JP3536543B2 - Seismic isolation method for foundations of existing buildings - Google Patents

Seismic isolation method for foundations of existing buildings

Info

Publication number
JP3536543B2
JP3536543B2 JP22314496A JP22314496A JP3536543B2 JP 3536543 B2 JP3536543 B2 JP 3536543B2 JP 22314496 A JP22314496 A JP 22314496A JP 22314496 A JP22314496 A JP 22314496A JP 3536543 B2 JP3536543 B2 JP 3536543B2
Authority
JP
Japan
Prior art keywords
pile
seismic isolation
seismic
foundation
existing building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22314496A
Other languages
Japanese (ja)
Other versions
JPH1046605A (en
Inventor
澄夫 前沢
哲也 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP22314496A priority Critical patent/JP3536543B2/en
Publication of JPH1046605A publication Critical patent/JPH1046605A/en
Application granted granted Critical
Publication of JP3536543B2 publication Critical patent/JP3536543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、杭基礎によって支
持された既存の建物の基礎部分に、免震装置を介装して
免震化させる際に用いて好適な既存建物における基礎部
分の免震化工法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for isolating a base part of an existing building which is suitable for use in a case where a base part of an existing building supported by a pile foundation is seismically isolated by interposing a seismic isolation device. It is related to the seismic method.

【0002】[0002]

【従来の技術】一般に、現行の新耐震設計法が施行され
る以前に建築された建物は、上記新耐震設計法に基づい
て設計された建物と比較して耐震性能に劣る場合が多
い。そこで、近年このような耐震性能が不充分であると
判定された既存の建物に対して、耐震補強を施すことに
より、免震建物とする要請が増加しつつある。このた
め、従来より、上記耐震性能に劣る既存建物を補強する
一方策として、例えば耐震壁を増設したり、あるいは柱
を補強するといった各種の局部的な耐震補強工法が提案
されている。
2. Description of the Related Art In general, buildings constructed before the current new seismic design method is enforced often have inferior seismic performance compared to buildings designed based on the new seismic design method. Therefore, in recent years, there has been an increasing demand for existing buildings that have been determined to have insufficient seismic performance to be seismically isolated buildings by performing seismic reinforcement. For this reason, various local seismic retrofitting methods have been proposed as a measure to reinforce an existing building having inferior seismic performance, for example, by adding an anti-seismic wall or reinforcing columns.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記既
存建物の内部においては、常時一般業務や作業が行なわ
れているのに対して、このような耐震壁の増設や柱の補
強等の施工にあっては、支保工や仮設補強材等の各種大
型部材を建物内に搬入して大掛かりな作業を行なう必要
があるうえに、補強の前後において建物内部の構造に変
化が生じるために、建物内における平常業務を妨げない
ようにして上記補強工事を行なうことが難しいという問
題点がある。これに対して、上記既存建物の基礎部分に
免震装置を介装することにより、建物全体を免震化させ
る工法によれば、建物全体の免震化を図ることができる
とともに、既存建物の基礎下のみの工事になるために、
若干の制約はあるものの、ほぼ平常通りに当該建物を使
用することができ、しかも補強前後において建物の内部
構造における変化が非常に少ないという利点がある。
However, inside the above-mentioned existing building, ordinary work and work are always performed. However, such construction such as the addition of earthquake-resistant walls and the reinforcement of pillars is difficult. In addition, it is necessary to carry various large members such as shoring and temporary reinforcing materials into the building and perform large-scale work.In addition, since the structure inside the building changes before and after reinforcement, There is a problem that it is difficult to perform the above-mentioned reinforcement work so as not to disturb the normal work. On the other hand, according to the method of seismic isolation of the entire building by interposing seismic isolation devices on the foundation of the existing building, the entire building can be seismically isolated, In order to work only under the foundation,
Although there are some restrictions, the building can be used almost as usual, and there is an advantage that there is very little change in the internal structure of the building before and after reinforcement.

【0004】ところが、上記既存建物の基礎部分を免震
化させる際には、基礎下を掘削した後に、上記建物を一
時仮受けし、さらにこれをジャッキアップして軸荷重を
支持した状態で免震装置を設置する必要があるために、
これらジャッキアップ等のための支保工の搬入出や施工
作業に多くの手間を要するという問題点があり、またジ
ャキアップによって荷重を仮支持した状態等の施工中に
おける耐震安全性も確保する必要があるといった問題点
があり、その解決が強く望まれていた。本発明は、この
ような従来の既存建物の基礎部分を免震化させる際にお
ける各種課題を有効に解決すべくなされたもので、施工
中もほぼ平常通りに建物を使用することができ、かつジ
ャッキアップ等の支保工が不要で施工の大幅な簡略化を
図ることができるとともに、施工中の耐震安全性にも優
れる既存建物における基礎部分の免震化工法を提供する
ことを目的とするものである。
[0004] However, when the foundation of the existing building is made seismic-isolated, after excavating under the foundation, the building is temporarily received, and then the jack is lifted up to support the axial load. Because it is necessary to install a seismic device,
There is a problem that a lot of labor is required for loading and unloading the shoring work and construction work for these jack-ups, and it is also necessary to ensure seismic safety during construction, such as when the load is temporarily supported by the jack-up. There was a problem, and a solution was strongly desired. The present invention was made in order to effectively solve various problems in seismic isolation of the foundation of such a conventional existing building, and the building can be used almost as usual during construction, and The purpose of the present invention is to provide a seismic isolation method for the foundation of an existing building that does not require jack-ups or other shoring work, greatly simplifies construction, and has excellent seismic safety during construction. It is.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の既存建
物における基礎部分の免震化工法は、杭基礎によって支
持された既存建物の基礎下を掘削して杭を露出させ、次
いで免震装置を設置する部位の杭以外の複数本の杭を耐
震補強した後に、免震装置を設置する部位の杭を解体
し、次いで当該部位の下方にフーチングを新設するとと
もに、上記免震装置の上下部位置に上下部ペデスタルを
施工し、次にこれら上下部ペデスタル間に免震装置を設
置し、さらにこの免震装置と上部ペデスタルとの隙間に
硬化性材料を圧入して上記免震装置にプレロードを付加
した後に、他の杭を解体することを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a seismic isolation method for a foundation portion of an existing building, wherein a pile is exposed by excavating under a foundation of the existing building supported by a pile foundation, and then seismically isolated. After seismic reinforcement of multiple piles other than the pile where the device is to be installed, the pile where the seismic isolation device is to be installed is dismantled, and then a footing is newly installed under the relevant site. The upper and lower pedestals are installed in the upper and lower pedestals, and then a seismic isolation device is installed between the upper and lower pedestals, and a curable material is pressed into the gap between the upper and lower pedestals to preload the seismic isolation device. And then dismantling the other piles.

【0006】この際に、請求項2に記載の発明は、上記
杭の耐震補強を、分割された管状部材によって上記杭の
外周を囲繞し、分割部位を接合して一体化させた後に、
上記管状部材と上記杭との間に無収縮硬化性材料を充填
して硬化させることによって行なうことを特徴とするも
のであり、他方請求項3に記載の発明は、上記杭の耐震
補強を、上記杭の外周に接着剤を塗布した後に炭素繊維
シートを巻回し、上記接着剤を硬化させて一体的に接合
することによって行なうことを特徴とするものである。
ここで、上記接着剤としては、例えばエポキシ系樹脂接
着剤等の塗布が容易で優れた硬化性および接着性が得ら
れる接着剤を用いれば好適である。さらに、請求項4に
記載の発明は、上記請求項1〜3のいずれかに記載の発
明において、耐震補強された上記杭の外周の新設フーチ
ング内に埋設される部位に、シアコネクタを取付けてお
くことを特徴とするものである。
[0006] In this case, the invention according to claim 2 is that the seismic reinforcement of the pile is performed after the outer periphery of the pile is surrounded by the divided tubular member, and the divided parts are joined and integrated.
The non-shrinkage hardening material is filled and hardened between the tubular member and the pile, and the hardening is performed. On the other hand, the invention according to claim 3 performs seismic reinforcement of the pile, The method is characterized in that a carbon fiber sheet is wound after an adhesive is applied to the outer periphery of the pile, and the adhesive is cured and integrally joined.
Here, as the adhesive, it is preferable to use, for example, an adhesive which is easy to apply, such as an epoxy resin adhesive, and provides excellent curability and adhesiveness. Further, the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein a shear connector is attached to a portion embedded in a new footing on the outer periphery of the seismically reinforced pile. It is characterized by putting.

【0007】請求項1〜4のいずれかに記載の発明にお
いては、既存建物の基礎部分における免震化作業となる
ために、ほぼ平常通りに当該建物を使用することがで
き、かつ補強前後における建物の内部構造に変化を生じ
させる必要が無い。しかもこの際に、免震装置を設置す
る部位の杭以外の複数本の杭を耐震補強することによ
り、杭の耐力が増大するので、作業中の安全性が確保さ
れるとともに、建物のジャッキアップ等の支保工が不要
となり、よって作業が大幅に簡略化される。加えて、万
一施工中に地震が発生した場合においても、上記耐震補
強によって杭の露出している部位が剪断破壊することが
防止されるために、建物全体の耐震安全性を確保するこ
とも可能となる。
In the invention according to any one of the first to fourth aspects, since the seismic isolation work is performed on the foundation of an existing building, the building can be used almost as usual, and before and after reinforcement. There is no need to change the internal structure of the building. In addition, at this time, by strengthening the piles other than the pile where the seismic isolation device is installed by seismic resistance, the strength of the piles is increased, ensuring safety during work and jacking up the building. Such a support work is not required, so that the work is greatly simplified. In addition, even in the event of an earthquake during construction, the above-mentioned seismic reinforcement will prevent the exposed areas of the piles from being sheared and destroyed, thus ensuring the seismic safety of the entire building. It becomes possible.

【0008】ここで、上記杭の耐震補強としては、請求
項2に記載の発明のように、分割された管状部材によっ
て補強すべき杭の外周を囲繞し、分割部位を接合して一
体化させた後に、上記管状部材と杭との間に無収縮硬化
性材料を充填して硬化させることによって行なうことが
できる。上記管状部材としては、一般的な鋼管が好適で
あり、内径が上記杭の外径より幾分大きな鋼管を2分割
して杭の外周に配設し、分割部分を接合して一体化させ
た後に、互いの隙間に無収縮のモルタル等を充填して硬
化させれば、上記杭の補強を汎用の管材でかつ容易に行
なうことができて一層好ましい。また、上記杭の他の耐
震補強としては、請求項3に記載の発明のように、補強
すべき杭の外周に、例えばエポキシ系樹脂接着剤等の接
着剤を塗布した後に、炭素繊維シートを巻回し、上記エ
ポキシ系樹脂接着剤等を硬化させることによって行なっ
てもよい。
Here, as the seismic reinforcement of the pile, the outer periphery of the pile to be reinforced is surrounded by the divided tubular member and the divided parts are joined and integrated as in the invention according to claim 2. After that, it can be performed by filling a non-shrinkable curable material between the tubular member and the pile and curing the material. As the tubular member, a general steel pipe is preferable, and a steel pipe having an inner diameter slightly larger than the outer diameter of the pile is divided into two parts and arranged on the outer periphery of the pile, and the divided parts are joined and integrated. It is more preferable that the space between the piles is filled with non-shrinkable mortar or the like and hardened later, since the pile can be reinforced easily with a general-purpose pipe. Further, as another seismic reinforcement of the pile, as in the invention according to claim 3, an adhesive such as an epoxy resin adhesive is applied to the outer periphery of the pile to be reinforced, and then the carbon fiber sheet is applied. It may be performed by winding and curing the epoxy resin adhesive or the like.

【0009】さらに、請求項4に記載の発明によれば、
上記請求項1〜3のいずれかに記載の発明において、耐
震補強された上記杭の外周の新設フーチング内に埋設さ
れる部位に、シアコネクタを取付けておくことにより、
上記フーチングと杭との付着性を向上させることができ
る。なお、上記シアコネクタは、例えば請求項2に記載
の発明において、管状部材の内周面にも取付けておけ
ば、当該管状部材と杭との隙間に充填した硬化性材料と
の付着力も増加させることができて、一層好適である。
ちなみに、上記シアコネクタとしては、杭の補強部外周
にリング状のフラットバーやスタッドボルト等を溶接す
ることが挙げられる。また、上記管状部材の内周面にも
取付ける場合には、予めこの管状部材の内面側にチェッ
カープレートの突部側を位置させるようにすれば、別途
溶接に煩雑な手間を要することが無くて施工が容易であ
る。
Further, according to the invention described in claim 4,
In the invention according to any one of claims 1 to 3, by attaching a shear connector to a portion buried in a newly installed footing on the outer periphery of the reinforced pile,
The adhesion between the footing and the pile can be improved. If the shear connector is attached to the inner peripheral surface of the tubular member, for example, in the invention described in claim 2, the adhesive force between the curable material filled in the gap between the tubular member and the pile also increases. It is more preferable.
Incidentally, as the shear connector, a ring-shaped flat bar, a stud bolt, or the like is welded to the outer periphery of the reinforcing portion of the pile. In addition, when mounting on the inner peripheral surface of the tubular member, if the protrusion side of the checker plate is located in advance on the inner surface side of the tubular member, it is not necessary to separately perform complicated welding. Construction is easy.

【0010】[0010]

【発明の実施の形態】図1〜図6は、本発明に係る既存
建物における基礎部分の免震化工法の一実施形態を説明
するための図で、図1は、躯体を構成する柱1…の下部
に形成された複数の独立フーチング2…が、地中に打ち
込まれた多数本の杭3…によって支持された施工前の既
存建物を示すものである。このような既存建物に対して
基礎部分における免震化を行なうには、先ず図2に示す
ように、上記既存建物の基礎下を掘削して杭3…を露出
させる。この際に、上記杭3…の周囲は、他の部位より
も深く掘削して穴部4を形成しておく。また、これと並
行して耐圧版5を解体することにより、杭3…への負担
を幾分とも軽減させるとともに、より広い作業空間を確
保する。次に、免震装置を設置する部位の杭3’以外の
杭3…を洗浄した後に、図中斜線で示す露出部分の外周
に、耐震補強を施す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 6 are diagrams for explaining an embodiment of a method of seismic isolation of a foundation portion of an existing building according to the present invention. FIG. A plurality of independent footings 2 formed below the... Indicate an existing building before construction supported by a number of piles 3 driven into the ground. To perform seismic isolation on the foundation of such an existing building, first, as shown in FIG. 2, excavation is performed under the foundation of the existing building to expose the piles 3. At this time, the holes 4 are formed by excavating the piles 3... Deeper than other parts. In addition, by disassembling the pressure plate 5 in parallel with this, the burden on the piles 3 is somewhat reduced, and a wider working space is secured. Next, after the piles 3... Other than the pile 3 ′ at the site where the seismic isolation device is installed are washed, seismic reinforcement is applied to the outer periphery of the exposed portion indicated by oblique lines in the figure.

【0011】すなわち、図3に示すように、先ず各杭3
の外周面3aに目荒らし処理を施し、次いで上記杭3の
外周に、内径が上記杭3の外径より大きな半割れの鋼管
(管状部材)6を配設し、分割部分6aを溶接によって
接合して一体化させた後に、上記杭3と鋼管6の隙間に
無収縮のモルタル(硬化性材料)7を充填して硬化させ
ることにより上記杭3を補強する。ここで、上記鋼管6
の内周面とモルタル7との付着力が不足する虞がある場
合には、予め上記鋼管6の内面側にチェッカープレート
の突部側が位置するように形成しておけば、上記モルタ
ル7との付着力を所望の強さまで増加させることができ
る。このようにして、杭3…を耐震補強することによっ
てその耐力を増加させた後に、免震装置を設置する部位
の上記杭3’を解体する。
That is, as shown in FIG.
Roughening treatment is performed on the outer peripheral surface 3a of the slab, and then a half-split steel pipe (tubular member) 6 having an inner diameter larger than the outer diameter of the stake 3 is disposed on the outer periphery of the pile 3, and the divided portions 6a are joined by welding After that, the pile 3 is reinforced by filling the gap between the pile 3 and the steel pipe 6 with a non-shrinkable mortar (curable material) 7 and hardening. Here, the steel pipe 6
When there is a possibility that the adhesive force between the inner peripheral surface of the mortar 7 and the mortar 7 becomes insufficient, if the protrusion side of the checker plate is formed on the inner surface side of the steel pipe 6 in advance, the The adhesion can be increased to the desired strength. In this way, after increasing the strength of the piles 3 by seismic reinforcement, the piles 3 'at the site where the seismic isolation device is installed are dismantled.

【0012】次いで、図4に示すように、杭3…周囲の
穴部4内にコンクリートを打設して、フーチング8を新
設する。この際にも、鋼管6とフーチング8との付着力
を増加させる必要がある場合には、予め上記鋼管6の外
周面にリング状のフラットバーを溶接したり、あるいは
スタッドボルトを溶接するなどして、上記鋼管6の外周
にいわゆるシアコネクタを設けておけばよい。そして、
上記フーチング8が構築された後に、当該フーチング8
の上面および既設のフーチング2の下面であって、免震
装置を配設する位置の上下部位置に、それぞれ上下部ペ
デスタル9、10を構築し、さらに免震ピット床となる
土間コンクリート11を施工することにより、保守点検
等の作業スペースを確保する。
Next, as shown in FIG. 4, concrete is poured into the holes 3 around the piles 3... At this time, if it is necessary to increase the adhesive force between the steel pipe 6 and the footing 8, a ring-shaped flat bar is welded to the outer peripheral surface of the steel pipe 6 in advance, or a stud bolt is welded. A so-called shear connector may be provided on the outer periphery of the steel pipe 6. And
After the footing 8 is constructed, the footing 8
The upper and lower pedestals 9 and 10 are constructed at the upper and lower positions of the seismic isolation device on the upper surface of the existing footing 2 and the lower surface of the existing footing 2, respectively. By doing so, a work space for maintenance and inspection is secured.

【0013】次に、図5に示すように、上記上下部ペデ
スタル9、10間に、例えば積層ゴムからなる免震装置
12を設置し、さらにこの免震装置12と上部ペデスタ
ル9との隙間にモルタル(硬化性材料)13を高圧入し
て上記免震装置12にプレロードを付加する。このよう
にして、躯体の荷重を上記免震装置12で支持した後
に、上記杭3…の露出部分を解体するとともに、既存の
フーチング2の不要部分2aも解体する。そして、図6
に示すように、躯体との間の緩衝スペース14に面する
掘削部にH鋼杭15を埋設するとともに、アースアンカ
ー16を介してRC壁17を配設し、また上記躯体の地
上レベルに、上記緩衝スペース14を覆うはね出しスラ
ブ18を新設することにより、上記既存建物の基礎部分
に免震装置12が介装された上記建物における免震化が
完了する。
Next, as shown in FIG. 5, a seismic isolation device 12 made of, for example, a laminated rubber is installed between the upper and lower pedestals 9 and 10, and a gap between the seismic isolation device 12 and the upper pedestal 9 is provided. A mortar (curable material) 13 is charged under high pressure to apply a preload to the seismic isolation device 12. In this way, after supporting the load of the frame by the seismic isolation device 12, the exposed portions of the piles 3 are dismantled, and the unnecessary portion 2a of the existing footing 2 is also dismantled. And FIG.
As shown in the figure, the H steel pile 15 is buried in the excavated portion facing the buffer space 14 between the skeleton and the RC wall 17 is disposed via the earth anchor 16, and at the ground level of the skeleton, By newly providing the projecting slab 18 covering the buffer space 14, the seismic isolation of the building in which the seismic isolation device 12 is interposed in the foundation of the existing building is completed.

【0014】したがって、上記既存建物における基礎部
分の免震化工法によれば、既存建物に対する免震化作業
の大部分が基礎部分になるために、ほぼ平常通りに当該
建物を使用することができ、かつ補強前後における建物
の内部構造に変化を生じさせる必要が無い。また、免震
化作業にあたっては、免震装置12を設置する部位の杭
3’以外の杭3を鋼管6およびモルタル7によって耐震
補強することにより、杭3…の耐力を増大させているの
で、作業中の安全性を確保することができるとともに、
さらに建物のジャッキアップ等の支保工が不要になるた
めに、当該免震化作業を大幅に簡略化することができ
る。しかも、万一施工中に地震が発生した場合において
も、上記杭3…に対する耐震補強によってこれら杭3…
の露出している部位が剪断破壊することが防止されるた
めに、作業中における建物全体の耐震安全性を確保する
こともできる。
Therefore, according to the seismic isolation method for the foundation part of the existing building, most of the seismic isolation work on the existing building becomes the foundation part, so that the building can be used almost as usual. In addition, there is no need to cause a change in the internal structure of the building before and after reinforcement. In addition, in the seismic isolation work, the piles 3 other than the pile 3 ′ at the site where the seismic isolation device 12 is installed are reinforced with steel pipes 6 and mortar 7 to increase the resistance of the piles 3. As well as ensuring safety during work,
Furthermore, since the support work such as jacking up the building is not required, the seismic isolation work can be greatly simplified. In addition, even if an earthquake occurs during the construction, the piles 3 may be subjected to seismic reinforcement for the piles 3.
Since the exposed portion is prevented from being sheared and broken, it is also possible to ensure the earthquake resistance of the entire building during the work.

【0015】なお、上記実施の形態の説明においては、
杭3の外周に半割れの鋼管6を配設して一体化させた後
に、上記杭3と鋼管6の隙間に無収縮のモルタル7を充
填して硬化させることにより上記杭3を補強する場合に
ついてのみ説明したが、これに限るものではなく、例え
ば補強すべき上記杭3の外周にエポキシ系樹脂接着剤等
の接着剤を塗布し、次いでその外周に炭素繊維シートを
巻回して硬化させることにより、上記杭3に炭素繊維シ
ートを一体的に貼着して当該杭3を補強するようにして
もよい。
In the description of the above embodiment,
A case in which a half-split steel pipe 6 is arranged on the outer periphery of the pile 3 and integrated, and then the gap between the pile 3 and the steel pipe 6 is filled with non-shrinkable mortar 7 and hardened to reinforce the pile 3. However, the present invention is not limited to this. For example, an adhesive such as an epoxy resin adhesive is applied to the outer periphery of the pile 3 to be reinforced, and then a carbon fiber sheet is wound around the outer periphery and cured. Accordingly, the pile 3 may be reinforced by integrally attaching a carbon fiber sheet to the pile 3.

【0016】[0016]

【発明の効果】以上説明したように、請求項1〜4のい
ずれかに記載の発明によれば、既存建物に対する免震化
作業がもっぱら基礎部分となるために、ほぼ平常通りに
当該建物を使用することができるとともに、補強前後に
おける建物の内部構造に変化を生じさせる必要が無い。
また、免震装置を設置する部位の杭以外の複数本の杭を
耐震補強しているので、杭の耐力を増大させて作業中の
安全性を確保することができ、しかも建物のジャッキア
ップ等の支保工が不要になるために作業を大幅に簡略化
することができるとともに、上記耐震補強によって杭の
露出している部位が剪断破壊することが防止されるため
に、作業中における建物全体の耐震安全性を確保するこ
ともできるといった優れた効果が得られる。
As described above, according to the invention as set forth in any one of claims 1 to 4, the seismic isolation work for the existing building is exclusively used as the foundation, so that the building is almost normally used. It can be used and there is no need to change the internal structure of the building before and after reinforcement.
In addition, since several piles other than the pile where the seismic isolation device is installed are seismically reinforced, the strength of the piles can be increased to ensure safety during work, and the building can be jacked up. The work can be greatly simplified because the support work of the building becomes unnecessary, and the above-mentioned seismic strengthening prevents the exposed part of the pile from shearing and breaking. Excellent effects such as the ability to ensure seismic safety can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の既存建物における基礎部分の免震化工
法の一実施形態において施工前の建物の構成を示す縦断
面図である。
FIG. 1 is a longitudinal sectional view showing a configuration of a building before construction in one embodiment of a method of seismic isolation of a foundation portion in an existing building of the present invention.

【図2】図1の基礎下掘削後、所定位置の杭を切断した
状態を示す要部の縦断面図である。
FIG. 2 is a longitudinal sectional view of a main part showing a state where a pile at a predetermined position is cut after excavation under the foundation in FIG. 1;

【図3】図2における補強された杭の構造を示す横断面
図である。
FIG. 3 is a cross-sectional view showing a structure of a reinforced pile in FIG. 2;

【図4】図2の状態から新設フーチングと上下部ペデス
タルを構築した状態を示す要部の縦断面図である。
FIG. 4 is a longitudinal sectional view of a main part showing a state where a new footing and upper and lower pedestals are constructed from the state of FIG. 2;

【図5】図4の上下部ペデスタル間に免震装置を取付け
て杭を切断した状態を示す要部の縦断面図である。
5 is a longitudinal sectional view of a main part showing a state where a seismic isolation device is mounted between upper and lower pedestals in FIG. 4 and a pile is cut.

【図6】図1の既存建物の免震化が完了した状態を示す
要部の縦断面図である。
FIG. 6 is a longitudinal sectional view of a main part showing a state where seismic isolation of the existing building of FIG. 1 is completed.

【符号の説明】[Explanation of symbols]

1 柱 2 フーチング(既存) 3 杭 3’ 免震装置を設置する部位の杭 3a 外周面 6 鋼管(管状部材) 7 無収縮のモルタル(硬化性材料) 8 フーチング(新設) 9 上部ペデスタル 10 下部ペデスタル 12 免震装置 13 モルタル(硬化性材料) 1 pillar 2 Footing (existing) 3 piles 3 'Pile where the seismic isolation device is installed 3a Outer peripheral surface 6 steel pipe (tubular member) 7. Non-shrink mortar (curable material) 8 Footing (newly established) 9 Upper pedestal 10 Lower pedestal 12 Seismic isolation device 13 Mortar (curable material)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−11720(JP,A) 特開 昭62−233385(JP,A) 特開 平3−137326(JP,A) 特開 昭63−118420(JP,A) 特開 平2−20767(JP,A) 実開 昭64−31802(JP,U) 実開 昭62−129447(JP,U) 特公 平6−25485(JP,B2) (58)調査した分野(Int.Cl.7,DB名) E02D 27/34 E02D 27/12 E04G 23/00 - 23/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-11720 (JP, A) JP-A-62-233385 (JP, A) JP-A-3-137326 (JP, A) JP-A-63-1987 118420 (JP, A) JP-A-2-20767 (JP, A) JP-A-64-31802 (JP, U) JP-A-62-129447 (JP, U) JP-B-6-25485 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) E02D 27/34 E02D 27/12 E04G 23/00-23/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 杭基礎によって支持された既存建物の基
礎下を掘削して杭を露出させ、次いで免震装置を設置す
る部位の杭以外の複数本の杭を耐震補強した後に、免震
装置を設置する部位の上記杭を解体し、次いで当該部位
の下方にフーチングを新設するとともに、上記免震装置
の上下部位置に上下部ペデスタルを施工し、次にこれら
上下部ペデスタル間に上記免震装置を設置し、さらに当
該免震装置と上部ペデスタルとの隙間に硬化性材料を圧
入して上記免震装置にプレロードを付加した後に、他の
上記杭を解体することを特徴とする既存建物における基
礎部分の免震化工法。
1. Excavation under the foundation of an existing building supported by a pile foundation to expose the pile, and then, after seismic strengthening of a plurality of piles other than the pile at the site where the seismic isolation device is to be installed, Disassemble the pile at the site where the pedestal is to be installed, then install a footing below the site, install the upper and lower pedestals at the upper and lower positions of the seismic isolation device, and then install the seismic isolation between these upper and lower pedestals. After installing a device, further press-fitting a curable material into the gap between the seismic isolation device and the upper pedestal and adding a preload to the seismic isolation device, dismantling the other piles in an existing building, Base seismic isolation method.
【請求項2】 上記杭の耐震補強は、分割された管状部
材によって補強すべき上記杭の外周を囲繞し、上記管状
部材の分割部位を接合して一体化させた後に、当該管状
部材と上記杭との間に無収縮硬化性材料を充填して硬化
させることを特徴とする請求項1に記載の既存建物にお
ける基礎部分の免震化工法。
2. The seismic strengthening of the pile is performed by surrounding the outer periphery of the pile to be reinforced by the divided tubular member, joining the divided portions of the tubular member and integrating them, and then joining the tubular member with the divided member. The seismic isolation method for a foundation portion of an existing building according to claim 1, wherein a non-shrinkable hardening material is filled between the pile and the hardened material.
【請求項3】 上記杭の耐震補強は、補強すべき上記杭
の外周に接着剤を塗布した後に炭素繊維シートを巻回
し、上記接着剤を硬化させて一体的に接合することを特
徴とする請求項1に記載の既存建物における基礎部分の
免震化工法。
3. The seismic reinforcement of the pile is characterized in that an adhesive is applied to an outer periphery of the pile to be reinforced, a carbon fiber sheet is wound, and the adhesive is cured to be integrally joined. The method of seismic isolation of a foundation in an existing building according to claim 1.
【請求項4】 耐震補強された上記杭の外周の上記新設
フーチング内に埋設される部位に、シアコネクタを取付
けておくことを特徴とする請求項1ないし3のいずれか
に記載の既存建物における基礎部分の免震化工法。
4. An existing building according to claim 1, wherein a shear connector is attached to a portion of the outer periphery of the reinforced pile that is buried in the new footing. Base seismic isolation method.
JP22314496A 1996-08-06 1996-08-06 Seismic isolation method for foundations of existing buildings Expired - Fee Related JP3536543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22314496A JP3536543B2 (en) 1996-08-06 1996-08-06 Seismic isolation method for foundations of existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22314496A JP3536543B2 (en) 1996-08-06 1996-08-06 Seismic isolation method for foundations of existing buildings

Publications (2)

Publication Number Publication Date
JPH1046605A JPH1046605A (en) 1998-02-17
JP3536543B2 true JP3536543B2 (en) 2004-06-14

Family

ID=16793484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22314496A Expired - Fee Related JP3536543B2 (en) 1996-08-06 1996-08-06 Seismic isolation method for foundations of existing buildings

Country Status (1)

Country Link
JP (1) JP3536543B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538808B2 (en) * 2005-09-09 2010-09-08 清水建設株式会社 Pile head joint
JP5039510B2 (en) * 2007-11-06 2012-10-03 株式会社不動テトラ Repair and reinforcement structure for floating structures
JP6804736B2 (en) * 2017-01-26 2020-12-23 清水建設株式会社 Method of constructing horizontal resistance structure of existing building and horizontal resistance structure of existing building

Also Published As

Publication number Publication date
JPH1046605A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3071402B2 (en) Lifting method of structure, jack engaging structure and bracket used in the method
KR20060092552A (en) The non-strut down framework construction method of having used cast in place concrete pile
US10738436B1 (en) Tubular foundation for onshore wind turbine generators
JP2009144494A (en) Base-isolating work method for existing buildings
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
CN116427622A (en) Semi-buried type steel pipe concrete column foot structure of underground garage and construction method thereof
JP3780816B2 (en) Seismic isolation method for existing buildings
JP3799036B2 (en) Building basic structure and construction method
JP3692805B2 (en) Seismic isolation method for existing buildings
JP3831737B2 (en) Steel tower basic structure
JP3536543B2 (en) Seismic isolation method for foundations of existing buildings
JP4624867B2 (en) Seismic isolation repair method for existing buildings
JP2019218795A (en) Joint structure of foundation pile and foundation slab
JP2001132004A (en) Earthquake resistant placing method for raising of building and settlement correction work
JP4024448B2 (en) Seismic isolation method for existing buildings
JP4111262B2 (en) Connection structure between foundation pile and superstructure, pile head joint, connection method between foundation pile and superstructure
JP3290887B2 (en) Seismic isolation method for existing building with pile foundation
JP4612422B2 (en) Construction method of structure and foundation structure used for it
JP3963326B2 (en) Seismic reinforcement structure for bridge pier and its construction method
JP5346572B2 (en) Installation method of seismic isolation devices for existing buildings
JPH09170339A (en) Base isolation method for existing building
JP2858997B2 (en) Temporary support column used for reverse driving method
JP4024449B2 (en) Seismic isolation method for existing buildings
JPH09170338A (en) Base isolation method for existing building
JP3809618B2 (en) Foundation pile and construction method of foundation pile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees