JP6804736B2 - Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building - Google Patents

Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building Download PDF

Info

Publication number
JP6804736B2
JP6804736B2 JP2017012219A JP2017012219A JP6804736B2 JP 6804736 B2 JP6804736 B2 JP 6804736B2 JP 2017012219 A JP2017012219 A JP 2017012219A JP 2017012219 A JP2017012219 A JP 2017012219A JP 6804736 B2 JP6804736 B2 JP 6804736B2
Authority
JP
Japan
Prior art keywords
pile
existing building
steel pipe
horizontal resistance
resistance structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012219A
Other languages
Japanese (ja)
Other versions
JP2018119335A (en
Inventor
大吾 石井
大吾 石井
俊樹 小林
俊樹 小林
昌一 山中
昌一 山中
浩史 横尾
浩史 横尾
暁 鈴木
暁 鈴木
清水 恵一
恵一 清水
和彦 笹川
和彦 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2017012219A priority Critical patent/JP6804736B2/en
Publication of JP2018119335A publication Critical patent/JP2018119335A/en
Application granted granted Critical
Publication of JP6804736B2 publication Critical patent/JP6804736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Description

本発明は、既存建物の水平抵抗構造及び既存建物の水平抵抗構造の構築方法に関するものである。 The present invention relates to a horizontal resistance structure of an existing building and a method of constructing a horizontal resistance structure of an existing building.

従来から、既存建物の基礎や中間階に免震層を設けて免震化する免震レトロフィット工事が行われている。例えば、既存建物の基礎の直下の地盤を掘削し、仮設の鋼管杭を複数打設して、鋼管杭で既存建物を仮支持しつつ、基礎の直下に免震装置を順次設置する施工方法が知られている(特許文献1参照)。 Conventionally, seismic isolation retrofit construction has been carried out to provide seismic isolation layers on the foundations and intermediate floors of existing buildings. For example, there is a construction method in which the ground directly under the foundation of an existing building is excavated, multiple temporary steel pipe piles are placed, and while the existing building is temporarily supported by the steel pipe piles, seismic isolation devices are sequentially installed directly under the foundation. It is known (see Patent Document 1).

免震化の工事中には、地盤を掘削しているため、既存建物と地盤との間の摩擦による水平抵抗力が減少する。地震対策上、既存建物を基礎固定状態とする必要があり、掘削空間に鋼板壁やブレースを設置して、水平抵抗力を確保していることがある。 Since the ground is excavated during the seismic isolation work, the horizontal resistance due to friction between the existing building and the ground is reduced. For earthquake countermeasures, it is necessary to fix the foundation of the existing building, and steel plate walls and braces may be installed in the excavation space to ensure horizontal resistance.

特開2016−11520号公報Japanese Unexamined Patent Publication No. 2016-11520

しかしながら、掘削空間に鋼板壁やブレースが設置されると、掘削した土砂の搬出や、免震装置等の工事資材の搬入等の妨げとなってしまうという問題点がある。 However, if a steel plate wall or a brace is installed in the excavation space, there is a problem that it hinders the removal of excavated earth and sand and the import of construction materials such as seismic isolation devices.

そこで、本発明は、上記事情に鑑みてなされたものであり、工事資材等の搬入搬出の妨げとならない既存建物の水平抵抗構造及び既存建物の水平抵抗構造の構築方法を提供する。 Therefore, the present invention has been made in view of the above circumstances, and provides a method for constructing a horizontal resistance structure of an existing building and a horizontal resistance structure of an existing building that do not hinder the loading and unloading of construction materials and the like.

上記目的を達成するために、本発明は以下の手段を採用している。
すなわち、本発明に係る既存建物の水平抵抗構造は、既存建物の直下に形成された掘削空間に免震装置を設置する際に、前記既存建物を支持する水平抵抗構造であって、前記免震装置の近傍に配置され、地盤に支持され上方に延びる下側杭と、該下側杭と対向する上方に配置され、前記既存建物に支持され下方に延びる上側杭と、上下方向に延び、内部に前記下側杭の上部及び前記上側杭の下部が配置された接合鋼管と、前記接合鋼管の内部に充填されたモルタルと、を備えることを特徴とする。
In order to achieve the above object, the present invention employs the following means.
That is, the horizontal resistance structure of the existing building according to the present invention is a horizontal resistance structure that supports the existing building when the seismic isolation device is installed in the excavation space formed directly under the existing building, and the seismic isolation structure. A lower pile that is placed near the device and is supported by the ground and extends upward, and an upper pile that is placed above the lower pile and is supported by the existing building and extends downward, and extends vertically and inside. It is characterized in that a joined steel pipe in which an upper portion of the lower pile and a lower portion of the upper pile are arranged, and a mortar filled inside the joined steel pipe are provided.

このように構成された既存建物の水平抵抗構造では、下側杭の上部及び上側杭の下部の外部には、接合鋼管が配置されている。接合鋼管の内部には、モルタルが充填されている。よって、硬化したモルタルにより、地盤に支持され上方に延びる下側杭と既存建物に支持され下方に延びる上側杭とが連結されるため、既存建物の水平抵抗力を確保することができる。
下側杭と上側杭とを上下方向に連結する構成であり、掘削空間に、従来のように鋼板壁やブレース等が設置されないため、工事資材等の搬入搬出の妨げとならない。
In the horizontal resistance structure of the existing building configured in this way, the bonded steel pipes are arranged outside the upper part of the lower pile and the lower part of the upper pile. The inside of the joined steel pipe is filled with mortar. Therefore, the hardened mortar connects the lower pile supported by the ground and extending upward and the upper pile supported by the existing building and extending downward, so that the horizontal resistance of the existing building can be secured.
The structure is such that the lower pile and the upper pile are connected in the vertical direction, and since the steel plate wall, brace, etc. are not installed in the excavation space as in the past, it does not hinder the loading and unloading of construction materials and the like.

また、本発明に係る既存建物の水平抵抗構造は、前記接合鋼管の内面には、内方に向かって突出する第一突出部が設けられていることが好ましい。 Further, in the horizontal resistance structure of the existing building according to the present invention, it is preferable that the inner surface of the joined steel pipe is provided with a first protruding portion that protrudes inward.

このように構成された既存建物の水平抵抗構造では、接合鋼管の内面には内方に向かって突出する第一突出部が設けられ、第一突出部がモルタル内に埋め込まれているため、接合鋼管が脱落することが抑制される。 In the horizontal resistance structure of the existing building configured in this way, the inner surface of the joined steel pipe is provided with a first protruding portion that protrudes inward, and the first protruding portion is embedded in the mortar. The steel pipe is prevented from falling off.

また、本発明に係る既存建物の水平抵抗構造は、前記下側杭及び前記上側杭の少なくともいずれか一方の外面には、外方に向かって突出する第二突出部が設けられ、前記第一突出部は、前記第二突出部の上方に配置されていてもよい。 Further, in the horizontal resistance structure of the existing building according to the present invention, a second projecting portion projecting outward is provided on the outer surface of at least one of the lower pile and the upper pile, and the first The protruding portion may be arranged above the second protruding portion.

このように構成された既存建物の水平抵抗構造では、下側杭及び上側杭の少なくともいずれか一方の外面には、外方に向かって突出する第二突出部が設けられ、接合鋼管に設けられた第一突出部は第二突出部の上方に配置されている。よって、下側杭及び上側杭の少なくともいずれか一方に設けられた第二突出部が硬化したモルタルを支持し、接合鋼管の第一突出部はモルタルを介して、第二突出部から反力を受けるため、接合鋼管が脱落することが一層抑制される。 In the horizontal resistance structure of the existing building configured in this way, a second protruding portion protruding outward is provided on the outer surface of at least one of the lower pile and the upper pile, and is provided on the joined steel pipe. The first protruding portion is arranged above the second protruding portion. Therefore, the second protrusion provided on at least one of the lower pile and the upper pile supports the hardened mortar, and the first protrusion of the joined steel pipe receives a reaction force from the second protrusion via the mortar. Therefore, the joint steel pipe is further suppressed from falling off.

また、本発明に係る既存建物の水平抵抗構造では、前記接合鋼管と前記下側杭及び前記上側杭とのそれぞれの上下方向に重なっている部分の長さは、前記接合鋼管の直径の1/2以上であってもよい。 Further, in the horizontal resistance structure of the existing building according to the present invention, the length of the vertically overlapping portions of the joined steel pipe, the lower pile and the upper pile is 1 / of the diameter of the joined steel pipe. It may be 2 or more.

このように構成された既存建物の水平抵抗構造では、接合鋼管と下側杭及び上側杭とのそれぞれの上下方向に重なっている部分の長さは、接合鋼管の直径の1/2以上であるため、既存建物の水平抵抗力を確実に確保することができる。 In the horizontal resistance structure of the existing building configured in this way, the length of the vertically overlapping portion of the joined steel pipe and the lower pile and the upper pile is 1/2 or more of the diameter of the joined steel pipe. Therefore, the horizontal resistance of the existing building can be surely secured.

また、本発明に係る既存建物の水平抵抗構造の構築方法は、既存建物の直下に免震装置を設置する際に、前記既存建物を支持する既存建物の水平抵抗構造の構築方法であって、既存建物の直下を掘削する掘削工程と、該掘削工程で形成した掘削空間に面した地盤に下側杭を打設する下側杭打設工程と、前記既存建物における前記下側杭と対向する位置に上側杭を設置する上側杭設置工程と、前記下側杭の上端部にジャッキを設置して、該ジャッキで前記上側杭の下端部を支持させるジャッキ設置工程と、前記掘削空間における前記下側杭及び前記上側杭の近傍に、免震装置を設置する免震装置設置工程と、前記ジャッキをダウンして、前記免震装置で前記既存建物を支持させる免震装置支持工程と、前記ジャッキを撤去するジャッキ撤去工程と、前記上側杭の下部及び前記下側杭の上部の外周に、前記上側杭の外面及び前記下側杭の外面と離間して接合鋼管を設置する接合鋼管設置工程と、前記接合鋼管の内部にモルタルを充填するモルタル充填工程と、を備えることを特徴とする。 Further, the method for constructing the horizontal resistance structure of the existing building according to the present invention is a method for constructing the horizontal resistance structure of the existing building that supports the existing building when the seismic isolation device is installed directly under the existing building. An excavation process for excavating directly under the existing building, a lower pile driving process for driving a lower pile in the ground facing the excavation space formed in the excavation process, and a lower pile facing the lower pile in the existing building. An upper pile installation step of installing an upper pile at a position, a jack installation step of installing a jack at the upper end of the lower pile and supporting the lower end of the upper pile with the jack, and the lower part in the excavation space. A seismic isolation device installation step of installing a seismic isolation device in the vicinity of the side pile and the upper pile, a seismic isolation device support step of lowering the jack to support the existing building with the seismic isolation device, and the jack. And a joint steel pipe installation step of installing a joint steel pipe on the outer periphery of the lower part of the upper pile and the upper part of the lower pile at a distance from the outer surface of the upper pile and the outer surface of the lower pile. It is characterized by comprising a mortar filling step of filling the inside of the joined steel pipe with mortar.

このように構成された既存建物の水平抵抗構造の構築方法では、下側杭の上部及び上側杭の下部の外部には、接合鋼管が配置されている。接合鋼管の内部には、モルタルが充填されている。よって、硬化したモルタルにより、地盤に支持された下側杭と既存建物に設けられた上側杭とが連結されるため、既存建物の水平抵抗力を確保することができる。
下側杭と上側杭とを上下方向に連結する構成であり、掘削空間に、従来のように鋼板壁やブレース等が設置されないため、工事資材等の搬入搬出の妨げとならない。
In the method of constructing the horizontal resistance structure of the existing building configured as described above, the bonded steel pipes are arranged outside the upper part of the lower pile and the lower part of the upper pile. The inside of the joined steel pipe is filled with mortar. Therefore, the hardened mortar connects the lower pile supported by the ground and the upper pile provided in the existing building, so that the horizontal resistance of the existing building can be secured.
The structure is such that the lower pile and the upper pile are connected in the vertical direction, and since the steel plate wall, brace, etc. are not installed in the excavation space as in the past, it does not hinder the loading and unloading of construction materials and the like.

また、本発明に係る既存建物の水平抵抗構造の構築方法は、予め前記接合鋼管を前記下側杭の外側に配置しておき、前記接合鋼管設置工程では、前記接合鋼管を引き上げて、内部に前記上側杭の下部及び前記下側杭の上部が配置される位置に設置することが好ましい。 Further, in the method for constructing the horizontal resistance structure of an existing building according to the present invention, the joined steel pipe is arranged in advance on the outside of the lower pile, and in the joined steel pipe installation step, the joined steel pipe is pulled up and inside. It is preferable to install the lower part of the upper pile and the upper part of the lower pile at a position where they are arranged.

このように構成された既存建物の水平抵抗構造の構築方法では、予め接合鋼管を下側杭の外側に配置しておき、接合鋼管を引き上げれば、内部に上側杭の下部及び下側杭の上部が配置される位置に設置されるため、施工性が良い。 In the method of constructing the horizontal resistance structure of the existing building configured in this way, if the joint steel pipe is arranged in advance on the outside of the lower pile and the joint steel pipe is pulled up, the lower part of the upper pile and the lower pile are inside. Workability is good because it is installed at the position where the upper part is placed.

本発明に係る既存建物の水平抵抗構造及び既存建物の水平抵抗構造の構築方法によれば、工事資材等の搬入搬出の妨げとならない。 According to the method for constructing the horizontal resistance structure of the existing building and the horizontal resistance structure of the existing building according to the present invention, it does not hinder the loading and unloading of construction materials and the like.

本発明の一実施形態に係る既存建物の水平抵抗構造を示す鉛直断面図である。It is a vertical sectional view which shows the horizontal resistance structure of the existing building which concerns on one Embodiment of this invention. 図1のX部拡大図である。It is an enlarged view of part X of FIG. 本発明の一実施形態に係る既存建物の水平抵抗構造の構築方法を示す図であり、ジャッキ設置工程を示す図である。It is a figure which shows the construction method of the horizontal resistance structure of the existing building which concerns on one Embodiment of this invention, and is the figure which shows the jack installation process. 本発明の一実施形態に係る既存建物の水平抵抗構造の構築方法を示す図であり、モルタル充填工程を示す図である。It is a figure which shows the construction method of the horizontal resistance structure of the existing building which concerns on one Embodiment of this invention, and is the figure which shows the mortar filling process. 本発明の一実施形態に係る既存建物の水平抵抗構造を用いて行った実験装置を示す図である。It is a figure which shows the experimental apparatus which carried out using the horizontal resistance structure of the existing building which concerns on one Embodiment of this invention. 本発明の一実施形態に係る既存建物の水平抵抗構造を用いて行った実験結果を示す図である。It is a figure which shows the experimental result performed using the horizontal resistance structure of the existing building which concerns on one Embodiment of this invention.

本発明の一実施形態に係る既存建物の水平抵抗構造及び既存建物の水平抵抗構造の構築方法について、図面を用いて説明する。
まず、既存建物の水平抵抗構造について説明する。既存建物の水平抵抗構造は、既存建物の礎盤(基礎)の直下の地盤を掘削して免震装置を設置する例えば免震レトロフィット工事中に採用されるものである。
図1は、本発明の一実施形態に係る既存建物の水平抵抗構造を示す鉛直断面図である。図1において、上側杭及び下側杭は切断せず正面図として示している。
図1に示すように、既存建物Aでは、礎盤Bから下方に掘削され、地盤Cに沿ってマットスラブDが設置され、礎盤Bの下面に沿って補強スラブEが設置されている。既存建物Aの水平抵抗構造100は、既存建物Aの下方において、免震装置9の近傍に設置されている。本実施形態では、免震装置9を挟んで水平方向の両側に設置されている。
The horizontal resistance structure of the existing building and the method of constructing the horizontal resistance structure of the existing building according to the embodiment of the present invention will be described with reference to the drawings.
First, the horizontal resistance structure of the existing building will be described. The horizontal resistance structure of an existing building is adopted during, for example, seismic isolation retrofit construction, in which the ground directly below the foundation of the existing building is excavated and a seismic isolation device is installed.
FIG. 1 is a vertical sectional view showing a horizontal resistance structure of an existing building according to an embodiment of the present invention. In FIG. 1, the upper pile and the lower pile are shown as a front view without being cut.
As shown in FIG. 1, in the existing building A, the mat slab D is excavated downward from the plinth B, the mat slab D is installed along the ground C, and the reinforcing slab E is installed along the lower surface of the plinth B. The horizontal resistance structure 100 of the existing building A is installed in the vicinity of the seismic isolation device 9 below the existing building A. In this embodiment, the seismic isolation devices 9 are installed on both sides in the horizontal direction.

既存建物Aの水平抵抗構造100は、下側杭1と、上側杭2と、接合鋼管3と、接合鋼管3の内部に充填されたモルタル4と、を備えている。 The horizontal resistance structure 100 of the existing building A includes a lower pile 1, an upper pile 2, a bonded steel pipe 3, and a mortar 4 filled inside the bonded steel pipe 3.

下側杭1は、マットスラブD及び地盤Cに複数設置(打設)されている。換言すると、下側杭1は、マットスラブDを貫通して、下端(不図示)が地盤Cにまで到達し、上端1uがマットスラブDから上方に突出している。下側杭1は、複数の鋼管が接続されて構成されていてもよい。本実施形態では、下側杭1は、例えば直径457.2mm、厚さ12.7mm、長さ1000mm程度の円形鋼管(円筒状の鋼管)が不図示の機械式継手等で接続されている。 A plurality of lower piles 1 are installed (placed) on the mat slab D and the ground C. In other words, the lower end pile 1 penetrates the mat slab D, the lower end (not shown) reaches the ground C, and the upper end 1u protrudes upward from the mat slab D. The lower pile 1 may be configured by connecting a plurality of steel pipes. In the present embodiment, the lower pile 1 is connected to, for example, a circular steel pipe (cylindrical steel pipe) having a diameter of 457.2 mm, a thickness of 12.7 mm, and a length of about 1000 mm by a mechanical joint (not shown) or the like.

下側杭1の上端1uには、支持板11が設けられている。本実施形態では、支持板11は、例えば厚さ12mm程度で形成されている。 A support plate 11 is provided at the upper end 1u of the lower pile 1. In the present embodiment, the support plate 11 is formed to have a thickness of, for example, about 12 mm.

上側杭2は、下側杭1の鉛直上方に対向配置されている。換言すると、上側杭2は、補強スラブEを貫通して、下端2bが補強スラブEから下方に突出している。本実施形態では、上側杭2は、例えば直径457.2mm、厚さ12.7mm、長さ1000mm程度の円形鋼管が採用されている。なお、下側杭1及び上側杭2は、円形鋼管に限られず、角管等であってもよい。 The upper pile 2 is arranged vertically above the lower pile 1 so as to face each other. In other words, the upper pile 2 penetrates the reinforcing slab E, and the lower end 2b projects downward from the reinforcing slab E. In the present embodiment, for the upper pile 2, for example, a circular steel pipe having a diameter of 457.2 mm, a thickness of 12.7 mm, and a length of about 1000 mm is adopted. The lower pile 1 and the upper pile 2 are not limited to the circular steel pipe, but may be a square pipe or the like.

上側杭2の下端2bには、支持板21が設けられている。本実施形態では、支持板21は、例えば厚さ12mm程度で形成されている。上側杭2の上端2uには、礎盤Bと固定される固定部22が設けられている。 A support plate 21 is provided at the lower end 2b of the upper pile 2. In the present embodiment, the support plate 21 is formed to have a thickness of, for example, about 12 mm. A fixing portion 22 fixed to the foundation board B is provided at the upper end 2u of the upper pile 2.

図2は、図1のX部拡大図である。
図2に示すように、上側杭2に設けられた支持板21は、平面視円状をなし、上側杭2よりも径が大きい。換言すると、支持板21の端部(第二突出部)21eは、上側杭2の外面2eよりも径方向の外側に突出している。本実施形態では、支持板21は、上側杭2よりも半径10mm大きい円状をなしている。なお、下側杭1に設けられた支持板11も、支持板11と同様の構成をなし、平面視円状をなし、下側杭1よりも径が大きい。図1に示すように、下側杭1の支持板11と上側杭2の支持板21との間は、後述する仮受ジャッキ6(図3参照)が設置できる間隔(約300mm)以上空けておけばよい。
FIG. 2 is an enlarged view of part X of FIG.
As shown in FIG. 2, the support plate 21 provided on the upper pile 2 has a circular shape in a plan view and has a diameter larger than that of the upper pile 2. In other words, the end portion (second protruding portion) 21e of the support plate 21 protrudes outward in the radial direction from the outer surface 2e of the upper pile 2. In the present embodiment, the support plate 21 has a circular shape having a radius of 10 mm larger than that of the upper pile 2. The support plate 11 provided on the lower pile 1 also has the same configuration as the support plate 11, has a circular shape in a plan view, and has a larger diameter than the lower pile 1. As shown in FIG. 1, there is a space (about 300 mm) or more between the support plate 11 of the lower pile 1 and the support plate 21 of the upper pile 2 so that the temporary receiving jack 6 (see FIG. 3) described later can be installed. Just leave it.

接合鋼管3は、平面視において、下側杭1及び上側杭2よりも大きく形成されている。接合鋼管3は、上側杭2の下部から下側杭1の上部まで延び、上側杭2の下部及び下側杭1の上部を覆うように配置されている。本実施形態では、接合鋼管3は、例えば直径558.8mm、厚さ12.7mm、長さ850mm程度の円形鋼管が採用されている。なお、接合鋼管3は、円形鋼管に限られず、角管であってもよい。また、一対の半円状の鋼管を上側杭2及び下側杭1の平面視一方側及び他方側で挟んで、互いに接合して円形鋼管とする構成であってもよい。 The joined steel pipe 3 is formed larger than the lower pile 1 and the upper pile 2 in a plan view. The joined steel pipe 3 extends from the lower part of the upper pile 2 to the upper part of the lower pile 1, and is arranged so as to cover the lower part of the upper pile 2 and the upper part of the lower pile 1. In the present embodiment, as the bonded steel pipe 3, for example, a circular steel pipe having a diameter of 558.8 mm, a thickness of 12.7 mm, and a length of about 850 mm is adopted. The joined steel pipe 3 is not limited to the circular steel pipe, and may be a square pipe. Further, a pair of semicircular steel pipes may be sandwiched between one side and the other side in a plan view of the upper pile 2 and the lower pile 1 and joined to each other to form a circular steel pipe.

接合鋼管3と下側杭1及び上側杭2とのそれぞれの上下方向に重なっている部分の長さL1,L2は、接合鋼管3の直径L3の1/2以上であることが好ましい。本実施形態では、接合鋼管3の下端から下側杭1の支持板11の上面までの長さ(接合鋼管3の上端から上側杭2の支持板21の下面までの長さ)は、275mm程度である。 The lengths L1 and L2 of the portions of the joined steel pipe 3 and the lower pile 1 and the upper pile 2 overlapping in the vertical direction are preferably ½ or more of the diameter L3 of the joined steel pipe 3. In the present embodiment, the length from the lower end of the joined steel pipe 3 to the upper surface of the support plate 11 of the lower pile 1 (the length from the upper end of the joined steel pipe 3 to the lower surface of the support plate 21 of the upper pile 2) is about 275 mm. Is.

接合鋼管3は、下側杭1及び上側杭2と同心円状に配置されていることが好ましい。接合鋼管3の直径は、下側杭1及び上側杭2の直径よりも50〜100mm程度大きいことが好ましい。詳細については後述するが、接合鋼管3と下側杭1との隙間からモルタル4を注入するため、接合鋼管3の内面3iと下側杭1及び上側杭2の外面1e,2eとの間の隙間は、10mm以上あることが好ましい。 It is preferable that the joined steel pipe 3 is arranged concentrically with the lower pile 1 and the upper pile 2. The diameter of the joined steel pipe 3 is preferably about 50 to 100 mm larger than the diameters of the lower pile 1 and the upper pile 2. Although the details will be described later, since the mortar 4 is injected from the gap between the joined steel pipe 3 and the lower pile 1, the inner surface 3i of the joined steel pipe 3 and the outer surfaces 1e and 2e of the lower pile 1 and the upper pile 2 are separated from each other. The gap is preferably 10 mm or more.

図2に示すように、接合鋼管3の内面3iにおいて、上端部には、径方向内側に向かって突出し、平面視環状に形成されたリブ(第一突出部)31が形成されている。接合鋼管3の下端部にも、同様にリブ31が形成されている。本実施形態では、上側のリブ31は接合鋼管3の上端3uからわずかに下方に位置し、下側のリブ31は下端からわずかの上方に位置している。本実施形態では、リブ31は、接合鋼管3の内面3iから径方向の内側に6mm程度突出している。 As shown in FIG. 2, on the inner surface 3i of the joined steel pipe 3, a rib (first protruding portion) 31 projecting inward in the radial direction and formed in an annular shape in a plan view is formed at the upper end portion. Ribs 31 are similarly formed at the lower end of the joined steel pipe 3. In the present embodiment, the upper rib 31 is located slightly below the upper end 3u of the bonded steel pipe 3, and the lower rib 31 is located slightly above the lower end. In the present embodiment, the rib 31 protrudes inward in the radial direction by about 6 mm from the inner surface 3i of the joined steel pipe 3.

図1に示すように、モルタル4は、接合鋼管3の内部に充填されている。換言すると、接合鋼管3の内面3iと上側杭2の外面2eとの間、接合鋼管3の内面3iと下側杭1の外面1iとの間、及び上側杭2の支持板21と下側杭1の支持板11との間は、モルタル4で充填されている。 As shown in FIG. 1, the mortar 4 is filled inside the joined steel pipe 3. In other words, between the inner surface 3i of the joined steel pipe 3 and the outer surface 2e of the upper pile 2, between the inner surface 3i of the joined steel pipe 3 and the outer surface 1i of the lower pile 1, and the support plate 21 and the lower pile of the upper pile 2. The space between the support plate 11 and the support plate 11 of 1 is filled with the mortar 4.

次に、既存建物Aの水平抵抗構造100の構築方法について説明する。
既存建物Aの外周を掘削して切梁(不図示)を設置した後に、既存建物Aの直下を掘削する(掘削工程)。既存建物Aの礎盤Bの下方に掘削空間Wを形成する。
Next, a method of constructing the horizontal resistance structure 100 of the existing building A will be described.
After excavating the outer circumference of the existing building A and installing a girder (not shown), excavate directly under the existing building A (excavation process). An excavation space W is formed below the foundation B of the existing building A.

次に、下側杭打設工程を行う。
図3は、既存建物Aの水平抵抗構造100の構築方法を示す図であり、ジャッキ設置工程を示す図である。
図3に示すように、既存建物Aの柱の直下近傍等所望の箇所において、下側杭1を圧入する。礎盤Bの下面(既存建物Aの底面)に油圧ジャッキ(不図示)を設置して、油圧ジャッキにより下側杭1を地盤Cに圧入する。この際に、接合鋼管3を下側杭1の上部の外側に通しておくことが好ましい。なお、礎盤Bの下面に、均しモルタルB1を設けてもよい。
Next, the lower pile driving process is performed.
FIG. 3 is a diagram showing a method of constructing the horizontal resistance structure 100 of the existing building A, and is a diagram showing a jack installation process.
As shown in FIG. 3, the lower pile 1 is press-fitted at a desired location such as immediately below the pillar of the existing building A. A hydraulic jack (not shown) is installed on the lower surface of the foundation board B (bottom surface of the existing building A), and the lower pile 1 is press-fitted into the ground C by the hydraulic jack. At this time, it is preferable to pass the joined steel pipe 3 to the outside of the upper part of the lower pile 1. The leveling mortar B1 may be provided on the lower surface of the foundation board B.

次に、上側杭設置工程を行う。
下側杭1の圧入が進むと、礎盤Bの下面において、下側杭1と対向する位置に上側杭2を設置する。
Next, the upper pile installation process is performed.
As the press-fitting of the lower pile 1 progresses, the upper pile 2 is installed at a position facing the lower pile 1 on the lower surface of the foundation board B.

次に、ジャッキ設置工程を行う。
下側杭1の支持板11(図1参照)上に仮受ジャッキ6を設置して、仮受ジャッキ6で上側杭2を仮支持させる。
Next, the jack installation process is performed.
A temporary receiving jack 6 is installed on the support plate 11 (see FIG. 1) of the lower pile 1, and the upper pile 2 is temporarily supported by the temporary receiving jack 6.

次に、免震装置設置工程を行う。
図4は、既存建物Aの水平抵抗構造100の構築方法を示す図であり、モルタル充填工程を示す図である。
図4に示すように、地盤C(図3参照)に沿って、マットスラブDを設置する。また、礎盤Bの下面に沿って、補強スラブEが設置する。下側杭1及び上側杭2の近傍において、マットスラブD上に下部基礎91を設け、下部基礎上に免震装置9を設置し、免震装置9上に上部基礎92を設ける。
Next, the seismic isolation device installation process is performed.
FIG. 4 is a diagram showing a method of constructing the horizontal resistance structure 100 of the existing building A, and is a diagram showing a mortar filling process.
As shown in FIG. 4, the mat slab D is installed along the ground C (see FIG. 3). Further, a reinforcing slab E is installed along the lower surface of the foundation board B. In the vicinity of the lower pile 1 and the upper pile 2, the lower foundation 91 is provided on the mat slab D, the seismic isolation device 9 is installed on the lower foundation, and the upper foundation 92 is provided on the seismic isolation device 9.

次に、免震装置支持工程、及びジャッキ撤去工程を行う。
仮受ジャッキ6をダウンして、免震装置9で既存建物Aを支持させた後、仮受ジャッキ6を撤去する。
Next, the seismic isolation device support process and the jack removal process are performed.
After the temporary receiving jack 6 is brought down and the existing building A is supported by the seismic isolation device 9, the temporary receiving jack 6 is removed.

次に、接合鋼管設置工程を行う。
上側杭2の下部及び下側杭1の上部を覆うように接合鋼管3を設置する。この際に、接合鋼管3の外面にリング状等の係止部36を設けておいて、係止部36にフック付チェーンブロック37を係止させ、チェーンブロック37を補強スラブEに係止して、接合鋼管3を引き上げてもよい。
なお、平面視において、接合鋼管3の大きさが上側杭2及び下側杭1よりも大きくない場合には、接合鋼管3の内部に上側杭2及び下側杭1が配置できるまで、上側杭2及び下側杭1の外周を切断してもよい。
Next, the joint steel pipe installation process is performed.
The joint steel pipe 3 is installed so as to cover the lower part of the upper pile 2 and the upper part of the lower pile 1. At this time, a ring-shaped locking portion 36 is provided on the outer surface of the joined steel pipe 3, the chain block 37 with a hook is locked to the locking portion 36, and the chain block 37 is locked to the reinforcing slab E. The joined steel pipe 3 may be pulled up.
If the size of the joined steel pipe 3 is not larger than that of the upper pile 2 and the lower pile 1 in a plan view, the upper pile 2 and the lower pile 1 can be arranged inside the joined steel pipe 3. 2 and the outer periphery of the lower pile 1 may be cut.

次に、モルタル充填工程を行う。
接合鋼管3の内部にモルタル4を充填する。
接合鋼管3の下端に、接合鋼管3の内面3iと下側杭1の外面1eとの間の隙間に対応した形状の型枠(不図示)を設置する。接合鋼管3の上端において、接合鋼管3の内面3iと上側杭2の外面2eとの間の隙間からモルタル4を注入する。モルタル4が硬化することで、上側杭2と下側杭1とがモルタル4を介して連結される。
全ての設置予定箇所に免震装置9を設置した後には、下側杭1及び上側杭2を切断する。
Next, a mortar filling step is performed.
The inside of the joined steel pipe 3 is filled with mortar 4.
At the lower end of the joined steel pipe 3, a formwork (not shown) having a shape corresponding to the gap between the inner surface 3i of the joined steel pipe 3 and the outer surface 1e of the lower pile 1 is installed. At the upper end of the joined steel pipe 3, the mortar 4 is injected through the gap between the inner surface 3i of the joined steel pipe 3 and the outer surface 2e of the upper pile 2. As the mortar 4 hardens, the upper pile 2 and the lower pile 1 are connected via the mortar 4.
After installing the seismic isolation devices 9 at all the planned installation locations, the lower pile 1 and the upper pile 2 are cut.

(実験例)
次に、上記に示す既存建物Aの水平抵抗構造100について行った実験例について説明する。
既存建物Aの水平抵抗構造100の水平抵抗力及び接合部耐力を確認するために、実大試験体を用いた接合部の加力実験を実施した。免震層に地震力が作用した場合を想定し、試験体に正負交番せん断力を加えて、力学的挙動について確認した。
(Experimental example)
Next, an experimental example performed on the horizontal resistance structure 100 of the existing building A shown above will be described.
In order to confirm the horizontal resistance force and the joint part strength of the horizontal resistance structure 100 of the existing building A, a force test of the joint part was carried out using a full-scale test piece. Assuming that a seismic force acts on the seismic isolation layer, positive and negative alternating shear forces were applied to the test piece, and the mechanical behavior was confirmed.

図5は、既存建物Aの水平抵抗構造100を用いて行った実験装置を示す図である。
試験体の形状寸法及び加力装置を図5に示す。試験体は、補強スラブ、鋼管杭(上側杭2)、接合用鋼管(接合鋼管3)及び充填モルタル(モルタル4)の部分(接合部)をモデル化して、上下反転してセットしたものである。鋼管杭には355.6mm×9.5mm(STK400)の断面視環状の鋼管を採用し、接合用鋼管には457.2mm×9.5mm(STK400)の断面視環状の鋼管を採用した。接合用鋼管内には、プレミックスタイプのモルタル(J14ロート試験8±2秒、圧縮強度60N/mm程度)を充填した。加力点は、上下の鋼管杭が剛接された場合に鋼管杭に発生するモーメント分布の反力点位置とした。
FIG. 5 is a diagram showing an experimental apparatus performed using the horizontal resistance structure 100 of the existing building A.
The shape and dimensions of the test piece and the applying device are shown in FIG. The test body is a model of a reinforcing slab, a steel pipe pile (upper pile 2), a steel pipe for joining (joined steel pipe 3), and a filled mortar (mortar 4) (joint portion), and is set upside down. .. A 355.6 mm × 9.5 mm (STK400) annular steel pipe with a cross-sectional view was used for the steel pipe pile, and a 457.2 mm × 9.5 mm (STK400) annular steel pipe with a cross-sectional view was used for the joining steel pipe. The bonding in the steel, the pre-mix type mortar (J 14 funnel test 8 ± 2 seconds, approximately compressive strength 60N / mm 2) was filled with. The force point was the position of the reaction force point of the moment distribution generated in the steel pipe pile when the upper and lower steel pipe piles were rigidly contacted.

図6は、既存建物Aの水平抵抗構造100を用いて行った実験結果を示す図である。
実験の結果から得られた鋼管杭のせん断力と変形角の関係を図6に示す。試験体の最大耐力は鋼管杭の局部座屈で決定した。鋼管杭の埋込み端部には局部座屈が見られ、接合部内の充填モルタルは終局状態までひび割れ程度で健全であった。また、試験体の初期剛性は、上記に示す既存建物Aの水平抵抗構造100がないもとして、埋込み柱脚形式の鋼管杭として求めた計算値(鋼構造接合部設計指針参照)と良い対応を示している。図6に示した通り、施工中の地震時に発生する免震層の層間変形角を1/100(0.1rad)とした場合、上記に示す既存建物Aの水平抵抗構造100によって鋼管杭1本当たり400kNの水平抵抗力が得られることが確認できた。なお、水平抵抗力は鋼管杭の断面を上げることで向上させることができる。例えば、鋼管杭として457.2mm×12.8mmの円形鋼管を使用すれば、層間変形角を1/100(0.1rad)で鋼管杭1本当たり650kNの水平抵抗力を確保できる。
実設計では、以下の手順によって水平抵抗力を計算する。(1)地震時に発生する免震層の層間変形角を設定する。(2)接合部を考慮せず、埋込み柱脚形式の鋼管杭として求めた鋼管杭の剛性を計算する。(3)計算剛性に基づき、上記に示す既存建物Aの水平抵抗構造100を適用した鋼管杭の本数分の水平抵抗力を合計する。
FIG. 6 is a diagram showing the results of an experiment conducted using the horizontal resistance structure 100 of the existing building A.
FIG. 6 shows the relationship between the shear force and the deformation angle of the steel pipe pile obtained from the experimental results. The maximum yield strength of the test piece was determined by the local buckling of the steel pipe pile. Local buckling was observed at the embedded end of the steel pipe pile, and the filled mortar in the joint was sound with cracks until the final state. In addition, the initial rigidity of the test piece should correspond well with the calculated value (see the steel structure joint design guideline) obtained for the embedded column base type steel pipe pile, even if the horizontal resistance structure 100 of the existing building A shown above is not present. Shown. As shown in FIG. 6, when the interlayer deformation angle of the seismic isolation layer generated during an earthquake during construction is 1/100 (0.1 rad), one steel pipe pile is provided by the horizontal resistance structure 100 of the existing building A shown above. It was confirmed that a horizontal resistance of 400 kN was obtained per hit. The horizontal resistance can be improved by increasing the cross section of the steel pipe pile. For example, if a circular steel pipe having a thickness of 457.2 mm × 12.8 mm is used as the steel pipe pile, a horizontal resistance force of 650 kN can be secured per steel pipe pile with an interlayer deformation angle of 1/100 (0.1 rad).
In the actual design, the horizontal resistance is calculated by the following procedure. (1) Set the inter-story deformation angle of the seismic isolation layer that occurs during an earthquake. (2) Calculate the rigidity of the steel pipe pile obtained as an embedded column base type steel pipe pile without considering the joint. (3) Based on the calculated rigidity, the horizontal resistance forces for the number of steel pipe piles to which the horizontal resistance structure 100 of the existing building A shown above is applied are totaled.

このように構成された既存建物Aの水平抵抗構造100及び既存建物Aの水平抵抗構造100の構築方法では、下側杭1の上部及び上側杭2の下部の外部には、接合鋼管3が配置されている。接合鋼管3の内部には、モルタル4が充填されている。よって、硬化したモルタル4により、地盤Cに支持され上方に延びる下側杭1と既存建物Aに支持され下方に延びる上側杭2とが連結されるため、既存建物Aの水平抵抗力を確保することができる。 In the method of constructing the horizontal resistance structure 100 of the existing building A and the horizontal resistance structure 100 of the existing building A configured in this way, the joint steel pipe 3 is arranged outside the upper part of the lower pile 1 and the lower part of the upper pile 2. Has been done. The inside of the joined steel pipe 3 is filled with mortar 4. Therefore, the hardened mortar 4 connects the lower pile 1 supported by the ground C and extending upward and the upper pile 2 supported by the existing building A and extending downward, thus ensuring the horizontal resistance of the existing building A. be able to.

また、下側杭1と上側杭2とを上下方向に連結する構成であり、従来のように鋼板壁やブレース等が設置されないため、工事資材等の搬入搬出の妨げとならない。 Further, since the lower pile 1 and the upper pile 2 are connected in the vertical direction and the steel plate wall, the brace, etc. are not installed as in the conventional case, it does not hinder the loading and unloading of construction materials and the like.

また、接合鋼管3の内面には内方に向かって突出するリブ31が設けられ、リブ31がモルタル4内に埋め込まれているため、接合鋼管3が脱落することが抑制される。 Further, since the rib 31 protruding inward is provided on the inner surface of the joined steel pipe 3 and the rib 31 is embedded in the mortar 4, the joined steel pipe 3 is prevented from falling off.

また、下側杭1及び上側杭2に設けられた支持板11の端部、下側杭1及び上側杭2の外面よりも径方向の外側に突出し、接合鋼管3の上端部に設けられたリブ31は支持板11よりも上方に配置されている。よって、支持板11の端部が硬化したモルタル4を支持し、接合鋼管3のリブ31はモルタル4を介して、支持板11の端部から反力を受けるため、接合鋼管3が脱落することが一層抑制される。 Further, the end of the support plate 11 provided on the lower pile 1 and the upper pile 2, protruding outward in the radial direction from the outer surfaces of the lower pile 1 and the upper pile 2, and provided at the upper end of the joined steel pipe 3. The rib 31 is arranged above the support plate 11. Therefore, the end portion of the support plate 11 supports the hardened mortar 4, and the rib 31 of the joint steel pipe 3 receives a reaction force from the end portion of the support plate 11 via the mortar 4, so that the joint steel pipe 3 falls off. Is further suppressed.

また、接合鋼管3と下側杭1及び上側杭2とのそれぞれの上下方向に重なっている部分の長さは、接合鋼管3の直径の1/2以上であるため、既存建物Aの水平抵抗力を確実に確保することができる。 Further, since the length of each of the joint steel pipe 3, the lower pile 1 and the upper pile 2 overlapping in the vertical direction is ½ or more of the diameter of the joint steel pipe 3, the horizontal resistance of the existing building A Power can be reliably secured.

また、予め接合鋼管3を下側杭1の外周に配置しておいて、接合鋼管3を引き上げれば、内部に上側杭2の下部及び下側杭1の上部が配置される位置に設置されるため、施工性が良い。 Further, if the joined steel pipe 3 is arranged in advance on the outer periphery of the lower pile 1, and the joined steel pipe 3 is pulled up, it is installed at a position where the lower portion of the upper pile 2 and the upper portion of the lower pile 1 are arranged inside. Therefore, workability is good.

また、上側杭2と下側杭1とが平面視で偏心している場合には、上側杭2と下側杭1とをボルト接合する構成では、上側杭2と下側杭1とをボルトで連結することが難しい。本発明では、上側杭2及び下側杭1を、上側杭2及び下側杭1よりも大きい接合鋼管3で覆い、接合鋼管3の内部にモルタル4を充填する構成であるため、上側杭2と下側杭1とが平面視で偏心していても接合鋼管3で覆える範囲内であれば、施工することができる。 Further, when the upper pile 2 and the lower pile 1 are eccentric in a plan view, in the configuration in which the upper pile 2 and the lower pile 1 are bolted together, the upper pile 2 and the lower pile 1 are bolted. Difficult to connect. In the present invention, the upper pile 2 and the lower pile 1 are covered with a joint steel pipe 3 larger than the upper pile 2 and the lower pile 1, and the inside of the joint steel pipe 3 is filled with the mortar 4. Therefore, the upper pile 2 Even if the lower pile 1 and the lower pile 1 are eccentric in a plan view, they can be constructed as long as they can be covered by the joined steel pipe 3.

なお、上述した実施の形態において示した組立手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The assembly procedure shown in the above-described embodiment, or various shapes and combinations of the constituent members are examples, and various changes can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、上記に示す実施形態では、接合鋼管3には第一突出部が設けられ、下側杭1及び上側杭2には第二突出部が設けられているが、本発明はこれに限られず、第一突出部及び第二突出部が設けられていなくてもよい。あるいは、第一突出部は、平面視環状に形成されているが、接合鋼管3の内面から内方に突出していればよく、周方向に不連続に形成されていてもよい。 For example, in the embodiment shown above, the joint steel pipe 3 is provided with a first protruding portion, and the lower pile 1 and the upper pile 2 are provided with a second protruding portion, but the present invention is not limited to this. , The first protrusion and the second protrusion may not be provided. Alternatively, although the first protruding portion is formed in an annular shape in a plan view, it may be formed so as to project inward from the inner surface of the joined steel pipe 3 and may be formed discontinuously in the circumferential direction.

1…下側杭
2…上側杭
3…接合鋼管
4…モルタル
9…免震装置
11…支持板
21…支持板
21e…支持板の端部(第二突出部)
22…固定部
31…リブ(第一突出部)
100…水平抵抗構造
A…既存建物
B…礎盤
C…地盤
D…マットスラブ
E…補強スラブ
W…掘削空間
1 ... Lower pile 2 ... Upper pile 3 ... Joint steel pipe 4 ... Mortar 9 ... Seismic isolation device 11 ... Support plate 21 ... Support plate 21e ... End of support plate (second protrusion)
22 ... Fixed part 31 ... Rib (first protruding part)
100 ... Horizontal resistance structure A ... Existing building B ... Foundation C ... Ground D ... Mat slab E ... Reinforcing slab W ... Excavation space

Claims (6)

既存建物の直下に免震装置を設置する際に、前記既存建物を支持する水平抵抗構造であって、
前記免震装置の近傍に配置され、地盤に支持され上方に延びる下側杭と、
該下側杭と対向する上方に配置され、前記既存建物に支持され下方に延びる上側杭と、
上下方向に延び、内部に前記下側杭の上部及び前記上側杭の下部が配置された接合鋼管と、
前記接合鋼管の内部に充填されたモルタルと、を備えることを特徴とする既存建物の水平抵抗構造。
It is a horizontal resistance structure that supports the existing building when the seismic isolation device is installed directly under the existing building.
A lower pile that is placed near the seismic isolation device, is supported by the ground, and extends upward.
An upper pile that is arranged above the lower pile and is supported by the existing building and extends downward.
A bonded steel pipe extending in the vertical direction and having an upper portion of the lower pile and a lower portion of the upper pile arranged inside.
A horizontal resistance structure of an existing building, which comprises a mortar filled inside the joined steel pipe.
前記接合鋼管の内面には、内方に向かって突出する第一突出部が設けられていることを特徴とする請求項1に記載の既存建物の水平抵抗構造。 The horizontal resistance structure of an existing building according to claim 1, wherein a first protruding portion projecting inward is provided on the inner surface of the joined steel pipe. 前記下側杭及び前記上側杭の少なくともいずれか一方の外面には、外方に向かって突出する第二突出部が設けられ、
前記第一突出部は、前記第二突出部の上方に配置されていることを特徴とする請求項2に記載の既存建物の水平抵抗構造。
A second projecting portion that projects outward is provided on the outer surface of at least one of the lower pile and the upper pile.
The horizontal resistance structure of an existing building according to claim 2, wherein the first protruding portion is arranged above the second protruding portion.
前記接合鋼管と前記下側杭及び前記上側杭とのそれぞれの上下方向に重なっている部分の長さは、前記接合鋼管の直径の1/2以上であることを特徴とする請求項1から3のいずれか一項に記載の既存建物の水平抵抗構造。 Claims 1 to 3 characterized in that the length of the vertically overlapping portion of the joined steel pipe, the lower pile, and the upper pile is ½ or more of the diameter of the joined steel pipe. Horizontal resistance structure of the existing building described in any one of the above. 既存建物の直下に免震装置を設置する際に、前記既存建物を支持する既存建物の水平抵抗構造の構築方法であって、
既存建物の直下を掘削する掘削工程と、
該掘削工程で形成した掘削空間に面した地盤に下側杭を打設する下側杭打設工程と、
前記既存建物における前記下側杭と対向する位置に上側杭を設置する上側杭設置工程と、
前記下側杭の上端部にジャッキを設置して、該ジャッキで前記上側杭の下端部を支持させるジャッキ設置工程と、
前記掘削空間における前記下側杭及び前記上側杭の近傍に、免震装置を設置する免震装置設置工程と、
前記ジャッキをダウンして、前記免震装置で前記既存建物を支持させる免震装置支持工程と、
前記ジャッキを撤去するジャッキ撤去工程と、
前記上側杭の下部及び前記下側杭の上部の外周に、前記上側杭の外面及び前記下側杭の外面と離間して接合鋼管を設置する接合鋼管設置工程と、
前記接合鋼管の内部にモルタルを充填するモルタル充填工程と、を備えることを特徴とする既存建物の水平抵抗構造の構築方法。
It is a method of constructing a horizontal resistance structure of an existing building that supports the existing building when installing a seismic isolation device directly under the existing building.
The excavation process to excavate directly under the existing building and
A lower pile driving process in which a lower pile is driven in the ground facing the excavation space formed in the excavation process, and a lower pile driving process.
The upper pile installation process of installing the upper pile at a position facing the lower pile in the existing building,
A jack installation process in which a jack is installed at the upper end of the lower pile and the lower end of the upper pile is supported by the jack.
A seismic isolation device installation process for installing a seismic isolation device in the vicinity of the lower pile and the upper pile in the excavation space,
A seismic isolation device support process in which the jack is lowered to support the existing building with the seismic isolation device,
The jack removal process for removing the jack and
A joining steel pipe installation step of installing a joining steel pipe at the lower part of the upper pile and the outer circumference of the upper part of the lower pile at a distance from the outer surface of the upper pile and the outer surface of the lower pile.
A method for constructing a horizontal resistance structure of an existing building, which comprises a mortar filling step of filling the inside of the joined steel pipe with mortar.
予め前記接合鋼管を前記下側杭の外側に配置しておき、
前記接合鋼管設置工程では、前記接合鋼管を引き上げて、内部に前記上側杭の下部及び前記下側杭の上部が配置される位置に設置することを特徴とする請求項5に記載の既存建物の水平抵抗構造の構築方法。
The bonded steel pipe is arranged in advance on the outside of the lower pile.
The existing building according to claim 5, wherein in the joint steel pipe installation step, the joint steel pipe is pulled up and installed at a position where the lower portion of the upper pile and the upper portion of the lower pile are arranged inside. How to build a horizontal resistance structure.
JP2017012219A 2017-01-26 2017-01-26 Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building Active JP6804736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012219A JP6804736B2 (en) 2017-01-26 2017-01-26 Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012219A JP6804736B2 (en) 2017-01-26 2017-01-26 Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building

Publications (2)

Publication Number Publication Date
JP2018119335A JP2018119335A (en) 2018-08-02
JP6804736B2 true JP6804736B2 (en) 2020-12-23

Family

ID=63044882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012219A Active JP6804736B2 (en) 2017-01-26 2017-01-26 Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building

Country Status (1)

Country Link
JP (1) JP6804736B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303524A (en) * 1992-03-09 1994-04-19 Caspe Marc S Earthquaker protection system and method of installing same
JP3536543B2 (en) * 1996-08-06 2004-06-14 大成建設株式会社 Seismic isolation method for foundations of existing buildings
JP4465571B2 (en) * 2000-11-02 2010-05-19 東洋建設株式会社 Seismic isolation system for existing buildings
WO2011052184A1 (en) * 2009-10-27 2011-05-05 Jfeシビル株式会社 Artificial ground for roads and the like, and method of constructing same
JP6357366B2 (en) * 2014-06-28 2018-07-11 大成建設株式会社 Horizontal movement restraint method
CN105649100B (en) * 2016-01-07 2017-07-04 浙江理工大学 The base isolation reinforcement method of existing pile foundation building

Also Published As

Publication number Publication date
JP2018119335A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
KR20060092552A (en) The non-strut down framework construction method of having used cast in place concrete pile
JP2008111256A (en) Joint structure and construction method for pile head part
JP4164857B2 (en) Reconstruction method using existing underground structure
JP5854506B2 (en) How to change the basic form of an existing building
KR101618719B1 (en) Top-down underground construction method using the connecting structure of the CFT column
JP4624867B2 (en) Seismic isolation repair method for existing buildings
KR20110052360A (en) Downward construction method of underground structure that enables continuous basement wall using non-wale and diaphragm action of concrete slab
JP6804736B2 (en) Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building
JP7072483B2 (en) How to build a skeleton
JP4634829B2 (en) Base structure of base-isolated building
JP2014001550A (en) Slab for connection and construction method thereof
JP6855296B2 (en) Building foundation structure and its construction method
JP2001132004A (en) Earthquake resistant placing method for raising of building and settlement correction work
JP2019218795A (en) Joint structure of foundation pile and foundation slab
JPH11310928A (en) Vibration isolation reinforcing method for existing structure
JP6357366B2 (en) Horizontal movement restraint method
JP6804737B2 (en) Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building
JP6083788B2 (en) Temporary support method for foundation
JP6302222B2 (en) Horizontal force support structure and method for constructing horizontal force support structure
KR101415867B1 (en) Precast concrete structure construction method for downward construction of underground structures
JP2006002428A (en) Reinforcing method of existing floor and base isolation method of existing building
JP7106305B2 (en) Structural columns and seismically isolated buildings
KR20110043976A (en) Top-down method using precast column and building structure thereof
JP6093458B1 (en) Construction method of subsidence structure
JP6895740B2 (en) Horizontal force restraint structure

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201119

R150 Certificate of patent or registration of utility model

Ref document number: 6804736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150