 33 to raise and lower the arm support shaft 33, the arm 35 and the nozzle 51 are integrally raised and lowered. The elevating drive mechanism 31 includes, for example, a servomotor and a ball screw that converts its rotation into a linear motion and transmits the rotation to the arm support shaft 33.

回転駆動機構32は、その駆動力をアーム支持軸33に伝達してアーム支持軸33を、回転軸線a3を中心に回転させる。回転軸線a3は、アーム支持軸33に沿って上下方向に延在する。アーム35は、回転軸線a3を中心に水平面に沿って回転可能に構成されている。アーム35の回転により、ノズル51は、回転軸線a3を中心にアーム35と一体的に回転する。図2は、ノズル51が、基板9の上面中央部の上方の位置から基板9の回転範囲外に設定されたノズル51の待機位置の上方を通る略円弧状の経路T1に沿って移動させられる例を示している。衝撃力測定装置100の本体部70は、基板9の回転範囲外に設けられている。回転駆動機構32は、例えば、サーボモーターと、その回転をアーム支持軸33に伝達するギア機構などを備えて構成される。 The rotation drive mechanism 32 transmits the driving force to the arm support shaft 33 to rotate the arm support shaft 33 about the rotation axis a3. The rotation axis a3 extends in the vertical direction along the arm support shaft 33. The arm 35 is configured to be rotatable along a horizontal plane about the rotation axis a3. Due to the rotation of the arm 35, the nozzle 51 rotates integrally with the arm 35 about the rotation axis a3. In FIG. 2, the nozzle 51 is moved from a position above the center of the upper surface of the substrate 9 along a substantially arcuate path T1 passing above the standby position of the nozzle 51 set outside the rotation range of the substrate 9. An example is shown. The main body 70 of the impact force measuring device 100 is provided outside the rotation range of the substrate 9. The rotation drive mechanism 32 includes, for example, a servomotor and a gear mechanism that transmits the rotation to the arm support shaft 33.

ノズル移動機構3は、ノズル51が基板9の上面の多数の箇所に当たるように処理液L1の多数の液滴L2を吐出している状態において、ノズル51を水平面内で移動させることができる。これにより、ノズル51による基板9の上面の処理が行われる。 The nozzle moving mechanism 3 can move the nozzle 51 in a horizontal plane in a state where a large number of droplets L2 of the processing liquid L1 are discharged so that the nozzle 51 hits a large number of points on the upper surface of the substrate 9. As a result, the nozzle 51 processes the upper surface of the substrate 9.

このように、ノズル移動機構3は、ノズル51を昇降させることができるとともに、水平面内で経路T1に沿って移動させることもできる。 In this way, the nozzle moving mechanism 3 can move the nozzle 51 up and down and also move it along the path T1 in the horizontal plane.

<飛散防止部4>
飛散防止部4は、基板9に供給された処理液L1の飛散を抑制するためのスプラッシュガード(「カップ」)41を備えている。スプラッシュガード41は、上端部分が上方に向かって縮径している筒状の部材である。スプラッシュガード41の上端の径は、基板9およびケーシング24の径よりも若干大きい。スプラッシュガード41は、図示しない昇降機構によって上端が基板9よりも上方に位置する上方位置と、上端が基板9よりも下方の退避位置との間で昇降される。ノズル51が基板9の上面に向けて処理液L1を吐出するときは、スプラッシュガード41は、上方位置に配置されて、基板9の周縁から排出される処理液L1を内壁面によって受け止める。受け止められた処理液L1は、スプラッシュガード41の下方に設けられた図示しないドレイン配管を介して定められた容器等に回収される。
<Scattering prevention unit 4>
The scattering prevention unit 4 includes a splash guard (“cup”) 41 for suppressing scattering of the processing liquid L1 supplied to the substrate 9. The splash guard 41 is a tubular member whose upper end portion is reduced in diameter upward. The diameter of the upper end of the splash guard 41 is slightly larger than the diameter of the substrate 9 and the casing 24. The splash guard 41 is raised and lowered between an upper position where the upper end is located above the substrate 9 and a retracted position where the upper end is below the substrate 9 by an elevating mechanism (not shown). When the nozzle 51 discharges the treatment liquid L1 toward the upper surface of the substrate 9, the splash guard 41 is arranged at an upper position and receives the treatment liquid L1 discharged from the peripheral edge of the substrate 9 by the inner wall surface. The received treatment liquid L1 is collected in a specified container or the like via a drain pipe (not shown) provided below the splash guard 41.

<処理部5>
処理部5は、スピンチャック21上に保持された基板9に対する処理を行う。具体的には、処理部5は、スピンチャック21上に保持された基板9の上面の多数の箇所に当たるように、ノズル51から処理液L1の多数の液滴L2を吐出する。処理部5は、ノズル51と、ノズル51に処理液L1を供給する処理液供給機構55と、電圧印加機構57を備えている。
<Processing unit 5>
The processing unit 5 processes the substrate 9 held on the spin chuck 21. Specifically, the processing unit 5 ejects a large number of droplets L2 of the processing liquid L1 from the nozzle 51 so as to hit a large number of locations on the upper surface of the substrate 9 held on the spin chuck 21. The processing unit 5 includes a nozzle 51, a processing liquid supply mechanism 55 that supplies the processing liquid L1 to the nozzle 51, and a voltage application mechanism 57.

ノズル51は、処理液供給機構55から供給される処理液L1ノズル51の内部に導く流路52と、流路52に連通し、流路52に導入された処理液L1を多数の液滴として吐出するための多数の管状の吐出口53を含む。流路52は、処理液L1を供給する配管56によって処理液供給機構55と接続されている。各吐出口53は、鉛直方向に延在している。吐出口53の一端は、ノズル51の下端面に開口しており、他端は、流路52に連通している。 The nozzle 51 uses a flow path 52 that leads to the inside of the treatment liquid L1 nozzle 51 supplied from the treatment liquid supply mechanism 55 and a treatment liquid L1 that communicates with the flow path 52 and is introduced into the flow path 52 as a large number of droplets. Includes a number of tubular outlets 53 for ejection. The flow path 52 is connected to the processing liquid supply mechanism 55 by a pipe 56 for supplying the processing liquid L1. Each discharge port 53 extends in the vertical direction. One end of the discharge port 53 opens to the lower end surface of the nozzle 51, and the other end communicates with the flow path 52.

処理液供給機構55は、ノズル51に処理液L1を供給する。処理液供給機構55は、具体的には、配管56に連通する処理液供給源(不図示)と、処理液供給源から配管56への処理液L1の流出を制御する開閉弁(不図示)とを含む。開閉弁の開閉は、制御部130により制御される。開閉弁が開くと処理液供給機構55から配管56に処理液L1が供給され、開閉弁が閉じると、処理液L1の供給が停止される。 The treatment liquid supply mechanism 55 supplies the treatment liquid L1 to the nozzle 51. Specifically, the treatment liquid supply mechanism 55 includes a treatment liquid supply source (not shown) communicating with the pipe 56 and an on-off valve (not shown) that controls the outflow of the treatment liquid L1 from the treatment liquid supply source to the pipe 56. And include. The opening and closing of the on-off valve is controlled by the control unit 130. When the on-off valve is opened, the processing liquid L1 is supplied from the processing liquid supply mechanism 55 to the pipe 56, and when the on-off valve is closed, the supply of the processing liquid L1 is stopped.

処理液L1として、例えば、えば、純水(deionized water:脱イオン水)炭酸水、水素水などの洗浄液が用いられる。処理液L1として、SPM、SC−1、DHF、SC−2などの薬液が用いられてもよい。 As the treatment liquid L1, for example, a cleaning liquid such as pure water (deionized water) carbonated water or hydrogen water is used. As the treatment liquid L1, a chemical solution such as SPM, SC-1, DHF, or SC-2 may be used.

ノズル51は、また、その内部に配置された圧電素子54を含んでいる。圧電素子54は、配線58を介して電圧印加機構57に接続されている。電圧印加機構57は、たとえば、インバータを含む機構である。電圧印加機構57は、交流電圧を圧電素子54に印加する。交流電圧が圧電素子54に印加されると、印加された交流電圧の周波数に対応する周波数で圧電素子54が振動する。制御部130は、電圧印加機構57を制御することにより、圧電素子54に印加される交流電圧の周波数を任意の周波数(たとえば、数百KHz〜数MHz)に変更することができる。 The nozzle 51 also includes a piezoelectric element 54 arranged therein. The piezoelectric element 54 is connected to the voltage application mechanism 57 via the wiring 58. The voltage application mechanism 57 is, for example, a mechanism including an inverter. The voltage application mechanism 57 applies an AC voltage to the piezoelectric element 54. When an AC voltage is applied to the piezoelectric element 54, the piezoelectric element 54 vibrates at a frequency corresponding to the frequency of the applied AC voltage. By controlling the voltage application mechanism 57, the control unit 130 can change the frequency of the AC voltage applied to the piezoelectric element 54 to an arbitrary frequency (for example, several hundred KHz to several MHz).

処理液供給機構55がノズル51に処理液L1を供給している状態で、電圧印加機構57が圧電素子54に交流電圧を印加すると、圧電素子54が振動し、流路52を流れる処理液L1に圧電素子54の振動が付与される。各吐出口53から吐出される処理液L1は、この振動によって分断されて、液滴L2として各吐出口53から吐出される。これにより、ノズル51は、多数の吐出口53から粒径が均一な多数の液滴L2を均一な速度で同時に吐出できる。ノズル51は、基板9(「対象物」)の多数の箇所に当たるように多数の液滴L2を吐出可能である。 When the voltage application mechanism 57 applies an AC voltage to the piezoelectric element 54 while the processing liquid supply mechanism 55 supplies the processing liquid L1 to the nozzle 51, the piezoelectric element 54 vibrates and the processing liquid L1 flows through the flow path 52. The vibration of the piezoelectric element 54 is applied to. The processing liquid L1 discharged from each discharge port 53 is divided by this vibration and discharged as droplets L2 from each discharge port 53. As a result, the nozzle 51 can simultaneously eject a large number of droplets L2 having a uniform particle size from a large number of ejection ports 53 at a uniform speed. The nozzle 51 can eject a large number of droplets L2 so as to hit a large number of locations on the substrate 9 (“object”).

基板処理装置1が、ノズル51による基板9の上面への多数の液滴L2の吐出と並行して、純水をカバーリンスとして基板9の上面に吐出するノズルをさらに備えてもよい。 The substrate processing device 1 may further include a nozzle that discharges pure water as a cover rinse onto the upper surface of the substrate 9 in parallel with the ejection of a large number of droplets L2 onto the upper surface of the substrate 9 by the nozzle 51.

<衝撃力測定装置100>
衝撃力測定装置100は、本体部70を備える。本体部70は、液受部71と、測定部72とを備える。液受部71は、扁平な板状部材である。液受部71は、その多数の箇所に向けて吐出される多数の液滴L2を受ける。測定部72は、液受部71が多数の液滴L2から受ける衝撃力の総和を測定する。測定部72としては、例えば、歪みゲージ式ロードセルなどが採用される。液受部71が受けた衝撃力は、測定部72に伝達され、測定部72に歪みが発生する。測定部72は、当該歪みを電気信号に変換する。測定部72が測定した測定結果は、不図示の配線を介して制御部130のCPU11に供給される。測定部72として、液受部71の下部に隣接する圧電素子が採用されてもよい。
<Impact force measuring device 100>
The impact force measuring device 100 includes a main body 70. The main body 70 includes a liquid receiving unit 71 and a measuring unit 72. The liquid receiving portion 71 is a flat plate-shaped member. The liquid receiving unit 71 receives a large number of droplets L2 ejected toward the large number of locations. The measuring unit 72 measures the total impact force received by the liquid receiving unit 71 from a large number of droplets L2. As the measuring unit 72, for example, a strain gauge type load cell or the like is adopted. The impact force received by the liquid receiving unit 71 is transmitted to the measuring unit 72, causing distortion in the measuring unit 72. The measuring unit 72 converts the distortion into an electric signal. The measurement result measured by the measuring unit 72 is supplied to the CPU 11 of the control unit 130 via a wiring (not shown). As the measuring unit 72, a piezoelectric element adjacent to the lower part of the liquid receiving unit 71 may be adopted.

図1に示される例では、液受部71と測定部72とは、取り付け部材73を介して、例えば、ネジ止め等によって、互いに取り付けられている。本体部70の測定部72が出力する測定結果を制御部130のCPU11が処理する場合には、衝撃力測定装置100は、制御部130を含む。 In the example shown in FIG. 1, the liquid receiving unit 71 and the measuring unit 72 are attached to each other via the attachment member 73, for example, by screwing or the like. When the CPU 11 of the control unit 130 processes the measurement result output by the measurement unit 72 of the main body 70, the impact force measuring device 100 includes the control unit 130.

制御部130のCPU11は、例えば、対応情報199に基づいて、測定部72により測定された衝撃力の総和から多数の液滴L2の平均速度を演算する。対応情報199は、衝撃力の総和と多数の液滴L2の平均速度との対応関係を示す情報である。対応情報199は、予め設定されて、記憶装置14に予め記憶されている。CPU11は、多数の液滴L2の平均速度を演算する際に、記憶装置14から対応情報199を読み出す。また、CPU11は、演算した平均速度をRAMなどに順次に記憶することによって、多数の液滴L2の平均速度の時間的変化を演算することもできる。ノズル51の吐出穴径ごと、または多数の液滴L2の液の種類ごとに異なった複数の対応情報199が記憶装置14に記憶されてもよい。また、測定部72が測定した衝撃力の総和と、多数の液滴L2の平均速度と、多数の液滴L2が与える平均の衝撃力との三者間の相互の対応関係を予め取得して対応情報199として記憶装置14に記憶しておき、CPU11が、測定部72が測定した衝撃力の総和から多数の液滴L2の平均速度を演算するのみならず、多数の液滴L2が与える平均の衝撃力を演算してもよい。 The CPU 11 of the control unit 130 calculates the average velocity of a large number of droplets L2 from the sum of the impact forces measured by the measurement unit 72, for example, based on the correspondence information 199. Correspondence information 199 is information showing the correspondence relationship between the total impact force and the average velocity of a large number of droplets L2. Correspondence information 199 is preset and stored in the storage device 14. The CPU 11 reads the correspondence information 199 from the storage device 14 when calculating the average velocity of a large number of droplets L2. Further, the CPU 11 can also calculate the time change of the average speed of a large number of droplets L2 by sequentially storing the calculated average speed in the RAM or the like. A plurality of corresponding information 199s different for each discharge hole diameter of the nozzle 51 or for each type of liquid of a large number of droplets L2 may be stored in the storage device 14. Further, the total impact force measured by the measuring unit 72, the average velocity of the large number of droplets L2, and the average impact force given by the large number of droplets L2 are obtained in advance from each other. It is stored in the storage device 14 as the correspondence information 199, and the CPU 11 not only calculates the average velocity of a large number of droplets L2 from the sum of the impact forces measured by the measuring unit 72, but also the average given by the large number of droplets L2. The impact force of may be calculated.

液受部71は、多数の液滴L2の吐出方向に対して斜めに傾斜する扁平な傾斜面71aを含む。傾斜面71aの傾斜角度は、好ましくは、例えば、水平面に対して5度〜45度に設定される。衝撃力測定装置100は、傾斜面71aによって多数の液滴L2を受ける。なお、液受部71が水平姿勢で保持されて、液受部71が多数の液滴L2から受ける衝撃力の測定が行われてもよい。 The liquid receiving portion 71 includes a flat inclined surface 71a that is inclined obliquely with respect to the ejection direction of a large number of droplets L2. The inclination angle of the inclined surface 71a is preferably set to, for example, 5 degrees to 45 degrees with respect to the horizontal plane. The impact force measuring device 100 receives a large number of droplets L2 by the inclined surface 71a. The liquid receiving portion 71 may be held in a horizontal position, and the impact force received by the liquid receiving portion 71 from a large number of droplets L2 may be measured.

<制御部130>
基板処理装置1は、その各部の制御のために制御部130を備えている。制御部130のハードウエアとしての構成は、例えば、一般的なコンピュータと同様のものを採用できる。すなわち、制御部130は、例えば、各種演算処理を行うCPU(「演算部」)11、基本プログラムを記憶する読み出し専用のメモリであるROM(不図示)、各種情報を記憶する読み書き自在のメモリであるRAM(不図示)、操作者の入力を受け付ける入力部(不図示)、および各種処理に対応したプログラムPGや、後述する対応情報199などを記憶しておく磁気ディスクなどの記憶装置14を不図示のバスラインに接続して構成されている。
<Control unit 130>
The substrate processing device 1 includes a control unit 130 for controlling each unit thereof. As the hardware configuration of the control unit 130, for example, the same configuration as that of a general computer can be adopted. That is, the control unit 130 is, for example, a CPU (“calculation unit”) 11 that performs various arithmetic processes, a ROM (not shown) that is a read-only memory that stores basic programs, and a readable / writable memory that stores various information. A storage device 14 such as a RAM (not shown), an input unit (not shown) that accepts an operator's input, a program PG corresponding to various processes, and a magnetic disk for storing correspondence information 199 described later is not used. It is configured by connecting to the bus line shown in the figure.

制御部130において、プログラムPGに記述された手順に従って主制御部としてのCPU11が演算処理を行うことにより、基板処理装置1の各部を制御若しくは、衝撃力測定装置100の本体部70の測定結果の処理を行う各種の機能部が実現される。 In the control unit 130, the CPU 11 as the main control unit performs arithmetic processing according to the procedure described in the program PG to control each part of the substrate processing device 1 or the measurement result of the main body 70 of the impact force measuring device 100. Various functional units that perform processing are realized.

回転保持機構2、ノズル移動機構3、飛散防止部4、処理部5などの基板処理装置1の各部は、制御部130の制御に従って動作を行う。 Each part of the substrate processing device 1 such as the rotation holding mechanism 2, the nozzle moving mechanism 3, the scattering prevention unit 4, and the processing unit 5 operates according to the control of the control unit 130.

<3.液滴L2の吐出速度と、衝撃力の測定結果>
図3は、ノズル51が吐出する液滴L2の吐出速度と、衝撃力測定装置100による衝撃力の測定結果との関係の一例をグラフ形式で示す図である。図4は、図3に示されるグラフの一部の拡大図である。
<3. Droplet L2 ejection velocity and impact force measurement results>
FIG. 3 is a graph showing an example of the relationship between the ejection speed of the droplet L2 ejected by the nozzle 51 and the measurement result of the impact force by the impact force measuring device 100. FIG. 4 is an enlarged view of a part of the graph shown in FIG.

図5は、多数の液滴L2の欠落の有無と、衝撃力測定装置100による衝撃力の測定結果との関係の一例をグラフ形式で示す図である。 FIG. 5 is a graph showing an example of the relationship between the presence or absence of a large number of droplets L2 missing and the measurement result of the impact force by the impact force measuring device 100.

図6は、衝撃力測定装置100の液受部71を水平姿勢にしたときの、液滴L2の吐出速度と、衝撃力測定装置100による衝撃力の測定結果との関係の一例をグラフ形式で示す図である。 FIG. 6 is a graph format showing an example of the relationship between the ejection speed of the droplet L2 and the measurement result of the impact force by the impact force measuring device 100 when the liquid receiving portion 71 of the impact force measuring device 100 is in the horizontal posture. It is a figure which shows.

図3(図4)、図6のグラフは、ノズル51が吐出する液滴L2の吐出速度を複数の速度に変更し、各速度において、多数の液滴L2から液受部71が受けた衝撃力の総和を測定部72によって測定した結果を示したものである。 The graphs of FIGS. 3 (4) and 6 show that the ejection speed of the droplet L2 ejected by the nozzle 51 is changed to a plurality of velocities, and at each velocity, the impact received by the liquid receiving portion 71 from a large number of droplets L2. The result of measuring the total force by the measuring unit 72 is shown.

図3、図4に示されるように、測定部72が傾斜面71aを備えて、液滴L2を傾斜面71aで受ける場合には、液受部71が各液滴L2から受ける衝撃力の総和と、液滴の吐出速度との関係は、吐出速度が増加すれば、衝撃力の総和も増加する関係となっている。また、図4に示されるように、吐出速度が、僅か1m/s変化した場合であっても、その変化は、衝撃力の差として測定できている。なお、図3、図4のグラフを得るための測定実験を3回繰り返したところ、各実験において測定された衝撃力の測定精度は、0.5mN以下であった。 As shown in FIGS. 3 and 4, when the measuring unit 72 has an inclined surface 71a and receives the droplet L2 on the inclined surface 71a, the sum of the impact forces received by the liquid receiving unit 71 from each droplet L2. The relationship between the droplet and the ejection speed is that as the ejection speed increases, the total impact force also increases. Further, as shown in FIG. 4, even when the discharge speed changes by only 1 m / s, the change can be measured as a difference in impact force. When the measurement experiments for obtaining the graphs of FIGS. 3 and 4 were repeated three times, the measurement accuracy of the impact force measured in each experiment was 0.5 mN or less.

また、図5のグラフは、ノズル51の多数の吐出口53のうち一部の吐出口53が詰まったことにより、ノズル51が吐出する多数の液滴L2のうち一部が欠落した場合に、その欠落を測定される衝撃力の差として検出できるか否かを確認した結果を示している。当該測定時には、2〜3個の液滴L2が欠落したときと、欠落していないときとで測定結果の比較を行っている。図5に示されるように、同時に吐出される多数の液滴のうち2〜3個の液滴が欠落した場合においても、衝撃力の差として検出できている。このことから、傾斜面71aが採用された場合には、傾斜面71a上に吐出された多数の液滴L2が形成する液膜の厚みが安定し、その結果、液滴L2の吐出速度の変化を衝撃力の変化として精度良く測定できていることが判る。 Further, the graph of FIG. 5 shows a case where a part of the large number of droplets L2 ejected by the nozzle 51 is missing due to the clogging of a part of the large number of discharge ports 53 of the nozzle 51. The result of confirming whether or not the lack can be detected as the difference of the measured impact force is shown. At the time of the measurement, the measurement results are compared between when two or three droplets L2 are missing and when they are not missing. As shown in FIG. 5, even when two or three droplets out of a large number of droplets ejected at the same time are missing, it can be detected as a difference in impact force. From this, when the inclined surface 71a is adopted, the thickness of the liquid film formed by a large number of droplets L2 ejected on the inclined surface 71a becomes stable, and as a result, the ejection speed of the droplet L2 changes. It can be seen that can be accurately measured as a change in impact force.

図6のグラフは、上述のように、液受部71を水平姿勢にしたときの、液滴L2の吐出速度と、液受部71が受けた衝撃力の測定結果を示している。図6に示されるように液滴L2の吐出速度が速い場合には、吐出速度の変化に対する、測定された衝撃力の変化が不安定となっている。これは、水性姿勢の液受部71上に、多数の液滴L2が形成する液膜の厚みが、吐出速度が高速になると、不安定になっていることの影響である。しかしながら、液受部71を水平姿勢にした場合においても、各液滴L2が液受部71に当たる際の各衝撃力をまとめて測定できるので、多数の液滴L2が液受部71に当たる際に液受部71が受ける衝撃力を容易に測定できている。従って、液受部71を水平姿勢にしたとしても、本発明の有用性を損なうものではない。 The graph of FIG. 6 shows the measurement results of the ejection speed of the droplet L2 and the impact force received by the liquid receiving portion 71 when the liquid receiving portion 71 is in the horizontal posture as described above. As shown in FIG. 6, when the ejection speed of the droplet L2 is high, the change in the measured impact force with respect to the change in the ejection speed is unstable. This is due to the fact that the thickness of the liquid film formed by a large number of droplets L2 on the liquid receiving portion 71 in the water-based posture becomes unstable when the discharge speed becomes high. However, even when the liquid receiving portion 71 is in the horizontal posture, each impact force when each droplet L2 hits the liquid receiving portion 71 can be measured collectively, so that when a large number of droplets L2 hit the liquid receiving portion 71, it can be measured. The impact force received by the liquid receiving unit 71 can be easily measured. Therefore, even if the liquid receiving portion 71 is placed in a horizontal position, the usefulness of the present invention is not impaired.

<4.衝撃力測定装置100の他の構成例について>
図7は、衝撃力測定装置100の本体部70の他の構成例として、本体部80の構成例を説明するための側面模式図である。図7は、本体部80の動作を説明するための図でもある。衝撃力測定装置100の本体部70に代えて、本体部80が採用されてもよい。
<4. About other configuration examples of the impact force measuring device 100>
FIG. 7 is a schematic side view for explaining a configuration example of the main body 80 as another configuration example of the main body 70 of the impact force measuring device 100. FIG. 7 is also a diagram for explaining the operation of the main body 80. The main body 80 may be adopted instead of the main body 70 of the impact force measuring device 100.

本体部80は、液受部81と、測定部82とを備える。液受部81は、多数の液滴L2が入る入口開口81cが一端に形成された筒状の周壁部81aと、入口開口81cから周壁部81aに囲まれた空間(「収容空間」)89に入った多数の液滴L2を受けるとともに、受けた多数の液滴L2からなる液体を空間89に貯留可能なように周壁部81aの他端の開口を塞ぐ底壁部81bと、を含む容器を備える。周壁部81aには、当該空間89内の液体のうち底壁部81bから所定の高さを超える液体を容器から排出可能な排出口81dが設けられている。測定部82は、例えば、液受部81の下部に隣接する圧電素子である。 The main body 80 includes a liquid receiving unit 81 and a measuring unit 82. The liquid receiving portion 81 is formed into a tubular peripheral wall portion 81a in which an inlet opening 81c into which a large number of droplets L2 enter is formed at one end, and a space (“accommodation space”) 89 surrounded by the peripheral wall portion 81a from the inlet opening 81c. A container containing a large number of contained droplets L2 and a bottom wall portion 81b that closes the opening at the other end of the peripheral wall portion 81a so that the liquid composed of the received large number of droplets L2 can be stored in the space 89. Be prepared. The peripheral wall portion 81a is provided with a discharge port 81d capable of discharging a liquid exceeding a predetermined height from the bottom wall portion 81b among the liquids in the space 89 from the container. The measuring unit 82 is, for example, a piezoelectric element adjacent to the lower part of the liquid receiving unit 81.

液受部81の空間89には、配管85を介して純水供給源84が連通されている。配管85の経路途中には、開閉弁86が設けられている。開閉弁86の開閉動作は、制御部130によって制御される。開閉弁86が開かれると、純水供給源84から純水が空間89に供給される。開閉弁86が閉じられると、空間89への純水の供給が停止される。 A pure water supply source 84 is communicated with the space 89 of the liquid receiving portion 81 via a pipe 85. An on-off valve 86 is provided in the middle of the path of the pipe 85. The opening / closing operation of the on-off valve 86 is controlled by the control unit 130. When the on-off valve 86 is opened, pure water is supplied to the space 89 from the pure water supply source 84. When the on-off valve 86 is closed, the supply of pure water to the space 89 is stopped.

また、液受部81の周壁部81aのうち、入口開口81cと底壁部81bとの間の部分には、ドレイン管87が接続されて空間89と連通している。ドレイン管87の周壁部81aにおける開口は、排出口81dである。ドレイン管87の経路途中には、開閉弁88が設けられている。開閉弁88の開閉動作は、制御部130によって制御される。 A drain pipe 87 is connected to a portion of the peripheral wall portion 81a of the liquid receiving portion 81 between the inlet opening 81c and the bottom wall portion 81b to communicate with the space 89. The opening in the peripheral wall portion 81a of the drain pipe 87 is the discharge port 81d. An on-off valve 88 is provided in the middle of the path of the drain pipe 87. The opening / closing operation of the on-off valve 88 is controlled by the control unit 130.

開閉弁88が開かれると、空間89に溜まった多数の液滴L2からなる液体のうち排出口81dの高さ、すなわち底壁部81bから所定の高さを超える液体は、排出口81dからドレイン管87を通って外部に排出される。開閉弁88が閉じられると、空間89内に溜まった液体は、入口開口81cから液受部81の外部に溢れ出ない限り、空間89に貯留される。 When the on-off valve 88 is opened, among the liquids composed of a large number of droplets L2 accumulated in the space 89, the liquid having a height of the discharge port 81d, that is, a liquid exceeding a predetermined height from the bottom wall portion 81b is drained from the discharge port 81d. It is discharged to the outside through the pipe 87. When the on-off valve 88 is closed, the liquid accumulated in the space 89 is stored in the space 89 unless it overflows from the inlet opening 81c to the outside of the liquid receiving portion 81.

以下に図7を参照して、衝撃力測定装置100の本体部80の動作を説明する。本体部80は、好ましくは、ノズル51の退避位置に設置される。開閉弁88は閉じられて、液受部81の空間89には、ドレイン管87の排出口81dよりも高い位置まで、純水供給源84から予め供給された純水が貯留されている。開閉弁86も閉じられている。 The operation of the main body 80 of the impact force measuring device 100 will be described below with reference to FIG. 7. The main body 80 is preferably installed at a retracted position of the nozzle 51. The on-off valve 88 is closed, and the space 89 of the liquid receiving portion 81 stores the pure water previously supplied from the pure water supply source 84 up to a position higher than the discharge port 81d of the drain pipe 87. The on-off valve 86 is also closed.

ノズル51が退避位置に移動された場合において、ノズル51が吐出する多数の液滴L2によって液受部81が受ける衝撃力の測定が行われない場合には、ノズル51の先端部は、空間89内の純水に浸漬される(図7のステップS201)。 When the nozzle 51 is moved to the retracted position and the impact force received by the liquid receiving portion 81 by the large number of droplets L2 ejected by the nozzle 51 is not measured, the tip portion of the nozzle 51 is a space 89. Immerse in the pure water inside (step S201 in FIG. 7).

この状態から、液受部81が受ける衝撃力の測定が行われる場合には、開閉弁88が開かれる。これにより、排出口81dを越えて空間89に貯留されている純水は、ドレイン管87から排出される。この結果、貯留された純水の水位は、排出口81dの高さまで低下する(ステップS202)。 From this state, when the impact force received by the liquid receiving unit 81 is measured, the on-off valve 88 is opened. As a result, the pure water stored in the space 89 beyond the discharge port 81d is discharged from the drain pipe 87. As a result, the water level of the stored pure water drops to the height of the discharge port 81d (step S202).

次に、ノズル51が処理液L1の多数の液滴L2の吐出を開始する。開閉弁88が開かれているので、ノズル51が多数の液滴L2を吐出している間も、空間89内の液体の高さは、排出口81dの高さに維持される。当該液体の表面に多数の液滴L2が当たると、液面が受けた衝撃が振動となって底壁部81bに到達し、測定部82によって振動の大きさ(衝撃力の大きさ)に応じた電気信号に変換される(ステップS203)。当該電気信号は、制御部130のCPU11に供給され、CPU11による処理に用いられる。 Next, the nozzle 51 starts ejecting a large number of droplets L2 of the treatment liquid L1. Since the on-off valve 88 is open, the height of the liquid in the space 89 is maintained at the height of the discharge port 81d even while the nozzle 51 discharges a large number of droplets L2. When a large number of droplets L2 hit the surface of the liquid, the impact received by the liquid surface becomes vibration and reaches the bottom wall portion 81b, and the measuring portion 82 responds to the magnitude of vibration (magnitude of impact force). It is converted into an electric signal (step S203). The electric signal is supplied to the CPU 11 of the control unit 130 and used for processing by the CPU 11.

衝撃力の測定中においても、空間89内の液面の高さは排出口81dの高さに維持されるので、液面の高さの変動によって、測定部82による衝撃力の測定結果が変動することを抑制できる。測定部82として、圧電素子に代えて、例えば、マイクロホンが採用されてもよい。この場合には、マイクロホンは、空間89内の液面に対向する位置に保持され、マイクロホンの出力が制御部130に供給される。 Since the height of the liquid level in the space 89 is maintained at the height of the discharge port 81d even during the measurement of the impact force, the measurement result of the impact force by the measuring unit 82 fluctuates due to the fluctuation of the liquid level. Can be suppressed. As the measuring unit 82, for example, a microphone may be adopted instead of the piezoelectric element. In this case, the microphone is held at a position facing the liquid surface in the space 89, and the output of the microphone is supplied to the control unit 130.

また、空間89内に貯留される液体の高さを一定に維持可能な他の手法として、開閉弁86、88を閉じた状態で、ノズル51から液滴L2を吐出し、空間89内の液体が入口開口81cから溢れでるのを待ってから、液受部81がうける衝撃力の測定を開始してもよい。 Further, as another method capable of maintaining the height of the liquid stored in the space 89 at a constant level, the liquid droplet L2 is discharged from the nozzle 51 with the on-off valves 86 and 88 closed, and the liquid in the space 89 is discharged. May start measuring the impact force received by the liquid receiving unit 81 after waiting for the liquid to overflow from the inlet opening 81c.

図8は、衝撃力測定装置100の本体部70の他の構成例として、本体部90の構成例を説明するための平面模式図である。図9は、衝撃力測定装置100の本体部90の側面断面図の一部を拡大して示す図である。図8は、スペーサー98の上に液受部91が接合される前の状態を示している。衝撃力測定装置100の本体部70に代えて、本体部90が採用されてもよい。 FIG. 8 is a schematic plan view for explaining a configuration example of the main body 90 as another configuration example of the main body 70 of the impact force measuring device 100. FIG. 9 is an enlarged view showing a part of a side sectional view of the main body 90 of the impact force measuring device 100. FIG. 8 shows a state before the liquid receiving portion 91 is joined onto the spacer 98. The main body 90 may be adopted instead of the main body 70 of the impact force measuring device 100.

本体部90は、液受部91と、測定部92と、スペーサー98と、基部94とを備えている。液受部91は、基板が薄肉化された薄板状の部材である。基部94も所定の基板が薄肉化された薄板状の部材である。スペーサー98は、樹脂等によって成型された薄板状の円形の部材である。スペーサー98には、スペーサー98の一主面から他主面に向けてスペーサー98を貫通する少なくとも1つ(図示の例では、13個)の貫通孔が設けられている。液受部91、基部94、およびスペーサー98の径は同じ大きさである。 The main body 90 includes a liquid receiving unit 91, a measuring unit 92, a spacer 98, and a base portion 94. The liquid receiving portion 91 is a thin plate-shaped member having a thin substrate. The base portion 94 is also a thin plate-shaped member in which a predetermined substrate is thinned. The spacer 98 is a thin plate-shaped circular member molded of resin or the like. The spacer 98 is provided with at least one (13 in the illustrated example) through holes that penetrate the spacer 98 from one main surface of the spacer 98 toward the other main surface. The diameters of the liquid receiving portion 91, the base portion 94, and the spacer 98 are the same.

スペーサー98は、その一主面が、基部94の一主面に対向して接触し、基部94とスペーサー98とが重なり合うように、接着剤などによって、基部94に取り付けられている。これにより、基部94の一主面の一部と、スペーサー98の貫通孔の内周壁98aとによって囲まれた凹み部94aが形成されている。測定部92は、当該凹み部94aに収容されるように設けられる。 The spacer 98 is attached to the base 94 by an adhesive or the like so that one main surface thereof contacts the one main surface of the base 94 so as to overlap the base 94 and the spacer 98. As a result, a recessed portion 94a surrounded by a part of one main surface of the base portion 94 and the inner peripheral wall 98a of the through hole of the spacer 98 is formed. The measuring unit 92 is provided so as to be housed in the recessed portion 94a.

測定部92は、歪みゲージ95と、歪みゲージ95の出力を記憶可能なメモリ96と、を含む。これらは、1つのチップとされてもよい。測定部92は、歪みゲージ95と、メモリ96との位置を安定させるとともに、歪みゲージ95を液受部91の下面に当接させるためのスペーサーとしても機能する緩衝材97も含んでいる。 The measuring unit 92 includes a strain gauge 95 and a memory 96 that can store the output of the strain gauge 95. These may be one chip. The measuring unit 92 also includes a cushioning material 97 that stabilizes the positions of the strain gauge 95 and the memory 96 and also functions as a spacer for bringing the strain gauge 95 into contact with the lower surface of the liquid receiving unit 91.

具体的には、凹み部94aの底面を成している基部94の一主面に、メモリ96と緩衝材97とが設けられる。そして、当該緩衝材97の上に、歪みゲージ95が設けられ、緩衝材97の上に他の緩衝材97が設けられている。スペーサー98の貫通孔は、歪みゲージ95と、メモリ96と、2つの緩衝材97とによって、隙間なく埋められている。歪みゲージ95の上面の高さは、スペーサー98の他主面(上面)と同じか、若しくは、若干高くなるように設定される。スペーサー98の凹み部94aに測定部92が設けられた状態で、スペーサー98の他主面に接着剤が塗布される。 Specifically, the memory 96 and the cushioning material 97 are provided on one main surface of the base portion 94 forming the bottom surface of the recessed portion 94a. A strain gauge 95 is provided on the cushioning material 97, and another cushioning material 97 is provided on the cushioning material 97. The through hole of the spacer 98 is completely filled with the strain gauge 95, the memory 96, and the two cushioning materials 97. The height of the upper surface of the strain gauge 95 is set to be the same as or slightly higher than the other main surface (upper surface) of the spacer 98. An adhesive is applied to the other main surface of the spacer 98 in a state where the measuring portion 92 is provided in the recessed portion 94a of the spacer 98.

接着剤を塗布されたスペーサー98の他主面の上に、スペーサー98の他主面と基部94の一主面とが重なり合うように液受部91が載置されて、スペーサー98に接合される。液受部91は、歪みゲージ95の一主面と接触して凹み部94aを塞ぎ、スペーサー98と測定部92とを間に挟んで基部94と重なり合うようにスペーサー98の他主面に接合される。製造された本体部90の厚みD1は、例えば、直径300mmの基板9の厚みである775μmとなる。 The liquid receiving portion 91 is placed on the other main surface of the spacer 98 coated with the adhesive so that the other main surface of the spacer 98 and one main surface of the base portion 94 overlap, and the liquid receiving portion 91 is joined to the spacer 98. .. The liquid receiving portion 91 contacts one main surface of the strain gauge 95 to close the recessed portion 94a, and is joined to the other main surface of the spacer 98 so as to overlap the base portion 94 with the spacer 98 and the measuring portion 92 sandwiched between them. To. The thickness D1 of the manufactured main body 90 is, for example, 775 μm, which is the thickness of the substrate 9 having a diameter of 300 mm.

歪みゲージ95とメモリ96とは電気的に接続され、歪みゲージ95の出力信号がメモリ96に蓄積される。また、基部94の周縁部には、メモリ96から延びる配線を介して端子99が設けられている。端子99は、メモリ96に記憶された歪みゲージ95の出力を外部に出力可能である。 The strain gauge 95 and the memory 96 are electrically connected, and the output signal of the strain gauge 95 is stored in the memory 96. Further, a terminal 99 is provided on the peripheral edge of the base 94 via a wiring extending from the memory 96. The terminal 99 can output the output of the distortion gauge 95 stored in the memory 96 to the outside.

本体部90は、本体部70、80と同様に、ノズル51の退避位置に設置されて使用されてもよいが、スピンチャック21に保持されている基板9に代えて、本体部90が保持された状態で、液受部91が受ける衝撃力の測定が行われてもよい。また、測定部92の歪みゲージ95に代えて、液受部91の下部に隣接する圧電素子が採用されてもよい。 The main body 90 may be installed and used at the retracted position of the nozzle 51 like the main bodies 70 and 80, but the main body 90 is held instead of the substrate 9 held by the spin chuck 21. In this state, the impact force received by the liquid receiving unit 91 may be measured. Further, instead of the strain gauge 95 of the measuring unit 92, a piezoelectric element adjacent to the lower part of the liquid receiving unit 91 may be adopted.

また、図8、図9に示されるように、本体部90が平面視において、複数の測定部92を備えている場合には、複数の測定部92のそれぞれが、各液受部91が受ける衝撃力の総和を測定をそれぞれ測定する。測定された各測定結果は、各測定部92に対応した各端子99から制御部130のCPU11に供給される。この際、各メモリ96は、各測定部92の位置情報も各端子99を経てCPU11に供給することができる。CPU11は、複数の測定部92の位置情報と液受部91が受けた衝撃力の総和とに基づいて、複数の測定部92のそれぞれが受けた衝撃力の総和の水平分布を求めることができる。 Further, as shown in FIGS. 8 and 9, when the main body 90 includes a plurality of measuring units 92 in a plan view, each of the plurality of measuring units 92 receives the liquid receiving unit 91. Measure the total impact force. Each of the measured measurement results is supplied to the CPU 11 of the control unit 130 from each terminal 99 corresponding to each measurement unit 92. At this time, each memory 96 can also supply the position information of each measurement unit 92 to the CPU 11 via each terminal 99. The CPU 11 can obtain the horizontal distribution of the total impact force received by each of the plurality of measurement units 92 based on the position information of the plurality of measurement units 92 and the total impact force received by the liquid receiving unit 91. ..

<基板処理装置1の動作>
図10は、基板処理装置1の動作の一例を示すフローチャートである。図10のフローチャートは、基板9がスピンチャック21に載置されていない状態で、先ず、ノズル51の吐出状態を確認した後に、基板9をスピンチャック21に載置して基板9に対する処理を行う場合の動作フローの一例を示している。以下に、図10のフローチャートについて説明する。
<Operation of board processing device 1>
FIG. 10 is a flowchart showing an example of the operation of the substrate processing device 1. In the flowchart of FIG. 10, in a state where the substrate 9 is not mounted on the spin chuck 21, the ejection state of the nozzle 51 is first confirmed, and then the substrate 9 is mounted on the spin chuck 21 to perform processing on the substrate 9. An example of the operation flow of the case is shown. The flowchart of FIG. 10 will be described below.

衝撃力測定装置100による衝撃力の測定に行う場合には、ノズル移動機構3は、衝撃力測定装置100の液受部71の上方にノズル51を配置し(図10のステップS10)、その後、ノズル51が処理液L1の多数の液滴L2を液受部71に吐出する(ステップS20)。ノズル51による多数の液滴L2の吐出が継続されている状態で、衝撃力測定装置100の本体部70は、液受部71が受ける衝撃力の測定処理を行う(ステップS30)。当該測定処理については、図11、図12を参照して後述する。ステップS30の測定処理が終了すると、ノズル51は、処理液L1の多数の液滴L2の吐出を停止し(ステップS40)、不図示のロボットが未処理の基板9を回転保持機構2のスピンチャック21に搬送して載置する(ステップS50)。 When the impact force is measured by the impact force measuring device 100, the nozzle moving mechanism 3 arranges the nozzle 51 above the liquid receiving portion 71 of the impact force measuring device 100 (step S10 in FIG. 10), and then, after that, The nozzle 51 discharges a large number of droplets L2 of the processing liquid L1 to the liquid receiving unit 71 (step S20). While the ejection of a large number of droplets L2 by the nozzle 51 is continued, the main body 70 of the impact force measuring device 100 performs a measurement process of the impact force received by the liquid receiving unit 71 (step S30). The measurement process will be described later with reference to FIGS. 11 and 12. When the measurement process in step S30 is completed, the nozzle 51 stops discharging a large number of droplets L2 of the processing liquid L1 (step S40), and a robot (not shown) rotates the unprocessed substrate 9 with the spin chuck of the rotation holding mechanism 2. It is transported to 21 and placed (step S50).

その後、ノズル移動機構3は、ノズル51を基板9の上方に配置し(ステップS60)、回転保持機構2は、スピンチャック21の回転を開始して、基板9の回転を開始させる(ステップS70)。処理部5は、ノズル51に処理液L1を供給してノズル51から多数の液滴L2を基板9の上面に吐出する(ステップS80)。基板9の処理が終了すると、処理部5は、ノズル51からの液滴L2の吐出を停止し(ステップS90)、回転保持機構2は、スピンチャック21の回転を停止して基板9の回転を停止する(ステップS100)。 After that, the nozzle moving mechanism 3 arranges the nozzle 51 above the substrate 9 (step S60), and the rotation holding mechanism 2 starts the rotation of the spin chuck 21 to start the rotation of the substrate 9 (step S70). .. The processing unit 5 supplies the processing liquid L1 to the nozzle 51 and discharges a large number of droplets L2 from the nozzle 51 onto the upper surface of the substrate 9 (step S80). When the processing of the substrate 9 is completed, the processing unit 5 stops the ejection of the droplet L2 from the nozzle 51 (step S90), and the rotation holding mechanism 2 stops the rotation of the spin chuck 21 to rotate the substrate 9. Stop (step S100).

<衝撃力測定装置100の動作>
図11は、衝撃力測定装置100による衝撃力の測定処理の動作の一例を示すフローチャートである。図12は衝撃力測定装置100の動作の他の例を示すフローチャートである。以下に、図11、図12のフローチャートについて説明する。
<Operation of impact force measuring device 100>
FIG. 11 is a flowchart showing an example of the operation of the impact force measurement process by the impact force measuring device 100. FIG. 12 is a flowchart showing another example of the operation of the impact force measuring device 100. The flowcharts of FIGS. 11 and 12 will be described below.

図11のフローチャートにおいては、衝撃力測定装置100は、ノズル51が吐出している多数の液滴L2を液受部71によって受けて(図11のステップS101)、測定部72によって、液受部71が多数の液滴L2から受けた衝撃力の総和を測定する(ステップS102)。測定結果は、制御部130のCPU11に供給される。 In the flowchart of FIG. 11, the impact force measuring device 100 receives a large number of droplets L2 ejected by the nozzle 51 by the liquid receiving unit 71 (step S101 of FIG. 11), and the measuring unit 72 receives the liquid receiving unit. The total impact force received by 71 from a large number of droplets L2 is measured (step S102). The measurement result is supplied to the CPU 11 of the control unit 130.

CPU11は、記憶装置14に記憶されている衝撃力の総和と多数の液滴L2の平均速度との対応関係を示す対応情報199を記憶装置14から読み出して、対応情報199に基づいて、測定部72により測定された衝撃力の総和から多数の液滴L2の平均速度を演算する(ステップS103)。CPU11は、例えば、測定開始から所定時間が経過したか否かを判定する(ステップS104)、該判定の結果、所定の時間が経過していなければ、処理をステップS101に戻して、衝撃力の測定を繰り返す。該判定の結果、所定時間が経過していれば、CPU11は、時間的に順次に計算された各平均速度に基づいて、液滴L2の平均速度の時間的変化を演算する(ステップS105)。 The CPU 11 reads out the correspondence information 199 indicating the correspondence relationship between the total impact force stored in the storage device 14 and the average velocity of a large number of droplets L2 from the storage device 14, and the measurement unit is based on the correspondence information 199. The average velocity of a large number of droplets L2 is calculated from the sum of the impact forces measured by 72 (step S103). For example, the CPU 11 determines whether or not a predetermined time has elapsed from the start of measurement (step S104), and as a result of the determination, if the predetermined time has not elapsed, the process is returned to step S101 to reduce the impact force. Repeat the measurement. As a result of the determination, if a predetermined time has elapsed, the CPU 11 calculates a temporal change in the average velocity of the droplet L2 based on each average velocity calculated sequentially in time (step S105).

図12のフローチャートは、衝撃力測定装置100の本体部90のように、衝撃力測定装置100が複数の測定部(測定部92など)を備える場合の動作の例を示している。 The flowchart of FIG. 12 shows an example of operation when the impact force measuring device 100 includes a plurality of measuring units (measurement unit 92 and the like) like the main body 90 of the impact force measuring device 100.

図12のフローチャートにおいては、衝撃力測定装置100は、ノズル51が吐出している多数の液滴L2を本体部90の液受部91によって受ける(図12のステップS110)。本体部90の複数の測定部92は、それぞれ、液受部71が多数の液滴L2から受けた衝撃力の総和を測定する(ステップS120)。各測定結果は、本体部90の各端子99から制御部130のCPU11に供給される。この際、各測定部92のメモリ96は、当該測定部92の位置情報もCPU11に供給する。 In the flowchart of FIG. 12, the impact force measuring device 100 receives a large number of droplets L2 ejected by the nozzle 51 by the liquid receiving unit 91 of the main body 90 (step S110 of FIG. 12). Each of the plurality of measuring units 92 of the main body unit 90 measures the total impact force received by the liquid receiving unit 71 from a large number of droplets L2 (step S120). Each measurement result is supplied to the CPU 11 of the control unit 130 from each terminal 99 of the main body 90. At this time, the memory 96 of each measurement unit 92 also supplies the position information of the measurement unit 92 to the CPU 11.

CPU11は、供給された各測定部92の位置情報と、各測定部92が測定した衝撃力とに基づいて、液受部91が各測定部92の部位において多数の液滴L2から受けた衝撃力の総和の水平分布を演算する(ステップS130)。CPU11は、記憶装置14から対応情報199を読み出して、対応情報199に基づいて、各測定部92により測定された衝撃力の総和の水平分布から多数の液滴L2の平均速度の水平分布を演算する(ステップS140)。 The CPU 11 receives an impact from a large number of droplets L2 at the site of each measuring unit 92 based on the position information of each measuring unit 92 supplied and the impact force measured by each measuring unit 92. The horizontal distribution of the total force is calculated (step S130). The CPU 11 reads the correspondence information 199 from the storage device 14, and calculates the horizontal distribution of the average velocities of a large number of droplets L2 from the horizontal distribution of the total impact force measured by each measuring unit 92 based on the correspondence information 199. (Step S140).

以上のように構成された本実施形態に係る衝撃力測定装置によれば、多数の箇所に向けて吐出される多数の液滴L2を受ける液受部71と、液受部71が多数の液滴L2から受ける衝撃力の総和を測定する測定部72と、を備える。従って、各液滴L2が対象物に当たる際の各衝撃力をまとめて測定できるので、多数の液滴L2が対象物に当たる際に対象物が受ける衝撃力を容易に測定できる。 According to the impact force measuring device according to the present embodiment configured as described above, the liquid receiving unit 71 that receives a large number of droplets L2 ejected toward a large number of locations and the liquid receiving unit 71 have a large number of liquids. A measuring unit 72 for measuring the total impact force received from the drop L2 is provided. Therefore, since each impact force when each droplet L2 hits the object can be measured collectively, the impact force received by the object when a large number of droplets L2 hit the object can be easily measured.

また、本実施形態に係る衝撃力測定装置によれば、CPU11は、衝撃力の総和と多数の液滴L2の平均速度との対応関係を示す対応情報199に基づいて、測定部72により測定された衝撃力の総和から多数の液滴L2の平均速度を演算することができる。 Further, according to the impact force measuring device according to the present embodiment, the CPU 11 is measured by the measuring unit 72 based on the correspondence information 199 indicating the correspondence relationship between the total impact force and the average velocity of a large number of droplets L2. The average velocity of a large number of droplets L2 can be calculated from the sum of the impact forces.

また、本実施形態に係る衝撃力測定装置によれば、CPU11は、多数の液滴L2の平均速度の時間的変化を演算することができる。 Further, according to the impact force measuring device according to the present embodiment, the CPU 11 can calculate the time change of the average velocity of a large number of droplets L2.

また、本実施形態に係る衝撃力測定装置によれば、対応情報199が、ノズル51の吐出穴径ごと、または多数の液滴L2の液の種類ごとに異なるので、多数の液滴L2の平均速度を、ノズル51の吐出穴径、または多数の液滴L2の液の種類に応じて、より正確に演算することができる。 Further, according to the impact force measuring device according to the present embodiment, since the corresponding information 199 differs for each discharge hole diameter of the nozzle 51 or for each type of liquid of a large number of droplets L2, the average of a large number of droplets L2. The velocity can be calculated more accurately depending on the discharge hole diameter of the nozzle 51 or the type of liquid of a large number of droplets L2.

また、本実施形態に係る衝撃力測定装置によれば、CPU11は、複数の測定部92のそれぞれが受ける衝撃力の総和の水平分布を求めることができる。 Further, according to the impact force measuring device according to the present embodiment, the CPU 11 can obtain the horizontal distribution of the total impact force received by each of the plurality of measuring units 92.

また、本実施形態に係る衝撃力測定装置によれば、液受部71は、多数の液滴L2の吐出方向に対して斜めに傾斜する扁平な傾斜面71aを含み、傾斜面71aによって多数の液滴L2を受ける。これにより、吐出された多数の液滴L2が傾斜面71aの上に形成する液膜の厚みの変動を抑制できる。従って、液膜の厚みの変動によって衝撃力の総和の測定結果が変動することを抑制できる。 Further, according to the impact force measuring device according to the present embodiment, the liquid receiving portion 71 includes a flat inclined surface 71a that is inclined obliquely with respect to the ejection direction of a large number of droplets L2, and a large number of the inclined surfaces 71a are used. Receives droplet L2. As a result, it is possible to suppress fluctuations in the thickness of the liquid film formed on the inclined surface 71a by a large number of ejected droplets L2. Therefore, it is possible to suppress fluctuations in the measurement result of the total impact force due to fluctuations in the thickness of the liquid film.

また、本実施形態に係る衝撃力測定装置によれば、液受部81は、多数の液滴L2が入る入口開口81cが一端に形成された筒状の周壁部81aと、周壁部81aの他端の開口を塞ぐ底壁部81bと、を含む容器を備える。周壁部81aには、周壁部81aに囲まれた空間内の液体のうち底壁部81bから所定の高さを超える液体を容器から排出可能な排出口81dが設けられている。これにより、容器に溜まる処理液の量を一定に保ちつつ、容器が多数の液滴L2から受ける衝撃力の総和を測定することができる。従って、容器に溜まる処理液の量の変動によって、衝撃力の総和の測定結果が変動することを抑制できる。 Further, according to the impact force measuring device according to the present embodiment, the liquid receiving portion 81 includes a tubular peripheral wall portion 81a having an inlet opening 81c into which a large number of droplets L2 enter, and the peripheral wall portion 81a. A container including a bottom wall portion 81b that closes the opening at the end is provided. The peripheral wall portion 81a is provided with a discharge port 81d capable of discharging a liquid exceeding a predetermined height from the bottom wall portion 81b among the liquids in the space surrounded by the peripheral wall portion 81a from the container. This makes it possible to measure the total impact force received by the container from a large number of droplets L2 while keeping the amount of the treatment liquid accumulated in the container constant. Therefore, it is possible to suppress fluctuations in the measurement result of the total impact force due to fluctuations in the amount of the treatment liquid accumulated in the container.

また、本実施形態に係る衝撃力測定装置によれば、液受部91と測定部92とを含む本体部90の形状および大きさを、所定の基板9の形状および大きさと同じにすることができる。従って、衝撃力測定装置の液受部91が多数の液滴L2から衝撃力を受けている状態を、所定の基板9が多数の液滴L2から衝撃力を受けている状態に近づけて、液受部91が多数の液滴L2から受ける衝撃力の総和を測定できる。 Further, according to the impact force measuring device according to the present embodiment, the shape and size of the main body 90 including the liquid receiving unit 91 and the measuring unit 92 may be the same as the shape and size of the predetermined substrate 9. it can. Therefore, the state in which the liquid receiving portion 91 of the impact force measuring device receives the impact force from a large number of droplets L2 is brought closer to the state in which the predetermined substrate 9 receives the impact force from a large number of droplets L2, and the liquid is liquid. The total impact force received by the receiving unit 91 from a large number of droplets L2 can be measured.

また、以上のように構成された本実施形態に係る基板処理装置によれば、基板9の主面における多数の箇所に当たるようにノズル51が多数の液滴L2を吐出可能な第1位置と、衝撃力測定装置の液受部71における多数の箇所に当たるようにノズル51が多数の液滴L2を吐出可能な第2位置との間でノズル51を移動させることができる。従って、ノズル51を基板処理装置から取り外すことなく、基板9が多数の液滴L2から受ける衝撃力の総和を測定できる。 Further, according to the substrate processing apparatus according to the present embodiment configured as described above, the first position where the nozzle 51 can eject a large number of droplets L2 so as to hit a large number of locations on the main surface of the substrate 9 and The nozzle 51 can move the nozzle 51 to and from a second position where the nozzle 51 can eject a large number of droplets L2 so as to hit a large number of locations in the liquid receiving portion 71 of the impact force measuring device. Therefore, the total impact force received by the substrate 9 from the large number of droplets L2 can be measured without removing the nozzle 51 from the substrate processing apparatus.

また、以上のような本実施形態に係る衝撃力測定方法によれば、多数の箇所に向けて吐出される多数の液滴L2を受けることができる液受部71によって多数の液滴L2を受ける液受ステップと、液受部71が多数の液滴L2から受ける衝撃力の総和を測定する測定ステップと、を備える。従って、各液滴L2が対象物に当たる際の各衝撃力をまとめて測定できるので、多数の液滴L2が対象物に当たる際に対象物が受ける衝撃力を容易に測定できる。 Further, according to the impact force measuring method according to the present embodiment as described above, a large number of droplets L2 are received by the liquid receiving unit 71 capable of receiving a large number of droplets L2 ejected toward a large number of locations. A liquid receiving step and a measuring step for measuring the total impact force received by the liquid receiving unit 71 from a large number of droplets L2 are provided. Therefore, since each impact force when each droplet L2 hits the object can be measured collectively, the impact force received by the object when a large number of droplets L2 hit the object can be easily measured.

また、以上のような本実施形態に係る基板9処理方法によれば、基板9の主面における多数の箇所にノズル51から多数の液滴L2を吐出する吐出ステップと、ノズル51から吐出される多数の液滴L2を液受部71によって受ける液受ステップとを備える。従って、ノズル51を基板処理装置から取り外すことなく、基板9が多数の液滴L2から受ける衝撃力の総和を測定できる。 Further, according to the substrate 9 processing method according to the present embodiment as described above, the ejection step of ejecting a large number of droplets L2 from the nozzle 51 to a large number of locations on the main surface of the substrate 9 and the ejection from the nozzle 51. It includes a liquid receiving step in which a large number of droplets L2 are received by the liquid receiving unit 71. Therefore, the total impact force received by the substrate 9 from the large number of droplets L2 can be measured without removing the nozzle 51 from the substrate processing apparatus.

本発明は詳細に示され記述されたが、上記の記述は全ての態様において例示であって限定的ではない。したがって、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。 Although the present invention has been shown and described in detail, the above description is exemplary and not limiting in all embodiments. Therefore, in the present invention, the embodiments can be appropriately modified or omitted within the scope of the invention.

1 基板処理装置
100 衝撃力測定装置
11 CPU
130 制御部
14 記憶装置
199 対応情報
2 回転保持機構
3 ノズル移動機構
4 飛散防止部
5 処理部
51 ノズル
70,80,90 本体部
71,81,91 液受部
71a 傾斜面
72,82,92 測定部
9 基板
L1 処理液
L2 液滴
T1 経路
a1 回転軸
a3 回転軸線
c1 中心
1 Substrate processing device 100 Impact force measuring device 11 CPU
130 Control unit 14 Storage device 199 Correspondence information 2 Rotation holding mechanism 3 Nozzle movement mechanism 4 Scattering prevention unit 5 Processing unit 51 Nozzle 70, 80, 90 Main body unit 71, 81, 91 Liquid receiving unit 71a Inclined surface 72, 82, 92 Measurement Part 9 Substrate L1 Treatment liquid L2 Droplet T1 Path a1 Rotation axis a3 Rotation axis c1 Center

Claims (25)

多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定装置であって、
前記ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、
前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定部と、
を備え
前記液受部は、前記多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面を含み、前記傾斜面によって前記多数の液滴を受ける、衝撃力測定装置。
A nozzle capable of ejecting a large number of droplets is an impact force measuring device for measuring the impact force applied to the substrate by the droplets ejected onto the main surface of the horizontally held substrate.
A liquid receiving part that receives a large number of droplets ejected by the nozzle toward a large number of locations,
A measuring unit that measures the total impact force that the liquid receiving unit receives from the large number of droplets,
Equipped with a,
The liquid receiving portion, wherein comprises a flat inclined surface which is inclined obliquely relative to the direction of ejection of the plurality of droplets, Ru receiving the plurality of droplets by the inclined surface, the impact force measuring device.
多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定装置であって、
前記ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、
前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定部と、
を備え、
前記衝撃力の総和と前記多数の液滴の平均速度との対応関係を示す対応情報に基づいて、前記測定部により測定された前記衝撃力の総和から前記多数の液滴の平均速度を演算する演算部、
を更に備える、衝撃力測定装置。
A nozzle capable of ejecting a large number of droplets is an impact force measuring device for measuring the impact force applied to the substrate by the droplets ejected onto the main surface of the horizontally held substrate.
A liquid receiving part that receives a large number of droplets ejected by the nozzle toward a large number of locations,
A measuring unit that measures the total impact force that the liquid receiving unit receives from the large number of droplets,
With
The average velocity of the large number of droplets is calculated from the sum of the impact forces measured by the measuring unit based on the correspondence information indicating the correspondence relationship between the total impact force and the average velocity of the large number of droplets. Calculation unit,
An impact force measuring device further equipped with.
請求項2に記載の衝撃力測定装置であって、
前記演算部は、前記多数の液滴の平均速度の時間的変化を演算する、衝撃力測定装置。
The impact force measuring device according to claim 2.
The calculation unit is an impact force measuring device that calculates a time change in the average velocity of a large number of droplets.
請求項2または請求項3に記載の衝撃力測定装置であって、
前記対応情報が、前記ノズルの吐出穴径ごと、または前記多数の液滴の液の種類ごとに異なる、衝撃力測定装置。
The impact force measuring device according to claim 2 or 3.
An impact force measuring device in which the corresponding information differs depending on the discharge hole diameter of the nozzle or the liquid type of a large number of droplets.
請求項から請求項4の何れか1つの請求項に記載の衝撃力測定装置であって、
前記測定部が、平面視において複数配置されており、
当該複数の測定部のそれぞれが、前記衝撃力の総和を測定し、
当該衝撃力測定装置は、
前記複数の測定部のそれぞれが受ける前記衝撃力の総和の水平分布を求める演算部をさらに備える、衝撃力測定装置。
The impact force measuring device according to any one of claims 2 to 4.
A plurality of the measuring units are arranged in a plan view.
Each of the plurality of measuring units measures the total of the impact forces,
The impact force measuring device is
An impact force measuring device further comprising a calculation unit for obtaining a horizontal distribution of the total sum of the impact forces received by each of the plurality of measuring units.
請求項から請求項5の何れか1つの請求項に記載の衝撃力測定装置であって、
前記測定部は、前記液受部の下部に隣接する圧電素子である、衝撃力測定装置。
The impact force measuring device according to any one of claims 2 to 5.
The measuring unit is an impact force measuring device which is a piezoelectric element adjacent to the lower part of the liquid receiving unit.
請求項から請求項6の何れか1つの請求項に記載の衝撃力測定装置であって、
前記液受部は、前記多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面を含み、前記傾斜面によって前記多数の液滴を受ける、衝撃力測定装置。
The impact force measuring device according to any one of claims 2 to 6.
The liquid receiving portion is an impact force measuring device that includes a flat inclined surface that is inclined obliquely with respect to the ejection direction of the large number of droplets, and receives the large number of droplets by the inclined surface.
請求項1または請求項7に記載の衝撃力測定装置であって、
前記傾斜面の傾斜角度は、水平面に対して5度〜45度である、衝撃力測定装置。
The impact force measuring device according to claim 1 or 7.
An impact force measuring device in which the inclination angle of the inclined surface is 5 to 45 degrees with respect to a horizontal plane.
請求項から請求項6の何れか1つの請求項に記載の衝撃力測定装置であって、
前記液受部は、
前記多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、前記入口開口から前記周壁部に囲まれた空間に入った前記多数の液滴を受けるとともに、受けた多数の液滴からなる液体を前記空間に貯留可能なように前記周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備え、
前記周壁部には、前記空間内の液体のうち前記底壁部から所定の高さを超える液体を前記容器から排出可能な排出口が設けられている、衝撃力測定装置。
The impact force measuring device according to any one of claims 2 to 6.
The liquid receiving part is
A tubular peripheral wall portion having an inlet opening into which a large number of droplets enter is formed at one end, and a large number of droplets that have entered the space surrounded by the peripheral wall portion from the entrance opening and received a large number of droplets. A container including a bottom wall portion that closes the opening at the other end of the peripheral wall portion so that a liquid composed of droplets can be stored in the space is provided.
An impact force measuring device, wherein the peripheral wall portion is provided with a discharge port capable of discharging a liquid having a height exceeding a predetermined height from the bottom wall portion among the liquids in the space from the container.
請求項1から請求項8の何れか1つの請求項に記載の衝撃力測定装置であって、
所定の基板が薄肉化された基部と、
一主面が、前記基部の一主面に対向して取り付けられているとともに、貫通孔が設けられている薄板状のスペーサーと、
をさらに備え、
前記測定部は、
前記基部の前記一主面の一部と、前記スペーサーの前記貫通孔の内周壁とによって囲まれる凹み部に設けられた歪みゲージと、
前記凹み部に設けられ、前記歪みゲージの出力を記憶可能なメモリと、
を含み、
当該衝撃力測定装置は、前記基部の周縁部に設けられ、前記メモリに記憶された前記歪みゲージの出力を外部に出力可能な端子をさらに備え、
前記液受部は、前記基板が薄肉化された薄板であるとともに、前記歪みゲージと接触して前記凹み部を塞ぎ、前記基部と重なり合うように前記スペーサーの他主面に接合されている、衝撃力測定装置。
The impact force measuring device according to any one of claims 1 to 8.
The base where the predetermined substrate is thinned, and
A thin plate-shaped spacer in which one main surface is attached to face one main surface of the base and a through hole is provided.
With more
The measuring unit
A strain gauge provided in a recess portion surrounded by a part of the one main surface of the base portion and an inner peripheral wall of the through hole of the spacer.
A memory provided in the recess and capable of storing the output of the strain gauge,
Including
The impact force measuring device is further provided with a terminal provided on the peripheral edge of the base portion and capable of outputting the output of the strain gauge stored in the memory to the outside.
The liquid receiving portion is a thin plate in which the substrate is thinned, and is joined to the other main surface of the spacer so as to come into contact with the strain gauge to close the recessed portion and overlap the base portion. Force measuring device.
多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定装置であって、 A nozzle capable of ejecting a large number of droplets is an impact force measuring device for measuring the impact force applied to the substrate by the droplets ejected onto the main surface of the horizontally held substrate.
前記ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、 A liquid receiving part that receives a large number of droplets ejected by the nozzle toward a large number of locations,
前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定部と、 A measuring unit that measures the total impact force that the liquid receiving unit receives from the large number of droplets,
を備え、With
前記液受部は、 The liquid receiving part is
前記多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、前記入口開口から前記周壁部に囲まれた空間に入った前記多数の液滴を受けるとともに、受けた多数の液滴からなる液体を前記空間に貯留可能なように前記周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備え、 A tubular peripheral wall portion having an inlet opening into which a large number of droplets enter is formed at one end, and a large number of droplets that have entered the space surrounded by the peripheral wall portion from the entrance opening and received a large number of droplets. A container including a bottom wall portion that closes the opening at the other end of the peripheral wall portion so that a liquid composed of droplets can be stored in the space is provided.
前記周壁部には、前記空間内の液体のうち前記底壁部から所定の高さを超える液体を前記容器から排出可能な排出口が設けられている、衝撃力測定装置。 An impact force measuring device, wherein the peripheral wall portion is provided with a discharge port capable of discharging a liquid having a height exceeding a predetermined height from the bottom wall portion among the liquids in the space from the container.
多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定装置であって、 A nozzle capable of ejecting a large number of droplets is an impact force measuring device for measuring the impact force applied to the substrate by the droplets ejected onto the main surface of the horizontally held substrate.
前記ノズルが多数の箇所に向けて吐出した多数の液滴を受ける液受部と、 A liquid receiving part that receives a large number of droplets ejected by the nozzle toward a large number of locations,
前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定部と、 A measuring unit that measures the total impact force that the liquid receiving unit receives from the large number of droplets,
を備え、With
所定の基板が薄肉化された基部と、 The base where the predetermined substrate is thinned, and
一主面が、前記基部の一主面に対向して取り付けられているとともに、貫通孔が設けられている薄板状のスペーサーと、 A thin plate-shaped spacer in which one main surface is attached to face one main surface of the base and a through hole is provided.
をさらに備え、With more
前記測定部は、 The measuring unit
前記基部の前記一主面の一部と、前記スペーサーの前記貫通孔の内周壁とによって囲まれる凹み部に設けられた歪みゲージと、 A strain gauge provided in a recess portion surrounded by a part of the one main surface of the base portion and an inner peripheral wall of the through hole of the spacer.
前記凹み部に設けられ、前記歪みゲージの出力を記憶可能なメモリと、 A memory provided in the recess and capable of storing the output of the strain gauge,
を含み、Including
当該衝撃力測定装置は、前記基部の周縁部に設けられ、前記メモリに記憶された前記歪みゲージの出力を外部に出力可能な端子をさらに備え、 The impact force measuring device is further provided with a terminal provided on the peripheral edge of the base portion and capable of outputting the output of the strain gauge stored in the memory to the outside.
前記液受部は、前記基板が薄肉化された薄板であるとともに、前記歪みゲージと接触して前記凹み部を塞ぎ、前記基部と重なり合うように前記スペーサーの他主面に接合されている、衝撃力測定装置。 The liquid receiving portion is a thin plate in which the substrate is thinned, and is joined to the other main surface of the spacer so as to come into contact with the strain gauge to close the recessed portion and overlap the base portion. Force measuring device.
請求項1から請求項1の何れか1つの請求項に記載の衝撃力測定装置と、
基板を略水平姿勢で保持しつつ回転可能な回転保持機構と、
対象物の多数の箇所に当たるように処理液の多数の液滴を吐出可能なノズルと、
前記基板の主面における多数の箇所に当たるように前記ノズルが多数の液滴を吐出可能な第1位置と、前記衝撃力測定装置の前記液受部における多数の箇所に当たるように前記ノズルが多数の液滴を吐出可能な第2位置との間で前記ノズルを移動させるノズル移動機構と、
を備える、基板処理装置。
An impact force measuring device according to any one of claims 1 2 to claims 1,
A rotation holding mechanism that can rotate while holding the board in a substantially horizontal position,
A nozzle that can eject a large number of droplets of the treatment liquid so that it hits a large number of parts of the object,
The first position where the nozzle can eject a large number of droplets so as to hit a large number of points on the main surface of the substrate, and a large number of the nozzles so as to hit a large number of points on the liquid receiving portion of the impact force measuring device. A nozzle moving mechanism that moves the nozzle to and from a second position where droplets can be ejected,
A board processing device.
多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定方法であって、
前記ノズルが多数の箇所に向けて吐出した多数の液滴を受けることができる液受部によって多数の液滴を受ける液受ステップと、
前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定ステップと、
を備え
前記液受ステップは、前記多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面
によって前記多数の液滴を受けるステップである、衝撃力測定方法。
A nozzle capable of ejecting a large number of droplets is an impact force measuring method for measuring the impact force applied to the substrate by the droplets ejected onto the main surface of the horizontally held substrate.
A liquid receiving step in which a large number of droplets are received by a liquid receiving portion capable of receiving a large number of droplets ejected toward a large number of locations by the nozzle.
A measurement step for measuring the total impact force received by the liquid receiving unit from the large number of droplets,
Equipped with a,
The liquid receiving step is a flat inclined surface that is inclined obliquely with respect to the ejection direction of the large number of droplets.
Step der receiving said plurality of droplets by Ru, impact force measurement method.
多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定方法であって、
前記ノズルが多数の箇所に向けて吐出した多数の液滴を受けることができる液受部によって多数の液滴を受ける液受ステップと、
前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定ステップと、
を備え、
前記衝撃力の総和と前記多数の液滴の平均速度との対応関係を示す対応情報に基づき、前記測定ステップにおいて測定された前記衝撃力の総和から前記多数の液滴の平均速度を演算する演算ステップ、
を更に備える、衝撃力測定方法。
A nozzle capable of ejecting a large number of droplets is an impact force measuring method for measuring the impact force applied to the substrate by the droplets ejected onto the main surface of the horizontally held substrate.
A liquid receiving step in which a large number of droplets are received by a liquid receiving portion capable of receiving a large number of droplets ejected toward a large number of locations by the nozzle.
A measurement step for measuring the total impact force received by the liquid receiving unit from the large number of droplets,
With
Calculation to calculate the average velocity of the large number of droplets from the total impact force measured in the measurement step based on the correspondence information indicating the correspondence relationship between the total impact force and the average velocity of the large number of droplets. Step,
A method for measuring impact force.
請求項1に記載の衝撃力測定方法であって、
前記演算ステップは、前記多数の液滴の平均速度の時間的変化を演算するステップである、衝撃力測定方法。
A shock force measuring method according to claim 1 5,
The calculation step is an impact force measuring method, which is a step of calculating a time change in the average velocity of a large number of droplets.
請求項1または請求項1に記載の衝撃力測定方法であって、
前記対応情報が、前記ノズルの吐出穴径ごと、または前記多数の液滴の液の種類ごとに異なる、衝撃力測定方法。
The impact force measuring method according to claim 15 or 16 .
An impact force measuring method in which the corresponding information differs depending on the discharge hole diameter of the nozzle or the liquid type of the large number of droplets.
請求項1から請求項1の何れか1つの請求項に記載の衝撃力測定方法であって、
前記液受ステップが、平面視において前記液受部に定められる複数の領域の各領域における多数の箇所に向けて吐出される多数の液滴を各領域によって受けるステップであり、
前記測定ステップが、当該液受部の前記各領域が受ける衝撃力の総和を測定するステップであり、
当該衝撃力測定方法は、
前記各領域が受ける前記衝撃力の総和の水平分布を求める演算ステップをさらに備える、衝撃力測定方法。
A shock force measuring method according to claims 1 5 to any one of claims 1 7,
The liquid受Su step is a step of receiving a large number of liquid droplets ejected towards multiple locations in each region of the plurality of regions defined in the liquid receiving portion in plan view by each region,
The measurement step is a step of measuring the total impact force received by each region of the liquid receiving portion.
The impact force measurement method is
An impact force measuring method further comprising a calculation step for obtaining a horizontal distribution of the total sum of the impact forces received by each region.
請求項1から請求項1の何れか1つの請求項に記載の衝撃力測定方法であって、
前記測定ステップは前記液受部の下部に隣接する圧電素子によって、前記衝撃力の総和を測定するステップである、衝撃力測定方法。
A shock force measuring method according to claims 1 5 to any one of claims 1 8,
The measurement step is a step of measuring the total impact force by a piezoelectric element adjacent to the lower portion of the liquid receiving portion, which is an impact force measuring method.
請求項1から請求項1の何れか1つの請求項に記載の衝撃力測定方法であって、
前記液受ステップは、前記多数の液滴の吐出方向に対して斜めに傾斜する扁平な傾斜面
によって前記多数の液滴を受けるステップである、衝撃力測定方法。
A shock force measuring method according to claims 1 5 to any one of claims 1 9,
The liquid receiving step is a step of receiving a large number of droplets by a flat inclined surface that is inclined obliquely with respect to the ejection direction of the large number of droplets.
請求項14または請求項20に記載の衝撃力測定方法であって、
前記傾斜面の傾斜角度は、水平面に対して5度〜45度である、衝撃力測定方法。
The impact force measuring method according to claim 14 or 20 , wherein the impact force is measured.
An impact force measuring method in which the inclination angle of the inclined surface is 5 to 45 degrees with respect to a horizontal plane.
請求項1から請求項1の何れか1つの請求項に記載の衝撃力測定方法であって、
前記液受部は、
前記多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、前記入口開口から前記周壁部に囲まれた空間に入った前記多数の液滴を受けるとともに、受けた前記多数の液滴からなる液体を前記空間に貯留可能なように前記周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備え、
前記周壁部には、前記空間内の液体のうち前記底壁部から所定の高さを超える液体を前記容器から排出可能な排出口が設けられており、
前記液受ステップは、前記入口開口から前記周壁部に囲まれた前記空間に入った前記多数の液滴からなる液体のうち前記底壁部から所定の高さを超える液体を前記排出口から前記容器外に排出しつつ、残りの液体を前記容器に貯留するステップである、衝撃力測定方法。
A shock force measuring method according to claims 1 5 to any one of claims 1 9,
The liquid receiving part is
A tubular peripheral wall portion having an inlet opening for entering a large number of droplets is formed at one end, and the large number of droplets that have entered the space surrounded by the peripheral wall portion from the entrance opening are received and received. A container including a bottom wall portion that closes the opening at the other end of the peripheral wall portion so that the liquid composed of the droplets of the above can be stored in the space.
The peripheral wall portion is provided with a discharge port capable of discharging a liquid in the space exceeding a predetermined height from the bottom wall portion from the container.
In the liquid receiving step, among the liquids composed of a large number of droplets entering the space surrounded by the peripheral wall portion from the inlet opening, a liquid exceeding a predetermined height from the bottom wall portion is discharged from the discharge port. An impact force measuring method, which is a step of storing the remaining liquid in the container while discharging the liquid to the outside of the container.
多数の液滴を吐出可能なノズルが、水平に保持された基板の主面へと吐出した液滴が当該基板に与える衝撃力を測定する衝撃力測定方法であって、 A nozzle capable of ejecting a large number of droplets is an impact force measuring method for measuring the impact force applied to the substrate by the droplets ejected onto the main surface of the horizontally held substrate.
前記ノズルが多数の箇所に向けて吐出した多数の液滴を受けることができる液受部によって多数の液滴を受ける液受ステップと、 A liquid receiving step in which a large number of droplets are received by a liquid receiving portion capable of receiving a large number of droplets ejected toward a large number of locations by the nozzle.
前記液受部が前記多数の液滴から受ける衝撃力の総和を測定する測定ステップと、 A measurement step for measuring the total impact force received by the liquid receiving unit from the large number of droplets,
を備え、With
前記液受部は、 The liquid receiving part is
前記多数の液滴が入る入口開口が一端に形成された筒状の周壁部と、前記入口開口から前記周壁部に囲まれた空間に入った前記多数の液滴を受けるとともに、受けた前記多数の液滴からなる液体を前記空間に貯留可能なように前記周壁部の他端の開口を塞ぐ底壁部と、を含む容器を備え、 A tubular peripheral wall portion having an inlet opening for entering a large number of droplets is formed at one end, and the large number of droplets that have entered the space surrounded by the peripheral wall portion from the entrance opening are received and received. A container including a bottom wall portion that closes the opening at the other end of the peripheral wall portion so that the liquid composed of the droplets of the above can be stored in the space.
前記周壁部には、前記空間内の液体のうち前記底壁部から所定の高さを超える液体を前記容器から排出可能な排出口が設けられており、 The peripheral wall portion is provided with a discharge port capable of discharging a liquid in the space exceeding a predetermined height from the bottom wall portion from the container.
前記液受ステップは、前記入口開口から前記周壁部に囲まれた前記空間に入った前記多数の液滴からなる液体のうち前記底壁部から所定の高さを超える液体を前記排出口から前記容器外に排出しつつ、残りの液体を前記容器に貯留するステップである、衝撃力測定方法。 In the liquid receiving step, among the liquids composed of a large number of droplets entering the space surrounded by the peripheral wall portion from the inlet opening, a liquid exceeding a predetermined height from the bottom wall portion is discharged from the discharge port. An impact force measuring method, which is a step of storing the remaining liquid in the container while discharging the liquid to the outside of the container.
請求項1から請求項2の何れか1つの請求項に記載の衝撃力測定方法であって、
前記測定ステップは、前記多数の液滴から前記液受部が受ける前記衝撃力の総和を測定部によって測定するステップであり、
前記液受部は、所定の基板が薄肉化された薄板であり、
前記液受ステップは、前記薄板の一主面によって前記多数の液滴を受けるステップであり、
前記測定ステップは、前記薄板の他主面に取り付けられた歪みゲージによって前記薄板が前記多数の液滴から受ける衝撃力の総和を測定するステップである、衝撃力測定方法。
A shock force measuring method according to claims 1 4 in any one of claims 2 3,
The measuring step is a step in which the measuring unit measures the total impact force received by the liquid receiving unit from the large number of droplets.
The liquid receiving portion is a thin plate in which a predetermined substrate is thinned.
The liquid receiving step is a step of receiving the large number of droplets by one main surface of the thin plate.
The measurement step is an impact force measuring method, which is a step of measuring the total impact force received by the thin plate from the large number of droplets by a strain gauge attached to the other main surface of the thin plate.
請求項1から請求項2の何れか1つの請求項に記載の衝撃力測定方法を備える基板処理方法であって、
基板を略水平姿勢で保持しつつ回転させる回転ステップと、
対象物の多数の箇所に当たるように処理液の多数の液滴を吐出可能なノズルによって、前記基板の主面における多数の箇所に前記多数の液滴を吐出する吐出ステップと、
を備え、
前記液受ステップは、前記ノズルから吐出される前記多数の液滴を前記液受部によって受けるステップである、基板処理方法。
The substrate processing method comprising an impact force measuring method according to claims 1 4 in any one of claims 2 4,
A rotation step that rotates the board while holding it in a substantially horizontal position,
A discharge step of ejecting a large number of droplets to a large number of locations on the main surface of the substrate by a nozzle capable of ejecting a large number of droplets of the treatment liquid so as to hit a large number of locations of the object.
With
The substrate processing method, wherein the liquid receiving step is a step of receiving the large number of droplets discharged from the nozzle by the liquid receiving unit.
JP2017024869A 2017-02-14 2017-02-14 Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method Active JP6811113B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017024869A JP6811113B2 (en) 2017-02-14 2017-02-14 Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method
PCT/JP2017/041800 WO2018150669A1 (en) 2017-02-14 2017-11-21 Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method
TW106140968A TWI665018B (en) 2017-02-14 2017-11-24 Impact force measuring apparatus, substrate processing apparatus, impact force measuring method and substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024869A JP6811113B2 (en) 2017-02-14 2017-02-14 Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method

Publications (2)

Publication Number Publication Date
JP2018130654A JP2018130654A (en) 2018-08-23
JP6811113B2 true JP6811113B2 (en) 2021-01-13

Family

ID=63170192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024869A Active JP6811113B2 (en) 2017-02-14 2017-02-14 Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method

Country Status (3)

Country Link
JP (1) JP6811113B2 (en)
TW (1) TWI665018B (en)
WO (1) WO2018150669A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622940U (en) * 1992-08-25 1994-03-25 エヌオーケー株式会社 load cell
JPH0662339U (en) * 1993-02-05 1994-09-02 株式会社三協精機製作所 Impact force measuring device
JP2000085149A (en) * 1998-07-17 2000-03-28 Omron Corp Microphone, vibration detecting apparatus and nozzle clogging detecting apparatus
JP2012166160A (en) * 2011-02-15 2012-09-06 Panasonic Corp Liquid discharge means and liquid discharge device
JP2012174741A (en) * 2011-02-17 2012-09-10 Aqua Science Kk Multiply-connected nozzle and substrate processing apparatus having the same
US10126153B2 (en) * 2014-07-22 2018-11-13 Deere & Company Particulate matter impact sensor
US9960057B2 (en) * 2014-12-18 2018-05-01 Lam Research Ag Device for measuring the distribution or impulse of a series of droplets
JP2016207838A (en) * 2015-04-22 2016-12-08 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP2018130654A (en) 2018-08-23
TWI665018B (en) 2019-07-11
WO2018150669A1 (en) 2018-08-23
TW201842976A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
JP5156488B2 (en) Substrate cleaning apparatus and substrate cleaning method
JP5536009B2 (en) Substrate processing equipment
KR101677839B1 (en) Substrate cleaning method and substrate cleaning apparatus
US10639665B2 (en) Substrate processing apparatus and standby method for ejection head
JP7476310B2 (en) Substrate liquid processing apparatus and substrate liquid processing method
JP5411689B2 (en) Mounting method and mounting apparatus
JP2013065795A (en) Substrate processing method
US20190252215A1 (en) Apparatus and method for cleaning semiconductor wafers
KR20240029067A (en) substrate cleaning device
US11862485B2 (en) Nozzle standby device, liquid processing apparatus and operation method of liquid processing apparatus
JP6811113B2 (en) Impact force measuring device, substrate processing device, impact force measuring method, and substrate processing method
CN109698145B (en) Nozzle standby device, liquid processing device, operation method thereof and storage medium
KR101205828B1 (en) Substrate cleaning method
US20140251539A1 (en) Substrate processing apparatus and substrate processing method
KR20160008720A (en) Substrate treating apparatus and method
JP2010164448A (en) Dispensing device
JP6867271B2 (en) Load measuring device and load measuring method
JP2007051883A (en) Method of manufacturing microarray, and liquid drop discharge unit
WO2018143196A1 (en) Semiconductor-device manufacturing method and manufacturing device
JP2002177854A (en) Substrate treatment apparatus
JP3957933B2 (en) Submersible loader and substrate processing apparatus using the same
JP2009200331A (en) Substrate cleaning device, and substrate cleaning method
JP2023150901A (en) Method for determining appropriateness of spray nozzle and processing device
KR20160094494A (en) Inspecting unit and method, Apparatus for treating a substrate with the unit
KR101885566B1 (en) Vibration device, method for manufacturing the same, and apparatus for processing substrate including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6811113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250